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We study the transition between the strong and weak disorder regimes in the scaling properties of the
average optimal path ,opt in a disordered Erdős-Rényi (ER) random network and scale-free (SF) network. Each
link i is associated with a weight ti;expsarid, where ri is a random number taken from a uniform distribution
between 0 and 1 and the parameter a controls the strength of the disorder. We find that for any finite a, there
is a crossover network size N* sad at which the transition occurs. For N!N* sad the scaling behavior of ,opt is
in the strong disorder regime, with ,opt,N1/3 for ER networks and for SF networks with lù4, and ,opt

,Nsl−3d/sl−1d for SF networks with 3,l,4. For N@N* sad the scaling behavior is in the weak disorder
regime, with ,opt, ln N for ER networks and SF networks with l.3. In order to study the transition we
propose a measure which indicates how close or far the disordered network is from the limit of strong disorder.
We propose a scaling ansatz for this measure and demonstrate its validity. We proceed to derive the scaling
relation between N* sad and a. We find that N* sad,a3 for ER networks and for SF networks with lù4, and
N* sad,asl−1d/sl−3d for SF networks with 3,l,4.
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I. INTRODUCTION

The subject of complex networks has been widely ex-
plored in the past few years due in part to its broad range of
applications to social, biological, and communication sys-
tems [1–6]. In a real world network, whether it be a commu-
nication network or transport network, the time ti taken to
traverse a link i may not be the same for all the links. In
other words, there is a “cost” or a “weight” ti associated with
each link, and the larger the weight on a link, the harder it is
to traverse this link. In such a case, the network is said to be
disordered.

Consider two nodes A and B on such a disordered net-
work. In general, there will be a large number of paths con-
necting A and B. Among these paths, there is usually a single
path for which the sum of the costs oti along the path is
minimum and this path is called the “optimal path.” The
problem of optimal paths on networks is of importance since
the purpose of many real networks is to provide an efficient
traffic route between its nodes.

When most of the links on the path contribute to the sum,
the system is said to be “weakly disordered” (WD). In some
cases, however, the cost of a single link along the path domi-
nates the sum. In this case, every path between two nodes
can be characterized by a value equal to the maximum cost
along that path, and the path with the minimal value of the
maximum cost is the optimal path between the two nodes.
This limit of disorder is called the strong disorder (SD) limit
(“ultrametric” limit) [7] and we refer to the optimal path in
this limit as the min-max path.

The procedure to implement disorder on a network is as
follows [7–10]. One assigns to each link i of the network a
random number ri, uniformly distributed between 0 and 1.
The cost associated with link i is then

ti ; expsarid , s1d

where a is the parameter which controls the broadness of the
distribution of link costs. The parameter a represents the
strength of disorder. The limit a→` is the strong disorder
limit, since for this case only one link dominates the cost of
the path.

There are distinct scaling relationships between the length
of the average optimal path ,opt and the network size (num-
ber of nodes) N depending on whether the network is
strongly or weakly disordered [10]. For strong disorder [10],
,opt,Nnopt, where nopt=1/3 for Erdős-Rényi (ER) random
networks [11] and for scale-free (SF) [1] networks with
l.4, where l is the exponent characterizing the power law
decay of the degree distribution. For SF networks with
3,l,4, nopt= sl−3d / sl−1d. For weakly disordered ER
networks and for SF networks with l.3, ,opt, ln N. Porto
et al. [8] considered the optimal path transition from weak to
strong disorder for two-dimensional and three-dimensional
lattices, and found a crossover in the scaling properties of the
optimal path that depends on the disorder strength a, as well
as on the lattice size L.

Here we show that similar to regular lattices, there exists
for any finite a, a crossover network size N* sad such that for
N!N* sad, the scaling properties of the optimal path are in
the strong disorder regime while for N@N* sad, the network
is in the weak disorder regime. We evaluate the function
N* sad. The structure of the paper is as follows. In Sec. II we
derive a scaling approach for the transition from weak disor-
der to strong disorder of the optimal path. In Sec. III we
present simulation results which support the scaling ansatz.
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Finally, in Sec. IV we conclude with an analytic justification
for the scaling of the transition.

II. SCALING APPROACH

In general, the average optimal path length ,optsad in a
disordered network depends on a as well as on N. In the
following we use instead of N the min-max path length ,`

which is related to N as ,`;,opts`d,Nnopt. Hence, N can be
expressed as a function of ,`,

N , ,
`

1/nopt. s2d

Thus, for finite a, ,optsad depends on both a and ,`. We
expect that there exists a crossover length ,* sad, corre-
sponding to the crossover network size N* sad, such that (i)
for ,`!,* sad, the scaling properties of ,optsad are those of
the strong disorder regime, and (ii) for ,`@,* sad, the scal-
ing properties of ,optsad are those of the weak disorder re-
gime. In Fig. 1, we show a schematic representation of the
change of the optimal path as the network size increases.

In order to study the transition from strong to weak dis-
order, we introduce a measure which indicates how close or
far the disordered network is from the limit of strong disor-
der. A natural measure is the ratio

Wsad ;
,optsad

,`

. s3d

Using the scaling relationships between ,optsad and N in both
regimes, and ,`,Nnopt (see Sec. I), we get

,optsad , H,` , Nnopt fSDg

ln ,` , ln N fWDg .
J s4d

From Eqs. (3) and (4) it follows:

Wsad , Hconst. fSDg

ln ,`/,` fWDg .
J s5d

We propose the following scaling ansatz for Wsad:

Wsad = FS ,`

,*sad
D , s6d

where

Fsud , Hconst. u ! 1

lnsud/u u @ 1,
J s7d

with

u ;
,`

,*sad
. s8d

The dependence of ,* sad on a can be estimated as follows.
In the strong disorder limit, the cost on the links for any path
on the network typically differ by at least an order of mag-
nitude. This means that for a min-max path of , link (or
length ,), if we arrange the costs of the links in descending
order, then two consecutive costs typically differ at least by
an order of magnitude. If r1 and r2 are the random numbers
associated with two such consecutive links, with r1.r2, then
the ratio of the costs on the links is

t1

t2
= expsaDrd , s9d

where Dr;r1−r2. Thus, in the case of strong disorder we
must have aDr@1. Consequently the transition to weak dis-
order occurs when all the links become equivalent in order of
magnitude, i.e., when aDr,1. The value of Dr depends on
the length of the path. If the distribution of random numbers
on the min-max path is uniform, then Dr,1/, for a min-
max path of length ,. The condition for the transition, aDr
,1 is satisfied at the crossover length ,* sad which implies
that

,*sad , a . s10d

Therefore, from Eq. (6), Wsad must be a function of ,` /a.

III. SIMULATION RESULTS

Next we describe the details of our numerical simulations
and show that the results agree with our theoretical predic-
tions. To construct an ER network of size N with average
node degree kkl, we start with kklN /2 edges and randomly
pick a pair of nodes from the total possible NsN−1d /2 pairs
to connect with each edge. The only condition we impose is
that there cannot be multiple edges between two nodes.

In order to generate SF networks, we use the Molloy-
Reed algorithm [12]. Each node is assigned a random integer
k taken from a power-law distribution

Pskd = S k

k0
D−l

, s11d

where k0 is the minimal possible number of links that a node
possesses. Next, we randomly select a node and attempt to
connect each of its k links with randomly selected k nodes
that still have free positions for links. The disorder in the link
costs is then implemented using the procedure described in
Ref. [9].

FIG. 1. Schematic representation of the transition in the topol-
ogy of the optimal path with system size N for a given disorder
strength a. The solid line shows the optimal path at a finite value of
a connecting two nodes indicated by the filled circles. The portion
of the min-max path that is distinct from the optimal path is indi-
cated by the dashed line. (a) For N!N* sad [i.e., ,`!,* sad], the
optimal path coincides with the min-max path, and we expect the
statistics of the SD limit. (b) For N=N* sad [i.e., ,`=,* sad], the
optimal path starts deviating from the min-max path. (c) For N
@N* sad [i.e., ,`@,* sad], the optimal path has almost no links in
common with the min-max path, and we expect the statistics of the
WD limit.
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For the ER networks generated we use kkl=4 and for the
SF networks we use k0=2. These parameter values ensure
that the networks generated are almost surely fully connected
[13].

To obtain ,`, we use the algorithm proposed by Cieplak et
al. [7], modified as described in Ref. [14]. With this modifi-
cation we reach system sizes of N=216=65 536. In order to
obtain the optimal path for a given realization, we use the
Dijkstra algorithm [8]. We calculate the average optimal path
,optsad by taking the average of the optimal paths over 106

pairs of nodes.
In Fig. 2 we show the ratio Wsad for different values of a

plotted against ,` /,* sad;,` /a for ER networks with kkl

=4 and for SF networks with l=3.5. The excellent data col-
lapse is consistent with the scaling relations Eq. (6). Figure 3
shows the scaled quantities Wsadu=,optsad /,* sad vs ln u
; lnf,` /,* sadg; lns,` /ad, for both ER networks with kkl
=4 and for SF networks with l=3.5. The curves are linear at
large u;,` /,* sad, supporting the validity of the logarith-
mic term in Eq. (7) for large u.

IV. DISCUSSION

We next develop analytic arguments that support Eq. (10).
These arguments will lead to a clearer picture about the na-
ture of the transition of the optimal path with disorder
strength.

We begin by making a few observations about the min-
max path. In Fig. 4 we plot the average value of the random
numbers rn on the min-max path as a function of their rank n
s1ønø,`d for ER networks with kkl=4 and for SF net-

FIG. 2. Test of Eqs. (6) and (7). (a) Wsad plotted as a function of
,` /a for different values of a for ER networks with kkl=4. The
different symbols represent different a values: a=8ssd, a=16shd,
a=22sLd, a=32snd, a=45s+d, and a=64spd. (b) Same for SF net-
works with l=3.5. The symbols correspond to the same values of
disorder as in (a). The insets show Wsad plotted against logsl` /ad,
and indicate for ,`!a, Wsad approaches a constant in agreement
with Eq. (7).

FIG. 3. (a) Plot of Wsadu=,optsad /,* sad=,optsad /a vs ln u
; lnf,` /,* sadg=lns,` /ad for ER networks with kkl=4 for different
values of a. (b) Plot of Wsadu=,optsad /,* sad=,optsad /a vs ln u
=lnf,` /,* sadg=lns,` /ad for SF networks with l=3.5. The values
of a represented by the symbols in (a) and (b) are the same as in
Fig. 2.
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works with l=3.5. This can be done for a min-max path of
any length but in order to get good statistics we use the most
probable min-max path length [15]. We call links with r
ø pc “black” links, and links with r. pc “gray” links, follow-
ing the terminology of Ioselevich and Lyubshin [16] where
pc is the percolation threshold of the network [13].

We make the following observations regarding the min-
max path.

(i) For rn, pc, the values of rn decrease linearly with
rank n, implying that the values of r for black links are
uniformly distributed between 0 and pc, consistent with the
results of Ref. [17]. This is shown in Fig. 4.

(ii) The average number of black links, k,bl, along the
min-max path increases linearly with the average path length
,`. This is shown in Fig. 5(a).

(iii) The average number of gray links k,gl along the
min-max path increases logarithmically with the average
path length ,` or, equivalently, with the network size N. This
is shown in Fig. 5(b).

The simulation results presented in Fig. 5 pertain to ER net-
works; however, we have confirmed that the observations (ii)
and (iii) also hold for SF networks.

Next we will discuss our observations using the concept
of the optimal spanning tree. The optimal spanning tree

(OST) is a subset of links of a connected graph which pro-
vides an optimal path from node A (which serves as the root
of the tree) to any other node on the graph. When the total
weight of this path is dominated by the largest weight of the
links along the path (strong disorder limit), the OST does not
depend on the root and is determined only by the structure of
the original graph and a particular realization of the disorder.
In this limit, the OST becomes identical to the minimal span-
ning tree (MST) [17,18]. The path on the MST between any
two nodes A and B, is the optimal path between the nodes in
the strong disorder limit—i.e, the min-max path.

To construct the MST, we remove links in the descending
order of their costs ti. If removal of a link destroys the con-
nectivity of the graph, we restore that link. This procedure is
continued until there are exactly N−1 links remaining. At
this point the number of remaining black links is

FIG. 4. Dependence on rank n of the average values of the
random numbers rn along the most probable optimal path for (a) ER
random networks of two different sizes N=4096 (h) and N
=16384 (s) and (b) SF random networks.

FIG. 5. (a) The average number of links k,bl with random num-
ber values rø pc on the min-max path plotted as a function of its
length ,` for an ER network with kkl=4, showing that k,bl grows
linearly with ,`. (b) The average number of links k,gl with random
number values r. pc on the min-max path vs ln N for an ER net-
work with kkl=4, showing that k,gl, ln N. The inset shows the
successive slopes, indicating that in the asymptotic limit k,gl
<1.55 ln N.
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Nb =
Nkklpc

2
, s12d

where kkl is the average degree of the original graph and pc

is given by [13]:

pc =
kkl

kk2 − kl
. s13d

The black links give rise to Nc disconnected clusters. One
of these is a spanning cluster, called the giant component.
The Nc clusters are linked together into a connected tree by
exactly Nc−1 gray links (see Fig. 6). Each of the Nc clusters
is itself a tree, since a random graph can be regarded as an
infinite dimensional system, and at the percolation threshold
in an infinite dimensional system the clusters can be regarded
as trees. Thus the Nc clusters containing Nb black links, to-
gether with Nc−1 gray links form a spanning tree consisting
of Nb+Nc−1 links.

Thus the MST provides a min-max path between any two
points on the graph. Since the MST connects N nodes, the
number of links on this tree must be equal to N−1, so

Nb + Nc = N . s14d

From Eqs. (12) and (14), it follows that

Nc = NS1 −
kklpc

2
D . s15d

Therefore, Nc is proportional to N.
The path between any two nodes on the MST consists of

,b black links. Since the black links are the links that remain

after removing all links with r. pc, the random number val-
ues r on the black links are uniformly distributed between 0
and pc, in agreement with observation (i) and Ref. [17].

Since there are Nc clusters which include clusters of nodes
connected by black links as well as isolated nodes, the MST
can be described as an effective tree of Nc nodes, each rep-
resenting a cluster, and Nc−1 gray links. We call this tree the
“gray tree” (see Fig. 6). This tree is in fact a scale-free tree
[19,20] with degree exponent lg=2.5 for ER networks and
for scale-free networks with lù4, and lg= s2l−3d / sl−2d
for SF networks with 3,l,4. If we take two nodes A and
B on our original network, they will most likely lie on two
distinct effective nodes of the gray tree. The number of gray
links encountered on the min-max path connecting these two
nodes will therefore equal the number of links separating the
effective nodes on the gray tree. Hence, the average number
of gray links k,gl encountered on the min-max path between
an arbitrary pair of nodes on the network is simply the aver-
age diameter of the gray tree. Our simulation results [see Fig.
5(b)] indicate that

k,gl , ln N . s16d

Since k,gl, ln ,`!,`, the average number of black links
k,bl on the min-max path scales as ,` in the limit of large ,`,
in agreement with observation (ii) as shown in Fig. 5(a).

Now we will discuss the implications of our findings for
the crossover from strong to weak disorder. From observa-
tions (i) and (ii), it follows that for the portion of the path
belonging to the giant component, the distribution of random
values r is uniform. Hence, we can approximate the sum of
weights by an integral

o
k=1

,b

expsarkd <
,b

pc
E
0

pc

exp ar dr

=
,b

apc
fexpsapcd − 1g

; expsar * d , s17d

where r* < pc+ s1/adlnsk,bl /apcd. Since k,bl<,`:

r * < pc +
1

a
lnS ,`

apc
D . s18d

Thus restoring a short-cut link between two nodes on the
optimal path with pc,r,r* may drastically reduce the
length of the optimal path. When apc@,`, r* , pc and such
a link does not exist, but there starts to be a finite probability
for such a link to exist if ,`.apc. Hence, when the min-max
path is of length ,`<apc, the optimal path starts deviating
from the min-max path. The length of the min-max path at
which the deviation first occurs is precisely the crossover
length ,* sad, and therefore ,* sad,apc. In the case of a
network with an arbitrary degree distribution we can write
using Eq. (13), ,* sad,akkl / kk2−kl. Note that in the case of
SF networks, as l→3+, pc approaches zero and conse-
quently ,* sad→0. This suggests that for any finite value of

FIG. 6. Schematic representation of the structure of the minimal
spanning tree, at the percolation threshold, with G being the giant
component. Inside each cluster, the nodes are connected by black
links to form a tree. The dotted lines represent the gray links which
connect the finite clusters to form the gray tree. In this example
Nc=4 and the number of gray links equals Nc−1=3.
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disorder strength a, a SF network with lø3 is in the weak
disorder regime.

In summary, for both ER random networks and SF net-
works we obtain a scaling function for the crossover from
weak disorder characteristics to strong disorder characteris-
tics. We show that the crossover occurs when the min-max
path reaches a crossover length ,* sad and ,* sad,a.
Equivalently, the crossover occurs when the network size N
reaches a crossover size N* sad, where N* sad,a3 for ER

networks and for SF networks with lù4 and for SF net-
works with 3,l,4.
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