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Abstract. We give a position-space renormalisation group treatment of percolation 
backbones. Introducing a ghost field which couples only to backbone bonds, we put this 
problem on the same conceptual footing as pure percolation. This framework allows us to 
apply scaling arguments to obtain all the exponents from the scalingpowers yp and j$,; these 
in turn are calculated from the renormalisation group using large cells. 

1. Introduction 

Percolation as a model of disordered systems has seen numerous applications in recent 
years (Stauffer 1979 and references therein). One such example is conduction through 
a lattice in which conducting and non-conducting bonds are randomly distributed with 
probabilities p and (1 - p )  respectively (see, e.g., Kirkpatrick 1973). If one applies a 
potential across a cluster of conducting bonds (figure l (a)) ,  the bonds fall into two 
classes: ‘backbone’ bonds, which carry current (figure 1 (b)), and ‘dangling ends’, 
through which no current flows. Previous work on the problem has been limited to a 
Monte Carlo calculation of the order parameter exponent by Kirkpatrick (1978) using 
finite-size scaling arguments. 

Here we put the backbone problem on the same conceptual footing as pure 
percolation. In analogy to pure percolation, we take the ‘free energy’ G(p,  6) as the 
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Figure 1. Bus bars are attached to the extremities of a cluster and a potential difference 
applied ( a ) .  Current flows in the backbone bonds ( b ) ,  but not through ‘danglingends’which 
are attached to the backbone at only one vertex. 
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mean number of finite backbones per lattice bond, where L is a ‘ghost’ field which 
couples only to backbone bonds. We assume d (  p ,  h )  to be, asymptotically, a generalised 
homogeneous function of the parameters ( p  - pc) and L, with scaling powers j j p  and j jh 

respectively. The exponents of interest are then derived from the scaling powers. We 
show that j j p  = y p ,  the scaling power for pure percolation, and pc = p c .  Furthermore we 
calculate j jh from a large-cell transformation. 

We choose the order parameter 

P ( P )  - ( P  -PcId ( l a )  

to be the fraction of occupied bonds in the backbone of the infinite cluster, in analogy 
with P (  p )  - ( p  - p J p ,  the fraction of occupied bonds in the entire infinite cluster (figure 
2(a)).  Similarly, the exponent 7 describes the divergence of the mean size of finite 
backbones s( p )  

S ( P )  - IP -Pel-? (1b)  

in analogy with S ( p )  - Ip -pel-', the mean size of finite clusters (figure 2(b)) .  

P P 

Figure 2. Schematic behaviour of backbone quantities (full curves) as a function of pure 
percolation quantities (broken curves). (a) shows the order parameters P and p, while in ( b )  
we sketch the mean size functions S and S. 

We introduce the ‘magnetic’ field mentioned above using the ghost site concept 
(Griffiths 1967, Kasteleyn and Fortuin 1969). This extra site, off the lattice, connects 
with every backbone bond on the lattice with probability 6. Thus e(p, L), the mean 
number of finite backbones, includes only those clusters in which none of the backbone 
bonds has a connection to the ghost site. For this interpretation in pure percolation see, 
e.g., Reynolds et a1 (1977). 

Due to the existence of a diverging length, standard renormalisation group tech- 
niques should apply. These lead to a scaling form for the singular part of d, 

G,i”,[Lyp - p * ) ,  LYk(6- L*)]=LdG,ing[(p - p * ) ,  (L-L*)], (2) 
in the vicinity of the fixed point ( p * ,  6*). Here L is the length rescaling factor in the 
transformation, and d is the spatial dimension. The scaling powers j j p  and jjh are 
defined in the neighbourhood of the fixed point in terms of the renormalised prob- 
abilities p ’  and h’ through 

( p ’ - p * ) = L y ’ . ( p - p * )  ( 3 a )  
and 

(3b)  (F-L*) =LY’h(L-L*). 
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The critical exponents p and 7, in terms of the scaling powers, are 

B = ( d - j % ) / Y p  (4a) 

and 

7 = ( 2 Y h  - d ) / ? p  (4b) 
These relations hold if P and 3 have the singular nature of the first and second ghost 
field derivatives of respectively. This is true in pure percolation (Reynolds et a1 
1977), and for the backbone problem as well (cf 44 below). Having the scaling powers 
we can, in like manner, define all the usual critical exponents. 

2. Renormalisation group transformation 

We transform from a cell of side L, including ghost bond connections to backbone 
bonds, to a single lattice bond and a single ghost bond (cf figure 3). The renormalised 
lattice bond is occupied if the cell is spanned in one direction (Reynolds et a1 1978). At 
6 = 0, this renormalisation group transformation for p ‘  reduces to that of pure percola- 
tion. Therefore j$, = y p  and p* = p * ,  where y p  and p* pertain to pure percolation. On 
the square bond lattice treated here, p *  = $ exactly for all lattice rescalings where 
spanning is in one direction with non-periodic boundary conditions (Bernasconi 1978). 

Ghost site 

Figure 3. An example of the renormalisation group transformation for the L = 2 cell. Two 
lattice bonds are unoccupied (broken lines) in this particular configuration. Only backbone 
bonds have possible connections to the ghost site, as shown. 

For current to reach the ghost site, the renormalised lattice bond and ghost bond 
must both be occupied. On the original ‘site level’, current must be able to enter the cell, 
flow through a backbone, and reach the ghost. The recursion relation involving 6 is 
then (cf Reynolds’ PhD thesis (unpublished) and also Reynolds er a1 to be published) 

(5  ) 

Here N B  is the number of backbone bonds which can be reached from one edge of the 
cell for a particular configuration, and (. . .> denotes the configurational average. For 
small 6) equation ( 5 )  becomes 

p’P = 6 ( ~ ~ ( p ) ) .  (6 )  
By inspection, the fixed-point value of the ghost field is 6* = 0. The eigenvalue 

(7a 1 

p’p = 1 - (( 1 - L ) N B ( P ) ) .  

associated with the ghost field is 

= (a@ /a&) I E= fi: = p * - (NB ( p * )) 
P = P  
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from which (cf equation (3b)) 

3. Large-cell calculation 

We expect that the value of jjh should improve with increasing cell size, and that an 
accurate numerical estimate may be obtained by extrapolation (Reynolds et a1 1978). 
To this end we have generated Monte Carlo data on NB(p* = 5) for a sequence of cell 
sizes of up to 500 x 500 sites in two dimensions. We have used a depth-first-search 
algorithm, following Tarjan (1972)t. 

BY plotting ln'iih(L) for this sequence of successively larger cell sizes against In L 
(figure 4(a)), we find the slope j jh  = 1.63 *0.01. Furthermore, j jh  may also be 
extrapolated as the intercept of a plot of j j h ( L )  against l/ln L (figure 4(6)). The result 
j jh  = 1.63*0-01 agrees with the In i i h  extrapolation. Using yp' = 1-356*0.015 (Rey- 
nolds et a1 1978), we obtain p =  0.50*0.02 and 7 = 1.71 k0.04 (cf equations (4a, b ) ) .  
Our value for p is consistent with that of Kirkpatrick (1978), who finds p= 0-5-0.6 
using finite-size scaling arguments and Monte Carlo data on the square site lattice. The 
operational procedure for determining p by this renormalisation group in the limit of 
large cells coincides with the finite-size scaling calculation. In this limit, the dominant 

I 1655 
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L l / l n  L 

Figure 4. Renormalisation group data are extrapolated to the limit of infinite cell size to 
obtain an estimate of the true value of y,,. (a) In &(L) against In L, where L is the rescaling 
length. The slope is yh = 163*0.01. ( b )  y h ( L )  against l / lnL.  The intercept is yh = 
1.63 f 0.01. The straight lines shown are least-squares fits to the data. The error bars in ( a )  
are too small to be shown. The number of Monte Carlo trials ranges from 2000 at L = 500 to 
6000 at L = 64. 

t We note that the search algorithm mentioned above includes 'bridge' bonds in the backbone. These are 
bonds which connect two equipotential vertices of the electrical backbone and do not actually carry current. 
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contribution to i i h  comes from realisations with a spanning backbone. In our calculation 
we have, in fact, ignored ‘edge’ contributions (which vanish as the surface to volume 
ratio of the cell) for computational convenience. 

4. Generating function for the backbone problem 

In equations (44 6 )  we have taken the usual relation between the exponents and the 
scaling powers. This may be justified as follows. The mean number of finite backbones 
per lattice bond, G ( p ,  i), is a generating function for moments of the backbone size 
distribution fib(p, L) = f i b ( p ) ( l -  61b. This is in analogy to pure percolation. Here & ( p )  
is the average number of finite backbones of size 6, per lattice bond, in the absence of a 
ghost field. For non-zero 6, 

The first moment of b( p, 6) is the fraction of lattice bonds in finite backbones. It is 
of the generating function: also proportional to the first derivative with respect to 

CO 

G y p ,  6) = b&(p,  6) = - (1 - 6) aG(p, 6))ldh: 
b = l  

(9) 

Defining fB( p) as the fraction of lattice bonds in backbones both finite and infinite, 

Assuming f B ( p )  is regular, P must be asymptotically equal to the singular part of e‘’). 
In the same manner, S ( p ,  L), the weight-averaged mean backbone size is given by 

5. Summary 

We have introduced a ghost field 6 which couples only to backbone bonds. By doing so 
we have put the backbone problem on the same footing as pure percolation. We have 
defined a large-cell renormalisation group transformation for this problem, and cal- 
culated the associated scaling powers j$, and = yp.  The average number of finite 
backbones is shown to be a generating function for the quantities of interest (e.g. P and 
S) . 
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