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Cooperation is key to the survival of all biological systems. The spatial struc-

ture of a system constrains who interacts with whom (interaction partner)

and who acquires new traits from whom (role model). Understanding

when and to what degree a spatial structure affects the evolution of

cooperation is an important and challenging topic. Here, we provide an

analytical formula to predict when natural selection favours cooperation

where the effects of a spatial structure are described by a single parameter.

We find that a spatial structure promotes cooperation (spatial reciprocity)

when interaction partners overlap role models. When they do not, spatial

structure inhibits cooperation even without cooperation dilemmas. Further-

more, a spatial structure in which individuals interact with their role models

more often shows stronger reciprocity. Thus, imitating individuals with

frequent interactions facilitates cooperation. Our findings are applicable to

both pairwise and group interactions and show that strong social ties

might hinder, while asymmetric spatial structures for interaction and trait

dispersal could promote cooperation.
1. Introduction
Cooperation is ubiquitous in living systems ranging from single cells, multicel-

lular organisms, to groups of animals [1,2]. Understanding the emergence and

persistence of this altruistic behaviour in a competitive world has long been a

challenge since the time of Darwin [3]. Evolutionary game theory provides a

powerful mathematical framework for exploring this conundrum in which

two-player and multiplayer games are employed to capture social dilemmas

in pairwise and group interactions, respectively [4–6]. During the last two dec-

ades, it was found that spatial structures can strongly affect evolutionary

dynamics [7–9], and this has elicited much research including numerical

simulations [10–12], theoretical analysis [13–20] and empirical studies [21].

Spatial structures constrain the choice of interacting partner and also con-

strain which player serves as a role model for strategy imitation. Without

distinguishing between the two constraints—role models are always interaction

partners [15–21]—it is widely accepted that spatial structures can promote

cooperation (spatial reciprocity) with respect to the well-mixed settings [22].

However, when spatial structures lead to asymmetric interaction partners

and role models, fundamental questions about the interplay between spatial

structures and the evolution of cooperation remain unanswered. When does

spatial reciprocity emerge? How does spatial structure affect the intensity of

reciprocity? Although related studies using two-player games have provided

insights [13,14,23,24], they have ignored the increased complexity arising

from the transition from pairwise interactions to group interactions, especially

when spatial structures are under consideration [25–27]. We thus need to

explore whether there are any rules governing spatial reciprocity in both pair-

wise and group interactions. In addition, many empirical studies have found
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Figure 1. PGGs in spatial structures. (a) The spatial structure described by an interaction graph GI and an dispersal graph GR. Nodes are labelled by 1, 2, 3, 4,
separately. The value alongside each edge corresponds to the edge weight. (b) Participation frequencies and pay-off allocation fractions associated with the player
occupying node 1 (called player 1) in three games (highlighted). si denotes i’s strategy (si ¼ 1 means cooperation and si ¼ 0 means defection). Player 1 par-
ticipates in the self-centred game at frequency w and invests ws1, and correspondingly is allocated a fraction w of the total benefits. Player 1 participates in the
game centred on player 2 at frequency proportional to the edge weight d12, i.e. 2(1 2 w)/3, and invests 2(1 2 w)s1/3. It obtains a fraction 2(1 2 w)/3 of the
total benefits from this game. (c) Strategy update under death – birth rule. A randomly selected player 1 dies and its neighbour like player 2 competes to replace 1
with probability proportional to e12F2, where F2 is 2’s fitness. (Online version in colour.)
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that interactions in real-world networks often differ in their

strength and frequency [28,29]. Individuals tend to cluster

together and create tightly knit groups, such as communities

[30,31]. These findings contradict traditional assumptions

that systems have homogeneous social ties and lack structural

clusters [16–18]. How these realistic structure characteristics

affect spatial reciprocity thus remains as an open question.

We here answer these questions by applying a unifying

analytical framework to various population structures,

evolution scenarios and to both pairwise and group inter-

actions. We introduce a single parameter that can quantify

the effects of a spatial structure on the evolution of

cooperation. A unifying formula with such a parameter is

provided for predicting when natural selection favours

cooperation over defection. Compared with well-mixed set-

tings, a spatial structure only promotes cooperation when

there are overlaps between role models and interaction part-

ners. When the overlap is not present, spatial structure

inhibits cooperation. Furthermore, choosing players with fre-

quent interactions as role models facilitates cooperation. We

design an algorithm in which every player uses only local

interaction information to self-organize their social ties. The

result is an evolving structure with stronger spatial recipro-

city. In addition, our findings provide new insights into a

few well-known results. Typically, asymmetric spatial struc-

tures for interactions and trait propagation might enhance

while strong social ties could weaken spatial reciprocity.
2. Model
(a) Spatial structure
We examine a population of fixed size N with a spatial struc-

ture described by two graphs: (i) a graph GI determining

social interactions, and (ii) a graph GR defining strategy dis-

persal. The two graphs have the same node set V, where

each node is occupied by a player. Edge weight dij in the

interaction graph measures the interaction strength and eij
in the dispersal graph describes patterns of strategy dispersal.

Here, we assume that all individuals present the similar pat-

tern of interactions and the similar pattern of strategy

dispersal [14,20,24] (technically, GI and GR are joint transitive

and all nodes look the same, see appendix Aa) and are sym-

metrical, i.e. dij ¼ dji, eij ¼ eji. In addition, in the interaction

and strategy dispersal graph, there is no edge that connects

a node to itself, i.e. dii ¼ 0 and eii ¼ 0 for 1 � i � N. We rescale

edge weights so that
P

j[V dij ¼ 1,
P

j[V eij ¼ 1. This category

covers most classical population structures (electronic

supplementary material, figure S2).

(b) Public goods game
We use the public goods game (PGG) to model group inter-

actions. The PGG depicts an L-player interaction in which

cooperation and defection are the only two options. Each

cooperator invests an amount c in the common pool and

the investment produces benefit b, where r ¼ b/c is the

enhancement factor. Defectors do not contribute. Eventually,

the total benefits are equally distributed over all L partici-

pants. Under the framework of evolutionary games, every

player organizes a self-centred PGG. In well-mixed settings,

participants in a PGG include the organizer (termed focal

player) and L 2 1 randomly selected players. In the conven-

tional setting of PGGs in structured populations, the player

occupying node i (called player i) and all of its neighbours

engage in the PGG centred on i.
We further extend PGGs to weighted graphs. Each player

participates in different PGGs at frequencies associated with

the edge weights (figure 1a,b). We normalize to 1 the total

participation frequency of each player. Every player partici-

pates in the self-centred game at a frequency w and all

neighbour-centred games at a frequency 1 2 w. Let si

denote the strategy taken by player i, where si ¼ 1 means

cooperation and si ¼ 0 defection. In the self-centred game, a

player invests wsi. Then, it obtains a fraction w of total

benefits in the self-centred game. Player i participates in the

game centred on neighbour j at a frequency dij(1 2 w) and
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invests dij(1 2 w)si. Then, a fraction dij(1 2 w) of the total

benefits in the j-centred game is allocated to i. In the game

centred on i and j (i = j), i’s pay-offs are, respectively,

f i
i ¼ rw

X
l[V

dli(1� w)sl þ wsi

" #
� wsi

f j
i ¼ rdij(1� w)

X
l[V

dlj(1� w)sl þ ws j

" #
� dij(1� w)si:

We can recover the conventional case if: (i) the interaction and

dispersal graphs are identical and unweighted, and (ii) every

player participates in the self-centred and each neighbour-

centred game at the same frequency [11]. Each player

accumulates pay-offs from all interactions and derives pay-

off fi ¼
P

l[V f l
i . The pay-off is transformed to the fitness by

Fi ¼ 1 2 d þ dfi, where d is the intensity of selection [16,32].

We here focus on weak selection (d� 1).

(c) Strategy update
At the end of each generation, players use the dispersal graph

to update strategies or propagate genes. Dispersal can be cul-

tural or genetic. We use the highly studied death–birth update

rule [16] (figure 1c). A random player i is chosen to die. With a

probability proportional to effective fitness ejiFj, a random

neighbour j is selected to be the reproducing agent, and its off-

spring then occupies node i. We also examine three other

update rules (electronic supplementary material, S1).
3. Results
We study whether selection favours cooperation over defection

by comparing the fixation probability rC with the fixation

probability rD. rC (rD) is the probability that a single coopera-

tor (defector) in a random position turns a fully defecting

population into a fully cooperating one (one fully cooperating

population into a fully defecting one) [32]. Cooperation is

more successful than defection if rC . rD [24,32].

(a) A unifying formula to predict cooperators’ success
We begin by studying a class of spatial structures that are

described by a pair of unweighted but not necessarily sym-

metric graphs (see appendix Aa for technical details). Each

player participates in self- and each neighbour-centred

game once in each generation. We introduce two concepts:

(i) interaction partner and (ii) role model. If player i and j
are likely to participate in the same game, j is i’s interaction

partner. On the one hand, one’s interaction partners are not

necessarily connected to this player in the interaction graph

because they may encounter in games centred on common

neighbours. On the other hand, when having many neigh-

bours in common, two players could interact many times

owing to their concurrent participation in these neighbour-

centred games. These two cases model well many realistic

situations: interactions probably occur between strangers

owing to their common acquaintances; frequent interactions

often occur between individuals who have many common

friends. Let nI denote the sum of times that a player interacts

with each interaction partner. Assuming player i has two

interaction partners j1 and j2, if in each generation i encoun-

ters j1 in two games and j2 in one game, we have nI ¼ 3.

Given similar interaction patterns, nIs are identical for all
players. Players whose offspring potentially occupies node i
or who can disperse strategies to player i serve as i’s role

models. In the dispersal graph with node degree kR, each

player has kR role models. We denote the sum of times that

a player interacts with each role model by nR. Analogously,

nRs are identical for all players. We stress that interactions

occur between a player and its role model only if this role

model is also an interaction partner. Therefore, nR . 0

means that interaction partners overlap role models and

nR ¼ 0 indicates that there is no overlap between them.

We introduce a concept termed as ‘assortment coefficient’:

u ¼ nR

nI

1

kR
: (3:1)

Here, u measures the average frequency of a player interact-

ing with a role model. The larger u is, the more frequently

a player interacts with an individual role model. We illustrate

the calculation of u using figure 1a,b. If both interaction and

dispersal graphs are unweighted, player 1 encounters 2 in

1- and 2-centred games and encounters 4 in 1- and 4-centred

games. In addition, although player 3 is not directly con-

nected to 1 in the interaction graph, both of them engage in

games centred on their common neighbours such as 2 and

4. We have nI ¼ 6. Only players 2 and 3 are player 1’s role

models. We have nR ¼ 4 and u ¼ 1/3. We provide a formula

for calculating u in any unweighted and joint transitive

graphs in the electronic supplementary material, S2.

For a given population size N and a game size L, natural

selection favours cooperation over defection under weak

selection only if the enhancement factor exceeds the threshold

(electronic supplementary material, S2)

r� ¼ (N � 2)L
N(L� 1)uþN � 2L

: (3:2)

Equation (3.2) is applicable to various spatial structures and

figure 2a–d shows a few representative examples. Intriguingly,

u is the only determinant of evolutionary outcomes in different

spatial structures. For a well-mixed setting, we have u ¼ 1/

(N 2 1) and r* ¼ (N 2 1)L/(N 2 L) (figure 2a). When both

interaction and dispersal graphs are lattices and fully overlap,

we have u ¼ 1/10 and r* ¼ 25(N 2 2)/(7N 2 50) (figure 2c).

Equation (3.2) also provides an alternative approach to

investigating evolutionary game dynamics in set structures,

where calculating the single parameter u is much easier than

analysing the entire system (figure 2b).

To further examine the generality of this formula, we

develop two variations of spatial PGGs: random PGG and

l-order PGG. In a random PGG, the focal player and only a

fraction of its nearest neighbours participate (figure 2e).

Random PGGs describe the case where a collective inter-

action does not always involve all acquaintances. This

variation can cover two-player interactions on graphs by set-

ting L ¼ 2, where participants in a game are the organizer

and a neighbour. It also enables investigation into the

evolutionary dynamics in complex systems with diverse

structure characteristics, like biological systems with multiple

species, where the intraspecies interactions of individuals are

random (well-mixed) but the interspecies interactions are

constrained by geographical sites (structured). In l-order

PGGs, a player initiates a game and all players within an

l-step walk from this player become involved (figure 2f ).

l-order PGGs depict the situation in which participants of a

collective interaction are not limited to acquaintances.
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We stress that a conventional graphed PGG is actually a

random PGG with L ¼ kI þ 1 and also an l-order PGG with

l ¼ 1. Despite the increasing complexity arising from these

variations, equation (3.2) still accurately predicts the success

of cooperation over defection (see the electronic supplemen-

tary material, S2, for us corresponding to the two

variations). Figure 2g shows that analytical results agree

well with Monte Carlo simulations in various spatial struc-

tures (see the electronic supplementary material, figure S2,

for more examples).

(b) Emergence of spatial reciprocity
Analysing equation (3.2), we find that a spatial structure

promotes cooperation with respect to the well-mixed setting

only if (electronic supplementary material, S3)

u .
1

N � 1
:

If u ¼ 1/(N 2 1), the evolutionary outcome in structured

populations is the same as that in well-mixed populations.

If u , 1/(N 2 1), the spatial arrangement of interaction

partners and role models inhibits cooperation. To understand

the underlying mechanisms, we examine whether a spatial

structure facilitates the assortment between cooperators.

This assortment contributes to the frequent interactions

between cooperators and allows them to make up for the dis-

advantages when confronting defectors [33]. Essentially,

assortment in a spatial structure is determined by how the
strategy dispersal between a player and its role models

affect the strategy association between this player and its

interaction partners. When a cooperative role model j dis-

perses cooperation to player i, if j is i’s interaction partner,

such strategy dispersal achieves the strategic reciprocity

(mutual cooperation) between i and j. This thus increases

the survivability of both cooperator i and j against neighbour-

ing defectors. Otherwise, isolated cooperator i is vulnerable

to the invasion of defectors.

u well quantifies the ability of a spatial structure to assort

strategies and achieve reciprocity. In equation (3.1), u consists

of two terms, nR/nI and 1/kR. 1/kR represents the possibility

for a player to reciprocate an individual role model. nR/nI

measures the reciprocity strength. The two terms together

determine how a spatial structure affects the evolution of

cooperation. In the well-mixed setting, in spite of a large

value of nR/nI (¼1), 1/kR (¼1/(N 2 1)) is extremely low,

which thus weakens the strategy reciprocity and makes

cooperation hard to evolve. If none of role models overlap

interaction partners (nR ¼ 0), u ¼ 0 and the threshold r* ¼

(N 2 2)L/(N 2 2L). Intriguingly, in this case, the threshold r*

is beyond the parameter range for cooperation dilemmas

(1 , r , L). For L � r � r* where cooperation dilemmas are

relieved, cooperation is still unfavoured owing to local inter-

actions and strategy dispersal. Such a spatial structure thus

leads to a more stringent condition for the success of coopera-

tors with respect to well-mixed settings. We find, for a spatial

structure that constrains the ranges for interaction and strategy
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dispersal, spatial reciprocity emerges only if interaction

partners overlap role models (see appendix Ab for details).

(c) Enhancement of spatial reciprocity
Knowing when spatial reciprocity emerges, we now examine

how different spatial structures lead to different levels

of spatial reciprocity. The goal is to develop new ways of

promoting cooperation by altering spatial structures.

We find that when two spatial structures differ only in

their connections but have the same population size and

node degrees, structure 1 generates a stronger spatial

reciprocity than structure 2 if and only if

nR1 . nR2 , (3:3)

where nR1
(nR2

) is the sum of times that a player interacts with

each role model in structure 1 (structure 2). Figure 3a–c
shows an example: more interactions with role models (nR)

result in the lowering threshold r* for cooperation evolving.

In particular, for any player, if interacting more times with

player i than with j, this player using i as a role model is

more beneficial to cooperation than using j (see GRs in

figure 3b,c).

Based on equation (3.3), we develop an algorithm in

which every player self-organizes its social ties to strengthen

spatial reciprocity. This algorithm begins with a pair of sym-

metric interaction and dispersal graphs (for a feasibility

proof, see the electronic supplementary material, S4):

(i) randomly choose a player i and record the interaction

times of i with each interaction partner (see the

number inside each green node in figure 3a);

(ii) for player j1 (connected to i in the interaction graph)

and j2 (not connected to i in the interaction graph), if

i interacts more times with j2 than with j1, i breaks

its interaction edge with j1 and builds an edge to j2
(see green edges in GIs in figure 3a,b). Otherwise, the

algorithm terminates; and
(iii) player i rewires the dispersal edge from j1 to j2 (see red

edges in GRs in figure 3b,c), and the algorithm returns

to step (i).

To warrant a pair of joint transitive graphs, all players

implement the same rewiring operation synchronously.

Figure 3d shows that in most cases this algorithm signifi-

cantly lowers the barrier for cooperators wining defection

(see more examples in the electronic supplementary material,

figure S4). Especially, when using this algorithm to alter

interaction and strategy dispersal edges, players only rely

on local information such as interaction partners, interaction

times, and role models. To some extent, this algorithm con-

forms to the pattern of human interactions: individuals,

even strangers, are likely to build their interpersonal relation-

ship as frequent contacts, while even friends, may attenuate

their relationship if contacting rarely. The promotive effects

of this algorithm suggests that a simple principle can

also elicit cooperation extensively and the high cognitive

ability of individuals may be not necessary to establish a

cooperative society. We also find the increasing clustering

coefficient C (the density of structural clusters or triangle

loops) [31] in the evolving structures. This indicates

that structural clusters act as an effective promotor of

the evolution of cooperation (see proof in the electronic

supplementary material, S5).
4. Applications
(a) Asymmetric interaction and dispersal graphs
Our findings provide answers to a classic question [23]: how

does breaking the symmetry between interaction and disper-

sal graphs affect the evolution of cooperation? We find that

it depends on the interaction times between a player with

its nearest and next nearest neighbours in the interaction

graph. In two-player interactions, a player interacts with
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each nearest neighbour in the interaction graph once and has

no interactions with others. All role models overlapping the

nearest neighbours in the interaction graph, corresponding

to symmetric interaction and dispersal graphs, generates the

largest nR. Breaking the symmetry decreases nR and thus

weakens spatial reciprocity (equation (3.3)), in line with pre-

vious studies based on pairwise games [23] and simplified

multiplayer games where each player only interacts with

their nearest neighbours [17]. However, this does not hold

when interaction partners are not limited to the nearest

neighbours in the interaction graph. In general multiplayer

games, each player interacts with not only its nearest but

also next nearest neighbours in the interaction graph. When

interacting more times with a next nearest than with a nearest

neighbour, the focal player rewiring the dispersal edge

from the latter to the former increases nR and strengthens the

spatial reciprocity. Thus, asymmetric spatial structures for

interaction and dispersal graphs could provide more advan-

tages to cooperators (see symmetric structures in figure 3a
and asymmetric structures in figure 3b). Our findings hold in

both random PGGs and l-order PGGs.
(b) Heterogeneous social ties
We examine heterogeneous social ties, i.e. w, fdijgi,j, and

feijgi,j, by making their strength non-uniform. A sufficiently

large w facilitates cooperation regardless of the choice of

fdijgi,j and feijgi,j (electronic supplementary material, S6 and

figure S5). This is because cooperators receive more benefits

from their investments for large w and defectors exploit less

by free-riding behaviours, in agreement with a prior study

that reducing the diffusion of public goods facilitates

cooperation [34].

How do strong social ties affect spatial reciprocity? Here a

strong tie refers to a pair of interaction and dispersal edges

between two nodes, and weights of the two edges are

larger than the average weight of all edges. We consider a

baseline model where the interaction and dispersal graphs

are identical and meanwhile weights of all edges are identi-

cal. In the baseline model, introducing a strong tie between
individual i and j means that both weights of interaction and

dispersal edges between i and j increase. If the introduction

of strong ties reduces the threshold r*, such strong ties facilitate

cooperation. We find that in a spatial structure without struc-

tural clusters, regardless of the edge weights of strong ties,

introducing strong ties always promotes cooperation (see an

example in figure 4a,c and more details in the electronic sup-

plementary material, S6 and figure S6). Actually, when there

is no structural cluster, player i encounters j only in i- and j-
centred games. Player i reciprocates j only in the two games.

Strong social ties between them enhance their reciprocity

and thus facilitate cooperation, but when structural clusters

are introduced, in addition in i- and j-centred games, i encoun-

ters j in games centred on their common neighbours. That is, i
reciprocates j in more games. Strong ties indeed increases reci-

procity in self-centred games while possibly decreases

reciprocity in games centred on common neighbours. Thus,

theoretically, in some cases, strong ties have negative effects

on the maintenance of cooperation. We illustrate a representa-

tive example in figure 4b,c: in the baseline model (without

strong ties), players interact more times with the nearest neigh-

bours than with the next nearest neighbours; building strong

ties between players and their next nearest neighbours

increases the barrier for the success of cooperation.

Finally, we investigate a few social networks, including

small-world networks where individuals form structural

clusters [31] and scale-free networks where individuals

have different numbers of social ties [35] (electronic sup-

plementary material, S7 and figures S7, S8). Our findings

still hold qualitatively in these networks.
5. Discussion and conclusion
We have studied evolutionary game dynamics in a wide class

of spatial structures and provided a unifying formula for pre-

dicting when altruistic behaviours are more successful than

selfish behaviours. Assortment between individuals carrying

cooperative genotypes or helping behaviours is the most fun-

damental requirement for the evolution of altruism [33].

We introduce ‘assortment coefficient’ u which well quantifies
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the capacity of a spatial structure to assort strategies. A spatial

structure with a large value of u facilitates the assortment

between cooperative individuals and the establishment of

cooperator clusters [16–18,21], but a spatial structure with a

small value of u blends cooperative and defective players

and puts cooperators at a disadvantage compared with their

competitors. Recently, Tarnita et al. [19] demonstrated that

the structure coefficient parameter s can capture how popu-

lation structures affect strategy selection and is applicable to

any population structure. Despite their innovative insights,

calculating the structure coefficient for evolutionary multi-

player games remains intricate, even in well-mixed settings

[36]. It becomes more challenging in structured populations

[17]. Unlike the structure coefficient, the value of assortment

coefficient is accessible in many cases (equation (3.1)). In

addition, when both u and s are used to described the same

system, calculating u also helps to learn s.

We find that spatial structure promotes cooperation only

when role models and interaction partners overlap. When

they do not, the spatial structure inhibits cooperation with

respect to well-mixed settings, even in the absence of social

dilemmas. Thus, in some cases highly localized interactions

and strategy dispersal can help to establish cooperation clus-

ters, but in other cases it may destroy them, which was rarely

observed in prior studies [16–18,21]. We also find that the

strength of spatial reciprocity is positively correlated with

the average interaction frequency of a player with an individ-

ual role model. These results suggest that choosing

appropriate role models may be more beneficial to the evol-

ution of cooperation than owning a number of role models.

When each individual adjusts its social ties based on these

simple rules, the evolving population structure shows stron-

ger spatial reciprocity. Our work thus provides a new way

of affecting contact networks and promoting the transition

to cooperative societies [13].

Our findings provide new insights into many prior

results. For example, based on two-player interactions

Ohtsuki et al. [23] found that cooperation flourishes best

when interaction and strategy dispersal graphs are sym-

metric. Breaking the symmetry between interaction and

strategy dispersal graphs impedes the evolution of

cooperation. This is not the case in many-player interactions.

If players interact more frequently with the nearest than with

the other neighbours, symmetry facilitates cooperation, in

line with prior studies [17,23], but when players interact

more frequently with the other neighbours, a pair of asym-

metric interaction and strategy dispersal graphs could

facilitate cooperation. In a seminal paper, Allen et al. [13,24]

found that cooperation thrives most in societies with strong

pairwise ties. This is the case in two-player interactions

because strong social ties enhance strategy reciprocity

between directly connected players [28,29]. When moving

to collective interactions, two players encounter and recipro-

cate each other not only in games initiated by themselves but

also in games organized by their common neighbours. Strong

social ties indeed strengthen the former but possibly weaken

the latter, which possibly makes cooperation harder to

evolve. Our finding indicates that the transition from two-

player to multiplayer interactions adds much complexity in

studying evolutionary dynamics in structured populations.

We use joint transitive graphs to examine linear multi-

player games and check our results in a few complex

networks. But we realize that real-world spatial structures
are more complicated [37]. The link rewiring in graphed

structures [38], the mutation of set memberships in set struc-

tures [39], and the variation in inheriting parent phenotypes

[40] produce a dynamic population structure that affects

strategy assortment. Besides, many realistic collective inter-

actions are often nonlinear and pay-offs are not a linear

function of the number of cooperative participants [36].

Investigating nonlinear interactions in any population struc-

ture is an enduring challenge, but it is key if we are to

understand the collective behaviours present in complex sys-

tems [13]. Finally, we point out that the current work is based

on theoretical assumptions and we thus expect proceeding

experimental studies to these theoretical results.
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Appendix A
(a) Population structures
The interaction graph GI and the dispersal graph GR are joint

transitive if for every pair of nodes i, j [ V, there is a permu-

tation T of the node set such that T(i) ¼ j and in addition

dT(m)T(n) ¼ dmn, eT(m)T(n) ¼ emn for every pair of m, n
[14,20,24]. GI is unweighted when dij ¼ 1/kI for j [ Ni

I ,

where kI is the node degree and Ni
I is the set of i’s neighbour-

ing nodes in GI. An analogous definition can be applied to the

unweighted dispersal graph. The setting of an unweighted

graph here is essentially in line with the conventional setting

where an edge either exists or not and has no edge weight. In

our framework, endowing each existing edge with an identi-

cal weight 1/kI does not change the evolutionary outcome.

We can recover the classical population structure as a special

case by employing identical and unweighted GI and GR.
(b) Emergence of spatial reciprocity
In a pair of large joint transitive graphs, compared with the well-

mixed setting, a spatial structure promotes cooperation if and

only if there is overlap between interaction partners and role

models. The minimum population size for this rule is N*¼

2 þ kI(kIþ 1)kR in conventional PGGs and N*¼ 2þ L(L 2 1)kR

in l-order PGGs. In random PGGs, the minimum population

size is N*¼ 2þ kIkR for L ¼ 2 and N*¼ 2þ kI(kI 2 1)kRL/(L 2

2) for L . 2. If none of the interaction partners overlaps role

models, irrespective of the population size, the spatial structure

inhibits cooperation compared with the well-mixed setting.
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