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The neologism ‘multifractal phenomena’ describes the concept that different regions of an object have
different fractal properties. Multifractal scaling provides a quantitative description of a broad range

of heterogeneous phenomena.

A WIDE range of complex structures of interest to physicists
and chemists have in recent years been quantitatively character-
ized using the idea of a fractal dimension; a dimension that
corresponds in a unique fashion to the geometrical shape under
study and that often is not an integer' . The key to this progress
has been the recognition that many objects with random struc-
ture possess a scale symmetry. Scale symmetry implies that
objects look the same on many different scales of observation.

To be more specific, consider an object with fractal dimension
d;. Imagine that we digitize the object by representing it by the
pixels of a computer. If a unit mass is associated with each
pixel, the total mass M of the object corresponds to its volume
and its ‘density’ p=M/L? is a measure of the fraction of
d-dimensional space occupied by the object. Here L is a charac-
teristic diameter, such as the caliper diameter or radius of
gyration. If, however, d; <d, the mass increases more slowly
than L? as the size of the object increases; for example, if we
double L (L—> L'=2L) then M increases by a power less than

29 (that is, M -» M’ =2%M < 2¢M). Thus the density decreases
(p>p'=2%"p<p).

As long as a unit mass is associated with each pixel, a single
scaling exponent d; characterizes the structure of the object. In
recent years, however, very interesting phenomena have been
studied which seem to require not one but an infinite number
of exponents for their description. Such multifractal phenomena
have recently become an extremely active area of investigation
and here we provide the non-specialist with a brief introduction
to them. There are many types of multifractal phenomena but
we shall concentrate on two examples, the behaviour of complex
surfaces and interfaces®, and fluid flow in porous media.

Complex surfaces

Figure 1a shows an object formed by a process called diffusion-
limited aggregation' (DLA)®'%; such structures arise naturally
in many processes currently of interest to physicists and

chemists, ranging from electrochemical deposition'"'?, thin-film
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Fig. 3 Comparison between theoretical
° (a) and experimental (b) plots of the func-
. tion f(a) (see Box 1) (refs 31 and 32).
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morphology’® and dendritic solidification'*""” to various ‘break-

down phenomena’ such as dielectric breakdown'®'® viscous
fingering®®**, and chemical dissolution®>?°, If patterns such as
the one shown in Fig. la are digitized, the fractal dimension
d;~1.7 is obtained. Thus d;—d = —0.3, and p decreases as the
object grows due to the presence of ‘fjords’ whose size increases
as the DLA cluster grows.

What is meant by the surface of the DLA cluster in Fig. la
depends on the way it is to be measured. The exposed tips define
one surface that is most likely to matter when diffusion is the
essential feature, for example, if the surface is probed by parti-

T T
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cles undergoing random-walk motion. Figure 1b-d shows where
the same object has been ‘hit’ by 10° random walkers®’, highlight-
ing the surface sites touched by one, 50 and 2,500 random
walkers respectively. Any of these three figures could be used
to define the accessible surface, but the actual surfaces shown
in Fig. 1b-d differ a great deal from one another. This example
emphasizes that there is no unambiguous definition of the sur-
face of this object.

An unambiguous quantity is the ‘hit probability’ p;, defined
as the probability that surface site i is the next to be hit.
Operationally, we calculate p; = N,/ N, where N, is the number
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that pixel as a result of the PPy PPy PPy PoPs
8 generations (ref. 61).
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of trajectories that hit site i and Ny=}, N; is the total number
of trajectories (for the example of Fig. 1 Ny =10°). The set of
numbers p; may be used to form a probability distribution
function n(p), where n(p)5p is the number of p; in the range
[p, p+ 8p], as shown in Fig. 2. This probability distribution, like
all probability distributions, is characterized by its moments

Z(q)=% n(p)p* (1

A central dogma of critical point phenomena has been the
statement that the probability distributions that arise are charac-
terized by only two independent exponents®®. This means that
we obtain no more information about the system by studying
increasingly higher moments: moment g+1 is described by an
exponent related to that of moment g by a simple gap exponent
A. In general, one finds that

Z(@~L7 @)

If the central dogma were correct, then 7(g) would be a linear
function of g so that only two independent exponents would
be needed to specify 7(g). It was discovered recently that this
idea fails for the probability distribution n(p) for DLA: both
simulation®”?*-3'| (Fig. 2¢) and experiments*> (Fig. 2d) show
that 7(q) is a continuous curve. An infinite hierarchy of indepen-
dent exponents is required. The Legendre transform f(a) of the
function 7(q) contains the same information as 7(q) itself (see
Fig. 3 and Box A), and is the characteristic customarily studied
when dealing with multifractals®’***2,

Fluid flow in complex media

Consider a second example, fluid flow in random porous media.
Such flow is customarily represented by considering an idealized
network of bonds, a fraction p of which are open, and the
remaining fraction 1—p of which are blocked*. For p lower
than a critical value p., termed the percolation threshold, no
fluid passes across a macroscopic system. At p. a single macro-
scopic cluster appears, called the incipient infinite cluster, which
carries fluid across the entire system. The singly connected bonds
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A. Analogies of multifractals with thermodynamics and
multifractal scaling

Consider the sum in equation (1) in the form
Z(g)=Yy e (A1)
P

where
F(p)=log n(p)+qlogp (A2)

The sum in (Al) is dominated by some value p = p*, where p*
is the value of p that maximizes F(p). Thus

Z(g)~e" "7 =n(p*)(p*)* (A3)

For fixed g, p* and (n(p*) both depend on the system size L,
leading one to define the new g-dependent exponents a and f by

p~L n(pf)~ U (A%)
Substituting (A4) into (A3) gives
Z(g)~ L/~ (AS)
Comparing (A5) with equation (2), we find the desired result
7(q)=qa(q)—f(q). (A6)
From (A2) it follows that
d
—7(q)=a(q). (A7)

dq

Hence we can interpret f(a) as the negative of the Legendre
transform of the function 7(q)

Sfla)=—(7(q)—ga) (A8)

where @ =dr/dq. The function Z(q) is formally analogous to
the partition function Z(8) in thermodynamics, so that 7(8) is
like the free energy. The Legendre transform f(a) is thus the
analogue of the entropy, with « being the analogue of the energy
E. Indeed, the characteristic shape of plots of f(a) against «
(compare Fig. 3) are reminiscent of plots of the dependence on
E of the entropy for a thermodynamic system.
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B. Random multiplicative processes
[A cautionary note for random sampling algorithms]

Multifractal phenomena seem to be associated with systems
where the underlying physics is governed by a random multiplica-
tive process. A simple random additive process might be the sum
of 8 numbers, each number being chosen to be either a—1 or
a+1 (this has a geometrical interpretation as an 8-step random
walk on a one-dimensional lattice). Similarly, a simple random
multiplicative process could be the product of 8 numbers, each
number randomly chosen to be either a 1/2 or a/2 (S. Redner,
personal communication). The results of simulations of such a
process are shown in Fig. 5. The y-axis is the running average
of the product after R realizations and the x-axis is the number
of realizations R.
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Fig.5 A computer simulation of a random multiplicative
process in which a string of 8 numbers is multiplied
together. Each number is chosen with equal probability
to be either 2 or 1/2. The limiting or asymptotic value of
the product is (5/4)® =5.96. The simulations do not give
this value unless the number of realizations R is approxi-
mately the same as the total number of configurations of
this product, 28 = 256. Simulation provided by R. Selinger.

In total there are 28, or 256, possible configurations of such
random products. Normally, random sampling procedures give
approximately correct answers when only a small fraction of the
possible 256 configurations has been realized. Here, however,
one sees from Fig. 5 that the correct asymptotic value of the
product is attained only after ~256 realizations (S. Redner,
personal communication). Monte Carlo sampling of only a smail
fraction of the 256 configurations is doomed to failure because
a rare few configurations—consisting, of, say, all 2s or seven 2s
and a single 1-—bias the average significantly and give rise to the
upward steps in the running average shown in Fig. 5.

A simple random multiplicative process that gives rise to
multifractal phenomena is found in the simple hierarchical model
of the percolation backbone shown in Fig. 6. If the potential
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Fig. 6 A hierarchical model of the percolation backbone

which displays multifractal scaling of the potential distri-

bution n(V). A unit potential is applied across the

extremities of the cluster. The potentials shown are given
by V,=2/5 and V,=1/5 (after ref. 37).

drop across the singly connected links is V| and that across the
multiply-connected links is V,, then when this structure is iter-
ated, the potential drops across each of the bonds are products
of the potential drops of the original structure. For this hierar-
chical structure Z(g)=(V{+ V)™, where N is the number of
iterations carried out. It turns out that Z(q) obeys a power-law
relation of the form of equation (2), with an infinite hierarchy
of exponents given by 7(q) =1+log [ V{+ V4]/log 2. To obtain
this result, the relation N, = L¥* must be used, where N, is the
number of singly connected bonds**-’.

of this incipient infinite cluster carry the entire current and so
sustain the largest potential drops, whereas the multiply con-
nected bonds partition the current among them and so have
smaller potential drops. The analogue of the hit-probability
distribution n(p) for DLA is the potential-drop distribution
n(V), where n(V)dV is the number of bonds whose current
lies in the interval [V, V+dV]* . The distribution n(V) is
characterized by its moments and the analogue of (1) is Z(gq) =
¥ n(V) V9 If the size of the random network is doubled, the
distribution function n(V) changes and so do the moments
Z(q). An infinite hierarchy of exponents 7(q) is found and
again 7(q) is not linear in g.

It is natural to ask why the constant gap or single exponent
idea breaks down when studying the surface of a DLA cluster.
The key idea is that the underlying probability distribution n( p)
develops a long ‘tail’ extending to extremely small values of the
variable p (Fig. 2). For DLA, this tail arises from the presence
of extremely deep cluster ‘fjords’. As the cluster grows, the hit
probability p; for all cluster sites decreases. The hit probability
p; for a site deep in a fjord, however, decreases much faster

than p; for a site on the exposed tips. Thus the long tail of the
n( p) distribution shifts its relative weight to smaller and smaller
values of p as the cluster grows.

Similarly for flow in porous media, the distribution function
n(V) has a long tail extending to extremely small values of the
potential V. This tail arises from the presence of large multiply
connected regions of the network, termed blobs**>’. When
L- L'=2L, the characteristic size of the largest blobs increases
from M to M’=2"%>M (ref. 58). Thus the minimum potential
drops decrease dramatically and the distribution function n(V)
has a larger fraction of its weight from very small values of V.

Generality

It is not necessary to have a fractal structure to find multifractal
phenomena. For example, consider the electric field E; at every
point i on the surface of a charged needle—a non-fractal object
of dimension one. The set { E;} of electric-field values is formally
analogous to the set {p;} of DLA growth probabilities, and
indeed one finds that the {E;} also form a multifractal set*’".
A question that arises naturally concerns the conditions under



NATURE VOL. 335 29 SEPTEMBER 1988

which multifractal phenomena can be expected. As the example
of the needle suggests, it is necessary to define a ‘measure’ on
an object such that this measure has a different fractal dimension
in different regions of the object®. Thus when the length of a
needle is doubled, the electric field near its tip changes by a
factor which differs from the factor by which the electric field
near the centre changes. Similarly, when the mass of DLA is
doubled, the growth probability near the tips of a DLA structure
changes by a factor different from the growth probability deep
in the fjords. This is because the screening in the deep fjords
increases dramatically with increasing cluster size.
Multifractal theory permits the characterization of complex
phenomena in a fully quantitative fashion. Just as completely
random phenomena in nature may generate shapes that are
fractal, phenomena with spatial correlations are sometimes
multifractals. For example, randomly porous media are tradi-
tionally modelled by the random-resistor network of percolation
theory: the resistance of each element corresponds to the per-
meability in a suitable digitization of the porous medium
Although this model captures much of the essential physics, it
neglects the phenomenon of spatial correlation that in turn leads
to both short- and long-range heterogeneities in the porous
medium. For this reason, it has been recently proposed that
atmospheric turbulence and porous media shouid be modelled
by a multifractal lattice®®®*. This is obtained by a random
multiplicative process (see Fig. 4 and Box B). Transport in such
a lattice can be anomalously slow, just as it is in the random-
resistor network model. But the exponent d,, describing the
anomaly can be continuously tuned; in fact the slowing down
can, under suitable conditions, become large without limit. A
similar model has been solved analytically in one dimension’®,
Analogous phenomena are found for a wide variety of sys-
tems; in fact, multifractal phenomena were first found in studies
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of fluid turbulence®*¢, and in analysis of non-linear dynamical

systems®” ", Recently it has been demonstrated® that experi-
mental data concerning the onset of turbulence can be analysed
using a method derived from multifractal theory. Various multi-
fractal sets have been mapped on to the thermodynamics
of one-dimensional spin models™. In a study of the deple-
tion of a diffusion substance near an absorbing polymer it

has been found that the scaling with distance r of each

moment of the Laplace field is governed by an independent

exponent’”.

Several authors have examined the multifractal properties of
random walks”7%, In particular, it has been shown’>"* that the
fractal dimension d; is a member of a continuous set of scaling
exponents; consideration of the entire hierarchy of scaling
exponents provides a more complete description of random
walks than was possible previously. The main idea is to charac-
terize an infinite walk with an exponent « that measures how
fast its total probability decays to zero with increasing mass of
the walk. The analogue of the function f(«) discussed above is
the growth rate z(a) for the subset of walks with decay rate a.
The analogue of 7(q) is the Legendre transform of z(a). A
log-normal distribution has been found for the first-passage time
in percolation’”’, and some understanding of the conditions
under which such a log-normal distribution will occur has also
developed recently®””,
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