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Four scenarios have been proposed for the low-temperature phase
behavior of liquid water, each predicting different thermody-
namics. The physical mechanism that leads to each is debated.
Moreover, it is still unclear which of the scenarios best describes
water, because there is no definitive experimental test. Here we
address both open issues within the framework of a microscopic
cell model by performing a study combining mean-field calcula-
tions and Monte Carlo simulations. We show that a common
physical mechanism underlies each of the four scenarios, and that
two key physical quantities determine which of the four scenarios
describes water: (i) the strength of the directional component of
the hydrogen bond and (ii) the strength of the cooperative compo-
nent of the hydrogen bond. The four scenarios may be mapped in
the space of these two quantities. We argue that our conclusions
are model independent. Using estimates from experimental data
for H-bond properties themodel predicts that the low-temperature
phase diagram of water exhibits a liquid–liquid critical point at
positive pressure.

anomalous liquids ∣ liquid–liquid transition ∣ liquid water ∣ mean field ∣
Monte Carlo simulations

Water’s phase diagram is rich and complex: more than sixteen
crystalline phases (1), and two or more glasses (2–4) have

been reported. The liquid state also displays interesting behavior,
such as the density maximum for 1 atm at 4 °C. The volume
fluctuations hðδV Þ2i, entropy fluctuations hðδSÞ2i, and cross fluc-
tuations between volume and entropy hδVδSi, proportional to the
magnitude of isothermal compressibility KT , isobaric specific
heat CP, and isobaric thermal expansivity αP, respectively, show
anomalous increases in magnitude upon cooling (5). Further,
these quantities display an apparent divergence for 1 atm at
−45 °C (2), hinting at interesting phase behavior in the super-
cooled region.

Microscopically, liquid water’s anomalous behavior is under-
stood as resulting from the tendency of neighboring molecules
to form hydrogen (H) bonds upon cooling with a decrease of local
potential energy, decrease of local entropy, and increase of local
volume due to the formation of local open structures of bonded
molecules. Different models include these H-bond features, but
depending on the assumptions and approximations of each
model, different conclusions are obtained for the low-T phase
behavior. The relevant region of the bulk-liquid state cannot
be probed experimentally, and none of the theories tested
because crystallization of bulk water is unavoidable below the
homogeneous nucleation temperature TH (−38 °C at 1 atm).

Four Scenarios for Supercooled Water
Due to the difficulty of obtaining experimental evidence, theoret-
ical and numerical analyses are useful. Four separate scenarios
for the pressure–temperature (P–T) phase diagram have been
proposed:

(I) The stability limit (SL) scenario (6) hypothesizes that the
superheated liquid–gas spinodal at negative pressure reenters the
positive P region below THðPÞ. In this view, the liquid state is
delimited by a single continuous locus PsðTÞ, bounding the super-

heated, stretched, and supercooled states. There is no reference
to the phase into which the liquid transforms when P → PsðTÞ. As
the spinodal is approached KT , CP, and jαPj → ∞. A thermody-
namic consequence of the SL scenario is that the intersection of
the retracing spinodal with the liquid–vapor coexistence line must
be a critical point (2). The presence of such a critical point in the
liquid–vapor transition, although possible, is not confirmed by
any experiment. This fact poses a serious challenge to the SL
scenario.

(II) The liquid–liquid critical point (LLCP) scenario (7)
hypothesizes a first-order phase transition line between two
liquids—a low density liquid (LDL) and a high density liquid
(HDL)—that terminates at a liquid–liquid critical point C0.
HDL is a dense liquid with a highly disordered structure, whereas
LDL has a lower density and locally tetrahedral order. The
experimentally observable high density amorphous and low den-
sity amorphous solids correspond in this scenario to a structurally
arrested state of HDL and LDL, respectively (8, 9). Starting from
C0, the locus of maxima of the correlation length ξ (the Widom
line) projects into the one-phase region (10). Asymptotically
close to the critical point, response functions can be expressed
in terms of ξ, hence these too will show maxima, for example,
as a function of T upon isobaric cooling. These maxima will
diverge upon approaching C0. Furthermore, for P > PC0 , the
pressure of C0, the response functions will diverge by approaching
the spinodal converging to C0. Specific models suggest (7, 11)
that PC0 > 0, but the possibility PC0 < 0 has also been proposed
(12,13).

(III) The singularity-free (SF) scenario (5, 14) hypothesizes
that the low-T anticorrelation between volume and entropy is suf-
ficient to cause the response functions to increase upon cooling
and display maxima at non-zero T, without reference to any
singular behavior. Specifically, Sastry et al. (14) consider the
temperature of maximum density (TMD) line, where the density
has a maximum as a function of temperature and prove a general
thermodynamic theorem establishing the proportionality be-
tween the slope of the TMD ð∂P∕∂TÞTMD and the temperature
derivative of KT . Thus, because the TMD has negative slope
in water, (i. e., ð∂P∕∂TÞTMD < 0), it follows that KT must increase
upon cooling, whether there exists a singularity or not.

(IV) The critical-point free (CPF) scenario (15) hypothesizes
an order–disorder transition, with possibly a weakly first-order
transition character, separating two liquid phases and extending
to P < 0 down to the superheated limit of stability of liquid water.
This scenario effectively predicts a continuous locus of stability
limit spanning the superheated, stretched, and supercooled states
because the spinodal associated with the first-order transition will
intersect the liquid–gas spinodal at negative pressure. No critical
point is present in this scenario.
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These four scenarios predict fundamentally different behavior,
though each has been rationalized as a consequence of the same
microscopic interaction: the H-bond. A question that naturally
arises is whether the macroscopic thermodynamic descriptions
are in fact connected in some way. Previous works have
attempted to uncover relations between several of the scenarios,
for example between (I) and (II) (11, 16) or (II) and (III) (17, 18).
Here we offer a relation linking all four scenarios showing that
(a) all four can be included in one general scheme, and (b) the
balance between the energies of two components of the H-bond
interaction determines which scenario is valid. Morevover, we
argue that current estimates of values for these energies support
the LLCP scenario.

Cooperative Cell Model of Water
We analyze a microscopic model of water in which the fluid is
divided into N cells with nearest neighbor (NN) interactions
(19). The division is such that each cell is in contact with four
NNs mimicking the first shell of liquid water (20). At the present
level of description we therefore, allow for the formation of at
most four H-bonds per molecule. The case of a shared H-bond,
due to more than four molecules in the first shell, is assimilated
with the case in which a H-bond is broken because the interaction
energy of a shared bond is less than half the energy of a single
H-bond (21, 22). Furthermore, molecules are allowed to form
bonds only with NNs, hence structures with interpenetrating
H-bonds such as those found in ices VII and VIII are beyond our
present scope.

The goal of the model is to represent, microscopically, the
essential features of the interaction among water molecules,
while being able to qualitatively understand the importance of
each of these features. To this end the interaction among cells
is separated into four distinct components.

The first component of the interaction is due to the short-
range repulsion of the electron clouds. This is incorporated into
the model by assigning to each cell i ∈ ½1; N� (a) a volume vi ≥ v0,
where v0 is the exclusion volume per molecule, and (b) a maxi-
mum of one molecule.

The second component includes all the isotropic long-range
attractive interactions such as the instantaneous induced
dipole–dipole (London) interactions between the electron clouds
of different molecules or the isotropic part of the H-bond (23).
We refer to this component as the van der Waals attractive inter-
action, keeping in mind, however, that this component includes
not only the (weak) London dispersion interaction, but also the
(stronger) isotropic interaction of the H-bond. The overall sum of
the isotropic —attractive and repulsive— interactions can be
represented in different ways. The one we adopt in a mean-field
(MF) treatment is

Ho ≡ −ϵ∑
hi;ji

ninj; [1]

where we set the index ni ¼ 0 if v0∕vi ≤ 0.5, and we set ni ¼ 1 if
0.5 < v0∕vi ≤ 1, hence ni ¼ 0 if the density in the cell is gas-like,
and ni ¼ 1 if the density in the cell is liquid-like; ϵ > 0 is the
characteristic energy of the attraction and the sum is over all
NN pairs hi; ji.

The characteristic feature of H2O is its ability to form H-bonds
between neighboring molecules. This interaction has a strong
directional component due to the dipole–dipole interaction be-
tween the highly concentrated positive charge on each H and
each of the two excess negative charges concentrated on the O
of another water molecule. Accordingly, the third component
incorporated here is an orientational–dependent interaction, that
includes the covalent component of the bond (24). To account for
the orientational degrees of freedom of each water molecule, we
assign to each cell i four bond variables σij ¼ 1; :::; q (one for each

NN cell j), representing the orientation of molecule i with respect
to molecule j. We choose the parameter q by selecting 30° as the
maximum deviation from a linear bond (i.e., q≡ 180°∕30° ¼ 6),
hence every molecule has q4 ¼ 64 ≡ 1296 possible orientations.
The effect of choosing a different value for q has been analyzed
in ref. 25. We say that a bond is formed between cells i and j
if σij ¼ σji.

Experiments show that formation of the H bonds leads to an
open—locally tetrahedral—structure that induces an increase of
volume per molecule (2, 26). This effect is incorporated in the
model by considering the total volume to be given as

V ≡Nv0 þ NHBvHB; [2]

where

NHB ≡∑
hi;ji

ninjδσij ;σji [3]

is the total number of H-bonds, δa;b ¼ 1 if a ¼ b, δa;b ¼ 0 if a ≠ b,
and vHB is the volume increase per H-bond (14). Bond formation
also leads to a decrease in the local potential energy, hence we
add to the Hamiltonian in (Eq. 1) the term

HHB ≡ −JNHB; [4]

where J > 0 is the characteristic energy of the covalent (direc-
tional) component of the H-bond.

Another key experimental fact is that at low T the O–O–O an-
gle distribution in water becomes sharper around the tetrahedral
value (27), suggesting an interaction that induces a cooperative
behavior among bonds. For water, four–body and higher order
interactions seem to be negligible with respect to the three–body
term (28, 29). Hence, the fourth component to the interaction
potential is the many–body effect due to H-bonds (30–32), that
minimizes the energy when the H-bonds of nearby molecules
assume a tetrahedral orientation. This is accomplished by further
adding to the Hamiltonian in Eqs. 1 and 4 the term

Hcoop ¼ −Jσ∑
i

ni ∑
ðk;ℓÞi

δσik;σiℓ ; [5]

where Jσ > 0 is the characteristic energy of the cooperative com-
ponent of the H-bond, and ðk;ℓÞi indicates one of the six different
pairs of the four bond variables of molecule i. This interaction
introduces a cooperative behavior among bonds, which may be
fine tuned by changing Jσ . Choosing Jσ ¼ 0 leads to H-bonds that
form independently of neighboring bonds (14), whereas Jσ → ∞
leads to fully dependent bonds (33). The total Hamiltonian is now
given by

H ¼ Ho þHHB þHcoop: [6]

This model is studied using both MF analysis and Monte Carlo
(MC) simulations (25, 34–37). Details of the MF and MC
techniques are available elsewhere (25, 38). In the following
we adopt ~J ≡ J∕ϵ, ~Jσ ≡ Jσ∕ϵ, and vHB ¼ v0∕2.

Mean-Field Results
Four qualitatively different phase diagrams are found dependent
on the strengths of the H-bond energy parameters ~J and
~Jσ (Fig. 1).
When ~Jσ ¼ 0 the model coincides with that proposed in ref. 14,

which gives rise to the SF scenario (Fig. 1A). For 0 < ~Jσ ≤ ~J∕2 the
model displays a liquid–liquid transition ending in a LLCP at
PC0 ≥ 0 (Fig. 1B) (34). For ~J∕2 < ~Jσ < aþ b~J, where a ¼ 0.30�
001 and b ¼ 0.36� 0.01 are fitting parameters, a LLCP occurs at
PC0 < 0 (Fig. 1C). For ~Jσ ≥ aþ b~J, a liquid–liquid transition with
no critical point is found, consistent with the CPF scenario
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(Fig. 1D). In Fig. 2 we summarize these results in the
~J vs. ~Jσ parameter space.

Limiting Behavior Between the Four Cases. In the following we
discuss how, by tuning ~J and ~Jσ , we can pass from one scenario
to another in a continuous way.

(i) By beginning with the LLCP scenario and studying the limit
~Jσ → 0, we find TC0 → 0. Moreover, we find that KT and jαPj
diverge as jT − TC0 j−1 for any value of Jσ including Jσ → 0 and
TC0 → 0. Furthermore, we find for the entropy S that for any
value of Jσ and TC0 ≥ 0, ð∂S∕∂TÞP ∝ jT − TC0 j−1. Hence,
CP ≡ Tð∂S∕∂TÞP diverges as jT − TC0 j−1 when TC0 > 0 while CP
is constant as in the SF scenario (39) when TC0 ¼ 0 ( ~Jσ ¼ 0).
Therefore, the SF scenario coincides with the LLCP scenario
in the limiting case of TC0 → 0 for ~Jσ → 0 (Fig. 1A).

(ii) Again, beginning with the LLCP scenario and increasing
~Jσ while keeping other parameters constant, we observe
that C0 moves to larger T and lower P (Fig 1 B). For ~Jσ ≥ ~J∕2
is PC0 < 0 (Fig. 1C).

(iii) With further increase of ~Jσ , C0 approaches and eventually
reaches the liquid–gas spinodal. For larger values of ~Jσ only the
liquid–liquid transition remains, which is precisely the CPF
scenario (15) (Fig. 1D). Hence, the CPF scenario differs from
the LLCP scenario only in that C0 is now inaccessible lying beyond
the region of liquid states. The same result may be obtained by
decreasing ~J while fixing ~Jσ and other parameters. Here a
decrease of ~J movesC0 to lower pressure, that is, toward the liquid
spinodal, while the entire liquid–liquid phenomena moves to
successively lower temperature. In all cases the location of C0
varies continuously with variation of ~J and ~Jσ .

(iv) In the case of the CPF scenario we find that the super-
heated liquid–gas spinodal merges with the supercooled
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and different values of the H-bond cooperativity strength ~Jσ . (A) Singularity-free scenario (~Jσ ¼ 0). At high T , liquid (L) and gas (G) phases are separated by a
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TC 0 → 0 (see text). (B) LLCP scenario with positive critical pressure (for ~Jσ ¼ 0.05). At low T and high P, a HDL and a LDL are separated by a first order transition
line (thick line with HDL/LDL labeled) ending in a critical point C 0, from which the L–L Widom line (dot-dashed line) emanates. Other symbols are as in the
previous panel. (C) LLCP scenario with negative critical pressure (for ~Jσ ¼ 0.35). Here the L–LWidom line (dot-dashed line) is shown intersecting the L–G spinodal
(dotted line). Other symbols are as in the previous panel. (D) Critical-point free scenario (~Jσ ¼ 0.5). The HDL–LDL coexistence line extends to the superheated
liquid region at P < 0, reaching with the liquid spinodal (dotted line). The stability limit (SL) of water at ambient conditions (HDL) is delimited by the super-
heated L–G spinodal and the supercooled HDL–LDL spinodal (dashed line), giving a reentrant behavior as hypothesized in the SL scenario. Other symbols are as
in the previous panels. In all panels, kB is the Boltzmann constant.
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liquid–liquid spinodal, as in ref. 11. This gives rise to a liquid
spinodal that retraces in the P–T plane. This feature resembles
the main characteristic of the SL scenario, where the high-T liq-
uid has a limit of stability at P < 0 that retraces toward P > 0 at
low T. Here this retracing locus is formed by two spinodal lines,
with different signs of the slope that merge at P < 0. Therefore,
in the framework of the present model, the CPF scenario and the
SL scenario coincide, corresponding to the case in which the
cooperative behavior is very strong.

Linearity of the Lines Separating one Scenario from Another in ~J– ~Jσ
Plane. For the cell model we can derive

TC0 ¼ ~Jσ∕αþ Oð~J2σÞ [7]

and

PC0 ¼ ð~J�ϵ∕vHBÞ þ βTC0 þ OðT2
C0 Þ: [8]

Here α > 0 and β < 0 are constants and in the MF context
~J� ≡ ~J þ 3~Jσ . Symbols OðX2Þ, where X is ~Jσ or TC0 , represent
terms of order X2 or higher that are negligible when X ≪ 1.
Our MF results confirm the relations in Eqs. 7 and 8 with
α≃ 0.74kB∕ϵ and β ≃ −7.4kB∕v0, with negligible OðX2Þ terms.

Therefore, we can rewrite the above relations as
~J − PC0vHB∕ϵ ¼ −½3þ βvHB∕ðαϵÞ� ~Jσ ≡ 2~Jσ , when vHB ¼ v0∕2. As
a consequence, for the case PC0 ¼ 0, we find ~Jσ ¼ ~J∕2, which is
exactly what we find numerically in Fig. 2 along the line sepa-
rating the LLCP scenario with PC0 > 0 (valid for ~Jσ < ~J∕2) and
the LLCP scenario with PC0 < 0 (valid for ~Jσ > ~J∕2).

It is possible to show that Eq. 8 can be generalized to
PLL ¼ ð~J�ϵ∕vHBÞ þ βTLL þ OðT2

LLÞ, where TLL and PLL are the
T and P along the liquid–liquid transition line. Our MF results
are in good agreement with this prediction.

We can estimate the equation of the line separating the LLCP
scenario with PC0 < 0 and the CPF/SL scenario in the ~J–~Jσ plane,
by using the Eq. 8 together with the equation for the liquid–gas
spinodal. In particular, we adopt a parametric fit, in terms of the
parameter ~J of the spinodal pressure with respect to the spinodal
temperature, and we evaluate the line separating the LLCP and
CPF/SL scenarios for ~J → 0 when C0 is on the spinodal. From this
approximate approach, we derive that ~Jσ ¼ ~J0σ þ γ ~J with ~J0σ ≃ 0.2
of the same order of magnitude of the fitting parameter a≃ 0.30
in Fig. 2. Yet, γ ≠ 0.36, the value of b in Fig. 2, as a consequence
of the strong approximations made.

MC Results
To test the validity of our MF calculations, we perform MC
simulations in the NPT ensemble (38). To this end,

(i) we consider that the total volume is V ≡ VMC þ NHBvHB,
where VMC⩾Nv0 is a dynamical continuous variable;

(ii) we assume that the system is homogeneous with all the
variables ni set to 1; with this assumption the gas state occurs
when ρ≡N∕V < 0.5∕v0;

(iii) we replace the isotropic repulsive and attractive terms of
the Hamiltonian in (Eq. 6) with a Lennard–Jones potential,
more suitable for continuous distances r between particles, with
attractive energy ϵ > 0 plus a hard-core repulsion at distance r0:

UW ðrÞ≡
�
∞ if r⩽r0;
ϵ½ðr0r Þ12 − ðr0r Þ6� if r > r0.

[9]

Here r0 ≡ ðv0Þ1∕d and d is the system dimension (34) (the
hard-core repulsion reduces the computational cost and does
not change the phase diagram). To avoid the interaction of a
molecule with any other molecule, as it would be in MF, in
the UW ðrÞ calculation we do not consider the volume changes
due to the H-bonds formation. Therefore, the distance between
two NNmolecules is ðVMC∕NÞ1∕d, and the distance r between two

generic molecules is the Cartesian distance between the centers
of the cells in which they are enclosed.

(iv) We consider the system in d ¼ 2 dimensions. Whereas the
MF results are valid for any dimension so long as the number of
NN molecules is 4, the MC results hold for a system with
coordination number 4 and 2 dimensions. Since the results in
the two cases are qualitatively comparable, we do not expect a
strong dependence of the phase diagram on dimension.

We simulate this system for N ¼ 104 molecules arranged on a
square lattice, adopting Wolff’s algorithm to equilibrate at low T
(38), for different values of ~Jσ , keeping constant ~J ¼ 0.5, and
vHB∕v0 ¼ 0.5 (Fig. 3).

For large values of ~Jσ ( ~Jσ ¼ 0.5 > aþ b~J), we find a HDL–LDL
first-order phase transition that merges with the superheated
liquid spinodal as in the CPF scenario (Fig. 3A). At lower ~Jσ
( ~Jσ ¼ 0.3 > ~J∕2), a HDL–LDL critical point appears at P < 0,
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from which emanates the locus of CP maxima (used here as an
approximation of the liquid–liquid Widom line), which
intersects the superheated liquid spinodal (Fig. 3B). By further
decreasing ~Jσ ( ~Jσ ¼ 0.05 < ~J∕2), the HDL–LDL critical point
occurs at P > 0, with the line of CP maxima intersecting the
P ¼ 0 axis (Fig. 3C). For ~Jσ ¼ 0.002, approaching zero, we find
that the temperature of the HDL–LDL critical point approaches
zero and the critical pressure increases toward the value P ¼ ϵ∕v0
independent of ~Jσ . In this case, we can show that Eq. 8 still holds,
but with ~J� ≡ ~J. The line of CP maxima approaches the T ¼ 0 axis
for ~Jσ → 0. These results confirm the qualitative behavior found
with the MF calculations.

Comparison with Other Thermodynamic Models
To show that our analysis offers a general framework within which
to analyze the supercooled water phase diagram in terms of the
interplay between the strengths of the directional contribution to
the H-bond interaction and its cooperative part, we compare our
results with those from other thermodynamic models that can
reproduce more than one scenario by tuning appropriate param-
eters (11, 16, 18).

One free energy model with cooperative interactions is the one
introduced by Tanaka (18). He shows that, as in the SF scenario,
water’s anomalies are the effect of the excitation of locally
favored structures upon cooling, which have lower energy and
larger volume than normal liquid structures. As in our model,
in Tanaka’s model increasing the cooperativity among excitations
of locally favored structures leads to the LLCP scenario. More-
over, Tanaka’s model LLCP is regulated by relations such as our
Eqs. 7 and 8. Therefore, by increasing the strength of the coop-
erative interaction, the LLCP will eventually reach the limit of
stability of the liquid as in the CPF/SL scenario.

We next consider the free energy model introduced by Poole
et al. (11), in which a van der Waals free energy is augmented to
include the effect of H-bond formation. The H-bond interaction
is characterized by two free parameters: the strength of the
H-bond and a geometrical constraint on H-bond formation. The
fraction of molecules that form H-bonds with decreased energy
and entropy is determined by a distribution over molar volumes,
the width of which is Δ. Poole et al. show that, by keeping Δ fixed,
their model displays a SL scenario for weak H-bond energy and a
LLCP at positive pressure for strong H-bond energy. This corre-
sponds in our model to increasing the H-bond coupling ~J from
~J < ð ~Jσ − aÞ∕b to ~J > 2 ~Jσ , while keeping ~Jσ > a fixed.

Next we study the effect of varying the other H-bond param-
eter in the Poole et al. model, the width Δ. Keeping the H-bond
energy fixed, we produce the LLCP phase behavior at large Δ and
the SL phase behavior at small Δ. Hence a decrease of Δ has the
same effect on the phase diagram as an increase in the H-bond
cooperativity in our model.

This result is consistent with that of Borick et al. (16) for their
Hamiltonian model that incorporates the cooperativity of H-
bonds through the same mechanism used by Poole et al., that
is, by adopting a distribution with width Δ that makes the H-bond
strength density dependent. By decreasingΔ, Borick et al. find that
the LLCP moves to lower P and higher T. This behavior makes
sense physically, as a more all-or-nothing distribution of H-bonds
(smallΔ) implies amore cooperative process of bond formation. It
also implies that the models of Poole et al. and Borick et al. give
rise to the SF scenario only in the limiting case of infinite Δ.

We conclude that all four models give a consistent physical pic-
ture. This suggests that our result, expressed in terms of strength

of the directional and cooperative components of the H-bond, as
summarized in Fig. 2, is general.

Estimates from Experimental Data
In the framework of the scheme presented here, in which direc-
tionality and cooperativity are the two relevant physical para-
meters, we propose that the way to understand which scenario
best describes water is to probe the energy of the covalent part
of the H-bond interaction (24) and the energy of the cooperative
component of the H-bond interaction (30–32). Experiments
measure H-bonds in ice Ih to be approximately 3 kJ/mol stronger
than in liquid water (40). Attributing this increase to a coopera-
tive interaction among H bonds (41) we can estimate the value of
Jσ in the cell model to be ≈1.0 kJ∕mol. An estimate of the van der
Waals attraction based on isoelectronic molecules at optimal
separation, yields ϵ ≈ 5.5 kJ∕mol (42). The optimal H-bond
energy, EHB, has been measured to be ≈23.3 kJ∕mol (43). By
considering tetrahedral clusters of H-bonded molecules, with
H-bond and van der Waals interactions between NN molecules
(and appropriately reduced van der Waals interactions between
second and third NN molecules), we derive the value for the
directional component of the H-bond, J ≈ 12.0 kJ∕mol. Other
experimental estimates suggest that breaking the directional
component of the H-bond requires ≈6.3 kJ∕mol (44).

Both estimates from experiments fall within the range of 1.1 ≤
~J ≤ 2.2, with ~Jσ ≃ 0.2, that is, with ~Jσ < ~J∕2. Therefore, within
our model, these values lead to the LLCP scenario with PC0 > 0.

Conclusions
We have shown that a microscopic cell model of water, by taking
into account the cooperativity among H-bonds, is able to produce
phase behaviors consistent with any of the proposed scenarios for
water’s phase diagram. It is the amount of cooperativity in
relation to the strength of the directional component of the
H-bond that establishes which scenario holds. For no amount
of cooperativity, the SF scenario is recovered. By increasing
the amount of cooperativity in relation to the H-bond directional
strength, a liquid–liquid transition grows out from the T ¼ 0 axis,
ending in a LLCP. With sufficiently strong cooperativity, this
LLCP lies beyond the region of stable liquid states, leaving only
the liquid–liquid transition, consistent with the CPF scenario. In
this case the spinodal associated with the transition acts as the
line predicted in the SL scenario.

Comparison with previous models gives consistent results.
Hence we argue that each of the four scenarios proposed for
the phase diagram of liquid water may be viewed as a special case
of our general scheme. This scheme is based on the assumption
that water–water interaction is characterized by an isotropic com-
ponent, a directional component, and a cooperative component
and that H-bond formation leads to an open local structure.
Alternative mechanisms, based only on isotropic interactions
(45–49) or only on directional interactions (50) have been con-
sidered and their relevance for the water case is an open question.
Finally, estimates for the three components of the H-bond inter-
action, based on experimental data lead to the conclusion that the
LLCP scenario with a positive critical pressure holds for water.
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