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We present a study of the residual entropies of the frustrated lsing antiferromagnets in a 

zero field, situated on the Sierpit’rski gasket type of fractals. Our results render it possible to 

establish the fractal residual entropy crossover towards Wannier’s exact value for the 

Euclidean triangular lattice. 

The exact residual entropy of the frustrated Ising antiferromagnet on the 

regular triangular lattice in zero field was calculated by Wannier in 1950 [l], 

whereas the residual entropy of the same model in the maximum critical field 

was found by Baxter in 1980 [2,3]. The question as to how the residual entropy 

is modified when the underlying lattice is fractal has been recently addressed in 

both cases, that is, in the case of maximum critical field [4-61, where the 

corresponding fractal to Euclidean crossover formula was established, and in 

the case of zero field [7,8], where so far no crossover formula has been found. 

In this paper we study the zero field residual entropy (T of the Ising 

antiferromagnets situated on fractals that are members of the infinite Sierpinski 

gasket (SG) family [9]. Each member of the family is labelled by an integer b 

(2 d b < m), and can be constructed in a self-similar way starting with a 

triangular generator of side length b (see fig. 1). Exact numerical values of the 

zero field residual entropy cT(b) have been calculated [7] for the first five 

members (2 c b < 6) of the fractal family, but these results did not prove 

sufficient to explore possible convergence (crossover) of v(b), when b -+ 33, 

towards the value cEUclidean = 0.323066 found for the infinite triangular lattice 

[l]. Here we first use the transfer matrix (TM) method [4] to calculate a(b) for 
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Fig. I. The first three steps of construction (n = 1, 2. 3) of the first two mcmhers (h = 2 (uppw) 

and b = 3 (lower)) of the Sierpiriski gasket fractal family. 

2 c h c 19, and then apply the recently introduced degeneracy factor method 

[IO] to establish the crossover behavior of CT(~). Finally, we make a comparison 

of the zero field entropy crossover behavior with the crossover behavior of the 

residual entropy in the maximum critical field [4, 51. 

In zero external magnetic held. the Ising antiferromagnet on a SC fractal 

(with given h) has a highly degenerate ground state energy level. A measure of 

this topological frustration is the residual entropy 

‘n f4, ,, 
a(b) = lim L II-r N ’ ,I ./I 

(1) 

where O,,,,, is the ground state degeneracy of the system at the nth stage of 

construction of the fractal lattice, and IV,,,~, is the total number of spins [4]. 

given by 

with 

c,, = jh(h + 1) (3) 

being the number of nth stage structures that comprise the (n + I)th stage 

structure, and with 

Iv,;,,, = $(b + l)(h + 2) (4) 
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being the number of spins in the fractal generator. To find the ground state 

degeneracy flnn,6 at different stages of construction of the lattice, we can use the 
fact that we are dealing with an exactly self-similar lattice and try to establish 
exact recursion relations between degeneracies of two successive stages. The 
details of this procedure are quite similar to the procedure implemented [4] for 
b = 2 in the case of a nonzero field. However, to implement this procedure on 
SG fractals with larger b one would need to inspect 2NC,J possible configura- 
tions of the No ,, = $(b + l)(b + 2) generator spins, which already for b = 7 

becomes a formidable task. 
We have found that it is possible to replace the necessary recursion relations 

with a simple approximate recursion formula which yields surprisingly accurate 
results. Indeed, one can assume that for a fractal structure, with given b and II, 
the eight different configurations of the three apex spins give identical contri- 
butions to the total ground state degeneracy. This assumption is certainly valid 
for any b if n is large enough, since an arbitrary configuration of merely three 
apex spins cannot significantly affect the ground state degeneracy of a large 
system. The question is whether the error introduced in this way for small both 
b and II can influence the result at later stages of recursion. It can be verified 
that the error is negligible even for b = 2 (roughly, one part in 10”). Thus, 
following the procedure expounded in ref. [4], the approximate recursion 
relations now acquire the form 

n n+,,b~2N[;.h(b~,,b)Ch. (5) 

Therefore, starting with the generator (n = 1) ground state degeneracy Oo,h 
and applying (5) iteratively n - 1 times, we obtain 

,R, b ~ [2’l-b2)/‘CD-~)~o,b]C~~’ , 

2(1-b2)/(C,-I) (6) 

and inserting (6), together with (2)-(4), into (l), we find the following 
expression for the residual entropy: 

u(b) = 4(1 - b2) In 2 + 2[b(b + 1) - 21 In flo3b 

b(b2 - l)(b + 4) (7) 

Hence we can see that the problem of calculating the residual entropy of an 
infinite fractal lattice is reduced to evaluation of the generator ground state 
degeneracy Oo,b, 

To find 0, b for fractals with a large generator base b, we use the transfer 
matrix approach elaborated in detail, for the nonzero field case, in ref. [4]. In 



Table I 
Generator ground state degeneracy f1,, ,,, residual cntropq 

U(A) and the generator residual entropy v’(h) for the Isinp 

antiferromagnet situated on the Sierpiliski gasket type of 

fractel lattices. The v(h) values are calculated using (7). 

whereas the values of v’(h) are found using (8). 

0.3Y2972 

O.-!72lSY 

0.35.5920 

O.J42YO3 

0.332230 

0.423340 

0.115x00 

0.4OY32Y 

o.‘W711 

0.3YX7Y3 

0.3Y1447 

O..1YOS71( 

0.3N71 I2 

0.383YXY 

0.3XI ISY 

(3.378583 

0.37622Y 

0.373068 

this way we have been able to obtain results up to h = 19 (using the IBM 

personal computer with Intel 80386 processor and WEITEK coprocessor). The 

results are listed in table I. An inspection of the second column of table I can 

make one surprised that formula (7), obtained using an assumption which is 

rather crude for small h and tz, gives results of such a high accuracy even for 

small values of h. Indeed. even for h = 2 the value of 42) listed in table I 

differs from the exact result by one part in IO’. Besides, one should note that 

the first five values of a(h) (2 c h s 6) coincide with those recently reported in 

ref. [7]. Finally, we mention that the residual entropies of the fractal 

generators, listed in column three of table I, were calculated according to 

a’(b) = In &,,,,/N,,,, (8) 

Next we turn to the question as to how the residual entropies a(b) converge 

to the value ~~~~~~~~~~~~ = 0.323066 pertinent to the infinite triangular lattice [l]. 

To this end, we use the degeneracy factor method (DFM) introduced in ref. 

[lo]. The essence of the DFM is the scaling relation 
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Here Y is a constant (characteristic of the infinite triangular lattice), c is the 
degeneracy factor that appears on adding a new border spin (i.e. a spin with 
four nearest neighbors) to a fractal generator, and o is the degeneracy factor 
that appears on adding a new bulk spin (a spin with six nearest neighbors). For 
a preset accuracy, the relation (9) is assumed to be valid beyond a certain value 
b = k. From (9) it follows that 

3 In c 
=lno+6_2, b>k, 

and 

z(b) = In 
RGbnG.b-2 

k’,b-l 

=lnw, b>k. (lob) 

To test whether our set of data (cf. table I) allows application of the DFM, in 
fig. 2 we plot quantities y(b) and z(b). We can see that our exact data for y(b), 
in accordance with (lOa), nicely follow a straight line, whereas we notice a 
systematic deviation of the points z(b) from the constant In o, which suggests 
that higher order correction terms should be taken into account in (lob). 
Therefore, we have fitted the quantities z(b) to a polynomial in ll(b + 1) (here 
b + 1 is the linear dimension of the fractal generator), with the result 

0.01035 0.5170 0.4553 
z(b) = 0.3228 + 6+1 + 2 + ____ 

(b + 1) (b + 1)’ ’ 
(11) 

The generator ground state degeneracies OG,b for arbitrary b > 19 can now be 
found, with a higher accuracy, by iterative application of (10) and (ll), and 
then they can be used in (7) and (8) to find the residual entropies of fractals 
and their generators, respectively. The values calculated in this way for 
b c 1000 are shown in fig. 3, together with Wannier’s exact value for b = w. 

This figure suggests that one should expect a smooth fractal to Euclidean 
crossover in the case of the zero field residual entropies. 

The explicit form of the fractal to Euclidean crossover, 

6 In c 
u(b) = In w + - 

b ’ (12) 

follows after inserting (9) into (7) and neglecting higher order terms in l/b. 
The same type of crossover can be found, for the generator residual entropies, 
by inserting (9) into (8). This should not be surprising if one takes into account 
that we are dealing with finitely ramified fractals, which means that each 



.(b; 35 rw---- 

0 33 

ot-rter polyiomi;~l in t ./(h + I). 

generator of a fractal can 

cutting only six bonds. 

It remains to compare 

bc scparatcd from the rest of the fractal lattice by 

the crossover behavior of the zero field residual 

entropy studied in this work with the crossover behavior of the residual 

entropy in the maximum critical field H, (cf. refs. [4, 51). First, we should point 

out that the crossover formula of the type (12). that is with the correction term 

proportional to 1 ih. appears to be quite general. Indeed, the same type of 

crossover has been cstablishcd 14-61 for the maximum critical field residual 

entropies of the Ising antiferromagnets situated on different families of fractal 

lattices. Next, in fig. 4 we compare the overall behavior of the residual 

entropies (in a zero field and in the maximum critical field) in the case of the 

Sierpinski gasket family of fractals. One can note that the H = 0 and the H # 0 
residual entropy curves cross each other at h z 270, that is, before entering the 

fractal to Euclidean crossover region that occurs at b-+ m. This interesting 
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Fig. 3. Residual entropies cT(b) and u’(b) of the SG fractals and their generators represented by 

circles and triangles, respectively. Exact results for 2 s b G 19 are depicted by full circles and 

triangles, while the extrapolated values for 19< b =S 1000 are depicted by open circles and 

triangles. The symbol 0 represents the known exact value [l] of the zero field residual entropy for 

the infinite triangular lattice ~~~~~~~~~~ = 0.323066. The full lines serve as guide to the eye. 

Fig. 4. Comparison of the crossover behavior of the zero field residual entropy u(b, H = 0) of the 

SG fractals (same data as in fig. 3), and the residual entropy u(b, H = H,) of the SG fractals in the 

maximum critical field H, (same data as in fig. 1 of ref. [5]). The symbol 0 represents the known 

exact value [l] of the zero field residual entropy for the infinite triangular lattice (T~_,,,,_~ 

(H = 0) = 0.323066, whereas the symbol 0 represents the known exact value [2, 31 of the residual 

entropy in the maximum critical field for the infinite triangular lattice ‘T~,~,,~,,~(H = H,) = 
0.333243. The full lines serve as guides to the eye. The inset depicts a magnification of the region 

(close to b z 270) where the two sets of data cross each other. 



result implies that beyond h z 270 the frustration associated with the bulk spins 

starts to dominate over the border spin frustration. In other words, the 

finite-size effects of the fractal generators dominate up to h z 270. 
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