VOLUME 81, NUMBER 22

PHYSICAL REVIEW LETTERS

30 NOVEMBER 1998

Liquid-State Anomalies and the Stell-Hemmer Core-Softened Potential

M. Reza Sadr-Lahijany, Antonio Scala, Sergey V. Buldyrev, and H. Eugene Stanley

Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215
(Received 15 May 1998; revised manuscript received 15 October 1998)

We study the liquid anomalies arising from the Stell-Hemmer interaction, using molecular dynamics
simulations and approximate 2D solutions. We observe in the liquid phase three types of anomalies:
(i) An increase in specific volume upon cooling, (ii) an increase in isothermal compressibility upon
cooling, and (iii) an increase in the diffusion coefficient with pressure. We relate the anomalies to the

existence of two different local structures in the liquid phase.

PACS numbers: 61.20.Gy, 61.25.Em, 64.70.Ja, 65.70.+y

In their pioneering work, Stell and Hemmer proposed
the possibility of a second critical point in addition to
the normal liquid-gas critical point for potentials that
have a region of negative curvature in their repulsive
core (henceforth referred to as core-softened potentials)
[1]. They also pointed out that for the 1D model with a
long range attractive tail, the isobaric thermal expansion
coefficient, ap = V 1oV /aT)p (where V, T, and P
are the volume, temperature, and pressure), can take
an anomalous negative value. Debenedetti et al., using
thermodynamic arguments, noted that a “softened core”
can lead to ap < 0 [2].

The issue of liquid anomalies by itself is an interesting
phenomenon which is not limited to the density anomaly.
In this Letter we also discuss two other types of liquid
anomalies, increase of isothermal compressibility (den-
sity fluctuations) upon cooling, and increase of diffusion
coefficient (decrease of viscosity) with pressure. These
anomalies occur in many liquids [3,4], including liquid
water [3,5]. Ab initio calculations [6] or inversion of
structure factor data [6,7] reveal that a core-softened po-
tential can be considered a realistic first order approxima-
tion for the interaction [7,8], even in the case of network
forming anomalous liquids [3].

Previous works showed that a density anomaly derived
in 1D does not necessarily hold in higher dimensions
[9,10]. Here we demonstrate, by means of numerical
simulations for d = 2, that the core-softened potential can
lead to all three anomalies and that an explanation for the
occurrence of these anomalies can be given in terms of
the shape and parameters of the potential. To the best of
our knowledge this is the first time that a simple radially
symmetric potential is shown to yield these anomalies.
We also revisit the question of the second critical point in
relation with these anomalies.

The core-softened potential that we study is shown in
Fig. 1(a). It is composed of a hard core of diameter a
which has a repulsive shoulder of width b — a and depth
A€, and an attractive well of width ¢ — b and depth € [11].

We first study the system in 1D to get familiar with the
possible properties that might arise in higher dimensions.
We derive the exact form of partition function and
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equation of state, following the methods of [4,9,12,13].
The resulting isobars shown in Fig. 1(b) exhibit two
different types of behavior depending on the pressure.
Note that there is a discontinuity in €, the average distance
per particle, at an upper pressure P = Py, along the
T = O isotherm. For all P > Py, £ = a at T = 0, and
¢ increases monotonically with 7. For P < Py,, £ = b
at T = 0, and the €(T) isobars show a maximum and a
minimum, which correspond, respectively, to points of
minimum and maximum density [4,9,14].

We also study the isothermal compressibility Kr =
—V~Y9V/3P)r . Figure 1(c) shows an anomalous re-
gion along isobars in which K7 increases upon cool-
ing. We find that the maximum value of K7 grows as
P — Py, and K7 diverges as 1/T when we approach
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FIG. 1. (a) General form for the core-softened potential stud-
ied here. The length parameters a, b, ¢ and energy parameters
€, A are shown. The dashed curve is the smooth version [11].
(b) Isobars of €, the average distance per particle, for the dis-
crete 1D core-softened potential [11] with Py, = 2.5 in agree-
ment with Eq. (1). The Typ point is marked by an open circle.
(c) Isothermal compressibility for the discrete potential along
different isobars, with their maxima marked by filled circles.
K7y along P, isobar diverges as 1/T. (d) The loci of Typ and
K7 extrema for the discrete potential.

© 1998 The American Physical Society 4895



VOLUME 81, NUMBER 22

PHYSICAL REVIEW LETTERS

30 NOVEMBER 1998

the point C’ with coordinates (1" = 0, P = P,,) which
we interpret as a critical point [15]. Further, the locus of
Kr extrema joins the point C’ [Fig. 1(d)]. We also note
that the locus of K7 extrema intersects the temperature of
maximum density (7vp) locus at its infinite slope point,
a result that is thermodynamically required [16]. Such a
point on the Typ line has been observed in simulations
which support the existence of a second critical point in
supercooled water [17].

Next we consider whether the anomalies derived for
d =1 hold for d > 1 [10]. To this end, we perform
molecular dynamics (MD) simulations for a 2D system
composed of N disks in a rectangular box. For the
discrete version of the potential, we use the collision
table technique [18] for N = 896 disks, and for the
smooth version of the potential, we use the velocity Verlet
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FIG. 2. MD results for the smooth potential with the same
parameters as in Fig. 1(a) [11]. (a) Constant density curves
with, from bottom to top, densities between 0.46 to 0.56 in
steps of 0.01. The open circles mark Typ, and the dashed
line crossing the Typ line is the locus of Ky minima from
(b). The thick gray line is the approximate loci of the freezing
points, and the dashed line ending at the critical point C’ is
the LDL to HDL transition line derived from the cell theory
approximation. (b) Isothermal compressibility along isobars.
Except for the P = (.25 isobar, the graphs show anomalous
increase upon cooling. (c) Diffusion coefficient D (slope of the
mean square displacement as a function of time) for different
pressures at T = 0.65, showing an anomalous increase in the
P < 1.7 range. For comparison, we show D /4 for a Lennard-
Jones liquid at 7 = 0.7, from simulation of 2304 disks. The
zero values at low pressure for the core softened and at high
pressures for both correspond to a solid phase.
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integrator method [18] for N = 2500 disks [19]. Figure 2
shows the results derived for the smooth version. Our MD
results are qualitatively similar for the discrete and smooth
versions. Figure 2(a) shows P versus 7T along liquid
isochores (constant p) which terminate at the freezing
line. We identify the freezing line as the locus of the
points where the diffusion coefficient vanishes and the
system acquires the structure of a 2D solid [20]. For
P < Py ~ 1, where the freezing line has a negative slope,
the liquid has a Tyip characterized by a minimum along
the isochore [21], and it freezes into a solid with a lower
density than the liquid [22]. This solid has a triangular
lattice structure with a lattice constant . For P > Py, the
liquid Tip vanishes, the solid is denser than the liquid,
and it has a square lattice structure with lattice constant a.
Near the freezing line, the liquid acquires a local structure
similar to the nearby solid.

The three anomalies can be related to the interplay
between two local structures, an open structure in which
the nearest neighbor particles are typically at a distance
b, and a denser structure in which the nearest neighbors
penetrate into the softened core and are typically at a
smaller distance a. The configurations are determined
by the minima of the Gibbs potential, G(T,P) = U +
PV — TS (where G, U, and S are the Gibbs potential,
internal energy, and entropy). Figure 3(a) shows G
for 1D at T = 0 for two different values of P. The
qualitative shape should not change for higher d. For
low pressures at small 7', the open structure is favored by
the Gibbs potential. Increasing 7" for these pressures will
increase local fluctuations in the form of dense structures
which can lead to an overall contraction of the system
upon heating, causing a density anomaly. Increasing P,
on the other hand, raises the relative free energy of
the open structure, until the dense structure will be the
favored local structure, as seen for P > Py, in Fig. 3(a).
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FIG. 3. (a) The 1D Gibbs potential at 7 = 0 as a function

of the extra “degree of freedom” €, for the discrete form
of potential in Fig. 1(a). The equilibrium value of €(P) is
determined as the absolute minimum of this function, which is
located at ¢ = b below Py, and at { = a above P,. (b) First
few peaks of g(r) for P = 0.5 (dashed line) and P = 2.0 (solid
line) on the T = 0.65 isotherm which was used in Fig. 2(c).
The changes in the first (split) peak indicate that increasing
P lowers the total number of particles in the open structure
(r = 1.5) and increases the number of particles in the dense
structure (r = 1.1).
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At small T this pressure dependence can lead to a first
order transition, while for large T the transition is smooth.
At T = 0, the value of Py, is found by equating Gibbs
potentials,

Pup = _(Uopen - Udcnse)/(vopcn - Vdense)- (1)
For the discrete potential of Fig. 1(a), we find Py, =
(I = AMe/(b — a) in 1D, in agreement with the value
of Py, derived from the 1D equation of state [Fig. 1(b)]
[9]. In higher d, Eq. (1) helps to estimate the pressure
region in which we expect an overall shift from one local
structure to another.

We investigate the compressibility anomaly by measur-
ing Kr for each state point [23] and plotting it along iso-
bars as in Fig. 2(b). We observe that along some isobars
K7 increases upon cooling. As in 1D, the locus of K7
extrema intersects the Typ line at its infinite slope point
[Fig. 2(a)], which is consistent with thermodynamic argu-
ments [16]. If the increase in K7 is due to the existence of
a critical point C’ on the liquid free energy surface (like
in 1D), then by fitting the K7 curve to a power law di-
vergence we can estimate the location of C’ to be in the
region 0.3 <7 < 0.5 and 1.0 < P < 1.5. C' is inside
the solid phase region, and is not accessible to the liquid
in our MD method.

In order to investigate the possibility of C’, we perform
a 2D cell theory estimate of the equation of state using
a method similar to the original spherical Lennard-Jones
and Devonshire cell theory method [24]. This method
assumes that each particle is confined to a circular
cell, whose radius is determined by the average area
per particle, v. The cell theory method neglects the
correlation between the positions of different particles and
assumes that the potential acting on each particle is a
result of interacting with all its nearest neighbors smeared
around its cell. The Helmholtz potential per cell is

h(v,T) = hia(v,T) — kgT In[vess (v, T)/v], (2)

where hiq(v,T) is the ideal gas Helmholtz potential and
the effective volume of a cell is defined as

veit (v, T) = f e P gx 3)
cell

with the core-softened potential used for u(x). For each
state point (P, T), we find the value of v by minimizing
h(v,T) — Pv. The resulting phase diagram has two lines
of first order phase transition, a low pressure line which is
the liquid-gas phase transition line terminating at a critical
point C, and a high pressure line that separates a low-
density liquid (LDL) and a high-density liquid (HDL) and
terminates in a critical point C’ [Fig. 2(a)]. The location
of C' agrees with our previous estimate from Kr.

We next study the diffusion anomaly using our MD
results. We measure the diffusion coefficient D from
the slope of the mean square displacement as a function
of time. In analogy with the case of liquid water [5],
along low T liquid isotherms increasing P increases D

[Fig. 2(c)]. We explain this anomaly by noting that D is
proportional to the mean free path of particles. The mean
free path increases with free volume per particle viee =
U — Ve, Where v is the excluded volume per particle
resulting from the effective hard core. Note that for the
dense structure vex & a? which is smaller than vex « b2
for the open structure. Increasing P decreases v but can
also decrease v, by transforming some of local open struc-
tures to dense structures. Since both v and v, decrease
with P and since Avfee = Av — Awgy, the effect of P
on D depends on whether Av or Ave, dominates. The
anomalous increase in D along the isotherms near the
freezing line is a sign of the dominance of the Av, term.
Thus the anomaly in D must disappear near a certain pres-
sure above which the average distance between particles
corresponds to the dense structure and as a result the con-
tribution of the open structure to v is negligible [25].

To examine the transition from the open to the dense
structure, we study the pair distribution function g(r)
for configurations corresponding to different state points
[Fig. 3(b)]. We observe a uniform value of g(r) = 1 at
large r which confirms that all the state points shown
in Fig. 2(a) are in the liquid state. For small r the
liquid shows a few peaks corresponding to the local
structure in the liquid. The first peak in g(r) splits into
two subpeaks, which correspond to the locations of the
nearest neighbors in the dense and open structures. The
open structure subpeak decreases with P, while the dense
structure subpeak increases. We observe the same change
with 7 along liquid isobars. These observations agree
with our previous arguments about the effect of P and
T on the relative occurrence of the two types of structure.

In summary, we have found that a core-softened inter-
action can generate the three types of liquid anomalies
studied in this work. We have also found that all three
anomalies are related to the existence of two general types
of local structures.
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We estimate this transition average interparticle distance
(rg) from the location of the minimum between the two
subpeaks of the first peak in g(r) [Fig. 3(b)] to be around
r ~ 1.3 which corresponds to a density p ~ 0.54 or, at
T = 0.65, to a pressure P ~ 1.7. These estimates are
consistent with the location of the maximum D point in
Fig. 2(c).



