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The unusual low-temperature behavior of liquid water is interpreted using a simple model based upon
connectivity concepts from correlated-site percolation theory. Emphasis is placed on examining the physical
implications of the continuous hydrogen-bonded network (or “gel”) formed by water molecules. Each water
molecule A is assigned to one of five species based on the number of “intact bonds” (the number of other
molecules whose interaction energy with A is stronger than some cutoff ¥ ). [t is demonstrated that in the
present model the spatial positions of the various species are not randomly distributed but rather are
correlated. In particular, it is seen that the infinite hydrogen-bonded network contains tiny “patches” of four-
bonded molecules. Well-defined predictions based upon the putative presence of these tiny patches are
developed. In particular, we predict the detailed dependence upon (a) temperature, (b) dilution with the
isotope D,0, (c) hydrostatic pressure greater than atmospheric, and (d) “patch-breaking impurities”—for
four separate response functions, (i) the isothermal compressibility K, (ii) the constant-pressure specific
heat C,, (iii) the constant-volume specific heat C,, and (iv) the thermal expansivity a,, as well as for
dynamic properties such as (v) the transport coefficients self-diffusivity Dy and shear viscosity 7.
(vi) the characteristic rotational relaxation time 7en, and (vii) the Angell singularity temperature 7.

The experimentally observed dependence of these seven quantities upon the four parameters (a)—(d) is
found in all cases to agree with the predicted behavior. The paradoxical behavior associated with the absence
of a glass transition in pure liquid water is also resolved. Finally, we propose certain experiments and
computer simulations—some of which are underway—designed to put the proposed percolation model to

better tests than presently possible using available information.

1. INTRODUCTION

Angell and co-workers' have recently called attention
to the fact that essentially all of the anomalous proper -
ties of water become even more striking when one super-
cools below the normal melting temperature T,. Thus
far no satisfactory physical mechanism underlying these
unusual liquid phenomena has been found.

Recently, a new correlated-site polychromatic per-
colation model was proposed® that may be of relevance
in providing some insight into the behavior at low tem-
perature of H,O and D,0O. It is of interest to explore
the extent to which a given model can provide an explana-
tion of a range of extremely anomalous phenomena. Ac-
cordingly, our purpose here is first to state rather more
clearly the model itself in au attempt to remove certain
rather serious ambiguities arising from the initial pre-
sentation. Among these are remarks that have led others
to believe that the model is a member of a large class of
“two-state” model systems, when in fact it is in fact a
continuum model. Second, we shall make specific com-
parisons between the predictions of this model and exper-
imental data on pure H,0O and D,O at low temperatures.
We shall see that the principal advantage of our approach
is that it provides a single coherent mechanism capable
of encompassing a wide range of anomalous phenomena
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for T<T,, while in no way contradicting recent work of
a much more quantitative nature that explains in detail
some of the behavior for 7> T,. Moreover, it makes
specific predictions concerning experimental data that
are amenable to tests. In Sec. II, we review the cor-
related-site percolation model with emphasis on the na-
ture of the assumptions involved in applying this simple
“zeroth order” model to a system as complex as super-
cooled water and with emphasis on the degree to which
this model is a natural extension of other models cur-
rently being developed for stable water (T>T,). Sec-
tion III analyzes two response functions: the isother-
mal compressibility and the constant-pressure specific
heat. In Sec. IV other response functions are dis-
cussed, while in Sec. V we investigate the behavior of
the entropy of supercooled water and the consequences
for the glass transition paradox. Section VI is con-
cerned with the time-dependent properties, such as the
coefficient of self-diffusion and shear viscosity. Final-
ly, in Sec. VII we discuss the sort of information that
would be useful in providing more precise tests of the
percolation model.

Appendix A attempts to resolve four freguently en-
countered confusions concerning the application of per-
colation concepts to liquid water, while' Appeundix B is
designed to demonstrate that the numerical predictions
of the present model are of the correct order of mag-
nitude to be consistent with the observed experimental
facts.
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1i. MODEL
A. Background

Previous work aimed at elucidating the essential phys-
ical mechanism underlying the unusual behavior of nor-
mal water has been so well reviewed that we shall not
attempt to cite every appropriate reference. *~!" At the
risk of oversimplifying a long and complex history, one
might be tempted to state that models are conveniently
partitioned into two broad categories: (a) mixture/inter-
stitial models and (b) distorted hydrogen bond or “con-
tinuum” models.

Category (a) dates back to Roentgen’s 1892 proposal
that liquid water is a mixture of two basic components,
a “bulky” icelike component and a comparatively less
bulky “normal liquid. ”!! Roentgen’s essential idea has
been developed and extended by many authors. 2718 Al-
though theories of category (a) have been successful in
providing a physical mechanism for explaining a variety
of anomalous properties of liquid water, there is an
accumulating body of evidence that serves to render
somewhat implausible the basic starting point of the ap-
proach. This evidence has been summarized quite con-
vincingly by Kauzmann. '

Theories of category (b) date back almost 50 years to
the proposal of Bernal and Fowler?® that water forms a
network that is more or less completely hydrogen bond-
ed, with the effect of temperature being to distort the
bonds (e. g., by “bending” them) rather than to formally
“break bonds” as in mixture theories. The Bernal-
Fowler idea has also been developed and extended by
many workers®!™?" and does not suffer from many of the
drawbacks of approach (a).

It is a fact that no theory belonging either to category
(a) or category (b) has seriously addressed itselt to the
unusual behavior exhibited by supercooled water. In
this paper we shall argue that the model proposed in
Ref. 2 may be regarded as a natural extension (or re-
finement) of a “category (b) theory” that has as one ad-
vantage that it provides the first qualitative explanation
of the supercooled phenomena and that it does so within
a framework that applies equally to low-tempera-
ture water—i.e., the supercooled phenomena are found
to be a natural extension of phenomena occurring just
above T,,.

B. Considerations of connectivity

The model of Ref. 2 is rather abstract in its basic
formulation, and the relevance to water is not at all ap-
parent. For this reason, it is necessary to present this
model rather more carefully—especially with a view to
seeking to justify its possible relevance to elucidating
the mechanisms underlying the unusual behavior of low-
temperature H,O and D,0.

Despite the apparent lack of unanimity on the subject,
many workers would agree with our starting point,
namely, the hypothesis that “liquid water consists of a
random hydrogen-bond network, with frequent strained
and broken bonds, that is continually subject to sponta-
neous restructuring. ”?® The mean number 75 of hy-
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drogen bonds per molecule depends, of course, on one’s
definition of hydrogen bond. However, for any reason-
able definition, ngzp is sufficiently large that the oxygen
atoms form an infinite connected network or “gel. 2
This hypothesis, which dates back some years, has re-
cently received strong support from a decisive molecu-
lar dynamics calculation that concerned itselt with the
bond connectivity of liquid water and clearly demon-
strated that the system is well above its bond percola-
tion threshold.

Terms such as gelation and percolation refer not to
the actual positions of the oxygen atoms, but rather to
their connectivity. Since the water rmolecule is highly
nonspherical, two water molecules can be bonded when
separated by, say, 2.8 /o\, while the same two molecules
may not be bonded at a closer separation if their relative
orientation is not appropriate. Accordingly, it is con-
ventional when discussing gelation or percolation to
refer to molecules not in the usual configuration space
but rather in a topological or “connectivity” space: if
two molecules are bonded, we draw a heavy solid line
between them. If pg is some measure of the probability
of two nearby molecules to be hydrogen bonded, then we
can make the obvious statement that at very low values
of pp the system breaks up into a set of dimers, trimers,
etc. —all the networks are finite. However, above a
well -defined gelation or percolation threshold, there
exists —in addition to the networks of finite size—a
single network that is infinite in spatial extent. Hence
the statement that water is an infinite connected network
or “gel” is simply the statement that p is above the bond
percolation threshold.

It is perhaps necessary at this point to emphasize that
neither percolation nor gelation phenomena have anything
to do with the existence of a lattice. However, to the ex-
tent that a lattice affords a convenience for numerical
calculations, virtually all quantitative work in both fields
has been done either on (i) the “Cayley tree pseudolat-
tice” (essentially a continuum model in which all closed
loops are disallowed for the sake of mathematical sim-
plicity) or on (ii) conventional two- and three-dimension-
al lattices reflecting the essential topological features
of the system under consideration.

Similarly, we shall see that while the general formu-
lation of the percolation model does not require the
presence or even the concept of a lattice, the detailed
numerical calculations that we have carried out thus
far do indeed use a lattice —the ice I, lattice —which is
chosen to attempt to reflect the local tetrahedral symme-
try of the water molecule. The fact that our numerical
work thus far is for a lattice is one reason that the
detailed quantitative predictions may be more useful in
domains where the correlation length is not too large.
The quantitative predictions may possibly begin to break
down as the temperature of a system comes arbitrarily
close to the apparent singularity at T,= —45°C; most
data supporting the possibility of such a singularity are
restricted to T above about —-30 or —35°C, and hence
this possible shortcoming is not likely to be as serious
as one might imagine it to be were there in fact data
arbitrarily close to T.
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FIG. 1. (a) Schematic illustration of a water—water inter-

particle potential V(). The fact that the water molecule is
highly asymmetrical implies that this curve depends not only

on the water —water separation vector but also on the relative
ovientation of the two waters. Also shown is the concept of a
cutoff parameter Vyp, as used extensively in molecular dy-
namics calculations. When the mutual energy of interaction is
stronger than Vyp, we say that the two atoms have a bond be-
tween them; otherwise no bond is said to exist, This imposition
of a discrete symmetry on a continuous physical function is dis~
cussed extensively in the text and also in Ref. 35. (b) Schematic
representation of a subsystem of three H,0 molecules in “real
space’ and its representation in a “topological space” where
only the two states of each possible hydrogen bond are taken
into account, Note that it is quite possible for molecule 3 to

be closer to molecule 1 (than molecule 2 is), yet the mutual in~
terparticle potential V(r) is below the threshold and hence no
bond exists. Indeed, x-ray experiments in liquid water reveal
the presence of roughly 4.5 molecules within a first-neighbor
shell, yet for realistic choices of Vyg, at most four hydrogen
bonds are formed (Refs. 29 and 39).

The model is perhaps best described in terms of the
same considerations that have been used so successfully
to date in molecular dynamics studies of liquid
water, 11303 Specifically, one begins by representing
oxygen atoms as points in space, interacting one with
another according to a potential that seeks to combine
both the features of a normal liquid (Lennard-Jones
type interactions) and the features unique to the water
molecule (a strongly directional electrostatic interac-
tion potential reflecting the local tetrahedral symme-
try). This intermolecular potential is sketched in Fig.
1(a).

No matter how far apart two molecules are, they in-
teract. We can state that two molecules are “hydrogen
bonded” if their mutual interaction energy is less than
some threshold Vs [Fig. 1(a)). We can thereby parti-
tion the oxygen atoms into different species: an oxygen
is said to belong to species j if it is “hydrogen bonded”
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to j other oxygen atoms. Clearly there is a one-to-one
relation between the threshold parameter Vyg and the
mean number of bonds per molecule nyg. >

The hydrogen bond framework so defined may be
represented in a convenient “connectivity diagram” in
which each molecule is represented by a point and each
possible hydrogen bond by a line segment joining two
points which are hydrogen bonded. It is important to
emphasize that this connectivity diagram or “topologi-
cal space” bears no obvious relation to configuration
space. For example, if we consider two molecules
that are hydrogen bonded, and then one is brought
closer to the other but at the same time rotated, the
bond may be “broken” in the sense that the mutual
potential energy may become so large that it exceeds the
threshold Vyp [Fig. 1(b)]. At low pressures, we can as-
sume very simply that p ;= ings, where nyg is estimated
by infrared or Raman spectroscopy techniques. 36,31
However, at high pressures, when the structure is de-
formed, pjy is certainly reduced even if nyp is less af-
fected. Indeed, the distortion of the hydrogen bond net-
work under pressure can lead to an effective decrease of
P, because it shifts a fraction of the populations of the
bond energies across the threshold Vyg.

In view of the preceding paragraph, it is not surpris-
ing that the local symmetry of a given site in this topo-
logical space is tetrahedral. We shall make the assump-
tion that the global symmetry of the connectivity dia-
gram (or “topological space”) is also roughly tetrahe-
dral —specifically, that the connectivity properties are
the same as those of the ice I, lattice. %8 1t is important
to emphasize that this does not mean that we are as-
suming the oxygen atoms form a network that is the
same as an ice I, lattice, but only that the two systems
are roughly equivalent topologically. Recent molecular

dynamics calculations strongly support this assumption.*

C. Two features of the model

With the above preliminaries, we are now prepared to
state the new features of the present picture and the rea-
son that they may be expected to be of possible rele-
vance to the low-temperature behavior of H,0 and D,0.

One can ask two distinct levels of questions concern-
ing the members of each species of oxygen atom. Ques-
tion (i) is the question someone with a background in
thermodynamics would ask, and indeed it has been asked
by many workers previously: “What is the fraction f;
of oxygen atoms belonging to each species j?” Ques-
tion (ii) is a question that has not to the best of our
knowledge been asked before: “What is the detailed con-
nectivity of each species?”

Questions concerning connectivity are the usual ques-
tions asked in percolation theory, except that we are
asking these questions about oxygen atoms (“sites”), not
about the hydrogen bonds (“bonds”). Since there are
five different species of atoms, it is conventional to
regard each species as a different color and hence the
problem posed by question (ii) is called “polychromatic
correlated-site percolation problem.” Appendix A dis-
cusses in some detail the distinction between site and
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FIG. 2. Histograms based on Eq. (2.1) showing how the oxygen

atoms are partitioned into five separate species, according as
they have 0, 1,...,4 intact hydrogen bonds. Parts (a), (b), and
(c) correspond to pg=0.7, 0.8, and 0.9, respectively. The
numerical values of fy..., f; agree with the results of molecu-
lar dynamics calculations of Geiger {Ref, 39) provided one
identifies pp with §7ys. The fact that for all values of pp one
obtains from Eq. (2.1) a simple ynimodal distribution makes
unequivocal the fact that the present model falls into category
(b) (distorted hydrogen bond or continuum models) rather than
category (a) (mixture/interstitial models), since category (a)
models correspond to a bimodal histogram having local maxi- .
ma at j=0 (zero bonds) and j = 4 {four bonds).

bond percolation, as well as the distinction between ran-
dom and correlated percolation.

A “zeroth order” answer to question (i) that is consis-
tent with available information from detailed molecular
dynamics studies (see Sec. VIIA) is provided by the fol-
lowing two assumptions. First we assume that, for
realistic choices of Vyp, at most a minority of oxygen
atoms engage in more than four hydrogen bondings.

This assumption is supported by molecular dynamics
calculations, as well as being rather plausible con-
sidering the highly directional nature of the isolated

H,0 molecule. Second, we assume that the hydrogen
bonds are randomly intact with probability p, and broken
with probability g =1 —pp.

These two assumptions permit us to answer question
(i) unequivocally,

I =<Z>Plaqg-j
J

with z =4, the maximum number of bonds per oxygen.
The predictions of Eq. (2. 1) are sketched in Fig. 2 for
pp=0.7, 0.8, and 0.9, corresponding to nyy = 2.8,
3.2, and 3.6, The dependence on pp of f; is shown in
Fig. 3 and compared with the molecular dynamics
analysis data of Ref. 29 (see discussion in Sec. VIIA).

(2.1)

Question (ii) may also be answered quantitatively —
given the same two assumptions—by using the councepts
of correlated-site percolation theory. As an illustra-
tion, consider the species-4 oxygen atoms. Although
their total concentration f; =p4 is determined by trivial
considerations of random statistics, their comnectivity
is fav from random. Rather, the positions of the spe-
cies-4 oxygens are so strongly correlated that they tend
to “clump” together, just as if there were an effective
energy of attraction. This is a subtle and extremely
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surprising point, and it is perhaps useful to consider
two examples to clearly demonstrate that species-4
oxygens can tend to clump together without being ex-
plicitly “driven” by an energy term.

Example 1. Suppose pp=0.8, which is well above
the bond percolation threshold (about 0. 4), so that the
system includes an infinite random network. Consider
a randomly chosen oxygen atom, and call it atom A
(Fig. 4). If we know nothing about its four neighbors,
then the probability that A is a member of the class of
species-4 oxygen atoms is simply given by Eq. (2. 1),
since the probability is equal to the overall concentra-
tion ¢ =f, =p4,

74(4) =ph =0. 4096 . (2.2a)

If, however, we know that one of the neighbors of A is
species4 and we are ignorant of the remaining three,
then

174(3):[))33:0.512 , (2. 2b)

a number 25% larger. If we know two neighbors are

species 4, then
74(2)=p%=0.64, {2.2c)

a number 25% larger still. If three neighbors are spe-
cies 4, and we are ignorant of only one neighbor, then

- m()=pL=0.8. (2. 2d)

Finally, if all four neighbors of atom A are species 4,
then the site itself must be species A:

m(o):pg;l . (2. 2¢)

0 25 5 75 10k

FIG. 3. Dependence on pg of the fraction f, of oxygen atoms
with zero intact honds—as given by Eq. (2.1) (solid curve).
The points represent three different molecular dynamics cal-
culations on three separate systems (cf. Fig. 6 of Ref. 29 and
Sec. VIIA of the text), where we take pg=inyps. The fact
that the molecular dynamics data agree with the binomial dis-
tribution of Eq. (2.1) seems not to have been pointed out before
[A. Geiger (private communication)].
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| l FIG. 4. Pictures correspond-
é (b) ing to row 1 of Table I, illustrat-
ing the tendency of “black” sites
(species-4 oxygens) to clump to-
gether, In (a), no “informa-
tion’” is known about the neigh-
? boring oxygens (i.e., S=4);
I | hence the conditional probability
——(A)— & —— my (S=4) of site A being black
‘ H is simply given by Eq. (2. 2a).
6 (C) In (b)—(e), we assume progres-
sively more information about
the four neighbors (S=3, 2,1, 0)
and hence the conditional prob-
I ability m,(S) of site A being
e — black increases Egs. (2.2b)—
I I | (2. 2e).
—— .-—@..__._
.
é (d)

The above example clearly illustrates why the patches
of species-4 oxygens are much more compact than would
be the case if the species-4 oxygens were distributed at
random with probability ;. We can also illustrate this
tendency to clump by means of computer simulation:
Fig. 5(a) shows a random-site percolation simulation,
while Fig. 5(b) shows the corresponding patch of spe-
cies-4 oxygens in the “correlated-site” percolation
problem that we are discussing. Fovr illustration puy-
poses only, the simulations shown are for a simple two-
dimensional “lattice” with coordination number z =4,
rather than for a three-dimensional “random network”
appropriate to water. Analogous simulations have been
carried out for three dimensions. *°

The above remarks concern the probability of a ran-
domly chosen atom to be species 4, given certain infor-
mation about its immediate environment. Similar con-
siderations apply for atom A to be species j, with j=3,
2, 1, or even 0; these results are elementary to obtain
and are summarized in Table L

H. E. Stanley and J. Teixeira: Percolation model of liquid water

Example 2. Example 1 concerns the tendency of black
(species-4) oxygen atoms to clump, despite the assump-
tion of random bond occupancy. The converse effect—
the tendency of species-4 oxygens to appear infrequent-
ly in regions of white (non-species-4) oxygens—is also
readily exemplified.

For example, we can easily calculate the probability
Wi that an oxygen atom A has four white neighbors; W,
is the weight fraction of the random network or “gel”
consisting of one-site patches. Clearly

Wi=p3 (1 -ph)'=cll —c*Yf,

since pi, is the probability of a randomly chosen atom
to be black, 1 —p% is the probability that each of its four
neighbors is not black, and c=f,= p4B is the concentra-
tion or “density” of black atoms.

(2. 3a)

If the atoms were randomly black, with probability c,

then by the same reasoning we would have
WE=—c(l -c). (2. 3b)

The correlated and uncorrelated weight fractions W, and
WE are plotted in Fig. 6, and we see that

wy=wf .

In fact, for a concentration given by ¢ =0. 4096 (corre-
sponding to p5 =0.8), we have

Wy =0.023, WF=0.050.

(2. 3c)

(2. 4)

Thus the effect of correlations is to reduce by more than
half the probability of finding an isolated black atom.

Consistent with out intuition, the ratio W,/W¥ de-
creases still further as py increases in a nonlinear
fashion. For example, suppose py increases 12.5%

TABLE L. Values of m(S) the conditional probability that a ran-
domly selected site A is a member of species j, given the in-
formation that (4-S) of its neighbors are species-4 (‘‘black dots”).
Here g=1-p, and we drop the subscript B here for the sake of
notational convenience. The discussion in the text concerns the
S dependence of 7y(S) (cf. row 1). Also, when S=4, we find
m;(S) =f;—i.e., the probability that a randomly selected site is
species j is equal to the overall concentration of species j

(cf. column 1). Clearly S is 2 measure of the “lack of informa-
tion” or “entropy”: when $=0, all four neighbors are black,
while when S=4, nothing at all is known about the neighbors.
Note that each element in this table is larger than the entry

to its immediate right, corresponding to the obvious fact that
7rj(S) decreases as S decreases for fixed j. Note also that the
sum of the probabilities of each species j is unity, regardless
of S.

S=4 §=3 S=2 §=1 §=0

T4(S) »* »° p* » 1
y(S) 4p’q 3p'q 2pq q 0
m(§) 6p’q" 3pq" e 0 0
m1(8) 4pg’ 7’ 0 0 0
To(S) q* 0 0 0 0
4

E ;(3) @®+q) ®+q)’ ®+a)* b+q 1
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from 0.8 to 0.9. The concentration of species-4 oxy-
gen atoms increases 60% from (0. 8)! = 0. 4096 to (0, 9)!
=0. 6561, and from (2. 3) we find

W;=0.0035, W§=0.0092. (2.5)

Clearly the effect of correlation is to reduce still further
the probability of finding an isolated species-4 oxygen,
as the ratio W,/ W% has decreased by 21% from 0. 4668

to 0. 3856.

For s> 1, one can calculate in a similar fashion the
weight fractions W, of isolated s-site patches of spe-
cies-4 oxygens in our random network. For s large,
this computation becomes increasingly difficult, but the
important point is that the effect of correlations is to
further minimize the weight fraction of isolated small
s -site patches relative to the random case provided pjp
is large.
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- FIG., 5. Comparison of the site clusters in (a) random-site per-

colation and (b) correlated-site percolation at the same values
of site concentration, 0.4096. In order to better visualize the
clusters of four-bonded sites (“black dots”) of part (b), we show
in part (c) the same simulation only with all bonds removed and
with a line segment placed between each nearest-neighbor pair
of four-bonded site. Extensive simulations have been carried
out for the ice Iy lattice; shown here is the square lattice for
simplicity. These simulations of finite 32 %32 lattices are con-
sistent with the predictions of Eq. (2.4) that the number of 1-
site patches is 1024 WF=50.96 in part (a) and 1024 W,=23.78
in part (b) [cf. dashed line in Fig. 6.

For example, while we saw that the ratio W,/W¥ de-
creased 21% when py increased from 0. 8 to 0.9, the cor-
responding ratio for two-site patches W,/ W% decreases
50% (from 0. 3986 to 0. 2661) when p, increases from 0.8
to 0.9, Thus, the effect of the correlations on the
connectivity of the species-4 atoms is even larger for
s =2 than for s=1.

Iil. BEHAVIOR OF K, AND C, AS FUNCTIONS OF
TEMPERATURE, PRESSURE, AND “IMPURITY"
CONCENTRATION

Thus far we have described a model that is based on
the premise that water consists of an infinite hydrogen
bonded network with many strained and broken bonds.
The existence of broken bonds permits us to partition
the oxygen atoms into five different species, depending
on the number of intact bonds incident upon a given oxy-
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0 2 4 6 8 1 Py

FIG. 6. Dependence on the parameter pg of W, the “weight
fraction” of oxygen atoms belonging to one-site clusters.
Shown for comparison is the corresponding function Wf for
random-site percolation. The ratio W;/WF decreases from
unity (at p=0) to (3/4)*=0, 316 as py approaches unity. Re-
cent molecular dynamics data (Ref. 39) agree (within the error
bars) with the predictions for W,, despite the fact that the W,
is obtained for an ice I, lattice while the molecular dynamics
calculations are for a continuum system, Analogous plots
(with analogous agreement) can be made for W;, Ws,...; the
results of a detailed comparison with molecular dynamics will
be published elsewhere. *® The vertical arrow indicates the dif-
ference in the number of one-site clusters expected in Figs.
5(a) and 5(c), and the prediction may be borne out by direct
counting.

gen. Percolation theory concerns itself with the con-
nectivity of the members of each species. We saw in
Sec. II that the connectivity properties were those of a
correlated system; in particular, the species-4 atoms
tend to “clump” together, forming patches of the infinite
hydrogen bonded network that are in general larger and
less ramified than the clusters found in a random-site
percolation problem.

In the remainder of this paper, we shall discuss the
possible relevance of this simple model to the unusual
behavior of liquid H,O and D,O at low temperature.

A. Density fluctuations

The thermodynamic response function K, the iso-
thermal compressibility, is defined through the relation

_ 8p
PK r= (%)T ’

where P is the mean “global” mass density and P is the
pressure. Statistical mechanical considerations®! per-
mit one to relate K, to the ensemble average of the
density fluctuations, 6p=p -p,

KT(kBTZ)'Z/V):(—GE)T ’

(3.1a)

(3.1b)

where kg is the Boltzmann constant. As T decreases,
we expect the density fluctuations to also decrease. In-
deed, for most liquids, K, decreases with decreasing
temperature. For H,0, this is also true at high T, but
for T<46°C, K, actually increases as 7 decreases.
Moreover, Frank has noted that the magnitude of the

density fluctuations is roughly twice as large for nor-
mal water as for most liquids. 4

To explain these unusual phenomena, we consider the
effect of the “patches” of species-4 oxygens in the hy-
drogen-bonded network. Suppose, e.g., that a Maxwell
demon is sitting in a species-4 patch. Certainly the
local density seen by him should be smaller than the
overall global density of the infinite hydrogen-bonded
network. Accordingly, there is an additional increase
in density fluctuations due to the presence of the small
patches, accounting for Frank’s observation; we can
quantitatively estimate the magnitude of this contribu-
tion, and this calculation is carried out in Appendix B,
Sec. A. Moreover, the density fluctuations are en-
hanced by the fact that the spatial positions of the spe-
cies-4 atoms are not random, but are correlated—just
as the density fluctuations (and hence K ) of a van der
Waals gas are enhanced relative to an ideal noninteract-
ing gas.

Thus in addition to the “normal” behavior in which
decreasing temperature decreases the density fluctua-
tions, there is an “anomalous” behavior caused by the
fact that decreasing temperature increases the charac-
teristic size of the small patches and hence increases
the density fluctuations. The result of both effects is
that at high temperatures K, decreases with decreasing
T, but at low temperatures K, begins to increase. 43:4
If K, were due mainly to these two physical mechanisms,
then we could state that they exactly compensate or
balance at T=46°C, the “temperature of minimum com-
pressibility, 4

For D,0, pjg is larger than for H,0 at the same value
of 7 (cf. Appendix B, Sec. B). Hence the mean patch
size is larger and (6p)? increases. The foregoing con-
siderations predict that for D,0, the compressibility
should be larger —and this is indeed observed to be the
case.?®® In fact, the compressibility minimum for D,0
should occur at a temperature rather higher than 46°C.
Corresponding to the minimum in the isothermal com-
pressibility is a maximum in the velocity of longitudinal
sound waves v, that is related to the adiabatic compress-
ibility through v?= (pKs)™'; v, has been measured quite
accurately both in ultrasonic and hypersonic frequency
domains. *7%° This maximum increases from 73°C for
H,O to 79°C for D,0. %0

As noted in Sec. IIB, pp decreases with hydrostatic
pressure P. Hence the patch size also decreases, and
we predict that the effect of hydrostatic pressure should
be to decrease K. Again this is found to be the case.*’
In fact, for pressures of the order of 1-2 kbars, Kp
varies very little with 7 at low T. %°

Suppose now that we add a second component or “im-
purity. ” If the impurity molecule can form hydrogen
bonds with water molecules (e.g., Hy0, N,H,, or
C,H;OH), then we term these “patch-breaking impuri-
ties.”” When a water molecule belonging to a patch is
replaced by such an impurity, we expect that the local
density of the patch will increase (i. e., become more
like the rest of the network), and hence the anomalous
contribution to the total compressibility will become
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smaller. Note that we might expect an “amplification
mechanism” for the effect of impurities: relatively few
molecules of a second component should decrease the
compressibility considerably.

This prediction can be tested by comparing with ex-
perimental data. For example, extremely accurate
measurements of the effect on Kg of the “patch-breaking
impurity” ethanol have recently been carried out. !
Since the compressibilities for the two pure systems
are related by

K 7(C,H,OH)> K +(H,0) , (3.2)

one might have expected that adding ethanol to pure
water would serve to increase the measured compress-
ibility. In fact, the reverse occurs: the compressibil-
ity is significantly deci’eased, by an amount well outside
the experimental accuracy. &

A second possibility is that the impurity cannot form
hydrogen bonds with water molecules (e.g., Ar, Ne, or
CHy). Such an impurity is less likely to displace a
water molecule belonging to a patch than a water mole-
cule in the rest of the “gel. ” Hence we might anticipate
that the compressibility should increase.

In summary, the presence of many tiny correlated low-
density patches of the infinite random hydrogen-bonded
network correctly predicts the following four classes of
observed phenomena.

(a) K, increases with decreasing temperature at low
temperatures, in sharp contrast with the behavior of
most liquids, for which K, decreases monotonically with
decreasing T.

{b) K4(T,P) for D,O is larger than K,(T, P) for H,0
at the same values of temperature and pressure, and the
temperature of minimum compressibility increases.

(c) For pressures greater than atmospheric, K.(T, P)
decreases and the low-temperature anomaly becomes
progressively weaker.

(d) K decreases in the presence of a “patch-break-
ing” impurity.

B. Entropy fluctuations

The thermodynamic response function Cp, the con-
stant-pressure specific heat, is defined through the rela-
tion

) 88
T 1CPE (ﬁ):_, y

where S is the mean “global” entropy. Statistical me-
chanics relates C, to the ensemble average of the en-
tropy fluctuations 6S=§ _5, %2

kpCp=(6S) .

(3. 3a)

(3. 3b)

Again, imagine a Maxwell demon situated in the center
of a species-4 patch. Clearly the fotal entropy he sees
will be considerably reduced, due to the local increase
in spatial order in the interior of the patch. Appendix
B, Sec. C discusses the relative magnitude of the
density and entropy fluctuations (K, vs Cj).

3411

Thus the presence of correlated patches of local spa-
tial order predicts the following four additional classes
of phenomena that are analogous to the four discussed
in Sec. 3.1 for Kg.

(a) Cp for HyO increases at very low tempera-
tures. 33-%7

(b) Cp(T,P) for D,O is larger than Cp(T, P) for H,O
at the same values of temperature and pressure. 56,58

(c) Under pressures greater than atmospheric,
Cp(T, P) decreases and its temperature dependence is
less sharp. *®

(d) Cp(T, P)decreases in the presence of “patch-
breaking” impurities.

IV. BEHAVIOR OF THE REMAINING RESPONSE
FUNCTIONS WITH 7, P, AND IMPURITIES

In Sec. III, we discussed two of the more commonly
studied response functions, Ky and Cp, as T, P, and
isotope “impurity” concentrations are systematically
varied. We saw that the presence of correlated low-
density and locally “ordered” patches at low tempera-
tures and pressures in pure water correctly predicts a
wide variety of experimental phenomena.

In the present section, we discuss the additional re-
sponse functions that are customarily measured in water.

A. Constant-volume specific heat

Since an essential physical feature of the tiny patches
of four-bonded oxygens is the fact that they have a local
density slightly smaller than the global density p, it fol-
lows that any function measured at constant volume
would be predicted to have no anomaly. This prediction
can be tested on the constant-volume specific heat,
which may be obtained from experimental data on Cp,
ap, and K, using the thermodynamic identity

Cy=Cp-TVal/K,, (4.1)
where
1[0
Ap=S~p 1(3%)P (4.2)

is the coefficient of thermal expansion or “thermal ex-
pansivity. ” The prediction is indeed borne out by the
data®’: C, remains almost constant down to the lowest
temperatures on which reliable data exist.

B. Thermal expansivity

For most liquids, the thermal expansivity a p defined
in Eq. (4. 2) varies only weakly as T decreases, so that
the mean “global” density p(T') increases roughly linear-
ly in T as the temperature is decreased. However for
pure H;O at atmospheric pressure, p(7) increases much
less fast than linear (ap is smaller) and ap(T) is far
from constant even for very large 7. This behavior is
thus just as if there were (in addition to the “normal”
temperature-independent contribution) an “anomal-
ous” contribution that is negative and that increases in
absolute value rapidly with decreasing temperature.
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The normal and anomalous contributions to ap cancel
precisely at the “temperature of maximum density.’
Twyp. For pure H,O at atmospheric pressure, Typ
=4°C.

The fluctuation relation analogous to (3. 1b) and (3. 3b)
is that ap is proportional to the cross-fluctuations of
volume and entropy.

1 (aV)
ap=={—) «(b6V8S).
P( v 5

aT (4.3)

For most liquids, when there is a local volume fluctua-
tion with a positive 8§V, there is a corresponding in-
crease in the local entropy (65> 0). However, for the
patches in question, 6S<0 when 6V>0, so that there is
indeed an anomalous negative contribution a} to the
thermal expansivity.

The dependence of the response function a (7, P) on
T, P, and “impurity” concentration may be readily in-
terpreted in terms of the discussion presented in Sec.
II. As T decreases, py increases and the concentration
f, of four-bonded oxygens varies as pE, thereby pro-
viding an “amplification mechanism” that is necessary
if the density is to vary in a nonlinear fashion with 7.
The predictions for a, analogous to those presented in
Secs. III A and III B for K, and Cp include the following.

(a) For pure H,0O, the anomalous contribution should
increase in absolute magnitude, increasingly rapidly as
T is decreased, so that the density should continue to
decrease as T is lowered below T,, in a highly nonlinear
fashion as predicted by the f, =p% “amplification mecha-
nism”; this phenomenon is indeed confirmed experi-
mentally, 44:5%60

(b) For D,0, we can make three predictions. First,
the anomalous contribution should be larger than for
H,0; hence a (T, P) for pure D,0 should be smaller
(more negative) than ap(T, P) for H,O at the same values
of temperature and pressure, **%" Second, Ty, is pre-
dicted to be larger for D,O than for H,O; in fact, Typ
=11°C for D,0. * Third, the density maximum should
also become sharper for D,0O, and this is found to be
the case. '8!

(c) For pressures greater than atmospheric, the
anomalous contribution to a (7T, P) decreases in absolute
value, so that @p(7, P) is closer to its “normal fluid”
value. Detailed measurements on the pressure depen-
dence of ap confirm this prediction. 82 Moreover, Typ
is predicted to decrease sharply with pressure, and
this is also verified experimentally. ®! The density
maximum should become less sharp under pressure (the
opposite effect from D,0), and the data also confirm this
prediction, 80+81

(d) The effect of a “patch-breaking impurity” on
ap(T, P) should be qualitatively similar to the effect of
pressure, and this is found to be the case. o

V. PARADOXICAL BEHAVIOR ASSOCIATED WITH
THE GLASS TRANSITION

“Normal liquids” that undergo a glass transition at
some temperature T, are frequently characterized by a

A J
Ty Ta T Tm T T

FIG. 7. Schematic illustration of the dependence on tempera-
ture of the entropy Sy of liguid water and the presumed entropy
Sy that waterlike particles would have were there no hydro-
gen bonds. Also shown is the entropy S, of crystalline ice Ip.
Note that Sy(T) intersects S(T) at a temperature T that is well
above the putative glass transition temperature T, (see discus-
sion in Sec. VI). The parameter T, is the melting temperature
to be expected for the “normal liquid” if the entropy of fusion
Sr were unchanged from its value in water (of course, this is
only roughly true); that T, turns out to be about 100°C lower
than T, is consistent with Pauling’s analysis (Ref. 67).

liquid-state entropy Sy.(7) that approaches their crys-
tal-state entropy S,(7) at a temperature 7q that is gen-
erally found to be slightly smaller than T, (cf. Fig. 7).
In short, the “entropy catastrophe” that would occur as
T is decreased toward T is prevented by the glass tran-
sition. *3:83:8¢ This phenomenon is sometimes called the
Kauzmann paradox.

No glass transition has ever been observed in liquid
water, even at remarkably high quenching rates; glassy
water has, of course, been obtained from the vapor
phase but never from the liquid phase. % However, if
relatively small amounts of a second component are
added to pure water, then a glass transition is observed
at a temperature 7,(x) that depends roughly linearly on
the mole fraction x of the second component. % If one
extrapolates the T,(x) data to x=0 (i. e., pure water),
then one would predict that T, =140 K for pure water.'
The same estimate may be obtained by independent
methods. % Hence one might imagine that Sy (7T), the
entropy of liquid water, would approach SAT), the en-
tropy of ice, at a temperature T just below 140 K. The
anomalously large value of Cp(7T) for pure H,0O
implies Ty=208 K, % a value considerably larger than
140 K. In fact, it is impossible by any reasonable ex-
trapolation to reach 140 K without exhausting the entire
entropy of fusion Sz, since

84

273
as(r)= [ [cp(1') - CAT)]dinT”) (5.1)
T

exceeds Sy for T<T.

In the proposed percolation model, these anomalous
results can be understood because of the presence of
structured (“low-entropy’) patches of the random hydro-
gen bonded network that serve to decrease the entropy
below what it would be were there no “patches.” That
is, the growth of structured patches in liquid water
creates an irreversible situation tending toward crystal-
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lization, and formation of glassy state would not be ex-
pected.

The above argumentation —albeit somewhat intuitive —
can be put to experimental test (see also the discussion
in Appendix B, Sec. D).

(a) Dilution of pure water with “patch-breaking im-
purities” should restore the glass transition; this is in-
deed observed, as noted above. B

(b) A smaller percentage of impurity should be re-
quired to restore the glass transition if the experiment
is carried out at pressures greater than atmospheric.
This prediction has also been confirmed in recent un-
published results.

(c) For D,O, a higher percentage of impurity should
be required to restore the glass transition; this predic-
tion remains to be tested by experimentation, to the best
of our knowledge.

(d) Pauling®’ considered the sequence of T, values for
the isoelectronic sequence of hydride molecules H,Te,
H,Se, H,S, and HyO. Since the latent heat of fusion 7Sg
is comparable for all members of the sequence (Sg
=5, 3 calmol™' K™ for H,0), we could infer from Fig. 7
that, were there no hydrogen bonds present in H,0, T,
would occur at a temperature T, that is of the order of
magnitude of 100 K lower than the observed T, for
H,O. This is in fact the same conclusion reached by
Pauling from simple extrapolation of the 7T, values for
the isoelectronic sequence. Hence we would predict that
T, is increased by D,0O and decreased by pressure or the
addition of patch-breaking impurities; this is indeed
found to be so.

VI. DYNAMIC BEHAVIOR OF H,0 AND D,0 AS A
FUNCTION OF TEMPERATURE, PRESSURE, AND
“IMPURITY” CONCENTRATION

Measurements of the many time-dependent properties
of low-temperature water reveal a number of anomalies
that are readily interpreted in the present picture. The
dynamical processes occurring in liquid water are
characterized by the fact that hydrogen bonds are break-
ing and forming with a typical characteristic time Ty
that is of the order of 10°!? sec. ® Simulations such as
those displayed in Fig. 5 hence correspond to “snap-
shots” of water with a shutter speed that is much shorter
than Tgg. Thus, even though water is believed to be a
hydrogen-bonded random network, well above its per-
colation or “gelation” threshold, it cannot supporta stat-
ic or low-frequency shear stress like a common gel.

There are two possible interpretations of the dramat-
ic decrease in transport at low temperatures and the
anomalous pressure behavior. The first is very rough:
we simply note that if the highly structured local patches
of the infinite connected network are responsible for the
dominant physical mechanism, then since f, =p§, in-
creases rapidly with decreasing temperature, we would
expect the following predictions.

(a) The shear viscosity 1 should increase much faster
at low temperatures than would be anticipated from the

3413

simple Arrhenius dependence found at high temperatures
and for other liquids. This is indeed observed. 89,10

(b) The coefficient of self-diffusion, D,, should de-
crease much faster at low T than would be predicted by
extrapolation of its high-temperature values, which are
linear when plotted as logD, against 1/7. This is also
observed. 1+7?

(¢) The characteristic relaxation times 7., should in-
crease rapidly as T is lowered. ="

(d) For D,O, f; should be larger than for H,0, and
hence [D]™, 7., and 7 should be larger also. "

(e) Pressure and “patch-breaking impurities” should
serve to decrease 7, [D,]"!, and 7,,. Indeed, the observed
pressure dependence of 7 and D, has been referenced
frequently as being among the more bizarre properties
of low-temperature water. '

Conversely, one might regard transport as arising
from a “mobile” fraction F,, which might be some
weighted combination of the form

FM:Af0+Bf1. (6.1)

The foregoing conclusions (a)—(e) follow. In Appendix
B, Sec. E we carry through an illustrative calculation
using this possibility and demonstrate that quantitative
agreement with experimental data over quite a wide
range of temperature may be obtained.

Vil. DISCUSSION

In the foregoing, we have discussed a variety of ex-
perimental data on H,O and D,O as function of tempera-
ture T, pressure P, and mole-fraction x of “patch-
breaking impurity. ” We have seen that the general de-
pendence of various measured functions on 7, P, and
¥ is consistent with the predictions of a “correlated
percolation” model, in which one regards low-tempera-
ture water as being a random hydrogen-bonded network,
local patches of which are four-coordinated. We must
emphasize again that when looking at the bond connec-
tivity problem, water appears as a large macroscopic
space-filling hydrogen bond network (as expected from
continuum models of water). It is only when looking at
the four-bonded oxygens that water takes on certain
clustering features —the clusters being not isolated
“icebergs” in a sea of dissociated liquid, but rather
embedded in a highly connected network or gel.

In Appendix B, we shall see that this picture of low-
temperature water is not only qualitative, but also
quantitative in that the sorts of numbers needed for
agreement with experimental data are reasonable.

Before concluding, it is perhaps appropriate to discuss
future tests, several of which have been initiated sub-
sequent to the initial proposal of the correlated-percola-
tion model. These tests naturally partition themselves
into two categories: (i) those based on highly sophisti-
cated methods of computer simulation (Monte Carlo and
molecular dynamics), and (ii) those based on laboratory
experimentation.
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A. Computer simulation

In molecular dynamics, one is able to obtain a wealth
of microscopic information about a given system pro-’
vided one can choose an appropriate effective interac-
tion potential. The considerations involved in the selec-
tion of an effective potential that best corresponds to the
rich and subtle physics of the water molecules have been
described in considerable detail elsewhere, 7+*

The possibility of making detailed quantitative com-
parisons between the present model and computer simu-
lations offers the opportunity of testing the validity of
the picture put forth in Seec. II

In particular, the computer simulation methods offer
the possibility of clearly distinguishing between the posi-
tions of molecules in real three-dimensional space and
their connectivity in the “topological space,” since it is
possible to consider the detailed connectivity patterns
that emerge from a given analysis. ?%3°

Here we consider three aspects of the model that may
be compared with the results of computer simulations.

(a) Water is well above its bond percolation thyveshold.
The reason that the model requires p to be above the
bond percolation threshold p§ is that for an ice-I, lat-
tice, the density of four-bonded oxygen atoms is p‘L by
(2.1), and p5=0.39 is very small. "® In fact, for pg
<0, 39, almost all patches of species-4 oxygens are ex-
tremely small. To see this, we note from Eq. (2. 3a)
that the weight fraction of isolated species-4 (four-
bonded) molecules at p5=0.39 is W;=0. 018, while the
total concentration of species-4 oxygens is, from (2. 1),
f1=0.023; i. e., 83% of the species-4 oxygens are single
isolated patches. One can also calculate the weight
fraction of black sites belonging to two-site patches,
with the result

W,=4ph(1 -pH° . (7.1)

For pp=0.39, W,=0.004. Hence W;+ W,=0.022, al-
most the total concentration of the species-4 oxygens.
Thus we see that at or below the bond percolation
threshold, more than 96% of the species-4 oxygens be-
long to one-site or two-site patches. Hence a prereq-
uisite for the validity of the correlated-percolation
model of Sec. II is that water be well above the bond
percolation threshold. This requirement has recently
been convincingly demonstrated by molecular dynamics
computer simulation: for any chemically reasonable
definition of “hydrogen bond, ” a system of waterlike
particles interacting through an ST2 potential exceeds
its percolation threshold. 2%+%

(b) The concentrations of each of the five species of
oxygens conforms to Eq. (2.1). Although the model
presented in Sec. II does not of itself require that the
bonds form randomly, the detailed numerical calcula-
tions are greatly facilitated if we can make this simpli-
fying assumption. To the extent that the bonds are ran-
dom, Eq. (2.1) should hold if Vyp is chosen so that few
molecules have more than four intact bonds. Of course,
nothing in nature is truly random, and hence it is impor-
tant to obtain some measure of how serious an approxi-
mation (2.1) is in fact. %

In order to compare the predictions of (2. 1) with mo-
lecular dynamics computer simulations, it is necessary
to make a correspondence between the parameter pg
(the probability that a randomly chosen bond is intact)
and the molecular dynamics parameter Vyg that corre-
sponds to the definition of a hydrogen bond [cf. Fig.

Fig. 1(a)]. There is a 1:1 correspondence between
Vup and nyp, the number of hydrogen bonds per oxygen
atom; clearly as the cutoff value for bonding, Vyg, in-
creases (i. e., becomes more permissive), nyg also in-
creases. Except for extremely large values of Vyg,
nyp <=4 and we can plausibly compare plots of f; vs py
from Eq. (2.1) with molecular dynamics results for f,
vs nyg With nyg = 4pp.

Geiger et al.®® calculated f,, the concentration of un-
bonded water molecules, as a function of nyg for three
different systems: (I) 216 water molecules at 11°C and
normal pressure, (II) 216 water molecules at 98 °C and
high density, and (III) 1728 molecules at —1°C. For all
three systems, they find the same dependence of f; on
nys. The fact is that the molecular dynamics results
agree with the dependence predicted by Eq. (2.1) to a
remarkable degree: a plot of f; vs 4p5 can be super-
posed on Fig. 6 of Ref. 29, with a maximum discrepancy
of £0. 01 (cf. Fig. 3).

The concentrations f; of the other four species of oxy-
gen atoms are not tabulated in Geiger ef al. However
Stillinger3!:8? gives all five f, for one particular value of
Nus, "up = 2.3 (corresponding to pp=0.575). Equation
(2. 1) predicts that (fy, fi,. .. ,f1) take on the values
0. 033, 0.177, 0.358, 0.323, and 0. 109; all five num-
bers are in excellent agreement with molecular dynam-
ics results (Fig. 5 of Ref. 81).

Very recently, Geiger?® has calculated the concentra-
tions f; of all five species for system (I). He finds ex-
cellent agreement with the predictions of Eq. (2.1) for
the entire range of nyy (cf. Fig. 2).

(¢) The connectivity of the oxygen atoms conform to
the predictions of covrelated-site pevcolation theory.
Geiger has also calculated as a function of nyg the weight
fractions W,(nyy) of four-bonded oxygens belonging to a
s-site cluster, for s=1, 2, 3, .... The agreement with
the W, calculated for the model of Sec. II is quite re-
markable and will be reported at length elsewhere, along
with detailed comparisons of the other cluster proper-
ties such as mean cluster size, radius of gyration, and
“total number of patches.” That the molecular dynam-
ics calculations should agree with the detailed micro-
scopic predictions of correlated-site percolation theory
provides one of the more striking confirmations of the
utility of the present picture.

B. Experimental tests

The model developed in Sec. II predicts that all prop-
erties of water can be related—to zeroth order-—to a
single parameter py and its dependence on temperature,
pressure, “patch-breaking” impurity concentration,
and isotope D,0. Clearly it would be highly desirable
to obtain a reliable estimate for pg, and a combined
experimental and theoretical effort toward this end is
under way.

J. Chem. Phys., Vol. 73, No. 7, 1 October 1980

Downloaded 17 Jan 2003 to 128.197.42.78. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



H. E. Stanley and J. Teixeira: Percolation mode! of liquid water

A key feature of the present model is that the striking
phenomena observed in the supercooled region (7<T,,)
are basically an analytic extension of the behavior ob-
served for T>T,. Accordingly, it is important to as-
certain that the parameter p, varies smoothly as T de-
creases deep into the supercooled region. There are
many indications that this is the case. "®:3 1f pp can be
measured quantitatively, then this matter may be re-
solved. Accordingly, efforts are under way to theoret-
ically interpret spectroscopic data quantitatively in
terms of pg.

One prediction of the foregoing analysis concerns the
behavior of water under pressure or in the presence of
patch-breaking impurities. Specifically, we predict a
continuous evolution toward the behavior of a “normal”
assoicated liquid. Extremely detailed data with a fine
“mesh” of presure and/or impurity values are required
to fully test this prediction. Very recently such data
have been obtained for the specific heat, 57 and the agree-
ment with the predictions of the model is quite encourag-
ing. Such data are also being obtained for the adiabatic
compressibility (from Brillouin spectroscopy), and again
the agreement is excellent. 5!

Conversely, the detailed effects of D,O dilution should
be studied in more detail—with remarkably few excep-
tions, ™ data exist only at the extremes of zero D,O and
100% D,0.

A variety of new experiments concerning dynamic
properties are planned or else under way. Quasielastic
neutron scattering experiments are in progress, ¥ and
these should be extremely useful since the width of the
central peak (centered about w =0) is a direct measure
of diffusive motion. ¥ Such experiments have previous -
ly been carried out only for comparatively high tempera-
tures, 7.9 Moreover, because the molecular dynamics
calculations give such striking agreement with the static
properties, it is perhaps appropriate to consider extend-
ing these calculations to the point that they can provide
detailed dynamic information.

Of course, the direct observation of patches of four-
bonded oxygen atoms would provide a convincing proof
for the essential correctness of the model. This goal
is not likely to be attained, however, since it is quite
clear from detailed Monte Carlo and molecular dynam-
ics calculations®® that the clusters are extremely
small, even at the lowest attainable temperatures. The
mean hydrogen bond lifetime is also extremely short
(probably less than 107!% sec). Bosio is in the process
of making detailed measurements at extremely low
temperatures of small-angle x-ray scattering, *® and
a corresponding project exists for small-angle neutron
scattering. ® Neutron scattering from supercooled water
under pressure is also under way. 2

C. Possible singularity near —45°C

A particularly intriguing open question is the possibil-
ity of a true singularity in both static (thermodynamic)
and dynamic (transport) quantities at some temperature
T,, with T, roughly 228 K or —-45°C for pure H,0 when
P=1bar.! There is a rather impressive quantity of ex-
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FIG. 8. Schematic dependence of the mean cluster volume on

temperature, indicating the relation 7, & Ty that one would ex-
pect if the Angell singularity temperature T, were to corre-
spond to a percolation transition (mean patch size=w), Since
the homogeneous nucleation temperature Ty, corresponds to an
increase in the mean patch size to only a certain critical

value, we expect Ty to be just slightly larger than T, Also
shown are the corresponding curves for D,O and for pressurized
water., The model predicts that the effects of isotope dilution
and pressure on T and Ty should be roughly the same (see dis-
cussion in Sec. VIIC).

perimental evidence supporting this possibility. How-
ever, none of the evidence pertains to data for 77<237
K, so that the minimum value of the reduced temperature
€=(T -T,)/T, is roughly 0. 05. This is in marked con-
trast to conventional critical point experiments, where
one can nowadays make measurements so close to the
critical point that € is as small as 107, It is very
tempting to speculate that perhaps the phenomena that
appear to be building up as € -0, 05 are associated with
the percolation transition (at € =0) of the species-4 oxy-
gen atoms, or the percolation of some subset of these
atoms (e. g., the percolation of the “hard cores” de-
scribed in Appendix B, Sec. C).

Among the predictions are the following.

(a) For D,O, T, is slightly higher than for H,0; this
is confirmed by experimental data. %’

(b) For pressures greater than atmospheric, 7T,
should decrease; this is also observed.

(c) T, should decrease in the presence of small
amounts of a “patch-breaking impurity”; the probable
validity of this prediction is suggested by very recent
data. %7

(d) The percentage decrease with pressure of T,
should exceed the corresponding percentage decrease
with pressure of 7,, since the former has a built-in
“amplification mechanism” arising from the fact that
f4=p4B; this mechanism is not related to the factors de-
termining the pressure dependence of T,,.

(e) T, should take on a value just slightly smaller
than Ty, the homogeneous nucleation temperature. The
reason is illustrated in Fig. 8: as T decreases, the
mean size of the “locally structured patches” increases
monotonically, appearing to diverge at the percolation
threshold f§ (roughly 0. 35 for the ice lattice?’). Since
fa= p‘,, and pp increases roughly linearly with decreas-
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FIG. 9. Four simulations of random-bond percolation at four
different values of bond probability pg: (a) pp=0.2, (b) pg
=0.4, (c) pg=0.6, and (d) pp=0.8. For simplicity of presenta-
tion, the simulations are given not for the three-dimensional
ice I, lattice, but rather for the two-dimensional square lattice
(cf. Ref. 40). Also illustrated is the partitioning of the “oxygen
atoms” into two species, those with four intact bonds (shown
as black dots), and those with less than four intact bonds. Note
that on the level of bond connectivity, there is an infinite bond
cluster for pg>pj (=0.5). However, on the level of site con-
nectivity, there is no infinite cluster until f; = (pB)4 exceeds the
correlated-site threshold f§=0.56 (Ref. 40). Hence even at
pp=0.8, when almost all the oxygen atoms belong to a single
“infinite gel molecule,” the four-bonded oxygens still form a
set of isolated finite-size clusters since f;=0.4096.

ing temperature, at a temperature only slightly above
T, the size of a locally structured patch passes through
the critical size for homogeneous nucleation. This pre-
diction is in fact borne out quite nicely by experimental
data: not only is T, only a few degrees lower than T,
but this relation continues to hold for pressures up to
about 2 kbars, as both quantities decrease by roughly
50°C in value. %

(f) If we extrapolate experimental data on the global
mass density p(T) from the lowest measured value (at
T=-35°C)to T=T,, the value obtained should be well
above that of ice (which presumably has f, 1), since
f1 is less than 1 at the percolation threshold. This is
also found: extrapolation of the best available data on
both H,O and D,O gives values significantly above ice
density® at the respective values of 7,. Incidentally, if
we evaluate p(T = T,) using Kell’s* empirical formula—
based on extremely accurate measurements above T, —
we obtain the value 0. 94, also well above the density of
ice at —45°C.

(g) If someone could ever make measurements for
values of the reduced temperature much smaller than
0. 05, we predict that the static quantities would cease
their apparent divergences, while the dynamic quanti-
ties might indeed display a true singularity.
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APPENDIX A: POTENTIALLY CONFUSING POINTS
CONCERNING CORRELATED-SITE POLYCHROMATIC
PERCOLATION

We have noted four potentially confusing points that
frequently arise in presenting the model of Sec. 2. It
is the purpose of this appendix to address each of these
four points in turn. 9%

A. Bond connectivity vs site connectivity

The first potentially confusing point concerns the dis-
tinction between bond connectivity and site connectivity —
more precisely, the distinction between (i) the formation
of an infinite hydrogen bonded network at the bond perco-
lation threshold, and (ii) the growth of the tiny patches
of species-4 oxygens within this network.

Both phenomena can be illustrated with the same ex-
ample, shown in Fig. 9. Suppose we have an infinitely
high and infinitely long wire fence. Imagine also that a
randomly chosen fraction pp of the links of this fence
are conducting, while the remaining fraction gg=1-pg
are insulating. Computer simulations of a finite (16x16)
section of this imaginary fence are shown in Fig. 9 for
pp=0.2, 0.4, 0.6, and 0. 8.

(i) Bond connectivity. For pp small, as in part (a),
the system clearly consists of small cluster of conduct-
ing bonds. Most of the sites are isolated “monomers”
and “dimers, ” with relatively few larger bond clusters.
The system is said to be in its “sol” phase.

In (b) the conducting fraction p; has doubled, yet the
system still consists of only finite bond clusters (“poly-
mers”). However, in (c), pp=0. 6, and the system is

J. Chem. Phys., Vol. 73, No. 7, 1 October 1980

Downloaded 17 Jan 2003 to 128.197.42.78. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



(a) THERMAL

coupling constant

H. E. Stanley and J. Teixeira: Percolation model of liquid water 3417

(b) PERCOLATION

bond probability

(c) GEL

1
P W

"conversion”

v = fanh (J/ kTe ) pg « percolation pt. ag = gel point
droplet bond cluster polymer

M Plp) We = wt. fraction
X1 S(p) D.P = deq. of poly.
G(H,T) <Nglusters > <Nmolecules >

Husimi - Temperley
04=(2B+N)/v=4

Fisher-Essam
4,6

Flory
d, 6

FIG. 10, Mlustration of the Frisch~Hammersley—de Gennes—
Stauffer analogy (cf. Ref. 95) between (a) thermal phase transi-
tions, (b) random-bond percolation, and (c) polyfunctional con-
densation, The top line identifies the corresponding meanings

of the abscissas (and their critical values). The second line
indicates the essential physical features, while the third line
shows the corresponding “order parameter” and “order parame-
ter response function.” Next is shown the generating function,
and finally the corresponding mean field theories (valid for sys-
tems with dimensionality d above a critical value d,) are shown,

macroscopically quite different in nature: in addition

to the finite clusters, there is a single cluster that is in-
finite in spatial extent. For some value of pp in between
part (b) and (c), there is a threshold p5. Below p§, the
fence cannot conduct, while above p§ it can. Thus its
macvoscopic properties change suddenly as a micro-
scopic parameter pp increases infinitesimally from p§
-6 to pg+ 6. The actual value of p% depends strongly
on the dimensionality of the system and even on the
actual lattice; for the two-dimensional square lattice,
$5=0.5 (exactly), ¥ while for the three-dimensional ice
I, lattice, p$=0.39."

The “connectivity” phase transition occurring at pj
has attracted much attention, in part due to intriguing
analogies with ordinary “thermal” phase transitions
(cf. Fig. 10), and in part because of its potential util -
ity® in describing gelation of polyfunctional monomers
(one can imagine each of the vertices of Fig. 9is a
four ~-functional monomer, and the bonds are chemical
bonds).

(ii) Site connectivity. In the random-bond connectiv-
ity problem described previously, bonds are randomly
chosen to be either black (with probability pp) or white
(with probability g5 =1 —pz). One can clearly define a
converse problem, the random-site problem, in which
the sites are randomly chosen to be either black (with
probability p,) or white (with probability g,=1 —p,). The
random-site problem will have a percolation threshold
that is highly analogous to the percolation threshold ex-
hibited in the random-bond problem, though the threshold
value p$ will in general be different than p§.

(iii) Previous applications of bond comnectivity to

water. Statements that water is a “gel” are equivalent
to the statement that the connectivity of the oxygen atoms
is above the bond percolation treshold. Bond percola-
tion thresholds are not known with much accuracy for
three-dimensional continuum systems, but it is widely
believed that for a close-packed three-dimensional sys-
tem, p5 would be comparable to its value for an fcc lat-
tice, about 0.12. Molecular dynamics calculations on
water indicate that p§ is in fact remarkably close to

0. 39, its value for an ice I, lattice. It is important to
emphasize that water is probably above its bond percola-
tion threshold?’; the novel aspect of the present model
does not concern bond connectivity, but rather the sort
of site connectivity to be expected for the sites making
up the infinite bond network.

B. Random-site percolation vs correlated-site percolation

Any study of the connectivity of two species of sites is
termed a “site percolation problem.” In Sec. A, we
considered the simplest case, random-site percolation.
Suppose the positions of the sites are not random, but
are correlated. For example, if the system in question
is an Ising ferromagnet, then the sites can represent
Ising spins, with an “up spin” being black and a “down
spin” being white. Of course, at infinite temperature
the connectivity of the Ising spin system is identical to
that of random-site percolation. At any finite tempera-
ture, however, the existence of a ferromagnetic ex-
change interaction energy J between nearest-neighbor
spins will encourage neighboring spins to be parallel
(i. e., neighboring sites to be of the same color). Be-
cause of the lattice-gas model of a fluid, correlated-site
percolation has been found to be useful in describing
solvent effects on gelation.

An altogether different fashion of partitioning sites in-
to two colors is that described in Sec. II. This proced-
ure may be illustrated with Fig. 9, the random-bond per-
colation problem. Every site with four conducting bonds
is colored black, and the remaining sites are white.
Since the bonds are placed randomly, the fraction of
four -bonded “black” sites is simply f; =p% [cf. Eq.
(2.1)]. Hence (a) f, is quite. small unless p, is rather
large (well above the bond percolation threshold), and
(b) there is an amplification mechanism in the depen-
dence of the concentration £, of black sites on the bond
probability p5: a 1% increase in pg leads to a 4% in-
crease in p3. For example, f,=0. 1296 when ppis 0.6
[Fig. 9(c)], while when py =0.8, f,=0.4096, [Fig. 9(d)).
The reader may verify by direct counting that roughly
13% and 41% of the sites are black, respectively.

Although the total number of four-bonded black sites
is determined by simple considerations of random prob-
ability, the spatial positions (and hence the connectivity)
of the black sites are far from random. Rather there is
a distinct tendency for the black sites to have a “ferro-
magnetic” correlation and the resulting clusters are far
less ramified than in random-site percolation. Accord-
ingly, there is no meaning to the parameter p, (site
probability) since the probability of a site being black
depends on the color of its four neighbors. The corre-
sponding correlated-site percolation threshold is slight-
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ly reduced from its value for the random-site problem:
for the two-dimensional square lattice, pS=0.59, while
£520.56%; for the three-dimensional ice I, lattice, p¢
=0. 42 while f§=0.35,%°

C. Bichromatic vs polychromatic percolation

In Sec. A, we partitioned the sites of Fig. 9 into two
distinct categories; black sites had four intact bonds,
while the remaining sites were colored white. This is
termed a bichromatic site percolation problem.

One can equivalently partition the sites of Fig. 9 into
five distinct categories, black sites having four bonds,
“blue” sites having three bonds, “red” sites having two
bonds, etc. The problem posed by the connectivity of the
five separate species is termed a polychromatic percola-
tion problem. o Although most of this manuscript con-
cerns bichromatic percolation, the full polychromatic
percolation problem may be necessary for understanding
some features of liquid water (cf. Appendix B, Secs. A
and B).

D. Species correlations vs connectivity correlations

Several workers have called to our attention the follow-
ing apparent paradox. % By definition, the color of a given
site A depends only on the number of bonds incident upon
that site. Hence although the color of site A is very
strongly correlated with the colors of its four nearest-
neighbors, it is completely independent of the color of its
next nearest neighbors. Suppose we define the “two-site
correlation function” g (7) to be the conditional prob-
ability that if a site at the origin is black, another site a
distance » from the origin is also black. This function
will not become long-range at the percolation threshold.

In percolation, one studies the connectivity correla-
tion function or “pair connectedness” Z,(»), which is
related to the conditional probability that if a site at
the origin is black, another site a distance 7 from the
origin is not only black but is also connected to the site
at the origin by a path consisting of nearest-neighbor
pairs of black sites. It is Z4(») that becomes long-
range at the percolation threshold and is substantially
increased as the result of the correlation. Of course,
it is the sharp increase in range of g.,(7), not g (), that
is responsible for patch formation.

APPENDIX B: A QUANTITATIVE EXAMPLE

It is instructive to show that quantitative comparison
with experimental data can be obtained using a relatively
simple —albeit somewhat rough—procedure. Specifical-
ly, we shall assume that the statics is dominated by the
tiny patches of species-4 oxygens, while the dynamics
is governed by species-0 and species-1 oxygens. Of
course, all species play some role—these assumptions
are made to simplify the quantitative calculations (other
simplifying assumptions were tried; these were opti-
mal).

In particular, it is possible using percolation theory
to calculate the mean size of the tiny patches of four-
bonded oxygen atoms as a function of pg. One finds that

H. E. Stanley and J. Teixeira: Percolation model of liquid water

these patches are remarkably small for all values of pg

except these extremely close to the percolation thresh-
old. 3940,89,99

A. Anomalous contribution K £ to the isothermal
compressibility

We first consider'a local quantity, the volume per oxy-
gen atom, V, It is plausible that V; depends on the
number of bonds j emanating from that atom, with

V, ST, ST, $7,57,. (B1)

Suppose we now partition the system into cells of charac-
teristic dimension L, where L is typically a few near-
est-neighbor distances. With each cell we associate a
local density p;, and we study the fluctuations of this
local density from cell to cell. Since the positions of
each species are correlated and since the density is
related to the site species by Eq. (B1), the density
fluctuations are correlated. That is, they are quite
different in character from the density fluctuations in
the corresponding random-site model consisting of the
same five species, present in the same mole fractions.
The isothermal compressibility in this correlated-site
percolation problem is enhanced, just as the isothermal
compressibility in a van der Waals gas is enhanced rel-
ative to its value in an ideal gas.

We can readily calculate the anomalous contribution
K"} to density fluctuations due to species-4 patches.
For the sake of illustration, we first neglect the cor-
relations. We can readily evaluate the mean square
of the density fluctuations, considering the volume per
oxygen atom of Eq. (Bl). For convenience, we also sup-
pose that f/4: V10 and that the volume per oxygen atom
for the remaining four species assume roughly the same
value, which we shall call ¥, (referring to the “rest
of the gel”). To evaluate V,,;, we note that p(T) has an
inflection point at roughly 100°C, and hence we take for
Peer 2 Straight line tangent to p(7T) for T=100°C. Using
data of Kell, * we find

Pyer = (1218 0., 695 64T)kg m™® (B2)
where 7T is measured in K. We can now evaluate p5 us-
ing measured values of p(7T) between —30 and +50°C,
since

pB = [(ﬁgol _B)/(ﬁgel - P4)]“4 . (B3)

The result of this calculation is shown in Fig. 11, and
agrees surprisingly well with various estimates in the
literature based, e.g., on Raman and infrared spectros-
copic studies. **37 For future “order-of-magnitude”
calculations, it is convenient to represent the curve
p5(T) of Fig. 11 by the simple linear approximation.

pp=1.8-0,004T , (B4)
with T the absolute temperature.

The fraction pﬁ, of four -bonded oxygens with local
density p, contributes to the density fluctuations (5p)z
a term pi(p, — p)%. The remaining fraction (1 —p3) with
mean density Py, contributes a term (1 —p 3)(Bear — (6p)°
Hence
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(6p) =phlpy =B+ (1 =" )(Bor = B
=p4B(1 —P 48) <P4 _I—)gel)z ’

where the second equality follows from Eq. (B3), written
in the eauivalent form p=pip; + (1 =p £)Peer. The func-
tion V(6p)%/(p°k,T) is plotted in Fig. 12. It is clear that
the essential features of the observed temperature de-
pendence of K? are displayed. Note also that the pre-
dicted maximum is certainly in a temperature region
without physical significance. 4

(B5)

The magnitude of K7 is
smaller than the total observed value of K,, but the in-
clusion of correlations will of necessity serve to in-
crease the density fluctuations.

B. Isotope effect: effect of D, O substitution

Suppose we repeat the calculation leading to Eq. (B4)
for the isotope D,0, for which extremely accurate dens~
ity data exist.* We find that Eq. (B4) is replaced by

pp=1.845-0.004T . (B6)

It is a useful check on the percolation picture to compare
Eq. (B4) for H,O and Eq. (B6) for D,0. We see that at
T=273 K, pg is about 5% larger for D,O than for H,0.
This is quite reasonable. Indeed, the latent heats for
D,0 are roughly 5% larger than for H,O (presumably both
effects have a common physical origin, a lower zero-
point motion of the deuteron relative to the proton).

It would be particularly valuable to have accurate ex-
perimental data for two-component mixtures of H,0 and
D,0, since the detailed predictions of the model (some
vary as p3) could then be tested.

C. Comparison between the density fluctuations and the
entropy fluctuations

One empirical fact that at first sight may seem some-
what mysterious is that the “anomalous” density fluc-
tuations begin to manifest themselves at temperatures
considerably higher than the temperatures at which the
entropy fluctuations show up. For example, K‘; begins

0.5

i [ i

-50 o SO 100

T/°C

FIG. 11. Dependence on temperature of the bond probability
predicted by the analysis described in the text. Also shown as
a solid curve is the convenient approximation of Eq. (B4), which
is used in the numerical calculations of Appendix B. The quali-
tative form obtained is consistent with proposals based on spec-
troscopic data (cf., e.g., Refs. 36 and 37). In particular, the
prediction that pp continues to vary smoothly with 7 even for
T'< T, agrees with previous work (Refs. 1, 65, and 83).
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FIG. 12. Schematic temperature dependence of K%, the anom-
alous contribution to the isothermal compressibility due to
the presence of tiny patches for four-bonded oxygens, as cal-
culated using the approximations of Egs. (B2), (B4), and (B5).
The dashed line indicates the predictions in the temperature re-
gion for which no data exist. There is some recent evidence
(Ref. 51) that, by dilution of pure H,O with an optimal amount
of patch-breaking impurity, K¢ can in fact be made to undergo
a maximum.

to increase when T is lowered below 46 °C, while Cp
does not begin to increase sharply until 7 is below T,,. L3
Two possible explanations for this behavior immediately
suggest themselves. (i) There are temperature-depen-
dent “background” terms that differ®® for the two cases
in question, K, and Cp. (ii) Patches of rather larger
spatial extent are necessary to give rise to a significant
entropy difference between what is seen by a Maxwell
demon located inside a patch and another Maxwell demon
not located in a patch. For example, it is plausible that
the density fluctuation caused by a two-site patch is sig-
nificant, while the corresponding entropy fluctuation is
not,

The second explanation is particularly physical, since
it explains the remarkable sensitivity of the Cp anomaly
to even the most minute quantities®” of a second compo-
nent (“patch-breaking” impurity). In fact, it could well
be that one should redefine the term “patch” when dis-
cussing the entropy. For example, one might wish to
consider an “entropy -fluctuation” patch as made up only
of species-4 oxygens, all of whose neighbors are also
species 4. We call such patches “hard cores, ” since
they are obtained for the original patches by removing
all the border sites. Clearly, at a given temperature
(i.e., at a given value of Pg), the mean size and number
of such “hard cores” is considerably smaller than the
corresponding values for the original clusters of spe-
cies-4 oxygens.

D. Order-of-magnitude estimates for the low-temperature
entropy of liquid water

Here we discuss in more detail the curve drawn qual-
itatively in Fig. 7 for the entropy Sy.(7T) of a “normal
liquid” (what water might be like were there no species-
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4 patches). To evaluate Sy, (7), we must subtract from
the fotal specific heat Cp the part C% that can be attrib-
uted to the existence of the species-4 patches—since
these are presumably responsible for the decrease of the
entropy from Sy,(7) to Sy (7). Thus we may define

Cyr=Cp-Cp. (BT7)

Clearly C% is some fraction of the total configurational
specific heat, which in turn is roughly half the total spe-
cific heat in the region between 0 and 100°C.° Hence

we anticipate that Cyy, may be bounded as follows:

9 calmol™ XK'= Cyy =18 calmol™' K. (B8)

In order to calculate Sy (T), we would need to know
the complete temperature dependence of Cyy, for all 7.
It is interesting to calculate the implications of choosing
a temperature-independent value between the upper and
lower bounds of Eq. (B8), say Cy.(T)=14 calmol K"

The entropy Sy.(7) may be then evaluated using the
thermodynamic identity

T
Sup(T)= Syp(T =173 K)+f1 Cop(T) d(InT") .
73

(B9)

Here Sy.(7T =173 K) represents the entropy at 7%, = - 100
°C, which in turn may be estimated by adding the en-
tropy of fusion Sy =5.3 cal mol™ K™! to the entropy of ice
at 7). Thus we find
Sy(T) = [5. 3+5.2+14 log(%é-)] calmol’'K™'.  (B10)
From Eq. (B10) we may estimate the intercept T of
Sni(T) with S, (T), the entropy of ice; we find 7% =101
K. Similarly, we may estimate the intercept T of
Sxu(T) with Sy(7), the entropy of water; we find T
=611 K. These two estimates are quite plausible, in
light of the fact that the “normal liquid” (water without
the patches) would presumably undergo a glass transi-
tion at T, = 140 K, while the patches are certainly ab-
sent near the critical temperature (Tcz 647 K).

In order to test the sensitivity of this very rough cal-
culation to the assumption concerning the value CH(T),
we can repeat the above steps for the choice Cy.(T)=13
calmol™ K™, We find Th=97 K, and T;=492 K. Thus
T is not very dependent on the value chosen, while T
is. (Thus T, has rather huge error bars, but in any
case even 482 K is in a temperature region in which
comparatively few species-4 patches should exist. )

E. Dynamic properties of low-temperature water

A comparatively small fraction of the total work on
the theory of water concerns itself with quantitative cal-
culations of dynamic properties. Accordingly, even
rather crude arguments may afford some utility.

In this section, we demonstrate that quantitative agree-
ment with experimental data for the self-diffusion coeffi-
cient D, may be obtained by regarding transport as aris-
ing from the “mobile” fraction of Eq. (6.1), with A=B
=1 for simplicity. It is of interest that the same prob-
ability function pg(T) obtained in (B4) above is sufficient
to describe the dynamics. This agreement is mitigated
by the fact that there is one adjustable parameter, the
characteristic hydrogen bond lifetime Tyg.
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FIG. 13. Ilustration of the degree of agreement between the

experimental data of Ref. 71 on the coefficient of self-diffusion
D, and the predictions of Eqgs. (B14) and (B4). We emphasize
that there is a second parameter in (B14) not present in

the static calculations: the characteristic bond lifetime Tyg.
The fact that the choice of this parameter that best fits the data
is of the correct order of magnitude is encouraging (cf. Ref. 68,
and references therein).

Thus far, our discussion has concerned the static
properties of liquid water —each computer simulation
corresponds to a snapshot of the system with a shutter
speed much shorter than Tyz. Suppose we make [
separate compute ‘simulations and regard these as cor-
responding to [ separate snapshots, each separated in
time by an interval 7yg. This is an extremely crude
picture of dynamics, since it neglects any possible
“memory” effects. Nevertheless, it is interesting to
note that it provides a model sufficiently simple that
quantitative calculations can be carried out with only
one adjustable parameter (7Tyg) and that the agreement
with experimental data is quite encouraging.

Suppose that during the time interval 7,5, the “mobile”

fraction F, given by (6. 1) is available for transport. The
fraction of “immobile” atoms, F,, is given by
Fi=1-Fy=1-{fo+ fi)=fot f3+fs- (B11)

The probability of randomly chosen oxygen to be immo-
bile in a given realization is thus F,, while the proba-
bility that this oxygen remains immobile for fwo succes-
sive realizations is Fﬁ. In general, the probability of a
randomly chosen oxygen to remain immobile for I real-
izations is F{. However, [Typ is a measure of the

“total immobility” of this oxygen,and thus of the rotation-
al relaxation time 75 (as measured, e.g., by dielectric
relaxation experiments). Hence we can write

F}:F;R/THB :%’ (B12)

where the probability 3 isonly a numerical constant.
Thus (B12) provides a simple and physically plausible
equation relating the characteristic rotational relaxa-
tion time to the hydrogen bond probability,

Tg=(Typ In3)/InF; . (B13)
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The most accurate experimental data are not for 75 but
rather for the coefficient of self-diffusion D;, Pruppa-
cher® has noted that the two quantities are inversely re-
lated, to a good approximation, with DT, =2.11x10"!6

cm?. Hence (B13) becomes

Dy=(-3.047;5 InF,)x107% cm?sec™ . (B14)

Very little is known about the mean bond lifetime 745,
but there are some data®® suggesting that 745 depends
sufficiently weakly on T that we may to first approxima-
tion neglect its temperature dependence. Then we

have in Eq. (B14) a closed-form expression for D, with
only one adjustable parameter, Tyy. Figure 13 demon-
strates the degree of agreement between (B14) and ex-
periment! that may be obtained on choosing Ty = 2.3
psec. It is gratifying that the value of Ty that emerges
from our analysis is comparable with estimates of Tyg
based on experiment (cf., e.g., Ref. 68, and refer-
ences therein).

An additional test of Eq. (B14) would be to make ac-
curate measurements of both D, and Tyy for the isotope
D,0; Egs. (B4) and (B6) predict that the product D,Tyg
should be substantially larger for D,O than for H,0.
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