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Abstract

Community structure is an important factor in the behavior of real-world networks because it strongly
affects the stability and thus the phase transition order of the spreading dynamics. We here propose a
reversible social contagion model of community networks that includes the factor of social
reinforcement. In our model an individual adopts a social contagion when the number of received
units of information exceeds its adoption threshold. We use mean-field approximation to describe
our proposed model, and the results agree with numerical simulations. The numerical simulations
and theoretical analyses both indicate that there is a first-order phase transition in the spreading
dynamics, and that a hysteresis loop emerges in the system when there is a variety of initially adopted
seeds. We find an optimal community structure that maximizes spreading dynamics. We also find a
rich phase diagram with a triple point that separates the no-diffusion phase from the two diffusion
phases.

1. Introduction

Social contagion—including the spreading of social information, opinions, cultural practices, and behavior
patterns—is ubiquitous in nature and society [ 1—4]. Like biological contagion [5-7], social reinforcement, which
is also ubiquitous, plays a central role in social contagions and dependent on the model triggers such complex
dynamic phenomena [8—10] with first-order phase transition [11, 12] which is also found in epidemic spreading
with limited vaccines [13]. Empirical studies indicate that susceptible individuals adopt a social behavior only
when the number of received information units exceeds an adoption threshold [14—17]. Thus, this behavior
occurs when a certain level of exposure is exceeded. The numerous Markovian and non-Markovian models of
complex networks used to describe social contagion [18—-21] indicate that the topology of networks strongly
affects patterns of social contagion [22—30]. Recently scholars extended the social contagion model to multiplex
networks and found that multiplexity promotes social contagion [31-33]. Holme et al [34, 35] found that a
temporal network in which the network structure changes with time can either promote or suppress social
contagions under various scenarios. Macroscopically, researchers have found that the average degree and the
level of heterogeneity of the degree distribution changes the growth patterns of social contagions [36, 37].
Microscopically, social contagions exist in a hierarchy [36], i.e., high-degree nodes or hubs are infected in the
early stages of the infection process and low-degree nodes in the later stages. Mesoscopically, researchers have
studied how degree correlation and community structure affect social contagion [38, 39]. Researchers have
found a level of network modularity—the measurement of how strongly a network is divided into modules or
communities—that is optimal. The initial number of adopter seeds that allows a global diffusion of the
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Figure 1. Schematic of two-community system where the contagion dynamics take place. The agents 1, n, 13, 1, and ns are in
community a, and ng, 17, 1g, 1y and 11 are in community b. (a) At time step 1, the agents n; and 1, are in the adopted state, and the
other agents are in the susceptible state. (b) At time step 2, susceptible agents 1, and n; change to the adopted state because the number
of received information m exceed the adoption threshold 6. At the same time, the adopted agents n; and n, recover and go to the
susceptible state. (c) At time step 3, the susceptible agents 11,, n1g and 1, enter the adopted state because the number of received
information m exceed the adoption threshold 6. At the same time, the adopted agents 1, and 1, recover and go to the susceptible state.
(d) Qis the adjoin matrix of the system. A, 53, C and D are the partitioned matrix of Q.

contagion is at its minimum [40]. Majdandzic proposed a contagion model with an adoption threshold and
spontaneous adoption, and found the system has hysteresis loop and phase-flipping [41].

Most previous studies have focused on an irreversible social contagion in which infected agents either
recover or die and in both cases no longer can be infected [42, 43]. These studies do not take into account the
effect of reversible social contagion in which infected agents can once again be infected after passing through a
susceptible period [44]. In real-world epidemics [45] individuals often are not fully immunized and return to a
susceptible state after having been infected. We here present a reversible social contagion model of a community
network [46, 47]. Initially a number of infected individuals are randomly distributed in the community. All
other individuals are susceptible. Susceptible individuals become infected when the number of received
information units exceeds their adoption thresholds. We derive our model using mean-field theory. Both
numerical simulations and theoretical analyses indicate the presence of a hysteresis loop in social contagions.
More important, we find an optimal network modularity that globally promotes social contagions. The constant
threshold point, the critical threshold fraction of intracommunity links, triggers a sharp transition from a no-
diffusion state to a global diffusion state.

This paper is organized as follows. In section 2, we propose a social contagion model for community
networks. In section 3 we develop a mean-field theory to mathematically analyze our model. In section 4 we
simulate the proposed model on a community network and show the results. In section 5 we discuss our
conclusions.

2. Model descriptions

In our model the network has two equal-sized communities, a and b, with Nnodes and L links in the network
system. Initially nodes are with equal probability assigned to either community a or community b. Then (1 — 1)
Llinks are randomly distributed among node pairs within a community and ( L are randomly distributed
among node pairs between communities a and b. The y value is the probability that a randomly selected link is
an interlink between different communities. We adjust the strength of the social community by changing the
value of y. Figure 1(d) shows a matrix of the community. Matrix 4 (D) shows the connections among
individuals within community a (b). Matrix C () shows the individuals in community b (a) connected to
individuals in community a ().
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Using this topology we develop a susceptible-adopted-susceptible (SAS) social contagion model of a
community network. Individuals are either susceptible (S) or adopted (A). A susceptible individual can receive
information from adopted neighbors in communities a and b. An adopted individual can transmit the social
contagion to susceptible neighbors. At the initial stage, a random fraction of p, of individuals are adopted in
community 4, and the remaining individuals are susceptible in both communities. An adopted individual has
adopted the behavior and with probability A transmits the information to susceptible neighbors that belong to
both communities. If the units of information m a susceptible individual has received exceeds an adoption
threshold 6, the susceptible individual enters the adopted state. The parameter 6 indicates the willingness of an
individual to adopt a new behavior. Large (small) 6 values indicate that susceptible individuals need a large
(small) amount of information before they enter into the adopted state. Each adopted individual with
probability vloses interest in the social contagion and returns to the susceptible state. Figures 1(a)—(c)
schematically show this information spreading process.

3. Theory

3.1. Mathematical theory

Here we derive a mean-field theory for our model that reproduces social contagion dynamics. We denote pf ()
(¢ = aor b)tobe the density of individuals in community #in the adopted state at time ¢. The dynamic
equations for pf (¢) and pf(t) are

dp?(t
pcli_t() = —pf () + [1 — (OIS Aiipf () + A Cgp?(f)), ey
j j
and
dp} (1) b b a b
4P ®+[1 - Pi(t)]5()\z Bijpi(t) + /\Z Dijp (1)), 2
j j

respectively. here Wpf () is the probability that an adopted individual i recovers at time ¢ in community £, and
AY; aij p? and A} ¢;i p’]’., respectively, are the units of information a susceptible individual i in community a
receives from adopted neighbors in communities a and b at time . we set A} ; bij p? and A}, d; pf. to,
respectively, represent the units of information a susceptible individual i in community b receives from adopted
neighbors in communities a and b at time . the function ¢ is the probability that an individual becomes adopted.
thus 6(7n) = 1 when the information received by an individual (1) exceeds the adoption threshold (6), i.e.,
when m > 0 and zero otherwise.

Using equations (1) and (2) we determine the evolution of social contagions in community networks. Note
that we need N differential equations to describe the spreading dynamics. When N — oo, itis difficult to solve
the equations. More important, it is difficult to determine the transition points of the system. For simplicity we
assume pf = pf(t), F(pf) = —vpf(t), and K(pf) =11 - pf(t)]. Equations (1) and (2) can be written in
terms ofF(pf) and K(pf) as

dp?
= FOD + K@DSAE Agpj + 13- Cp), 3)
j j
and
i _ gy DSOS Bip® + AS Dy
] )

These equations describe the dynamic interactions of all nodes in the system. Calculating the time-dependent
activities of all the interactive nodes is complex. A susceptible high-degree individual i is more likely to receive
information from neighbors than a susceptible small-degree individual j. Thus the probability that susceptible
individual i receives information from neighbor j is proportional to the degree of j. Using [48] we evaluate the
dynamic evolution process of a node by quantifying the average dynamics of neighbor nodes. The degree of node
jis sz =N, Qjj (Qis the adjacency matrix of the system). We introduce ( }ﬁnn with the scalar quantity y; related
to the degree of node j
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where M € {A, B,C, D}, I=(1,....,),y= B o yN)T, and €(y)p is an operator, which is the nearest
neighbor average to the explicit summation. From equation (5) we know that higher degree nodes contribute
more to <J§>nn- If we assume Y, (pf ) = pf, equations (3) and (4) can be rewritten

dp? a a A C

e F(p?) + K(p)o(As; €(p,)a + As; €(py)e), (6)
and

dp? _ b b B D

T F(p)) + K(p))o(Xs;” €(p, )5 + As;” €(py)p)s (7)

where p, = (pf, pg, TN p: )!. Inspired by [48] we use equations (6) and (7) to describe the spreading dynamics
and rewrite them in terms of vectors,

dp,

5~ T + Kp)o(hsallp)a + Asellpy)o), ®)
and

dy

m py) + K(py) 6(As€(p,)B + Asp€(py)p)> 9)
where sy = (SlM , 52M y s,fw ). From equations (8) and (9) we obtain the fraction of infected nodes. When

t — oo we denote the final behavior adoption size in community aand b to be p, and py, respectively. The final
behavior adoption size of the systemis p = p, + pp.

3.2. Threshold points
Another important factor in the spreading dynamics concerns any existing threshold points. To obtain them we
linearize equations (8) and (9) around p, = 0 (£ € {a, b}),

de
% = F(€(p)m) + K€ 1) 8 OE(s)mE(p,) 4
+ A&(scI)m€(py)e)s (10)
and
de
% - F(Q:(pb)N) + K(Q:(pb)N)(s(/\Q:(SB)NQ:(pu)B

+ A(sp))v€(py)p), (11

where M € {A, B},and N € {C, D}. To obtain the threshold points, we solve the above system with N
equations, but it is difficult to obtain the analytic value. Thus we reduce the dimensionality of the system by
introducing an operator [48].

The probability pfff,  that nodes in community Zare infected by neighbors in community
M e {A, B, C Djis

M ¢
I™p, (5 P}

¢
=C = = . 12
peff,M (pf)M ITMI <$]M> ( )
Wedefine 8y (U € {A, B, C, D})tobe
I™sy ~ (5"s})
= ¢(s = = . 13
Bum = Csu)m ]I <) (13)
Inserting equations (12) and (13) into equations (10) and (11), we obtain
dp?
3 = Pl ) + K (Pl )8 Ol 4 + Nemplise)s (14)
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Figure 2. The final behavior adoption size versus different strength of community structures. The final behavior adoption sizes with
1 = 0.1in figures (a)—(c), ;£ = 0.3 in figures (d)—(f), and pr = 0.5 in figures (g)—(i). The lines are the theoretical predictions. The
arrows represent the presence threshold AP™® and invasion threshold A", respectively. Red circles (blue up triangles) are numerical
simulations with py = 0.4 (0.07).

and
b
dpeff,N_F b K b S(\ a A b 15
ar = (peff)j\/’) + (Peff)/\/) ( ﬂB,NPeff,B + ﬂD,NPeff)D) (15)
In the steady state we have dp;  /df = Oand dpi’fﬁ I / dt = 0. Thus we have
F Ol p Plipd) = 0l 00 + K (0% )8 NBamplys 4 + ABemplis o) (16)
and
8 (P v pgff,./\f) =F (psz,/\/) + K (Pfo,N)‘S()‘ﬂB,N Pests T AODN /’I;ff,D)' a7

The Jacobian matrix of equations (16) and (17) is

of (pif,/vl’ piff,/\/) of (pif,M’ piff,N)

b
AP, OPess 7
] = a b a b : (18)
g (Peg ppr Pesin) 08 (Petere Petp)
b
ap:ff,/\/l apeff,]\/

Ifadopted individuals have thresholds with ), the determinant of matrix J equals zero. From equation (18) we
obtain the threshold information transmission probability A" and AE*.

4. Numerical verification

In this section we perform extensive simulations of an artificial community network. We set the network size
N = 10°, the average degree of each community (k) = 20, the recovery probability y = 0.1, and the adoption
threshold 8 = 5. The initially adopted seeds p, are only in community a.

Figure 2 shows the social contagions in the community networks. We find that the final behavior adoption
size p, in community a increases discontinuously with the information transmission probability A, i.e., thereisa
first-order phase transition that depends on py and A. For a small value of the initially adopted seeds py = 0.07,
paincreases discontinuously at the presence threshold AP™, i.e., there is a vanishingly small fraction of

5
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Figure 3. Effects of the strength of community structures on social contagions. The final adoption size versus pwith A = 0.5in
figures (a)—(c), A = 0.7 in figures (d)-(f), A = 0.9 in figures (g)—(i). The three columns, respectively, represents the final behavior
adoption size in community 4, b and the system. Red circles (blue up triangles) are numerical simulations with py = 0.4 (0.07). The
lines are the theoretical predictions. The gray areas in figures (e), (f), (h) and (i) represent the optimal community structure that
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individuals adopting the behavior when A < AP*, and a finite fraction of individuals adopting the behavior

when A > AP,

We find a similar phenomenon for a large seed size py = 0.4, i.e., p;, increases discontinuously with \ at the
invasion threshold A", These phenomena indicate that the system exhibits first-order phase transitions with a
hysteresis loop. Specifically, the fraction of adopted individuals versus A depends on the initial conditions of p, at
region /\ic'“’ < A < AP In this region, for a small fraction of seeds, i.e., py = 0.07, susceptible individuals from
both communities are less likely to receive a number of information units that exceeds the adoption threshold.
Large values of transmission probability A are needed to accelerate social contagion. When there is alarge
fraction of initial adopters, i.e., py = 0.4, the probability that the number of information units received by a
susceptible individual exceeds the adoption threshold increases. When the values of the transmission probability
Aare small, the contagion accelerates. The strength of the community structures does not qualitatively affect the
phenomena. Figure 2 shows that our theoretical results agree with the numerical simulation results.

We next determine the effect of community structure p under differing initial conditions (see figure 3). As in
figure 2, we find a hysteresis loop phenomenon, i.e., p (p, or p,) may have different values under different initial
seed sizes. In community g, irrespective of the proportion of intercommunity links (z), the internal connectivity
can spread the contagion to the entire originating community a when p, is large (oo = 0.4), as shown in
figures 3(a), (d), and (g). Figures 3(d) and (g) show that increasing A, i.e., A = 0.7and A = 0.9, when s is small
activates the modular structure in the originating community by a small p, value. As 1 increases, more intralinks
(within communities) are replaced by interlinks (between two communities). When . is large, individuals in
community 4 are less likely to expose adopted neighbors. When ¢ is increased, the number of susceptible
individuals adopting the information in community a decreases. Although susceptible individuals in
community b acquire more adopted neighbors in community a, their number does not exceed 6. Individuals in
community b have no adopted state. Increasing  prevents the contagion from spreading to the entire network
through internal connectivity. In community b when both p, and v are small there are insufficient
intercommunity bridges to propagate social contagion from community a to community b, even when

6
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Figure 4. Phase diagram of the social contagions on plane ;¢ — . In(a), (c) and (e), we set py = 0.07. And in (b), (d) and (£), we set

po = 0.4. The symbols and lines are the numerical and theoretical predictions of the threshold points, respectively. The lines in (a)—
(b), (c)—(d) and (e)—(f) represent p,, p, and p, respectively. Region I (red), II (blue) and III (green) are global diffusion, no diffusion and
local diffusion region, respectively.

community a is fully saturated [see figures 3(e) and (h)]. Thus susceptible individuals in community b have too
few adopted neighbors in community a to receive information sufficient to exceed the adoption threshold.

Figures 3(e) and (h) show that increasing 1 provides the optimal community structure for social contagions.
Here the system modularity is sufficiently large to initiate local spreading, sufficiently small to induce
intercommunity spreading, and the modular structure allows intercommunity spreading from community a to
community b. Thus social contagions exist in both communities a and b in this region. If 1 is too large, however,
although there are sufficient intercommunity bridges, the system modularity is too small to initiate
intercommunity spreading from community a. Because the originating community is not saturated, the
diffusion does not spread to community b [see figures 3(d) and (g)]. When pq islarge (p, = 0.4), the strong
community structure enables intercommunity spreading from the originating community a to community b.
Again our theory agrees with the numerical simulations.

Figure 4 shows the effects of A and pi. Depending on the fraction of the final behavior adoption size, the plane
is divided into phase diagrams: global diffusion (region I), no diffusion (region II), and local diffusion (region
III). The behavior of p,_ asa function of y and X exhibits qualitatively different patterns depending on py.

When (i is small, intralinks greatly outnumber interlinks. In response to initially adopted seeds in
community g, susceptible community a individuals are more likely to become adopted if the number of received
information units exceeds threshold . When there are fewer interlinks, community b individuals are less likely
to receive message units that exceed the threshold, and the social contagion remains local (region III). Increasing
1 enables susceptible community b individuals to receive more message units from exposed adopted neighbors
in community a. Global diffusion (region I) emerges when the message units that individuals in community b
receive exceed threshold . When there are few initial adopter seeds, the probability that susceptible individuals
have adopter neighbors decreases as the number of intralinks decreases. When the number of adopter seeds is
too small to transmit sufficient message units to both communities a and b, the no-diffusion area (region IT)

7



10P Publishing

NewJ. Phys. 20 (2018) 053053 ZSuetal

appears. When the information transmission probability A is too small, the message units received by susceptible
individuals in both communities do not exceed § and no susceptible individuals adopt the information.

Figure 4(e) shows that when py = 0.07 is small and community strength is intermediate and finite, x allows
global spreading. However when p is large the number of intracommunity links is too small to propagate
spreading in the originating community a and thus cannot be transmitted over the entire system, but when
Po = 0.4islarge [see figure 4(f)] and larger than the critical value for transition in a system without
communities, increasing 1 does not block local spreading, and global diffusion occurs only through external
links. We find a rich phase diagram in the A\ plane with a triple point P*. As i decreases, the first-order
transition line that separates global diffusion (region I) from no diffusion (region II) forks into two branches and
generates a new local diffusion phase (region I1I). Around P* a small variform percentage of the edges between
the communities can induce an abrupt change in the number of adopted individuals.

5. Conclusions

In this paper we have studied the reinfection pattern that most previous research has ignored. Using infection
thresholds we systematically investigate how reinfection affects the social contagion dynamics in community
networks. We use a mean-field approximation approach that produces results that agree with numerical
simulation results. We find that first-order phase transitions exist during the spreading process in communities,
and that a hysteresis loop emerges when the spreading probability at region A" < A\ < AP™is in the system for
different initial adopter densities. We also find an optimal level of community structure strength that facilitates
the global diffusion of a small number of initially adopted seeds. In this optimal community structure, global
diffusion requires a minimal number of adopters in the community. When the number of links between the
communities is decreased, we find a rich phase diagram with a triple point. Our numerical results agree with our
proposed mean-field approach, which quantifies, using threshold models, the influence of reinfection in
communal networks.

Our results use the initially adopted seeds in only one community. Using numerical simulations and
theoretical analyses, we find that our conclusions are not qualitatively affected when the seeds are randomly
selected in two communities, and our theory produces results that agree with simulation results when
community networks are scale-free. In addition, the amount of heterogeneity in the communal degree
distribution does not qualitatively affect these phenomena. Our findings enrich our understanding of how social
contagions transmit through communal systems. Our theory in this work can be used to study epidemic
spreading [6, 49-51], the effects of vaccination [52], and the impact of human behavior [53, 54] on epidemics. In
future work we will further explore our approach using real social contagion data and digital virtual asset
security.
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