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Abstract
Community structure is an important factor in the behavior of real-world networks because it strongly
affects the stability and thus the phase transition order of the spreading dynamics.We here propose a
reversible social contagionmodel of community networks that includes the factor of social
reinforcement. In ourmodel an individual adopts a social contagionwhen the number of received
units of information exceeds its adoption threshold.We usemean-field approximation to describe
our proposedmodel, and the results agreewith numerical simulations. The numerical simulations
and theoretical analyses both indicate that there is afirst-order phase transition in the spreading
dynamics, and that a hysteresis loop emerges in the systemwhen there is a variety of initially adopted
seeds.Wefind an optimal community structure thatmaximizes spreading dynamics.We alsofind a
rich phase diagramwith a triple point that separates the no-diffusion phase from the two diffusion
phases.

1. Introduction

Social contagion—including the spreading of social information, opinions, cultural practices, and behavior
patterns—is ubiquitous in nature and society [1–4]. Like biological contagion [5–7], social reinforcement, which
is also ubiquitous, plays a central role in social contagions and dependent on themodel triggers such complex
dynamic phenomena [8–10]with first-order phase transition [11, 12]which is also found in epidemic spreading
with limited vaccines [13]. Empirical studies indicate that susceptible individuals adopt a social behavior only
when the number of received information units exceeds an adoption threshold [14–17]. Thus, this behavior
occurs when a certain level of exposure is exceeded. The numerousMarkovian and non-Markovianmodels of
complex networks used to describe social contagion [18–21] indicate that the topology of networks strongly
affects patterns of social contagion [22–30]. Recently scholars extended the social contagionmodel tomultiplex
networks and found thatmultiplexity promotes social contagion [31–33]. Holme et al [34, 35] found that a
temporal network inwhich the network structure changes with time can either promote or suppress social
contagions under various scenarios.Macroscopically, researchers have found that the average degree and the
level of heterogeneity of the degree distribution changes the growth patterns of social contagions [36, 37].
Microscopically, social contagions exist in a hierarchy [36], i.e., high-degree nodes or hubs are infected in the
early stages of the infection process and low-degree nodes in the later stages.Mesoscopically, researchers have
studied howdegree correlation and community structure affect social contagion [38, 39]. Researchers have
found a level of networkmodularity—themeasurement of how strongly a network is divided intomodules or
communities—that is optimal. The initial number of adopter seeds that allows a global diffusion of the
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contagion is at itsminimum [40].Majdandzic proposed a contagionmodel with an adoption threshold and
spontaneous adoption, and found the systemhas hysteresis loop and phase-flipping [41].

Most previous studies have focused on an irreversible social contagion inwhich infected agents either
recover or die and in both cases no longer can be infected [42, 43]. These studies do not take into account the
effect of reversible social contagion inwhich infected agents can once again be infected after passing through a
susceptible period [44]. In real-world epidemics [45] individuals often are not fully immunized and return to a
susceptible state after having been infected.We here present a reversible social contagionmodel of a community
network [46, 47]. Initially a number of infected individuals are randomly distributed in the community. All
other individuals are susceptible. Susceptible individuals become infectedwhen the number of received
information units exceeds their adoption thresholds.We derive ourmodel usingmean-field theory. Both
numerical simulations and theoretical analyses indicate the presence of a hysteresis loop in social contagions.
More important, wefind an optimal networkmodularity that globally promotes social contagions. The constant
threshold point, the critical threshold fraction of intracommunity links, triggers a sharp transition froma no-
diffusion state to a global diffusion state.

This paper is organized as follows. In section 2, we propose a social contagionmodel for community
networks. In section 3we develop amean-field theory tomathematically analyze ourmodel. In section 4we
simulate the proposedmodel on a community network and show the results. In section 5we discuss our
conclusions.

2.Model descriptions

In ourmodel the network has two equal-sized communities, a and b, withNnodes and L links in the network
system. Initially nodes are with equal probability assigned to either community a or community b. Then (1−μ)
L links are randomly distributed among node pairs within a community andμ L are randomly distributed
among node pairs between communities a and b. Theμ value is the probability that a randomly selected link is
an interlink between different communities.We adjust the strength of the social community by changing the
value ofμ. Figure 1(d) shows amatrix of the community.Matrix� (�) shows the connections among
individuals within community a (b).Matrix � (�) shows the individuals in community b (a) connected to
individuals in community a (b).

Figure 1. Schematic of two-community systemwhere the contagion dynamics take place. The agents n1, n2, n3, n4 and n5 are in
community a, and n6, n7, n8, n9 and n10 are in community b. (a)At time step 1 , the agents n1 and n2 are in the adopted state, and the
other agents are in the susceptible state. (b)At time step 2, susceptible agents n4 and n7 change to the adopted state because the number
of received informationm exceed the adoption threshold θ. At the same time, the adopted agents n1 and n2 recover and go to the
susceptible state. (c)At time step 3, the susceptible agents n2, n8 and n10 enter the adopted state because the number of received
informationm exceed the adoption threshold θ. At the same time, the adopted agents n4 and n7 recover and go to the susceptible state.
(d)Q is the adjoinmatrix of the system. �, � , � and � are the partitionedmatrix ofQ.
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Using this topologywe develop a susceptible-adopted-susceptible (SAS) social contagionmodel of a
community network. Individuals are either susceptible (S) or adopted (A). A susceptible individual can receive
information from adopted neighbors in communities a and b. An adopted individual can transmit the social
contagion to susceptible neighbors. At the initial stage, a random fraction of ρ0 of individuals are adopted in
community a, and the remaining individuals are susceptible in both communities. An adopted individual has
adopted the behavior andwith probabilityλ transmits the information to susceptible neighbors that belong to
both communities. If the units of informationm a susceptible individual has received exceeds an adoption
threshold θ, the susceptible individual enters the adopted state. The parameter θ indicates thewillingness of an
individual to adopt a new behavior. Large (small) θ values indicate that susceptible individuals need a large
(small) amount of information before they enter into the adopted state. Each adopted individual with
probability γ loses interest in the social contagion and returns to the susceptible state. Figures 1(a)–(c)
schematically show this information spreading process.

3. Theory

3.1.Mathematical theory
Herewe derive amean-field theory for ourmodel that reproduces social contagion dynamics.We denote tir ( )ℓ

(ℓ=a or b) to be the density of individuals in communityℓin the adopted state at time t. The dynamic
equations for ti

ar ( ) and ti
br ( ) are
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respectively. here tigr ( )ℓ is the probability that an adopted individual i recovers at time t in communityℓ, and
aj ij j

al rå and cj ij j
bl rå , respectively, are the units of information a susceptible individual i in community a

receives from adopted neighbors in communities a and b at time t. we set bj ij j
al rå and dj ij j

bl rå to,
respectively, represent the units of information a susceptible individual i in community b receives from adopted
neighbors in communities a and b at time t. the function δ is the probability that an individual becomes adopted.
thus δ(m)=1when the information received by an individual (m) exceeds the adoption threshold (θ), i.e.,
when m . q and zero otherwise.

Using equations (1) and (2)wedetermine the evolution of social contagions in community networks. Note
thatwe needN differential equations to describe the spreading dynamics.When N l ¥, it is difficult to solve
the equations.More important, it is difficult to determine the transition points of the system. For simplicity we
assume ti ir rº ( )ℓ ℓ , F ti ir gr= -( ) ( )ℓ ℓ , and K t1i ir r= -( ) [ ( )]ℓ ℓ . Equations (1) and (2) can bewritten in
terms of F ir( )ℓ and K ir( )ℓ as
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These equations describe the dynamic interactions of all nodes in the system. Calculating the time-dependent
activities of all the interactive nodes is complex. A susceptible high-degree individual i ismore likely to receive
information fromneighbors than a susceptible small-degree individual j. Thus the probability that susceptible
individual i receives information fromneighbor j is proportional to the degree of j. Using [48]we evaluate the
dynamic evolution process of a node by quantifying the average dynamics of neighbor nodes. The degree of node
j is s Qj

Q
i
N

ij1= å = (Q is the adjacencymatrix of the system).We introduce yj nná ñ with the scalar quantity yj related
to the degree of node j
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where M , , ,� � � �Î { }, I 1, , 1 T= ¼( ) , y y y, , N
T

1= ¼( ) , and y M( )C is an operator, which is the nearest
neighbor average to the explicit summation. From equation (5)we know that higher degree nodes contribute
more to yj nná ñ . If we assume yj j jr r=( )ℓ ℓ, equations (3) and (4) can be rewritten
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where rℓ = , , , n1 2
Tr r r"( )ℓ ℓ ℓ . Inspired by [48]weuse equations (6) and (7) to describe the spreading dynamics

and rewrite them in terms of vectors,
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T= "( ) . From equations (8) and (9)we obtain the fraction of infected nodes.When

t l ¥we denote thefinal behavior adoption size in community a and b to be ρa and ρb, respectively. Thefinal
behavior adoption size of the system is ρ=ρa+ρb.

3.2. Threshold points
Another important factor in the spreading dynamics concerns any existing threshold points. To obtain themwe
linearize equations (8) and (9) around 0r =ℓ ( a b,Îℓ { }),
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where ,% � �Î { }, and ,& � �Î { }. To obtain the threshold points, we solve the above systemwithN
equations, but it is difficult to obtain the analytic value. Thuswe reduce the dimensionality of the systemby
introducing an operator [48].

The probability Meff,rℓ that nodes in communityℓare infected by neighbors in community
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Inserting equations (12) and (13) into equations (10) and (11), we obtain
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If adopted individuals have thresholds withλ, the determinant ofmatrix J equals zero. From equation (18)we
obtain the threshold information transmission probability c

invl and c
prel .

4.Numerical verification

In this sectionwe perform extensive simulations of an artificial community network.We set the network size
N=106, the average degree of each community k 20á ñ = , the recovery probability γ=0.1, and the adoption
threshold θ=5. The initially adopted seeds ρ0 are only in community a.

Figure 2 shows the social contagions in the community networks.Wefind that the final behavior adoption
size ρa in community a increases discontinuously with the information transmission probabilityλ, i.e., there is a
first-order phase transition that depends on ρ0 andλ. For a small value of the initially adopted seeds ρ0=0.07,
ρa increases discontinuously at the presence threshold c

prel , i.e., there is a vanishingly small fraction of

Figure 2.The final behavior adoption size versus different strength of community structures. The final behavior adoption sizes with
μ=0.1 infigures(a)–(c),μ=0.3 in figures(d)–(f), andμ=0.5 infigures(g)–(i). The lines are the theoretical predictions. The
arrows represent the presence threshold c

prel and invasion threshold c
invl , respectively. Red circles (blue up triangles) are numerical

simulations with ρ0=0.4 (0.07).
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individuals adopting the behavior when c
pre-l l , and afinite fraction of individuals adopting the behavior

when c
prel l> .

Wefind a similar phenomenon for a large seed size ρ0=0.4, i.e., ρb increases discontinuously withλ at the
invasion threshold c

invl . These phenomena indicate that the system exhibitsfirst-order phase transitions with a
hysteresis loop. Specifically, the fraction of adopted individuals versusλ depends on the initial conditions of ρ0 at
region c c

inv prel l l< < . In this region, for a small fraction of seeds, i.e., ρ0= 0.07, susceptible individuals from
both communities are less likely to receive a number of information units that exceeds the adoption threshold.
Large values of transmission probabilityλ are needed to accelerate social contagion.When there is a large
fraction of initial adopters, i.e., ρ0=0.4, the probability that the number of information units received by a
susceptible individual exceeds the adoption threshold increases.When the values of the transmission probability
λ are small, the contagion accelerates. The strength of the community structures does not qualitatively affect the
phenomena. Figure 2 shows that our theoretical results agreewith the numerical simulation results.

We next determine the effect of community structureμunder differing initial conditions (seefigure 3). As in
figure 2, wefind a hysteresis loop phenomenon, i.e., ρ (ρa or ρb)mayhave different values under different initial
seed sizes. In community a, irrespective of the proportion of intercommunity links (μ), the internal connectivity
can spread the contagion to the entire originating community awhen ρ0 is large (ρ0=0.4), as shown in
figures 3(a), (d), and (g). Figures 3(d) and (g) show that increasingλ, i.e.,λ=0.7 andλ=0.9, whenμ is small
activates themodular structure in the originating community by a small ρ0 value. Asμ increases,more intralinks
(within communities) are replaced by interlinks (between two communities).Whenμ is large, individuals in
community a are less likely to expose adopted neighbors.Whenμ is increased, the number of susceptible
individuals adopting the information in community a decreases. Although susceptible individuals in
community b acquiremore adopted neighbors in community a, their number does not exceed θ. Individuals in
community b have no adopted state. Increasingμ prevents the contagion from spreading to the entire network
through internal connectivity. In community bwhen both ρ0 andμ are small there are insufficient
intercommunity bridges to propagate social contagion from community a to community b, evenwhen

Figure 3.Effects of the strength of community structures on social contagions. The final adoption size versusμwithλ=0.5 in
figures(a)–(c),λ=0.7 infigures(d)–(f),λ=0.9 in figures(g)–(i). The three columns, respectively, represents the final behavior
adoption size in community a, b and the system. Red circles (blue up triangles) are numerical simulationswith ρ0=0.4 (0.07). The
lines are the theoretical predictions. The gray areas infigures (e), (f), (h) and (i) represent the optimal community structure that
diffuses in global network.
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community a is fully saturated [see figures 3(e) and (h)]. Thus susceptible individuals in community b have too
few adopted neighbors in community a to receive information sufficient to exceed the adoption threshold.

Figures 3(e) and (h) show that increasingμ provides the optimal community structure for social contagions.
Here the systemmodularity is sufficiently large to initiate local spreading, sufficiently small to induce
intercommunity spreading, and themodular structure allows intercommunity spreading from community a to
community b. Thus social contagions exist in both communities a and b in this region. Ifμ is too large, however,
although there are sufficient intercommunity bridges, the systemmodularity is too small to initiate
intercommunity spreading from community a. Because the originating community is not saturated, the
diffusion does not spread to community b [see figures 3(d) and (g)].When ρ0 is large (ρ0=0.4), the strong
community structure enables intercommunity spreading from the originating community a to community b.
Again our theory agrees with the numerical simulations.

Figure 4 shows the effects ofλ andμ. Depending on the fraction of the final behavior adoption size, the plane
is divided into phase diagrams: global diffusion (region I), no diffusion (region II), and local diffusion (region
III). The behavior of r¥ as a function ofμ andλ exhibits qualitatively different patterns depending on ρ0.

Whenμ is small, intralinks greatly outnumber interlinks. In response to initially adopted seeds in
community a, susceptible community a individuals aremore likely to become adopted if the number of received
information units exceeds threshold θ.When there are fewer interlinks, community b individuals are less likely
to receivemessage units that exceed the threshold, and the social contagion remains local (region III). Increasing
μ enables susceptible community b individuals to receivemoremessage units from exposed adopted neighbors
in community a. Global diffusion (region I) emerges when themessage units that individuals in community b
receive exceed threshold θ.When there are few initial adopter seeds, the probability that susceptible individuals
have adopter neighbors decreases as the number of intralinks decreases.When the number of adopter seeds is
too small to transmit sufficientmessage units to both communities a and b, the no-diffusion area (region II)

Figure 4.Phase diagramof the social contagions on planeμ−λ. In (a), (c) and (e), we set ρ0=0.07. And in (b), (d) and (f), we set
ρ0=0.4. The symbols and lines are the numerical and theoretical predictions of the threshold points, respectively. The lines in (a)–
(b), (c)–(d) and (e)–(f) represent ρa, ρb and ρ, respectively. Region I (red), II (blue) and III (green) are global diffusion, no diffusion and
local diffusion region, respectively.
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appears.When the information transmission probabilityλ is too small, themessage units received by susceptible
individuals in both communities do not exceed θ and no susceptible individuals adopt the information.

Figure 4(e) shows thatwhen ρ0=0.07 is small and community strength is intermediate and finite,μ allows
global spreading.However whenμ is large the number of intracommunity links is too small to propagate
spreading in the originating community a and thus cannot be transmitted over the entire system, but when
ρ0=0.4 is large [see figure 4(f)] and larger than the critical value for transition in a systemwithout
communities, increasingμ does not block local spreading, and global diffusion occurs only through external
links.Wefind a rich phase diagram in theμ–λ planewith a triple point P*. Asμ decreases, the first-order
transition line that separates global diffusion (region I) fromno diffusion (region II) forks into two branches and
generates a new local diffusion phase (region III). Around P* a small variformpercentage of the edges between
the communities can induce an abrupt change in the number of adopted individuals.

5. Conclusions

In this paper we have studied the reinfection pattern thatmost previous research has ignored. Using infection
thresholds we systematically investigate how reinfection affects the social contagion dynamics in community
networks.We use amean-field approximation approach that produces results that agree with numerical
simulation results.Wefind thatfirst-order phase transitions exist during the spreading process in communities,
and that a hysteresis loop emerges when the spreading probability at region c c

inv prel l l< < is in the system for
different initial adopter densities.We alsofind an optimal level of community structure strength that facilitates
the global diffusion of a small number of initially adopted seeds. In this optimal community structure, global
diffusion requires aminimal number of adopters in the community.When the number of links between the
communities is decreased, we find a rich phase diagramwith a triple point. Our numerical results agreewith our
proposedmean-field approach, which quantifies, using thresholdmodels, the influence of reinfection in
communal networks.

Our results use the initially adopted seeds in only one community. Using numerical simulations and
theoretical analyses, wefind that our conclusions are not qualitatively affectedwhen the seeds are randomly
selected in two communities, and our theory produces results that agreewith simulation results when
community networks are scale-free. In addition, the amount of heterogeneity in the communal degree
distribution does not qualitatively affect these phenomena.Our findings enrich our understanding of how social
contagions transmit through communal systems. Our theory in this work can be used to study epidemic
spreading [6, 49–51], the effects of vaccination [52], and the impact of human behavior [53, 54] on epidemics. In
futureworkwewill further explore our approach using real social contagion data and digital virtual asset
security.
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