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h i g h l i g h t s

• We propose a generalized social contagion model on two interconnected planar lattices.
• The dependency of prevalence on the transmission rate is always continuous.
• The social contagions could be strongly promoted.
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a b s t r a c t

Research on dynamical processes in interconnected spatial networks has expanded in
recent years, but there has been little focus on social contagions. Using a general social
contagion model, we numerically study how an interconnected spatial system composed
of two interconnected planar lattices influences social contagion dynamics. When infor-
mation is transmitted and allows for a probability of behavior adoption, strongly intercon-
nected lattices stimulate the contagion process and significantly increase the final density
of adopted individuals. We perform a finite-size analysis and confirm that the dependency
of prevalence on the transmission rate is continuous regardless of the adoption probabil-
ity. The prevalence grows discontinuously with the adoption probability even when the
transmission rate is low. Although a high transmission rate or a high adoption probability
increases the final adopted density in weak interconnected lattices, the prevalence always
grows continuously in these networks. These findings help us understand social contagion
dynamics in interconnected lattices.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Many real-world networks are systems in which isolated networks are interconnected [1–3]. Nodes in communications
networks, for example, are strongly interconnected with nodes in electrical power networks [2]. These systems have both
internal connectivity linkswithin each individual network and also interconnections between the networks that significantly
influence the dynamical processes that spread through them [4–8]. In epidemic propagation a susceptible individual
in contact with an infected individual becomes infected with a probability β . For example in the susceptible–infected–
susceptible (SIS) epidemic model, above a critical threshold βc the epidemic is not able to propagate in a single network,
but a global endemic state may occur even in a coupled systemwith a small number of interlink connections [9]. In strongly
interconnected network systems, the susceptible–infected–recovered (SIR) epidemic model does not spread below a critical
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infection strength, but in weakly coupled network systems a mixed phase transition of the final epidemic size occurs below
this critical value [10]. Many real-world systems such as power grids and communication networks are spatially embedded
[11–14] and are typically modeled using Euclidean lattices [15,16]. The heterogeneous coupling between interconnected
lattices strongly promotes cooperation in the prisoner’s dilemma game [17]. In the SIS model, when infection rates are low
the interconnected spatial constraints in a lattice causes the fraction of infected individuals in interconnected lattices to
be lower than in interconnected Erdős–Rényi (ER) networks that are characterized by a Poisson degree distribution with
an average degree ⟨k⟩ = 4 [18]. When infection rates are high, however, the infection density is higher in interconnected
lattices than in interconnected ER networks [18].

Unlike the dynamics of epidemics, the dynamics of social contagions [19–25], which can range from the adoption of
social innovations [26–30] to the spread of healthy behaviors in response to patterns of human obesity [31], are strongly
affected by social reinforcement. Previous studies have shown that multiple affirmations of the credibility of a piece of
news or a new trend strongly affect social contagion. To be specific, the probability that an individual will adopt a new social
behavior depends on social reinforcement,which is oftenmeasured in terms of the number of contacts an individual haswith
credible neighbors who have already adopted the behavior [32–36]. In a threshold model widely used to describe the social
reinforcement effect, each individual is either susceptible (S) or adopted (A) [37]. A susceptible individual adopts a social
behavior when the number or fraction of adopted neighbors exceeds an adoption threshold. In the numerous studies that
show how network structure strongly influences this thresholdmodel [38–43], the social reinforcement of social contagions
is powered by nonredundant information transmissions fromneighbors, i.e., the repeat transmission of the same information
between two neighbors is disallowed. Because in some examples of social contagion, such as the spread of high-risk social
movements, avant garde fashions, and unproven technologies [35], information transmissions between two individuals is
only partially effective because susceptible individuals regard the credibility and legitimacy of the newbehavior to be limited
[31]. Based on the nonredundant social contagion dynamic in an isolated complex network, Wang et al. [20] found a phase
transition in which the dependence of the final adoption size on the transmission probability changes from discontinuous
to continuous [20]. However spatial characteristics of complex networks are often neglected in the study of nonredundant
social contagions dynamics.

Herewe use a novel social contagionmodel to study non-redundant social contagions in interconnected spatial networks.
We show how the interconnected lattices influence the level of social contagion, andwe explore the role of interconnections
in phase transitions. In general, we find the discontinuous phase transition in the order parameter of the giant connected
cluster of adoption prevalence in strongly interconnected lattice networks and the continuous phase transition in weakly
interconnected lattice networks. Specially, although the social contagions could be strongly promoted high adoption
probability in both weak and strong interconnected networks, the type of phase transition is continuous. The finite-size
analyses are performed to locate the scaling relations near the transition points of discontinuous and continuous phase
transitions.

We organize the paper as follows. In Section 2 we describe an interconnected spatial network and a social dynamics
model. In Section 3 we use a finite-size analysis to study the phase transition. In Section 4 we present our conclusions.

2. Model

2.1. Interconnected lattice network

Many real-world systems, such as power grids and communication networks, are spatially embedded and are typically
modeled using Euclidean lattices [15,16]. Because interconnections between networks can significantly influence the
dynamic processes that spread through them, our interconnected spatial network is composed of two identical square
lattices A and B of linear size L and N = L × L nodes with periodic boundaries. The two lattices represent two different
social groups. For example, a couple can discuss household products in their friendship group. A wife or husband adopts a
new product if many of their friends have adopted it. It either the wife or husband adopts it, the other also adopts it. In each
lattice all nodes are arranged in a matrix of L × L, and each node is connected to its four lattice neighbors via connectivity
links (i.e., links between two nodes in the same lattice). Because theremay be interconnections between individuals in group
A with individuals in group B (e.g., relationships between friends), we randomly select a fraction p of nodes in lattice A to
be connected with a random fraction p of nodes in lattice B. Here each interconnected node has only one interconnected
link. The total number of interconnected links in the interconnected spatial network is determined by the parameter p,
i.e., the number of interconnected links is pN . Note that the greater the number of interconnected links the higher the level
of interconnection between the two lattices. For simplicity we define the networks with a large value of p to be strongly
interconnected, and those with a small value of p to be weakly interconnected.

2.2. Dynamic of social contagions

We designate each node in the interconnected lattices to be either susceptible (S), adopted (A), or recovered (R).
Susceptible individuals have not adopted the behavior and are susceptible to receiving behavior information. Adopted
individuals have adopted the behavior and are able to transmit the information to susceptible neighbors. Recovered
individuals have become immune to the behavior and are no longer a part of the system.Within the same lattice, individuals
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Fig. 1. (Color online) Sketch of the ways of adopting the social behavior on interconnected lattices. (a) Intralayer propagation: At t = 1, the individual Ai is
successfully exposed to one adopted neighbor, and now the number of new received information ismi(1) = 1 andmi increases by 1. There are nomore new
adopted neighbors over the next k − 2 time steps, andmi remains unchanged. At t = k, two new adopted neighbors successfully transmit the information
to i, and nowmi(k) = 2. The individual Ai becomes adopted with probability π (mi), wheremi =

∑t=k
t=0 mi(t) = 3. (b) Interlayer propagation: At t = k, Ai is

adopted. At t = k + 1, its interconnected node Bi becomes adopted due to the interlayer propagation.

can retain their memory of previous behavior information received from neighbors. A susceptible individual adopts the
new behavior with a probability that depends on the cumulative units of information received from adopted neighbors
and become adopted. We designate this type of adoption intralayer propagation. Taking into account the nonredundant
information diffusion in the social contagion processes [35], a susceptible individual i is assumed to adopt the behavior
with a probability

π (mi) = 1 − (1 − ϵ)mi , (1)

where mi is the cumulative number of information units a susceptible individual has received from neighbors in the single
lattice. For example, a susceptible node Ai becomes adopted with probability π (mi) at time t = k, where mi =

∑t=k
t=1 mi(t),

mi(t) is the number of information units Ai receives from its adopted neighbors at time t [see Fig. 1(a)], and ϵ is the unit
adoption probability. A susceptible individual adopts the new behavior after its corresponding interconnected node in the
other lattice has adopted it. We designate this type of adoption interlayer propagation [see Fig. 1(b)].

We implement the social contagion dynamic simulation as follows. At the initial stage we randomly select a density of
0.05% of lattice A individuals in the system to be adopted, and we designate all others susceptible. These adopted seeds
produce several isolated connected clusters of adopted nodes. Each susceptible individual receives mi information units
from adopted neighbors, mi = 0 initially. At each time step, each adopted individual transmits with a probability β the
behavior information to susceptible neighbors in the same lattice via connectivity links. When a susceptible node i receives
the information from an adopted neighbor for the first time, mi increases by one and the adoption probability becomes
π (mi + 1) and π increases withmi and ϵ. The information transmission from the adopted neighbor to node i is forbidden in
the following contagion process, whichmeans that the information from an adopted node to one of its susceptible neighbors
can only be transmitted once.Whennode i becomes adopted, interlayer infection causes the susceptible interconnected node
to become adopted at the next time step. Infected nodes can then lose interest in the social behavior and with a probability
µ become recovered. When an adopted node recovers it no longer propagates the social behavior. Each time step is discrete
and increases by ∆t = 1. The dynamics of social contagion evolve until the system reaches the steady state where there are
no more adopted nodes in the network, and the only possible states are S or R. Thus in the steady state the fraction of nodes
in the giant component of recovered nodes is the order parameter of the phase transition.

3. Results

We here perform extensive numerical simulations of social contagions in interconnected lattice networks. We define
the effective infection rate λ = β/µ, and set the recovery probability µ to 1. Fig. 2 shows an analysis of the prevalence
(i.e., the average density of final recovered individuals) as a function of the transmission probability λ in lattice A. Here the
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Fig. 2. (Color online) The prevalence R as a function of λ within different values of p and ϵ. We perform the experiments on 102 different networks with
N = 104 , each of which are tested in 103 independent realizations.

Fig. 3. (Color online) The fraction of nodes in the giant component of the recovered nodes G1 as a function of λ within different L. In subfigures (a)–(d), the
parameters are respectively chosen as p = 0.1, ϵ = 0.5, p = 0.1, ϵ = 0.8, p = 0.9, ϵ = 0.5 and p = 0.9, ϵ = 0.8. We perform the experiments on 102

different networks, each of which are tested in 103 independent realizations.

large adoption probability (i.e., ϵ = 0.8) ensures a high information adoption rate and increases the prevalence. Networks
with high p values have a high level of interlayer infection and propagate the behavior more easily than when the p value is
low. Fig. 2 shows that there is a phase transition in the prevalence R at a critical threshold λc that depends on the fraction
of interconnected nodes p and the adoption probability ϵ. As p and ϵ increase, the critical threshold λc decreases, and the
system becomes more resilient to be in the adopted state. Because networks A and B are symmetrical, we show only R in
network A.

Fig. 3 uses a finite-size analysis to study the order parameter of the phase transitions (i.e., the fraction of nodes in the
giant component of recovered nodes G1) for different lattice sizes L. In each subgraph the difference in the values of G1 for
different L is very small when λ is larger than some value. For example, the values of G1 for different L are approximately
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Fig. 4. (Color online) The prevalence R as a function of ϵ within different values of p and λ. We perform the experiments on 102 different networks with
N = 104 , each of which are tested in 103 independent realizations.

the same when λ > 0.73 for p = 0.1, ϵ = 0.5. Note that although parameters p and ϵ strongly affect the dependency of
prevalence on the transmission rate λ, there is always a continuous phase transition [44].

For a given p and a transmission probability λ above the critical threshold λc , we plot the prevalence as a function of ϵ [see
Fig. 4]. When λ and p are small, both the intralayer propagation and the interlayer propagation are suppressed. Although the
adoption probability is large, the social contagion cannot spread. The information transmission among neighbors within the
same lattice increases for large value of λ, and this further stimulates the adoption of the social behavior, especially when p
is large. Fig. 4 shows that there is a phase transition in the prevalence R at a critical threshold ϵc that depends on the fraction
of interconnected nodes p and the transmission probability λ. As p and λ increase, the critical threshold ϵc decreases, and
the adopted state of the system becomes more resilient.

Fig. 5 shows the order parameter of the phase transition G1 for different lattice sizes L. Note that the values of G1 for
different L values are approximately the same when λ is larger than some value for p = 0.1, λ = 0.4, and λ = 0.7, but that
the curves intersect at ϵ ≈ 0.476 for p = 0.9, and λ = 0.4 and ϵ ≈ 0.228 for p = 0.9, and λ = 0.7. This indicates that
parameter p strongly affects both prevalence versus ϵ and the type of phase transition. When p is large, a small fraction of
initial spreaders can stimulate the discontinuous dependency of G1 on ϵ. When p is small, the social behavior spreads as a
continuous phase transition [44].

To locate the critical point of the transition (i.e., λc for fixed p and ϵ or ϵc for fixed p and λ) [45,46], in the discontinuous
phase transition we calculate the number of iterations (NOI) during which at least one new individual adopts the behav-
ior [20], and in the continuous phase transition we calculate the fraction of nodes in the second-largest components of the
recovered nodes G2. The NOI exhibit a maximum value at the critical point of discontinuous phase transition, and the G2

exhibits a maximum value at the critical point of continuous phase transition. Because Fig. 5 shows the continuous phase
transition for p = 0.1, λ = 0.4 and the discontinuous phase transition for p = 0.9, λ = 0.7, we show the analysis of the
critical point using only these parameters in the example in Fig. 6.

Fig. 6(a) shows that when p = 0.1, λ = 0.4, and the peak of G2 versus ϵ shifts to the right as L increases. The value of
ϵ that corresponds to the peak for each L is defined to be the critical point of the continuous phase transition (i.e., ϵII

c (L)).
To find the scaling relation near the critical points [47], we use the least-squares method to fit ϵII

c − ϵII
c (L) versus 1/L [see

Fig. 6(b)], and find that ϵII
c − ϵII

c (L) ∼ (1/L)0.5516 at ϵII
c = 0.9875. Fig. 6(c) shows that when p = 0.9, λ = 0.7, and the peak

of the NOI versus ϵ shifts to the left with L. We define the value of ϵ corresponding to the peak for each L to be the critical
point of the discontinuous phase transition (i.e., ϵI

c(L)). We then use the least-squares method to fit ϵI
c(L)− ϵI

c versus 1/L [see
Fig. 6(d)], and find that ϵI

c(L) − ϵI
c ∼ (1/L)0.2232 at ϵI

c = 0.2089.

4. Conclusions

We have studied social contagions in interconnected lattices and propose a general threshold model to describe the
social reinforcement of social contagions. Our model shows that a susceptible individual adopts a new behavior with a
probability proportional to the number of cumulative units of information they have received from adopted neighbors in
the same lattice. They also adopt a new behavior if their interconnected node in the other lattice has adopted it. We first
investigate the prevalence versus the transmission rate λ. Although a high adoption probability ϵ strongly promotes social
contagions in both weakly and strongly interconnected networks, the phase transition of the prevalence is continuous.
For a given transmission rate, we study prevalence versus adoption probability ϵ and find that a strongly interconnected
structure increases the prevalence. In strongly interconnected networks we find discontinuous phase transitions even when
the transmission rate is low. In weakly interconnected networks we find continuous phase transitions. We use a finite-size
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Fig. 5. (Color online) The fraction of nodes in the giant component of the recovered nodes G1 as a function of ϵ within different L. In subfigures (a)–(d), the
parameters are respectively chosen as p = 0.1, λ = 0.4, p = 0.1, λ = 0.7, p = 0.9, λ = 0.4 and p = 0.9, λ = 0.7. The results are averaged over 102

× 103

independent realizations in 102 networks.

analysis to locate scaling relations near the transition points both in discontinuous and continuous phase transitions. For
example, when p = 0.1, λ = 0.4, the scaling relation is ϵII

c − ϵII
c (L) ∼ (1/L)0.5516 at ϵII

c = 0.9875. When p = 0.9, λ = 0.7, we
find that ϵI

c(L)− ϵI
c ∼ (1/L)0.2232 at ϵI

c = 0.2089. Our results indicate that spatial interconnections are important in complex
contagions, and they may help us understand the phase transitions that occur in the social contagion process.

Our theoretical research here on the dynamics of social contagions could have a reference value when predicting and
understanding the spread of news, products, and political points of view, but further theoretical studies are needed because
thenon-Markovian character of ourmodel and thenon-local tree-like structure of our interconnected latticemakedescribing
the dynamical correlations among the states of neighbors difficult. The social contagions dynamics in interconnected lattices
with arbitrary interconnections for each node deserve further study. In addition, the integrative effect of social contagion
dynamics on the phase transition when there is limited contact ability [21], co-infections [48], a multilayer system [3], or
temporal interactions [49] should be further explored.
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Fig. 6. (Color online) The finite-size analyses near the critical points for p = 0.1, λ = 0.4 (a–b) and p = 0.9, λ = 0.7 (c–d). (a) G2 versus ϵ. (b) ϵII
c − ϵII

c (L)
versus 1/L. (c) NOI versus ϵ. (d) ϵI

c (L) − ϵI
c versus 1/L. The arrows in (c) and (d) mark the intersection points. The results are averaged over 102

× 103

independent realizations in 102 networks.
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