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We study complex networks with weights wij associated with each link connecting node i and j. The weights
are chosen to be correlated with the network topology in the form found in two real world examples: �a� the
worldwide airport network and �b� the E. Coli metabolic network. Here wij �xij�kikj��, where ki and kj are the
degrees of nodes i and j, xij is a random number, and � represents the strength of the correlations. The case
��0 represents correlation between weights and degree, while ��0 represents anticorrelation and the case
�=0 reduces to the case of no correlations. We study the scaling of the lengths of the optimal paths, �opt, with
the system size N in strong disorder for scale-free networks for different �. We find two different universality
classes for �opt in strong disorder depending on �: �i� if ��0, then for ��2 the scaling law �opt�N1/3, where
� is the power-law exponent of the degree distribution of scale-free networks, and �ii� if ��0, then �opt

�N�opt with �opt identical to its value for the uncorrelated case �=0. We calculate the robustness of correlated
scale-free networks with different � and find the networks with ��0 to be the most robust networks when
compared to the other values of �. We propose an analytical method to study percolation phenomena on
networks with this kind of correlation, and our numerical results suggest that for scale-free networks with �
�0, the percolation threshold pc is finite for ��3, which belongs to the same universality class as �=0. We
compare our simulation results with the real worldwide airport network, and we find good agreement.
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I. INTRODUCTION

Recently attention has focused on the topic of complex
networks, which characterize many natural and man-made
systems, such as the Internet, airline transport system, power
grid infrastructures, and biological and social interaction sys-
tems �1–3�. Network structure systems are visualized by
nodes representing individuals, organizations, or computers
and by links between them representing their interactions.
Significant topological features were discovered, such as the
clustering and small-world properties �4�. There exists evi-
dence that many real networks possess a scale-free �SF� de-
gree distribution characterized by a power-law tail given by
P�k��k−�, where k is the degree of a node and � measures
the broadness of the distribution �5�. In most studies, all links
or nodes in the network are regarded as identical. Thus the
topological structure of the network determines all the other
properties of the network, such as robustness, percolation
threshold �6,7�, the average shortest path length, �min �8�, and
transport �9�.

In many real world networks the links are not equally
weighted. For example, the links between computers in the
Internet network have different capacities or bandwidths and
the airline network links between different pairs of cities
have different numbers of passengers. To better understand
real networks, several studies have been carried out on
weighted network models �10–19�. For weighted networks,
an important quantity that characterizes the information flow
is the optimal path, which is the path that minimizes the total
weight along the path �15–21�. Optimal paths play important
roles in many dynamic systems such as current flow of ran-
dom resistor networks, where the dynamics of current flow is

strongly controlled by the optimal path �18,19�. The above
studies assume that the weights on the links are purely
random—i.e., uncorrelated with the topology of the network.

However, recently several studies of networks with
weights on the links, such as the worldwide airport network
�WAN� and the E. coli metabolic network �22–27�, show that
the weights are correlated with the network topology �22,24�.
For the WAN, each link is a direct flight between two air-
ports i and j and the weight wij is the number of passengers
between them during a period of time. The mean traffic on
links can be characterized by �Tij���kikj��, where ki and kj

are the degrees of nodes i and j and ��0 �24,27�.
In this paper, we study how the correlations between the

topology and weights affect the robustness, the percolation
threshold, the scaling of the optimal path length, and the
minimum spanning tree by studying the weighted SF model.
The WAN was found to be a SF network with ��2 �22,26�.
We model the dynamic transport process of the WAN as a SF
network with correlated weights representing the number of
passengers �22�. We study robustness and scaling of the op-
timal paths and find good agreement with the real WAN re-
sults.

II. NETWORKS WITH TOPOLOGICALLY
CORRELATED WEIGHTS

A. Network model with topologically correlated weights

In studies on weighted networks such as the WAN and E.
Coli metabolic network, the weights on the links represent
different quantities. The weight in the E. Coli metabolic net-
work represents the flux of a link, i.e., the relative activity of
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the reaction on that link �23�. For both real networks, the
weight associated with a link measures the preference level
of that link. The higher the weight is, the easier it is to go
through that link. In this sense, the inverse of the weight on
both networks is actually a plausible evaluation of the “cost”
to traverse that link. In the WAN, the “cost” includes the
airfare, time, convenience, etc. We assume that the higher is
the cost on a link, the less traffic it has.

From this perspective, we apply the optimization problem
�17� to the SF network with generalized correlated weights
�24,28�. To each link connecting a pair of nodes i and j in a
SF network we assign a weight wij, representing the cost to
transverse that link, with the form

wij 	 xij�kikj��, �1�

where xij is a random number, � is a parameter that controls
the strength of the correlation between the topology and the
weight, and ki and kj are the degree of node i and node j. A
random number xij could be chosen to mimic the statistical
distribution of the real network, and in this paper xij is taken
from a uniform distribution between 0 and 1 �29�. Here we
will be interested in the entire range of �.

The minimum spanning tree �MST� of SF networks with
correlation of Eq. �1� represents the structure carrying the
maximum total traffic in a real WAN and the skeleton of the
most used paths in the E. Coli metabolic network. The MST
is the tree spanning all nodes of the network with the mini-
mum total weight. With weights according to Eq. �1� and �
=−0.5, the MST is the same as the tree that maximizes the
total traffic out of all possible spanning trees of the WAN
because the structure of the MST is only determined by the
relative order of the links according to the weight, which is
preserved under the inverse transformation. For this reason,
in our simulation, we only show results for �=1,0 ,−1 rep-
resenting ��0, �=0, and ��0 �24,30�. As an optimized
tree, the MST playing the role of the network skeleton is
widely used in different fields, such as the design and opera-
tion of communication networks, the traveling salesman
problem, the protein interaction problem, optimal traffic
flow, and economic networks �24,31–36�. Thus studying the
effect of correlations of the type of Eq. �1� on the structure of
the MST may explain the transport on such weighted net-
works and possibly will lead to a better understanding of the
origin of such correlations in real networks. Moreover, the
MST is the union of all optimal paths in the strong disorder
�SD� limit �20�, where one link on a path dominates the total
weight of the path. Thus, the scaling of the optimal paths
also reveals an important aspect of the structure of the MST.

B. Scaling of the length of the optimal path

The case �=0 represents the uncorrelated case, which is
studied in Ref. �17�. In the SD regime, the total weight of a
path is controlled by a single link with the highest cost on
that path �15–21�. For uncorrelated SF networks, the length
of the optimal path in SD, �opt, scales with N as �17�

�opt � 
N�opt, � � 3,

ln�−1N , 2 � � � 3,
�2�

with �opt=1/3 for ��4 and �opt= ��−3� / ��−1� for 3��
�4.

From the definition of the weights �see Eq. �1��, in the
case ��0, we expect that correlations will affect the links
connected to the high degree nodes �hubs�. The optimal paths
behave either as hub-phobic or as hub-philic depending on
whether � is positive or negative. Hub-phobic ���0� means
that the optimal paths dislike to go through hubs because the
cost is higher. Hub-philic ���0� means that the optimal
paths like to go through hubs because they cost less. Thus �
is a parameter controlling the importance level of hubs in the
optimized transport process. Due to the importance of the
hubs in SF networks, we expect that the scaling of �opt will
be affected by such correlations. We expect in the hub-
phobic regime that the optimal paths should be topologically
similar to an Erdös-Rényi �ER� graph �17�, where there are
almost no hubs. Thus �opt will scale with N with exponent
1/3 as in ER networks �17� for all the values of ��2. On the
other hand, in the hub-philic regime, the hubs are preferred
and the optimal paths will avoid small or intermediate de-
grees, which are less important for the SF networks and have
minor influence on the optimal paths. Thus in this case we
expect that �opt will scale similarly to the uncorrelated case.

The SD limit can be reached by approaching absolute
zero temperature if passing through a link is regarded as an
activation process with a random activation energy 	ij and
wij 	exp�
	ij�, where 
 is the inverse temperature, since for

→� a single link in the path dominates the sum �wij along
the path. For a general form of weight, which is not expo-
nential but rather such as Eq. �1�, the SD limit can be reached

FIG. 1. ��opt� as a function of �a� N1/3, �b� ln��−1�N, �c�
N��−3�/��−1�, and �d� N1/3 in SD for �a� �=1 with �=5 ���, �=3.5
���, and �=2.5 ���; �b� �=2.5 with �=0 ��� and �=−1 ���; �c�
�=3.5 with �=0 ��� and �=−1 ���; and �d� �=5.0 with �=0 ���
and �=−1 ���.
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by generating the MST because it provides the optimal path
between any two nodes of a network in the SD limit �20�. In
this paper, we use the MST to compute the optimal paths in
the SD limit.

To model the WAN, we generate the SF networks using
the Molloy-Reed algorithm with the constraint of disallow-
ing parallel links �two or more links connecting the same two
nodes� and self-loops �node connecting with itself� �37,38�.
Then for each link ij in the network, we assign a weight
according to Eq. �1�.

We build the MST on the largest connected component of
a graph using Prim’s algorithm �39�. The tree starts from any
node in the largest connected component and grows to the
nearest neighbor of the tree with the minimum cost. This
process ends when the MST includes all the nodes of the
largest connected component. This process is analogous to
invasion percolation used in physics �40�. As the MST is a
tree, there is only a single path between any pair of nodes,
which is the optimal path in the SD limit �20�.

FIG. 2. Left column �a�–�c�: P� as a function of q, the concentration of removed links with �a� �=2.5, �b� �=3.5, and �c� �=4.5. Right
column �d�–�f�: �S2� /N as a function of q with �d� �=2.5, �e� �=3.5, and �f� �=4.5.
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An equivalent algorithm to find the MST is the “bombing
algorithm” �15,17�, where we start with the full network and
remove links in descending order of the weight only when
the removal of a link does not disconnect the graph. The
algorithm ends, and the MST is obtained, when no more
links can be removed without disconnecting the graph. Then
we calculate the mean value of �opt between a pair of ran-
domly chosen nodes and average over many pairs and many
realizations.

Figure 1�a� shows �opt as a function of N1/3 for several
values of ��2 with �=1. The linear behavior supports the
expected scaling for the SF networks in the hub-phobic re-
gime ���0�:

�opt � N1/3 �� � 2,� � 0� . �3�

Equation �3� supports our hypothesis that if the hubs are
dynamically avoided, the SF networks behave the same as an
ER networks.

In the hub-philic regime ���0�, we find that �opt scales
the same as for the uncorrelated case ��=0�. In Figs.
1�b�–1�d�, we plot the scaling behavior of �opt as a function
of N according to the scaling found for the uncorrelated case
�17�. Our numerical results suggest that the scaling behavior
of �opt in the hub-philic regime has the same scaling form of
Eq. �2� as the uncorrelated case. However, in the hub-philic
regime, �opt is much smaller than that of the uncorrelated
case, which shows the advantage for the optimal paths to
pass through the hubs.

FIG. 3. P� as a function of q with �a� �=2.5, �b� �=3.5, and �c�
�=4.5 for strategy I ���, attacking nodes according to degree of
nodes, and strategy II �solid line�, attacking links according to its
weight for the SF networks in the hub-phobic regime ���0�.

FIG. 4. �a� ��min�, the average length of the shortest path as a
function of q, the concentration of removed links in descending
order of the weight for simulated SF networks with �=1 ���, �
=0 ���, and �=−1 ���. �b� The same calculation for the real WAN
with �=1 �solid line�, �=0 �dotted line�, �=−0.5 �dot-dashed line�,
and �=−1 �dashed line�.
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C. Robustness

Percolation properties of random networks with given de-
gree distributions have been extensively studied �6,7,41–43�.
One of the most striking results �6�, due to its important
implications, is the absence of a percolation threshold in the
uncorrelated random SF networks with ��3. In other words,
in this type of network, one has to remove almost all nodes
before the network collapses into disconnected components
because the few hubs always keep the remaining network
connected �6�. Translated into epidemic context, it means
that an epidemic threshold below which the epidemics can-
not propagate approaches zero as N→� �44�.

Robustness of a network can be characterized by the frac-
tion of the links or nodes one has to remove in order to
disconnect the whole network. Nevertheless, almost all the
analytical results on robustness obtained up to now implicitly
refer to uncorrelated networks and little is known about the
effects of topologically correlated weights on the percolation
properties of networks. To test the robustness in weighted
correlated networks, we calculate the ratio P�	�S� /N as a
function of q, where �S� is the average mass of the largest
remaining cluster, N is the mass of the whole network, and q
is the fraction of removed links. P� basically is the probabil-
ity to find a node belonging to the giant component. In order
to compute P� after building the network, we assign weights
on links according to Eq. �1�. Then we remove a fraction q of
links in descending order of weights and calculate P�

through �S� /N. In order to identify the percolation threshold
pc=1−qc we compute also the average mass of the second
largest component �S2� and estimate qc from its maximum
value�40� .

In Fig. 2 we show the results for networks
with N=8192 and different values of � and �. The peak of
�S2� indicates the position of pc�N�. We can see that for un-
correlated case ��=0�, as expected pc�N� is close to zero for
�=2.5. In the hub-phobic ���0� regime, pc�N� is always
finite as expected due to its topological similarity with ER
networks. However, in the hub-philic regime ���0�, first we
observe that the pc�N� is always smaller than the uncorre-
lated case, which means that networks with ��0 are more
robust than uncorrelated ones. Second, pc�N=8192� in the
hub-philic regime ���0� is very close to zero even for �
=3.5,which suggests that pc��� might be zero. This is very
unusual because it is known that in the uncorrelated case,
pc��� is finite for ��3 �6�. A similar behavior pc�N� close to
zero is obtained for ��0 and 3���4. Thus, for these val-
ues of �, the case of the hub-philic regime might correspond
to a new universality class. This question will be discussed in
Sec. II D.

Robustness is directly related to the attacking and immu-
nization strategies �45�. The calculations in Fig. 2 show the
robustness of networks against attacks according to the link
weights. There are other types of nonrandom attacking strat-
egies such as the following: strategy I, intentionally attacking
node according to its degree �42,46�, and strategy II, inten-
tionally attacking links according to its weight in the SF
network at the hub-phobic regime ���0�. It was found that
strategy I is an efficient way of attacking a SF network

�42,46�. For strategy II, in the hub-phobic regime, the links
connecting to hubs will be attacked first. Next we compare
the efficiency of these two types of intentional attack strate-
gies. To fairly compare the two strategies, we calculate P� of
both intentional attack strategies as a function of q, the frac-
tion of removed links. For strategy I, attacking a node is
equivalent to attack all the links of that node. In Fig. 3, we
see that these two strategies are similar to each other. Com-
paring the position of qc for these two strategies, we can
conclude that strategy II is actually slightly more efficient
than strategy I.

From Fig. 2�a� we can see that

pc�� = − 1� � pc�� = 0� � pc�� = 1� , �4�

a result which is not surprising because as � increases more
central links connecting high degree nodes are removed. A
surprising result is that

P��� = 1� � P��� = 0� � P��� = − 1� �5�

for a wide range of q values—e.g., for �=2.5 below qc
�0.7. This is probably due to the fact that when removing
central links connecting high degree nodes the remaining
network does not become disconnected as shown in the study
of the k core of networks �47�. The effect of removing those
central links is mostly to increase the distance.

FIG. 5. �a� ln c0 as a function of ln kmax. �b� Plot of the succes-
sive slopes of �a� as a function of 1/ ln kmax.
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To test our hypothesis we calculate the average length of
the shortest path �min of the largest cluster as a function of q
for the three different correlation cases. In Fig. 4�a� we plot
��min� as function of q. We can see that

��min��=1 � ��min��=0 � ��min��=−1 �6�

for a wide range of q as predicted. The peaks for �=1 and
�=0 are at the same position as the corresponding qc of Fig.
2�d� because when q�qc the whole network is fragmented.
We compute ��min� also for the real WAN and obtain similar
results �see Fig. 4�b� and Sec. III�.

D. Percolation analysis of correlated scale-free networks

An important question is whether, for ��0 and 3��
�4, pc��� is zero. In simulations we observe that pc��� is
incredibly close to zero for 3���4. However, it might be a
result of finite-size effects and pc is indeed very close to zero
but not zero. To further test this possibility, we propose the
following analytical method.

Near pc, the structure of the giant component is like a tree.
The giant component at the percolation threshold can be
viewed as a growing process of a tree. Assuming that at

some layer the number of nodes with degree k is n�k�, then
the number of nodes of degree k� at the next level n�k��
satisfies

n�k�� = �
k

n�k��k − 1�
k�P�k��

�k��
��k�,k� , �7�

where ��k� ,k� is the probability that a node with degree k is
connected to a node of degree k�. Here we are interested in
the hub-philic regime ��=−1�. Since we remove the links in
descending order, we can assume that any link with weight
above 1/c are cut. The links left are only links with weights
below 1/c, which is represented by the condition kk��c.
Equation �7� can be therefore simplified to

n�k�� = �
k=c/k�

�

n�k��k − 1�
k�P�k��

�k��
. �8�

The dimension of the vector n�k� is actually the maximum
degree kmax. For a SF network with system size N, kmax
�N1/��−1� �6,48�. Thus controlling kmax, the dimension of the
vector n�k� is actually equivalent to controlling the system
size N. For a fixed kmax, if Eq. �8� has at least one eigenvalue
that is above 1, the giant component will grow to infinity,
which means it is above pc; on the other hand, if all of the

FIG. 6. �a� P� as a function of q, the concentration of removed links in descending order of the weight for our model with �=2.5
�symbols� and the real WAN �lines�. For the model: �=1 ���, �=0 ���, and �=−1 ���. For the WAN: �=1 �solid line�, �=0 �dotted line�,
�=−0.5 �dot-dashed line�, and �=−1 �dashed line�. �b�–�d� �S2� /N as a function of q for our model with �=2.5 �symbols� and the real WAN
�solid lines� with �b� �=1, �c� �=0, and �d� �=−1.
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eigenvalues are below 1, the system is below pc. We basi-
cally change the c value and compute the normal of vector
n�k� recursively and find the critical c value c* at which the
normal of vector n�k� changes from converging at c* to di-
verging at c*+1. Thus, from the definition of percolation,
pc�N� can be numerically calculated using the relation

pc�N� = �
kk��c*

kk�P�k�P�k��
�k�2 dkdk�. �9�

If c*�kmax� diverges as kmax→�, from Eq. �9� it follows that
pc��� is zero. Otherwise, pc��� is finite. Thus, we convert the
question of whether pc��� is zero for 3���4 into the ques-
tion of whether c*�kmax� diverges with kmax.

Figure 5 shows numerical results of c*�kmax� as kmax in-
creases. It shows that for ��3, c* grows with kmax as a
power law, which confirms that when ��3, pc��� is zero
�6�. However, for 3���4, Fig. 5�b� suggests that the suc-
cessive slopes of ln c* versus ln kmax approach zero for 3
���4, which indicates a finite pc��� when 3���4. We
can see the strong finite-size effect from Fig. 5, where the
convergence of c* for �=3.5 happens only for kmax�104

corresponding to N�kmax
�−1 �1010, which we are not able to

reach in simulations with present computing power.

III. IMPACT OF THE HUB-PHILIC CORRELATION
ON REAL WORLD NETWORKS

Real world networks such as the WAN and the E. Coli
metabolic network are found to have a hub-philic type cor-
relation ��=−0.5� �22–24�. Using the WAN as an example,
the passengers tend to go through the large airports, which
actually shortens and optimizes the transport performance of
the entire WAN network. Our simulations show the advan-
tage of networks in the hub-philic regime over uncorrelated
networks from the perspective of the optimal paths in the SD
regime �see Figs. 1�b�–1�d��. Also they show that networks
in the hub-philic regime are also more robust than uncorre-
lated networks �see Fig. 2�. Associated to the WAN there is
only one value of �=−0.5, so to see the effect of different
� on the real WAN, we use the following method. Assign-
ing the weights according to Eq. �1�, we first compute xij

real,
the value of xij from the real weights of the WAN. Thus we
leave � as a parameter and we can change its value to get
either the hub-philic or hub-phobic regime. In this case,
when �=−0.5, the weight is the same as in the original
WAN.

Figure 6 compares the robustness calculations �see also
Figs. 2�a� and 2�d�� of our numerical results with the real
WAN. From the calculation of both the largest and second
largest clusters, we can see that real WAN has behavior simi-
lar to the network model with generalized correlated weights.
Notice that Fig. 6�a� shows that �=−0.5 is more robust than
�=−1, which shows the advantage of �=−0.5 in the real
WAN �30�. The second largest cluster calculation �see also
Figs. 6�b�–6�d� and Fig. 2�d�� indicates where the pc is; we
see that the WAN and our model are surprisingly similar.

To compare the optimal paths between the real WAN and
the SF network with generalized correlated weights, we cal-
culate ��opt� as a function of �min. Figure 7 shows the simu-
lation results for the SF model and for the real WAN �Fig.
7�b��. We observe that for ��0, ��opt� is almost the same as
�min because in the hub-philic regime the optimal paths tend
to go through the hubs, which shortens the length of the
optimal paths. In the hub-phobic regime ���0�, the optimal
paths tends to avoid the hubs, which naturally generate large
length of the optimal paths. We also see that in both the real
WAN and the model for ��0, and for short �min, ��opt�
increases sharply, while for large �min, ��opt� increases
weakly with �min. This is probably related to the crossover
from strong disorder in short length scales to weak disorder
in large length scales that was observed in several earlier
studies �16,19,20�.

IV. CONCLUSIONS

Motivated by studies of the WAN and E. Coli metabolic
network �22,24�, we analyze the three different regimes of
a network model with generalized correlated weights
�22,28�—Eq. �1�—as defined by the value of the parameter
�: the hub-philic regime ���0�, the hub-phobic regime

FIG. 7. �a� Plot of ��opt� as a function of �min for our model of
correlated weighted SF network with �=2.5, in the SD limit ���,
�=2 ���, �=1 ���, �=0 ���, and �=−1 ���. �b� Same plot as in
�a� for the real WAN with �=1 ���, �=0 ���, �=−1 ���, and
�=−0.5 ���.
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���0�, and the uncorrelated regime ��=0�. We study the
properties of the optimal path and find two universality
classes for the length of the optimal path �opt: �i� For net-
works in the hub-phobic regime ���0�, the optimal path on
SF networks with any ��2 behaves the same as the optimal
path in ER networks. �ii� For ��0, the optimal paths in SF
networks belongs to the same universality class as the opti-
mal path in SF networks with uncorrelated weights.

We also calculate the robustness of the SF networks with
correlated weights and find that SF networks in the hub-
philic regime are more robust compared to SF networks in
the other two regimes. We propose an analytical method to
study the percolation transition of networks with weights of
Eq. �1� and the numerical results suggest that the pc��� of
networks in the hub-philic regime, although close to zero, is
not zero for 3���4. We also observe strong finite-size ef-
fects for SF networks in the hub-philic regime.

In the last section, we compare the simulation results of
the weighted network model defined by Eq. �1� with the

actual WAN. We calculate the ��opt� for two nodes separated
with fixed distance �min and observe similar behaviors and
the crossover from strong disorder to weak disorder for both
the model and the real WAN. We also compare the numerical
results of the robustness calculation with those obtained in
the real WAN and find good agreement.
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