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• The structural and functional robustness are analyzed.
• The critical areas most likely to be attack targets are identified.
• The fraction of the system after a series of failures occur are determined.
• Overload failures are examined to determine how they propagate.
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a b s t r a c t

We analyze the structural and functional robustness of networked critical infrastructure
systems (CISs). We propose a structural and functional robustness model of a typical
complex network and take into account the corresponding measuring metrics and cascad-
ing processes to assess the impact of different hazard modes on robustness. We analyze
the robustness of the shanghai subway network and the central China power grid to
demonstrate an application of the model. We find that both are strongly robust to random
failure but extremely vulnerable to targeted attack. We identify the critical areas most
likely to be attack targets and use a functional perspective to identify vulnerabilities. Our
proposed method can be applied to other CISs and aid in understanding the mechanisms
of network robustness.

© 2019 Published by Elsevier B.V.

1. Introduction

Real-world networks are critical infrastructure systems (CISs) that function collaboratively and synergistically to produce
essential services and facilitate human interaction [1]. In recent years researchers have recognized the importance of CIS
robustness. System failure reduces the stability and safety of CISs [2]. For example, power networks can fail due to system
overload and subway systems can be disrupted by terrorist attacks. While it would be ideal if failures could be prevented
entirely, this is unlikely since every system will experience failure at one time or another.

Robustness to failure is an important research hotspot for CISs in general, and our goal here is to find a way to deeply
understand CISs so that they can be optimized by the structure and continue functioning when some of their nodes fail.
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We can describe CISs as networks composed of nodes and links through which hazard impacts can spread [3,4]. Complex
network methods and theories have been greatly expanded and widely applied to questions associated with CISs [5,6] and
other areas, such as disease related genes [7] and miRNAs [8], and we use them here to study CISs robustness.

In studying cascading failure processes and CIS robustness, researchers have focused on robustness [9], the resilience of
networks to cascading failure [10], their tolerance to failure [11], failure cascadepatterns in couplednetwork systems [12,13],
the control of cascades, and defense strategies [14–16].

There are two traditions in the CIS robustness literature. One tradition studies the robustness based on their structural
properties. Here the state of a node depends on the state of its neighbors, i.e., failing nodes cause neighbors to also fail. The
second tradition examines the CIS mechanism to assess the consequence of disruptions. The models produced by the se
studies demonstrate that when an overloaded node stops traffic flow, the choosing of alternative paths can overload other
nodes, and a cascading failure that disables the entire network can result.

Little research has been done that simultaneously considers both structural and functional aspects, and studies of CIS
robustness tend to focus on one aspect and ignore the others. To understand CIS robustness we must take into account both
structural and functional considerations. That is our goal here. We want to understand CIS robustness and be able to assess
both the structural and functional robustness of networked systems.

We structure the rest of our paper as follows. Section 2 describes typical complex networkmodels and a statistical index.
Section 3 describes robustness assessment methods. We use percolation theory to assess structural robustness and a local
load redistributed model to analyze functional robustness. Section 4 introduces our case study of the Shanghai subway
network and central China power network and discusses our results. Section 5 describes our conclusions and some prospects
for future research.

2. Network models and statistical index

Most currently-discovered properties of complex networks are related to their structures [17,18]. Complex networks can
be hierarchical, scale-free, small world, random graph, and regular and can also take other forms. To study complex network
robustness we focus on three network structures, i.e., the Watts–Strogatz (WS) small-world network, the Barabasi–Albert
(BA) scale-free network, and the Erdos–Rényi (ER) random network. We also describe several statistical indices, including
degree, degree distribution, clustering, characteristic path length, and betweenness centrality.

2.1. Network models

The ER random network has a complex topology in which each vertex has a random number of connecting vertices.
Because these connections are assigned randomly theyhave a Poissondegree distributionwhen thenetwork size is large [19],
and the likelihood that a node has a degree k is given by P (k) = ⟨k⟩k e−k/k!.

The WS small-world network falls midway between a regular and random network [20]. There are only a few links
between nodes and most nodes to not have neighbors. To build aWS network we select the nearest coupled network with a
node quantityN and connect each node toN nearest nodes.We then cut each edge, reconnect it randomlywith a probability
q, and disallow self-loops and multiple edges.

The BA scale-free network exhibits the properties of such real-world networks as the Internet, the WWW, citation
networks, and some infrastructure networks. Scale-free graphs reveal that their degree distribution often takes the form
of a power law, i.e., their degree distribution is P (k) ∼ k-γ [21]. When γ < 3 some nodes collect many more connections
than the other nodes and the variance moves toward infinity.

The Erdos–Renyi (ER) random network, the Watts–Strogatz (WS) small world network, and the Barabasi–Albert (BA)
scale-free network are now considered benchmarks, and they have the following characteristics:

(1) Erdos–Rényi (ER) Random network:

• The nodes are randomly connected to each other.
• Modeled using the Erdö s–Rényi model.

(2) Watts–Strogatz (WS) small-world network:

• Most nodes are not neighbors, but they can connect to any other node through a small number of steps.
• Modeled using the Watts–Strogatz model.

(3) Barabasi–Albert (BA) scale-free network:

• The degree distribution follows a power-law, at least asymptotically.
• Modeled using the Barabasi–Albert (BA) model.
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2.2. Network attributes

2.2.1. Degree and degree distribution
The degree of the vertex is defined as the number of edges incident to it. Here ⟨k⟩ is the average degree, which indicates

the network characteristics. The degree distribution p (k) is defined p (k) = nk/N , where nk is the number of nodes with
degree k, and N is its size.

2.2.2. Characteristic path length
The characteristic path length ⟨d⟩ is the average distance among node pairs in a graph, and it can be used to measure

network performance.

2.2.3. Clustering coefficient
The average clustering coefficient C describes the correlative degree among a node’s neighbors and quantifies the local

connectivity of the network.

2.2.4. Betweenness
The betweenness of node ν in complex network G denoted by B (υ) is defined B (υ) =

∑
s,t∈V (G)\{υ}

σst (υ)

σst
where V (G) is

the node set and σst (υ) is the number of shortest paths passing through node υ .

2.2.5. Giant component
The giant component is the largest connected subgraph in a network. When the giant component changes size, the

phase transition that occurs indicates the behavior at or near the critical point. Mathematically the giant component is
P∞ = G (k) /G (0). Here G (k) and G (0) are the largest connected component after and before the attack, respectively.

3. Robustness assessment model

We define robustness of CISs as its ability to maintain integrity in case that components are disturbed under failures.
Both the structural and functional aspects are considered to give a deeply understanding of the robustness of CISs. We
use percolation theory when considering structural robustness. A local redistributed model is considered When studying
functional robustness.

3.1. Structural robustness assessment method

3.1.1. Failure propagation model
We use percolation theory to determine the fraction of the system that remains connected after a series of failures occur.

We assume that a fraction 1 − p of nodes are removed from the network. The network fragments into clusters. The largest
cluster, which is the fraction of nodes remaining in the largest connected component, is the giant connected component P∞,
and only nodes that are part of this largest cluster are considered functional. All others are considered failed.

3.1.2. Parameter measurement
We use the giant connected component P∞ to quantify network robustness. A larger P∞ value indicates a larger number

of nodes in the giant component and increased system robustness to attack. Figs. 1–3 show the giant connected clusters in
three complex networks as a function of the nodes remaining after a random and a targeted attack.

In a single Erdős–Rényi network we find P∞ = p
(
1 − e−kP∞

)
. Here p is the fraction of remaining nodes in the network

after initial failures and k is the average degree. In addition, because P∞ appears on both sides of the equation and no
additional simplification is possible, the equation is transcendental and can only be solved numerically.

We find that scale-free networks are much more robust to random failure than random networks, but that scale-free
networks are extremely vulnerable when the attack is targeted, and the removal of a small fraction of nodes can cause total
fragmentation. In contrast, the WS small-world network and the ER random network are both robust to targeted attack.

3.2. Functional robustness assessment method

3.2.1. Cascading model
To model and understand the functional aspects of the failure spreading process, we examine overload failures to

determine how they propagate. We define load to be the betweenness centrality that quantifies the number of shortest
paths that pass through a given component. Initially the component load is determined by network structure and nodes
with a greater number of shortest paths have a higher load. We assume that in the stable state the load of each node is less
than its security threshold. Fig. 4 shows that when nodes are removed or fail their load is reassigned to neighboring nodes
according to the load redistribution model.

We denote the redistributed load Fi and define the additional load received by node j to be ∆Fj = Fi ×
(
Wj/

∑
a∈Γi

Wa

)
.

Here Γi is the set of neighboring nodes of i, and Wj is the initial load of node j.
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Fig. 1. Ratio of giant clusters of the Erdős–Rényi random network in dependence of the fraction of remaining nodes under random failures and deliberate
attacks.

Fig. 2. Ratio of giant clusters of the BA scale-free network in dependence of the fraction of remaining nodes under random failures and deliberate attacks.

3.2.2. Capacity of the node
Themaximum load that a node can handle is its capacity. A node ability to process its load is determined by the technology

used and the economic conditions of its construction. We assume that the capacity Cj of node j is proportional to its initial
load Lj. Here Cj = (1+α)Lj, where the constant α is the tolerance parameter. After an initial set of localized failures, the paths
between nodes change and the load is redistributed. This load redistribution may push other nodes beyond their capacity
limit and cause them to fail. When the loads of the remaining nodes in the network fall below their safety thresholds, the
cascading failure stops and the network is in a new stable state.

3.2.3. System robustness measurement
We denote the performance value under normal operating conditions and after a damage event to be Pnorm and Pdamg,

respectively. We quantify network vulnerability to be its drop in performance following a disruptive event and use it as a
metric to measure robustness. Here

VP =
Pnorm − Pdamg

Pnorm
. (1)

The characteristic path length is defined to be the average number of steps along the shortest paths for all possible pairs
of network nodes. It measures both network size and overall connectivity, and we use it as a performance index. To avoid
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Fig. 3. Ratio of giant clusters of theWS small world network in dependence of the fraction of remaining nodes under random failures and deliberate attacks.

Fig. 4. The schematic diagram of load redistribution after the breakdown of node.

invalid values caused by disconnections, we used the reciprocal characteristic path lengths tomeasure network performance
and define it

P =
1

N (N − 1)

∑
i̸=j

dij. (2)

Here dij is the shortest distance between two nodes i and j.Whenwe know the level of network performancewe can calculate
its vulnerability. A higher vulnerability value indicates that the network is less robust to attack, and a lower vulnerability
value indicates that the network is more robust to attack.

3.3. Failure modes

Random failure is the most common threat to real-world complex networks. For example, an electric power network
inevitably experiences different types of equipment and node failure.

Targeted attack is an attack on important, high-degree network nodes. Thus we need a way of evaluating node
importance to determine which nodes are key and play crucial roles in maintaining network robustness.

Spatially localized attack is another real-world phenomenon we must understand in order to understand network
robustness. We need a way of identifying the critical areas that are potential targets for intelligent attackers. We also need
to understand the systemic failure spreading process that occurs when this attack takes place.
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Table 1
Comparing analysis of topological properties of different power networks.
Network N E ⟨k⟩ ⟨d⟩ D C
CCPG 295 413 2.800 7.922 20 0.096

Fig. 5. Degree and degree distribution of the central China power network.

4. Real network model

Many real CISs such as power grids and subway systems can be modeled as complex networks. What constitutes a node
and link depends on the system being analyzed. For example, in power grids the nodes are power stations and substations
and the links are powerlines connecting the stations. In a subway network, stations are nodes and subway tracks are edges.
Many empirical studies have found that real-world complex networks have characteristics that are similar to scale-free,
small world, or random networks.

4.1. Central china power network

We first study the transmission system of the central China power network. Table 1 uses basic statistical metrics to
describe the topological properties of this power network. Most of the nodes in the central China power network are low-
degree, but the network is heterogeneous and some nodes are high-degree hubs. In addition, the degree distribution this
network follows an approximate power-law distribution and thus exhibits characteristics found in a scale-free network (see
Fig. 5).

4.1.1. Structural robustness results of the power network
The structural robustness of a network quantifies its ability to retain its structural integrity when its components are

disrupted. Fig. 6 shows the giant connected clusters of the power network as a function of the nodes remaining following
randomand targeted attacks. Note the comparisonwith a scale free network. Unlikemost power networks, this transmission
network resembles a theoretical BA scale-free network in that it is relatively robust to random failure but vulnerable to
targeted attack. When 10% of the nodes are destroyed by random failure the value of the giant connected clusters decreases
slightly, but when the giant connected clusters are targeted failure occurs after the removal of only a small fraction of nodes.

4.1.2. Functional robustness results of the power network
Weuse the local load redistributionmodel introduced above to study power network robustness in terms of function and

overload failure. Fig. 7 shows the vulnerability of the central China power network under random failure and targeted attack.
Note that a random failure of nodes causes less network damage than a targeted attack. This supports our assumption that
deliberate attacks focus on high-degree nodes, the failure of which can trigger cascading failures and systemic shutdown.

To analyze power network robustness to localized attacks, we must identify the critical areas most likely to be attacked
and analyze their vulnerability. Intelligent attackers usually select most intensive areas. Research has found that many
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Fig. 6. Ratio of giant connected clusters in dependence of the fraction of removed nodes Comparing with BA Network, (a) Random failures, (b) Deliberate
failures.

Fig. 7. Vulnerability of central China power network in dependence of the fraction of removed nodes under random and deliberate attacks.

networks have community structures that are relatively dense in their internal connections but sparsely connected to
other dense network groups [22,23]. We use the fast modularity algorithm [24,25], which determines the shortest distance
between node pairs by selecting the link mostly used, to detect communities.

Fig. 8 shows the power network partitioned into 15 communities. These intensive community based areas reflect their
regional importance, and show their likelihood of being targets for attack. Although a hazard can be spatially local in a
network system, its impact can spread through network topology and become global. Fig. 9 shows that the variation in the
vulnerability values of different community areas is extremely large. The disruption of a dense area has a greater negative
impact on performance. For example, attacks on Area-5 and Area-6 located in the interior of the power network produces
large vulnerabilities of 0.5189 and 0.6443, respectively, and thus should be given prioritized protection.

4.2. Shanghai subway network

Fig. 10 shows the large Shanghai Metro subway network. It has 14 different lines and extends over 617 km, and future
plans include five extensions and four completely new lines, which will make it the largest subway network in the world.
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Fig. 8. Community structures of central China power network.

4.2.1. Structural robustness results of the subway network
Although the size of the Shanghai subway system is smaller than a true complex network, it is similar to a BA scale-free

network (see Fig. 11) and exhibits a second-order phase transition under random failure and a first-order phase transition
under targeted attack.

4.2.2. Functional robustness results of the subway network
We next analyze the functional robustness of the subway network under random failure, targeted attack, and spatially

localized attack. Fig. 12 shows the vulnerability of the Shanghai subway network in terms of the fraction of removed nodes
under random failure and targeted attack. When the subway network is attacked, the performance decreases. Then, the
vulnerability values can be easily observed from the figure. The results shown in Fig. 12 reveals that the random removal of
nodes will cause less damage to the network than the deliberate attack, it is similar with the results of the power network.

We next identify the critical areas of the Shanghai subway network and analyze their vulnerability. We partition the
subway network into 16 communities. Fig. 13 shows the vulnerability curves of these critical areas as a function of attack
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Fig. 9. Vulnerability values of different community areas.

Fig. 10. Network-based structure of the Shanghai subway network.

times. Note that when the number of attacks increases in critical community areas, more vertices are removed from the
network, decreasing the performance and increasing the vulnerability values. In addition, only a small number of node
disruptions are needed to cause some areas to collapse. For example, Area-12 and Area-15 are destroyed completely after
being attacked only five times. These results indicate that some critical areas exhibit higher attack susceptibilities.

5. Conclusion

Wehave presented a comprehensive description of CIS robustness and have proposedmethods of assessing the structural
and functional robustness of networked systems. We analyze the central China power network and the Shanghai subway
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Fig. 11. Ratio of giant connected clusters of the Shanghai subway network in dependence of the fraction of removed nodes, (a) Random failures, (b)
Deliberate failures.

Fig. 12. Vulnerability of Shanghai subway network in dependence of the fraction of removed nodes under random and deliberate attacks.

network, and analyzed the giant connected clusters as a function of the nodes remaining following random failure and
targeted attack. We also identify the critical areas that most likely to be attacked and analyze their vulnerability. We find
that they exhibit characteristics similar to those of a scale-free network.

Although our proposed methods can be applied to other CISs, we only analyze the structural and functional robustness
and future research could include ways of improving CIS robustness and developing repair strategies. For example, common
methods of increasing CIS robustness to random failure could include random addition, low-degree node addition, low-
betweenness node addition, and additions based on algebraic connectivity. Methods of analyzing key CIS nodes based on
the idea of protecting key nodes to improve robustness to targeted attack are also important. A further challenge would
include how to repair and recover a CIS after it has experienced failure. It may be ineffective to repair failed components if
failure again spreads to the repaired components. Other approaches will be suggested and explored in future research.
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Fig. 13. Vulnerability values produced by different critical areas as a function of attack times.
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