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Most network research studying the robustness of critical infrastructure networks
focuses on a particular aspect and does not take the entire system into consideration.
We develop a general methodological framework for studying network robustness
from multiple perspectives, i.e., Robustness assessment based on percolation theory,
vulnerability analysis, and controllability analysis. Meanwhile, We use this approach
to examine the Shanghai subway network in China. Specifically, (1) the topological
properties of the subway network are quantitatively analyzed using network theory;
(2) The phase transition process of the subway network under both random and
deliberate attacks are acquired (3) Critical dense areas that are most likely to be
the target of terrorist attacks are identified, vulnerability values of these critical areas
are obtained; (4) The minimum number of driver nodes for controlling the whole
network is calculated. Results show that the subway network exhibits characteristics
similar to a scale-free network with low robustness to deliberate attacks. Meanwhile,
we identify the critical area within which disruptions produce large performance
losses. Our proposed method can be applied to other infrastructure networks and
can help decision makers develop optimal protection strategies. © 2018 Author(s).
All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1063/1.5023766

While many studies have investigated the robustness of critical infrastructure systems (CISs),
most of them focus on a particular aspect, we have not come across a paper on this subject giv-
ing a multiple perspective method. We think that it is of great importance to assess robustness
from a multiple perspective to deeply understand the CISs. So, this paper introduces a multi-
ple perspective approach to assess the robustness of subway network, where the robustness of
a network is characterized as its ability to maintain structural and functional integrity in case
that nodes or edges are disturbed under random failures or intentional attacks. We quantitatively
analyze the topological properties of the system and determine the phase transition process of
the system under different failure scenarios. Then, we identify the critical dense areas that are
most likely to be targets of attack and quantify their vulnerability. We calculate the number of
minimum driver nodes needed to make the entire system controllable. We find that the sub-
way system exhibits characteristics similar to a scale-free network with low robustness to delib-
erate attacks. We locate the critical area within which disruptions produce large performance
losses. It is argued that the proposed method in this paper enables studying other infrastructure
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networks. Meanwhile, the method is helpful for decision makers to develop optimal protection
strategies.

I. INTRODUCTION

Real-world networks are critical infrastructure systems (CISs) that function collaboratively and
synergistically to produce essential services and facilitate human interaction.1 Examples include
electrical power systems, telecommunication systems, water supply systems, natural gas supply
systems, and transportation systems, all of which are essential in maintaining the economy of a
nation and the well-being of its citizens.

Among CISs, subway systems are particularly important. They provide essential public transport
services and play a key role in urban economic development. Urban subway networks have been
greatly expanded in recent years, and now medium-sized cities are building them, and even some
small cities have plans for their construction. Large cities such as New York, Shanghai, and London
continue to maintain and expand them, and the result is complex subway networks with high station
densities and intricate interstation coupling.2

The 2010 bombing in the Moscow subway and the 2008 London subway accident clearly indicate
that random failure or deliberate destruction impairs the robustness of a subway network. Because
disruptions cause economic loss and strongly affect citizen mobility and quality of life, the modeling
and analysis of urban subway network robustness has become a rapidly expanding field in recent
years.

The recent expansion and increasing availability of data mining and the use of artificial intelli-
gence have enhanced our understanding of CISs. For the analysis of CISs, Researchers have devised
a number of different models for analyzing their robustness, including approaches that are empirical3

or agent-based,4 or that focus on system dynamics,5 economic theory,6 or complex network theory.7

Because we need topological and geographical information in the research we describe in this paper,
we use complex network theory in this paper.

There has been some prior research that has used complex network theory to model and analyze
urban subway networks. Dribble and Kennedy analyzed the vulnerability of 33 subway networks
world-wide using complex network theory.8 Wang et al. studied the vulnerability of urban rail systems
in San Francisco and Boston, and identified their most vulnerable segments.9 Rodrı́guez-Núñez and
Garcı́a-Palomares presented a methodology and used it to analyze the vulnerability of the Madrid
subway network.10

In addition, the robustness of controllability for complex networks has also been investigated
recently.11–13 A system is controllable if it can be driven from any initial state to any desired state
within finite external inputs in finite time. Controllability of complex networks has attracted a lot
of attention.14–20 Liu et al.14 introduced an analytical framework to study the structural controlla-
bility of directed networks and identified the minimum number of driver nodes than can guide the
system’s dynamics. Further, Wang et al.15 proposed the exact controllability to determine the mini-
mum driver nodes for both directed and undirected networks. Based on these research,11–13 analyzed
the robustness of controllability for networks in cascading failure and discussed the results under
different attack strategies. However, the controllability of real networks has not been investigated
sufficiently.

Although these studies have improved our ability to analyze the robustness of urban subway
networks, most of them focus on a particular aspect and lack an integrating mechanism that allows a
full consideration of the system. This approach is no longer adequate because subway networks are
growing in complexity and heterogeneity, and it particularly in adequate when redesigning a system
and strengthening it robustness.

We thus propose a multiple perspective approach to the analysis of urban subway network
robustness that uses percolation theory, vulnerability theory, and controllability theory, and we closely
examine the Shanghai subway system. In Sec. II we introduce the case study of the Shanghai subway.
In Sec. III we describe the methodology used in our multiple perspective robustness analysis. In
Sec. IV we discuss our results, and in Sec. V we present our conclusions and suggest possible
avenues for future research.
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II. A REAL MODEL

A. The Shanghai subway network

Shanghai is the economic, financial, cultural, educational and transportation center of China,
with a population of 24 million and a land area of 6340 square kilometers. To expand its public
transportation system, the government of Shanghai has constructed a 617 km subway network with
14 interconnected lines (Fig. 1). There are plans to extend five of these lines and to add four new ones,
which will make it the largest subway network in the world. It has proven to be a highly convenient
and effective transportation system, and on some holidays it carries in excess of 10 million people.
Maintaining its robustness is thus highly important.

B. Topological properties

We here use complex network theory to study subway network robustness in which stations
are nodes and lines are edges. The subway stations are presented by nodes while lines are pre-
sented by edges. The function network has 277 edges and 252 nodes. The average shortest distance,
i.e., the mean number of stops between origin and destination, is 14. Here G = <V, E, A> is
an annotated, simple, undirected graph, where V = {vi |i 2 I = {1,2, . . . ,N } } is the set of nodes and
E =

(

eij =
⇣
vi,vj

⌘
|i,j 2 I

)

✓ V ⇥ V the set of edges, and A=
⇣
aij

⌘
N⇥N

is the adjacent matrix of the
graph, with entries equal to 1 if there is an edge joining node i to node j and to 0 otherwise. Figure 2

FIG. 1. Network-based structure of the Shanghai subway network.
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FIG. 2. Degree and degree distribution of the Shanghai subway network. (a) Node degree distribution of the subway network
(b) Probability distribution of node degree.

shows the degree distribution. Most network nodes have a degree of two, suggesting that any expan-
sion of the network will be linear. In addition, its degree distribution is approximately power-law,
and thus the Shanghai subway system is approximately scale-free.

The size of a subway network is really smaller than the typical huge complex network. Thus,
certain gaps between the features of the subway network and the huge scale-free complex network are
inevitable. However, Yang et al.21 indicate (i) the similarity in evolution pattern (the new nodes are
prone to link to nodes with highest connections in the original network), (ii) conventional applications
of complex network to various infrastructures (It is proved that the complex network theory has a
potential to be applied to networks in different scales), and (iii) that the fact of traffic congestion and
system failure caused by hub station incidents make the use of complex network theory to analyze
subway network robustness reasonable and advantageous.

III. METHODOLOGY

The robustness of a network is characterized as its ability to maintain structural and functional
integrity in case that nodes or edges are disturbed under random failures or intentional attacks. This
paper gives a multiple perspective method to analyze the robustness of the subway network based on
three aspects, (i) percolation, (ii) vulnerability, (iii) controllability. Figure 3 shows our methodological
framework for analyzing robustness.

A. Failure types

There are three general types of failure. The first involves such natural hazards as earthquakes,
hurricanes, and storms, but because subway networks are underground and thus natural disasters
can cause rapid systemic destruction we are not considering them in this study. The second type is
random failure in which network dysfunction is caused by the random failure of one or several nodes.
The third type is the targeted attack on important nodes defined by node degree. We use a family of
functions22 in which a value W↵(ki)

W↵(ki)=
k↵iPN

i=1 k↵i
, �1< ↵ <1 (1)

is assigned to each node, which represents the probability that node i with degree ki is initially
attacked and removed. When ↵ > 0, high-degree nodes are more vulnerable to deliberate attack.
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FIG. 3. Methodological framework of subway network robustness analysis.

When ↵ < 0, high-degree nodes are protected and have a lower probability of being attacked. When
↵ = 0 the removal of nodes is random, but when ↵ ! 1 the removal of nodes is targeted in strict
order from high degree to low degree. We also will examine spatially localized attacks, a factor that
reflects terrorist intelligence, and we will devise a method of identifying the critical attack areas that
require a higher level of protection.

B. Robustness assessment method of subway network
1. Robustness assessment based on percolation theory

Here we develop a method of assessing robustness using percolation theory, a method from
statistical physics23,24 that allows us to better understand real-world systems and improve their infras-
tructure. We assume a fraction 1 � p of nodes are removed from the network due to either random



075219-6 Wang et al. AIP Advances 8, 075219 (2018)

failure or deliberate attack. The network begins to fragment into connected components called “clus-
ters.” We define only giant connected clusters to be functional, and we denote P1 the fraction of
nodes belonging to the giant component. To illustrate P1 as a function of 1 � p under both random
failure and deliberate failure scenarios and further identify the critical Pc, we define the generating
function G0(x) for the probability distribution of vertex degree k to be

G0(x)=
1X

k=0

Pkxk (2)

where Pk is the probability that a randomly chosen vertex on the graph has degree k, and x is a random
variable. The generating function of the branching process is

H0(x)=

1P
k=0

Pkkxk�1

k
=

G0
0(x)

G0
0(1)

, (3)

We define f to be the probability that a randomly chosen edge does not connect to the giant component,
i.e.,

f = H0( f ) (4)

and hence the probability that a randomly selected node g belongs to the giant component is

g = G0( f ). (5)

When a fraction 1 � p of nodes are removed from the network due to random failure, the generating
function remains the same, but with a new argument z that satisfies z = p ⇥ f + 1 � p.25 Thus using
f and g the probability that a randomly chosen surviving node belongs to the giant component is

g(p)= 1 � G(pf (p) + 1 � p), (6)

where f (p) satisfies
f (p)= 1 � H(pf (p) + 1 � p). (7)

Thus the percentage of remaining nodes belonging to giant connected clusters P1 is

P1 = pg(p) (8)

When targeted attacks remove a fraction 1 � p of nodes from the network, using Eq. (1)
the generating function of degree distribution Pp(k) of the remaining nodes satisfies GAb(x)=P
k

Pp(k)xk = 1
p
P
k

Pp(k)tk↵xk . The generating function of the remaining nodes after a targeted attack

satisfies GAc(x)=GAb(1 �Hp +Hpx). As pointed by Huang et al.,26 the difference between the cascading
process under a targeted attack and a random attack occurs in the first stage. Network A has a gener-
ating function HGA0(x) such that the generating function of its remaining nodes is the same as GAc(x)
after a random removal 1 � p fraction of nodes where HGA0(x) satisfies HGA0(1 - p + px)=GAc(x). Then
the targeted-attack problem can be solved as a random-attack problem.

2. Robustness assessment based on vulnerability analysis

We here assume that system vulnerability can be measured by quantifying its performance drop
during a disruptive event. Therefore, in order to measure the vulnerability, performance metric should
be determined first. Characteristic path length, which is defined as the average number of steps along
the shortest paths for all possible pairs of network nodes and indicates the overall connectivity as
well as the size of a network, is chosen as the performance index. It is important to assess robustness
by evaluating the error tolerance and attack vulnerability. To avoid invalid values due to potential
disconnections, in this paper the reciprocal characteristic path lengths adopted are used to measure
network performance. It is defined as follows

P=
1

N(N � 1)

X

i,j

dij (9)
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Where dij is the shortest distance between two nodes i and j. If the performance value under
normal operating conditions is Pnorm, and Pdamg after a damage event, then the vulnerability can be
given as follows:

VP =
Pnorm � Pdamg

Pnorm
(10)

When the performances under random and deliberate attacks are calculated, the vulnerability of
the shanghai subway network can be analyzed.

We also identify critical areas and determine their vulnerability. Research has found that many
networks have community structures, defined as a group of elements that are “densely connected
to each other but sparsely connected to other dense groups in the network”.27 The communities are
related to dense areas in the subway network and those with high vulnerability are most likely to be the
target of attacks. So, the community related critical areas will be identified first and the corresponding
vulnerability of these areas will be calculated latter.

We apply the fast modularity algorithm28,29 devised by Newman et al. They use modularity to
quantify the community robustness. Associated to a set of k communities, the modularity Q is defined
as:

Q=
kX

i=1

*

,

ei

m
�

 
di

2m

!2
+

-

. (11)

Here k and ei define the number of communities and the number of links in community i,
respectively. di is the degree sum of all nodes in community i, and m is the total number of links in
the network. In this community detection strategy we (i) designate each node in the subway network
a single community, (ii) calculate the change in modularity �Qij when creating a new community
from communities i and j, (iii) merge the two communities with the highest�Qij value, and (iv) repeat
steps (ii) and (iii) until �Qij0.

When the communities of the network are acquired, the critical attack area will be identified.
This paper considers elements with max degree in the community as the attack center. Meanwhile,
it is assumed that all components connecting to the attack center are directly affected by the attacks.
The attack strength of the ith node connecting to the attack center is denoted as:

Attackstrength
nodei

=Attackstrength
center ⇤ (Ii/Icenter) (12)

Where Icenter and I i represent the importance degree of the attack center and the ith node con-
necting to the attack center. Based on the attack model, the dynamical processes and the performance
response can be simulated, the vulnerability of the critical areas can be calculated.

3. Robustness assessment based on controllability

To further understand network robustness, we also analyze the controllability of the Shanghai
subway system. Although the structure and dynamics of complex networked systems have received
much study over the past decade,30–33 we still cannot adequately control them. For example, selecting
an appropriate target gene in a social network means determining which gene node will produce the
desired final outcome. To achieve a desired publicity outcome in a social network means selecting
the informational publishing node that can produce the effect.

Consider a network with N nodes described as follows:

dx(t)
dt
=Ax(t) + Bu(t) (13)

Where the vector x(t) = (x1(t),x2(t),. . .xN (t))T describes the state of nodes. A 2 RN⇥N is the
adjacent matrix which captures the systems wiring diagram and the interaction strength between
individuals. u = (u1,u2,. . .,um)T is the vector of m controllers, and B is the N⇥m control matrix that
identifies how the external inputs imposed into driver nodes.

The minimal number of driver nodes ND is used to evaluate the controllability of network, which
is calculated by exact controllability as follows:25

ND =max
i
{µ(�i)} (14)
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where µ(�i)=N�rank(�iIN�A) is the geometric multiplicity of distinct eigenvalues �i of the matrix
A. If the network can be controlled with less driver nodes, then the controllability is better.

IV. RESULTS

According to the method proposed above, the integral size of the giant connected component
during a whole attacking period and the percolation thresholds are characterized. We also deals more
particularly with the performance changing process of the subway network under failures scenarios.
Minimum controllable nodes will be identified and applied to assess the controllability, further to
analyse the subway network robustness.

A. Robustness results based on percolation theory

Using percolation theory to measure robustness allows us to determine a system’s ability to remain
functional when its components are disrupted, and this approach can be applied to both random failure
and targeted attack scenarios. We assume that a fraction 1 - p of the nodes are removed from the
network. Figures 4 and 5 show the giant connected clusters of remaining nodes in a subway network
after random and targeted attacks, respectively. When 10% of the nodes are randomly destroyed, the
value of the giant connected clusters decreases slightly. When the attack is targeted, after the removal
of only a small fraction of nodes the ratio of giant connected clusters rapidly decreases from 1 to
less than 0.1. Thus the decrease under targeted disruption is much greater than under random failure,
which means the Shanghai subway system is robust to random failure but vulnerable to targeted
attack.

Note that the transition process of the Shanghai subway network is similar to the theoretical
results of the BA scale-free network model. Most nodes have a small degree of 2, but there are
some high-degree nodes (“hubs”). Although the degree distribution of the Shanghai subway system
is approximately power-law and it exhibits the general characteristics of a scale-free network, its size
is too small to be a true example of a complex network. Nevertheless we see similarities between the
subway system and a BA scale-free network in that under random failure both exhibit a second-order
phase transition.

B. Robustness results based on vulnerability analysis

We focus on two aspects when we use a vulnerability analysis to quantify the robustness of
the Shanghai subway system. Figure 6 shows its vulnerability in terms of the fraction of removed

FIG. 4. Ratio of giant connected clusters in dependence of the fraction of removed nodes under random failures.
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FIG. 5. Ratio of giant connected clusters in dependence of the fraction of removed nodes under deliberate attack.

nodes under random failure and targeted attack. We use the average reciprocal shortest path lengths
to measure its performance and calculate its vulnerability. Under both random and targeted failure
its performance decreases, but the figure shows that a random removal of nodes causes less damage
to the system than a targeted attack. This is case because deliberate attacks target high-degree nodes
and thus cause a higher level of destruction.

We now identify the critical areas in the Shanghai subway system and analyze their vulner-
ability. We use the Modularity algorithm introduced above and generate 16 dense communities
in the network that reflect their density and regional importance. These hubs are highly vulnera-
ble, highly susceptible to targeted attack, and—when made to fail—cause widespread damage to
the system. Figure 7 shows the vulnerability curves of these critical areas as a function of attack
times.

The vulnerability curves produced by different attack areas increase as the attack times increase.
Note that with the increase in the number of attacks to critical community areas an increasing number
of vertices fail and are removed from the network. System performance decreases and vulnerability
values increase, and only a small number of node disruptions can cause area to collapse. For example,

FIG. 6. Vulnerability of Shanghai subway network in dependence of the fraction of removed nodes under random and
deliberate attacks.
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FIG. 7. Vulnerability values produced by different critical areas as a function of attack times.

Area 12 and Area 15 are destroyed completely after only five attacks. Note that some identified critical
areas exhibit a higher susceptibility under attack than others.

Figure 8 shows the vulnerability values of different critical areas. Note that these values differ
greatly from community to community. Area 16 is located at the periphery of the subway network
and generates a relatively small vulnerability value of 0.1813, but Area 2 is located in the interior
of the network and generates a very large vulnerability value of 0.7000. Thus disruptions to some
of areas cause larger performance disruptions to the network than others. These critical areas, which
can cause greater damage, need enhanced protection strategies to reduce their vulnerability.

FIG. 8. Vulnerability values of different critical areas.
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FIG. 9. Minimum number of driver nodes of Shanghai subway network as the function of node removal fraction under random
and intentional attacks.

C. Robustness results based on controllability

As the networks are usually confronted with attacks in practice, we investigate the controllability
of network under random attack and deliberate attack. We suppose that each node i is assigned with
a capacity Hi, and the load Li is the total number of shortest paths in network passing through the
node i. The capacity Hi is identified as follows:

Hi = (1 + ↵)Li (15)

where ↵ is a tolerant parameter. As we remove a fraction of nodes in network, the distribution of
shortest paths changes and the loads on some nodes may exceed their capacity. The overloaded node
will then fail and there will be a redistribution of loads among the nodes. Finally the cascading
stops when there are no more overloaded nodes. We remove all the failed nodes and their connected
edges. The topological structure of network is changed after the cascade, and the controllability also
changes.

Figure 9 shows that under both random failure and targeted attack the minimum number of driver
nodes first increases with the fraction of node removal and then drops to zero. With a small fraction
of node removal, an increase in failed nodes requires an increase in driver nodes to maintain full
control, but with a large fraction of node removal both the network size and the minimum number of
driver nodes decrease. When the fraction of node removal increases to 1, there are no active networks
nodes and ND reduces to 0.

However, the tendency of driver nodes with removal fraction are different under the two attack
strategies. The ND arrives at peak as f = 0.3 under random attack, while it arrives at peak as
f = 0.7 under intentional attack. That is because the driver nodes intend to avoid the high-degree
nodes in network, thus the intentional attack removes more non-driver nodes from network. In addi-
tion, the cascading failure spreads widely under intentional attack, which leads to more driver nodes
to achieve full control than that under random attack.

V. CONCLUSION

Most prior research on network robustness has focused on particular aspects and lacks any
integrated approach to network analysis. We examine the Shanghai subway system and propose a
multiple perspective method for analyzing network robustness. We consider topological properties
and fundamental indices, as well as modes of failure, and we study aspects of network robustness
using percolation theory and by analyzing network vulnerability and controllability.

We use percolation theory and carry out a robustness analysis to locate giant connected network
clusters and identify phase transition processes. We find that the Shanghai subway system exhibits
some scale-free characteristics, including robustness to random failures but vulnerability to targeted
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attacks. We analyze network vulnerability and its dependence on the fraction of removed nodes under
both random failure and targeted attack. We locate the dense community areas and find they are both
the most likely targets for deliberate attack and, when attacked, the strongest propagators of systemic
failure cascades. We quantify robustness using controllability analysis and calculate the minimum
number of driver nodes, the minimum number of driver nodes presents different tendency with attack
strategies and removal fraction after cascades.

Our approach to robustness analysis can be applied to other infrastructure networks and can help
decision makers develop optimal protection strategies and infrastructure design. Thus far we have
only studied one example of an independent subway system, but because real-world infrastructure
systems are interconnected and interdependent, not isolated, in the future we will expand our research
and assess the robustness of interdependent infrastructure systems.
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