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a b s t r a c t 

In this paper, we give a methodological framework to analyze vulnerability of interdependent infras- 

tructure systems under deliberate attacks. Meanwhile, the intelligence of attackers is considered and a 

method of critical attack area identification according to community detection is proposed as well. The 

Interdependent power and gas system in Wuhan, China is taken as the example. We determine the vul- 

nerabilities of different critical areas in both independent and interdependent scenarios. In the mean- 

time, percolation theory are utilized and different coupling strengths are considered to further analyze 

the vulnerabilities. It is found that the disruption of only a few vertices may lead to complete collapsing 

for some critical areas and the vulnerabilities increase when systems become interdependent. Therefore, 

greater protection should be given to critical areas of a network in order to reduce the vulnerabilities 

when deliberate attacks occur. The proposed method could help decision makers develop mitigation tech- 

niques and optimal protection strategies. 

© 2018 Published by Elsevier Ltd. 
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. Introduction 

Real-world networks are critical infrastructure systems (CISs)

hich function collaboratively and synergistically to produce es-

ential services and facilitate human interaction [1–3] . Examples

nclude electrical power systems, telecommunication systems, wa-

er supply systems, natural gas supply systems, and transportation

ystems, all of which are essential in maintaining the economy of

 nation and the well-being of its citizens. 

Due to the expansion of information technology, CISs are now

ighly connected and mutually interdependent [4–7] . Although

hese interdependencies increase operational efficiency, social dis-

uptions caused by recent disasters, ranging from hurricanes to

arge-scale power outages and deliberate attacks, indicate that they

lso increase system vulnerability. Small failures in a subsystem

an initiate cascading failures across an entire network, and in-

reasing the level of interconnections among CISs have increased

heir vulnerability. 

Scholars in different fields define vulnerability differently [8–

1] . The glossary of the Society for Risk Analysis (SRA) defines vul-

erability as the degree to which a system can be affected by a
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ource of risk [12] . Zio [13] defines vulnerability as a global flaw

r weakness in the design, implementation, operation, or manage-

ent of an infrastructure system. In this paper we define vulner-

bility as the decrease in performance of the system when it is

isturbed. 

To understand how vulnerability of interdependent CISs differs

nder different failure scenarios we examine both interdependency

nd modes of failure. In recent years, a number of different ways

f characterizing CISs interdependency have been proposed. The

idely-cited framework proposed by Rinaldi et al. defines the in-

erdependency as a bidirectional relationship between two CISs

nd distinguishes four types: physical interdependency, cybernetic

nterdependency, geographic interdependency, and logical interde- 

endency [14] . 

Earl et al. define five types of infrastructure dependencies,

ncluding input dependence, mutual dependence, shared depen-

ence, exclusive-or dependence, and co-located dependence [15] .

here are currently many efforts to develop models to capture the

nterdependencies among critical infrastructures, and these effort s

ave been summarized by Ouyang [16] . Identifying interdependen-

ies enables us to analyze the mechanism of fault propagation. 

Depending on the failure scenarios, we classify the failure

odes into three types, (i) random failures, (ii) natural hazards,

nd (iii) deliberate attacks, such as terrorist or military attacks.

hen modeling the vulnerability of a CIS to random failure, the

https://doi.org/10.1016/j.chaos.2018.10.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2018.10.011&domain=pdf
mailto:shuliang0820@sina.com
mailto:6020150035@jsnu.edu.cn
https://doi.org/10.1016/j.chaos.2018.10.011


22 S. Wang et al. / Chaos, Solitons and Fractals 117 (2018) 21–29 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

General properties of the power and gas pipeline systems. 

Network N E G 〈 k 〉 C 〈 d 〉 B 

Power 111 135 11 2.432 0.047 8.247 797 

Gas 30 38 4 2.533 0.126 4.313 96 
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usual approach is to randomly remove a fraction of system com-

ponents. When analyzing vulnerability of CISs under natural haz-

ards, impacts of natural hazards on system components is usually

modeled according to fragility curves, which provide the probabil-

ity of exceeding a certain damage state threshold conditional to a

selected hazard intensity measure. When modeling the vulnerabil-

ity of a CIS to deliberate attacks, we identify the important com-

ponents that would be probable attack targets. 

CISs have exhibited high vulnerabilities under deliberate at-

tacks, and thus it is a topic of great interest. Most research on de-

liberate attacks has ignored high network density factors. There are

only a few literatures attempting to capture the vulnerabilities of

the systems under disruptions in a localized area where compo-

nents are distributed in close proximity [ 5 , 17 ], Yet, with the stud-

ies considering proximity factors, usually a random attack center

or randomly diluted square lattice or generic hexagonal grid is se-

lected as the attack area, which does not necessarily reflect the

importance of the region in the systems. 

Research indicates that attackers have access to a large amount

of information [18] and usually target densely connected areas to

maximize infrastructure damage. These dense areas have been de-

fined as network structures that are ‘‘relatively densely connected

to each other but sparsely connected to other dense groups in the

network’’ [19–20] , and are more likely to become the targets. The

task is to identify these areas, and to measure the vulnerability of

the systems in these areas. 

We study the vulnerability of interdependent systems under

terrorist attacks by focusing on the interdependent power and gas

systems in Wuhan, China and—because the two systems are in

close proximity—examining their physical and geographic interde-

pendency. We also introduce a way of identifying critical attack ar-

eas that takes into account levels of attacker intelligence and ex-

amine regional deliberate attacks on both independent and inter-

dependent infrastructure components. 

Section 2 of this paper proposes a methodological framework

for analyzing vulnerability of interdependent CISs, introduces the

fundamental concepts and definitions used to characterize the

structural and functional characteristics of power and gas infras-

tructure systems, and introduces the relevant interdependencies,

vulnerability models, performance metrics, and corresponding vul-

nerability metrics. Section 3 gives a case study, and Section 4 an-

alyzes the results that capture the vulnerabilities of independent

and interdependent systems. Section 5 gives a further discussion,

vulnerabilities of the networks under different coupling strengths

are analyzed using percolation theory. Section 6 presents conclu-

sions and prospects for future research. 

2. A methodological approach 

Fig. 1 shows the methodological framework for the vulnerability

analysis of interdependent infrastructure systems under deliberate

attacks. 

2.1. Development of adequate system understanding 

We first clarify the topological and geographical features of sub-

ject of our research. The function role of nodes in the power net-

work includes generation, substation and distribution. The distribu-

tion network has 135 transmission lines and 111 nodes, including

11 power plants and 100 substations. On the other hand, the nodes

in the gas system represent compressors, storage facilities, deliv-

ery facilities, receipt facilities, and pipeline junctions. The edges are

gas pipeline segments. They constitute three component parts, (i)

the gathering system, (ii) the transportation system, and (iii) the

distribution system. The gas storage facilities and the gas receipt
acilities are source nodes, the connection points and gas com-

ressors are transmission nodes, and the gas delivery facilities are

oad nodes. The geographical distribution of the selected networks

hich is obtained from our previously work is shown in Fig. 2

21] . Table 1 lists their topological properties, where N is the num-

er of nodes, E is the number of edges, G is the number of gener-

tors, < k > is the average degree, C is the average clustering coeffi-

ient, < d > is the characteristic path length, B is the nodes average

etweenness. 

.2. Selection of vulnerability models and vulnerability metrics 

.2.1. Vulnerability models 

To analyze the vulnerability of interdependent systems, we

resent the models to simulate the dynamical processes of the

ower and gas networks. There are basically three types of models

or the power networks, i.e., the Purely Topological Models (PTM)

22] , the Real Alternative Current Power Flow Model (ACPFM) [23] ,

nd the Artificial Flow Model (AFM) [24] . As the PTM cannot cap-

ure the dynamics of particles and the overload-induced cascad-

ng failures, in the meanwhile, the nonlinear feature of the ACPFM

akes it is not feasible on power grids vulnerability analysis. We

dopt the Artificial Flow Model (AFM) in this paper. 

It is assumed that gas transmission in the gas pipeline network

ollows shortest paths. We use a generalized betweenness central-

ty model. 

In a gas pipeline network G G = ( V G , E G ) with nodes set V G and

dges set E G , we assign T K, L to be the flow from the source sub-

raph ( V K , E K ) to the sink subgraph ( V L , E L ). The generalized be-

weenness centrality of e ij ∈ E G is defined as G i j = 

∑ 

∈ V k 
∈ V L 

T K,L 

| V K || V L | 
σs, t ( e i j ) 

σs, t 
.

ere, e ij ∈ E G , σs, t is the number of shortest paths from node s

o node t and σ s , t ( e ij ) is the number of paths that pass through

ink e ij . We denote b 
g 
j 

to be the decision variable which designates

he flow of node j . Its mathematical formulation is 

 

g 
j 
= 

∑ 

i 

G i j −
∑ 

m 

G jm 

(1)

.2.2. Vulnerability metrics 

After identifying the vulnerability models, the simulation of the

ynamical processes is then carried out on power and gas net-

orks. Vulnerability of the power network is defined as the quan-

ified performance drop of the power network when experiencing

 disruptive event, expressed as 

 P = 

P norm 

− P damg 

P norm 

(2)

Where P norm 

is the performance index of the power net-

ork under normal operating conditions, and P damg is the per-

ormance index after a deliberate attack. The source-demand ef-

ciency which considers the shortest path between the source

odes and the demand nodes is adopted as performance index. 

.2.3. Cascading process 

It is assumed in artificial flow model that the particles run

long the shortest paths between generator nodes and load nodes,

nd betweenness is used as a proxy for the load of the nodes. Ca-

acity is defined as the maximum load that a node can handle. We
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Fig. 1. Methodological framework of the interdependent CISs vulnerability. 
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ssume that the capacity C j of node j is proportional to its initial

oad L j , i.e., C j = (1 + α) L j , where the constant α is the tolerance

arameter. 

The cascading process is as follows: A disruptive event can

ause some components failed and alter the power grid topol-

gy, which further changes all components’ betweennness values.

t may push other nodes beyond their capacity limit and cause

heir failure. When the loads of the remaining nodes in the net-

ork fall below their safety thresholds, the cascading failure stops

nd the power network reaches a new stable state. 

If the gas pipeline network nodes cannot get power supply to

nsure their normal operation since the power nodes linking the

as components are destroyed, it will be removed. Then flows in

he gas network will be redistributed according to the proposed

odel. When the gas pipeline node for power production cannot

upply sufficient gas, the corresponding gas-fired generator will

e removed, and load of the power network will be redistributed

gain. The cycle goes on until the whole system reaches a stable

tate. 

.3. Identification of critical areas 

Attackers use their collected intelligence to select the most

ensely connected areas as attack targets. Research indicates that

any networks have community structures, defined as a group of

lements that are ‘‘densely connected to each other but sparsely

onnected to other dense groups in the network.’’ Since these

ense network communities are the most likely targets of deliber-

te attacks, we use the concept of community to identify probable

argets for attacks. 
Here we use the fast modularity algorithm to detect community

tructure. The modularity Q of a set of k communities is defined 

 = 

k ∑ 

i =1 

( 

e i 
m 

−
(

d i 
2 m 

)2 
) 

(3) 

here k and e i define the number of communities and the num-

er of links in community i , respectively, d i is the degree sum of

ll nodes in community i , and m is the total number of links in

he network. In this community detection strategy we (i) desig-

ate each node in the power network a single community, (ii) cal-

ulate the change in modularity �Q ij when creating a new com-

unity from communities i and j , (iii) merge the two communities

ith the highest �Q ij value, and (iv) repeat steps (ii) and (iii) until

Q ij ≤ 0. 

.4. Modeling of deliberate attacks 

In our model we assume probable attack targets will be lo-

ally dense community areas, and we collect data on the density

f communities to identify these critical attack areas. We then de-

ermine the sequence of failure for components within an area. We

rst identify the system elements with the maximum load or de-

ree in a community area to be the attack center, and we assume

hat all components connecting to this attack center are directly

ffected by the attacks. The attack strength of node i connected to

he attack center is 

ttack 
strength 

nod e i 
= Attack 

strength 
center ∗( I i / I center ) . (4) 

Here I center and I i quantify the importance of the attack center

nd of node i connected to the attack center, respectively. Note that



24 S. Wang et al. / Chaos, Solitons and Fractals 117 (2018) 21–29 

Fig. 2. Topological and geographical information of the power and gas systems in Wuhan [22] . 
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we measure node importance by node degree or load. If node i in

the community is not directly connected to the attack center, the

attack on node i has strength Attack 
strength 

nod e i 
= 0 , i.e., the node is not

directly affected by the attack. In this model both the center at-

tacked and its neighbor nodes are directly affected, and a portion

of them fail and are removed from the network. Then, the dynami-

cal processes and performance response can then be simulated us-

ing the vulnerability model. 

2.5. Modeling of interdependency 

Previous literatures provide a variety of approaches to modeling

the interdependency of CISs, including those based on system dy-

namics [25] , empirical observation [26] , and economic theory [27] ,

and those focusing on agents [28] or the entire network [29] . In

current paper, a network-based approach is utilized to determine

the topological structure and get geographical information, due to

the networked structure of the power-gas interdependent infras-

tructure systems. The power and gas systems of Wuhan are located

in the same region, and thus they have co-located interdependen-

cies. The nodes in the gas transmission system depend on electrical

power supply for normal operation and some electrical generators

are fueled by gas, there are physical interdependencies. They con-

stitute a network of two partially interdependent networks. 

Define P and G as the power and gas pipeline networks. Let

P j 
failure denote failures of the nodes in the power network upon

which the gas network depends, G i 
failure denote failures of the gas

node which depends on the power network, the conditional prob-
bility is set to be P ( G i 
failure | P j 

failure ). Let G s 
failure denote failures of

he nodes in the gas network upon which the power network de-

ends, P t 
failure denotes failures of the power node which depends

n the gas nodes, the conditional probability that element P t will

ail when element G s fails is defined as P ( P t 
failure | G s 

failure ). 

. Case study 

Our case study is of the interdependent power and gas systems

n Wuhan, China. We analyze the vulnerability of these systems to

eliberate attacks. Using the community detection method based

n the modularity algorithm, we generate the community struc-

ures and identify the critical attack areas. Fig. 3 shows the power

etwork partitioned into nine communities. 

After identifying the critical areas, we analyze their vulnerabil-

ty, measuring them in terms of how much their performance de-

lines after being attacked. We examine both independent and in-

erdependent cases. We first analyze the vulnerability of a single

ower network to deliberate attacks by (i) examining the influence

f deliberate attacks on different critical areas, (ii) identifying the

ulnerability of each critical area, and (iii) comparing the vulnera-

ility of each critical area using different tolerance parameters. 

We then analyze the vulnerability of interdependent systems.

ince the gas pipeline networks are usually underground, we be-

in by examining the vulnerability to attack of the electrical power

etwork. The electrical network supplies power for gas compres-

ors, storage regulators, and control systems, and the gas pipeline

upplies fuel for electrical generators, thus the physical interdepen-
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Fig. 3. Communities of power network in Wuhan, China. 
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ency is bidirectional. We examine (i) the attack times that can

ollapse a critical area, and (ii) the vulnerabilities of critical areas

hen they are interdependent. 

. Simulation results 

.1. Independent network vulnerability 

To analyze the vulnerability of an independent power network

o deliberate attack, we first examine how deliberate attacks af-

ect each critical area. Based on the importance of node, the center

f attack is designated to be the node with maximum degree or

aximum load. Here the attack strength to the center is denoted

s 1, i.e., when it is attacked, it breaks down completely. We use

q. (4) to quantify the intensity of the attacks on the nodes con-

ected to the attacked center node. Our performance metric is the

ource-demand considered efficiency, the betweeness-based artifi-

ial flow model (AFM) is adopted, and the tolerance parameter αis

et to be 0.2 here as an example. 

Attackers first aims at the community and choose the vertex

ith maximum degree or load in the community area as tar-

ets. This affects both the center of attack and the nodes with

ttack 
strength 

nod e i 
� = 0 and may trigger a cascading propagation. When

he power network reaches a steady state, the vertex with the re-

alculated maximum degree or load in the community area of the

emained network is attacked. This process is continued until the

ritical area collapses, and whole process is repeated for ten times

o determine the average results. Figs. 4 and 5 show the vulnera-

ilities of different critical areas as a function of attack times, with
aximum degree and maximum load vertices denoted as the cen-

er of attack, respectively. 

It is observed that Figs. 4 and 5 share similar variation ten-

ency. The vulnerability curves of different attack areas increase as

he attack times increase. With the increase of attack times in the

ritical area, more vertex fails, leading to a decrease of the perfor-

ance and an increase of the vulnerability values. Note that some

f the critical areas, e.g., Area-8 and 9, collapse after only a few

ertices are disrupted. There are relatively small amount of nodes

nd edges for the Area-8 and 9, so they collapse after only a small

raction of vertices fail. These two areas are most easily to col-

apse, but they do not generate the most amount of vulnerability

alues. Breakdown of the Area-2 generate highest vulnerability to

he whole system. As from Fig. 2 , there are many high load nodes

n this area. Failures of the high load nodes will generate a load

edistribution and easily cause other nodes overload. It leads to

 cascading failures and increases the vulnerabilities of the whole

ystem. 

Then, vulnerabilities of different critical areas are also acquired.

he results are illustrated in Figs. 6 and 7 . As from the figures,

ulnerability of different critical area can be identified and com-

ared clearly. Some areas are highly vulnerable to deliberate at-

acks and may collapse after a small number of attacks while dis-

uption of some other critical areas may generate high vulnerabil-

ty to the whole system. To reduce their vulnerability, these critical

reas should be given prioritized protection. 

We next compare and analyze the vulnerability of different crit-

cal areas under different tolerance parameters. The attack strength

quals to 1. The tolerance parameter values vary with a step 0.1
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Fig. 4. Vulnerabilities produced by different areas as a function of attack times with maximum degree based center. 

Fig. 5. Vulnerabilities produced by different areas as a function of attack times with maximum load based center. 

Fig. 6. Vulnerability values of different areas with maximum load based center. 
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from 0.1 to 0.5. The results are illustrated in Figs. 8 and 9 , with

maximum degree attack center and maximum load attack center

respectively. 

When α is low, the power network operates close to its limit

state, and most of the node failures cause an overload of the other

elements. The efficiency of the source-demand decreases and the

vulnerability values increase. The figure shows that the values are

relatively high when the tolerance parameter is low. When the tol-

erance parameter is high, the vulnerability values are low. The vari-

ation in the vulnerability values generated by different large toler-

ance parameters is very small. This is mainly because large toler-

ance parameters increase the capacity such that the failure of one

s

lement is less likely to overload other elements and less likely to

rigger cascading failure. 

.2. Interdependent network vulnerability 

The conditional probability P ( G i 
failure | P j 

failure ) is set to be 1 when

nalyzing interdependent vulnerability. Namely, when power nodes

re unable to supply power for gas nodes, the corresponding gas

ode will break down. When the gas node can no longer provide

uel for generators due to failures, there is a probability that the

as-based generators may fail. We examine values of the condi-

ional probability P ( P t 
failure | G s 

failure ) ranging from 0.2 to 0.6 with a

tep of 0.2. 
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Fig. 7. Vulnerability values of different areas with maximum degree based center. 

Fig. 8. Vulnerabilities of different areas under different tolerance parameter with maximum degree based center. 

Fig. 9. Vulnerabilities of different areas under different tolerance parameter with maximum load based center. 
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Since gas pipelines are usually underground, we first examine

he vulnerability to attack of the electrical power network. When

 critical area is attacked, the load on failed nodes is reallocated

ccording to the artificial flow model. When the load on a power

omponent exceeds its maximum capacity, it is removed. We con-

inue this process until the power network reaches its steady state.

he cascading process is then extended to the coupled gas network

nd gas nodes dependent on power components fail. The damage
preads between the power and gas networks, back and forth, un-

il they arrive at their steady state, and no more nodes and links

re removed. 

For simplicity, we select the vertex with the maximum degree

o be the attack center, define the attack strength to be 1, and the

olerance parameter to be 0.2. Table 2 shows the attack times un-

er different scenarios, and Table 3 shows the generated vulnera-

ility values. We assume that there are only three gas-fired gen-
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Table 2 

Attack times that cause critical area collapse under different scenarios. 

Cases Area 1 Area 2 Area 3 Area 4 Area 5 Area 6 Area 7 Area 8 Area 9 

Independent case 3 7 3 7 3 4 6 2 4 

Interdependent case with P( P t 
failure | G s failure ) = 0 . 2 3 7 3 7 3 4 6 2 4 

Interdependent case with P( P t 
failure | G s failure ) = 0 . 4 3 7 3 7 3 4 6 2 4 

Interdependent case with P( P t 
failure | G s failure ) = 0 . 6 3 6 3 6 3 4 6 2 4 

Table 3 

Vulnerability values generated by the collapse of critical area under different scenarios. 

Cases Area 1 Area 2 Area 3 Area 4 Area 5 Area 6 Area 7 Area 8 Area 9 

Independent case 0.248 0.801 0.581 0.594 0.687 0.637 0.707 0.395 0.285 

Interdependent case with P( P t 
failure | G s failure ) = 0 . 2 0.257 0.821 0.584 0.616 0.687 0.639 0.718 0.395 0.295 

Interdependent case with P( P t 
failure | G s failure ) = 0 . 4 0.259 0.833 0.589 0.629 0.692 0.646 0.733 0.395 0.309 

Interdependent case with P( P t 
failure | G s failure ) = 0 . 6 0.276 0.833 0.594 0.629 0.707 0.667 0.751 0.415 0.332 

Fig. 10. Giant component as a function of 1-p under both independent and interdependent scenarios. 
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erators in our interdependent systems, and therefore the effect of

interdependency on the attack times is not obvious. However, there

are still some differences, attack times on areas 2, 4, and 9 changed

under interdependent scenarios. 

Table 3 also shows that the vulnerability values of areas 1, 3,

5, 7, 8, and 9 in interdependent scenarios are higher than in in-

dependent scenarios. This becomes more obvious when the con-

ditional probability increases. Interdependency causes power net-

work failures to spread to the gas pipeline network and, when the

gas nodes affecting power production begin to fail, the failure pro-

cess rebounds back to the power network, making it increasingly

fragile and increasing its vulnerability. Note that in the simulation

results the most vulnerable area changes when cases are interde-

pendent. It is the area 7 under interdependent scenario while area

2 is the most vulnerable regions under independent cases. Thus,

when there is a “network of networks” the system becomes more

complicated. 

5. Discussion 

We studied the vulnerabilities under deliberate attacks from in-

dependent to interdependent scenarios in the above section. When

systems are interdependent their vulnerability increases. However,

it seems that the impact of interdependency on vulnerabilities is

not obvious. This is probably because of the low coupling strength.

In this section, we discuss how coupling strength affects systems

properties. i.e., robustness. The robustness of the networks is based
n the ideas of percolation theory. We characterize it by the value

f the critical threshold and the integrated size of the largest con-

ected cluster during the entire attack process. 

A pair of partially interdependent networks with different cou-

ling strength are studied. Denote the nodes of the power and gas

etworks as N A and N B , respectively. The nodes in the power net-

ork have a degree distribution P A ( k ), whereas the node in the gas

etwork has the degree distribution P B ( k ). In addition, a fraction

 power of the power network nodes depend on the nodes in the

as network and a fraction q gas of the gas network nodes depend

n the nodes in the power network. Meanwhile, we assume that

ependency satisfy a no-feedback condition. 

For simplicity, it is assumed q power = q gas = q . Fig 10 gives the

raction of nodes in the mutual giant component as a function

f 1-p under both independent and interdependent scenarios. It

as been found from the figure that the network is relatively

obust in the independent cases. Meanwhile, it is shown that

nterdependent networks are extremely vulnerable with a large

mount of coupling strength between networks. In interdependent

ases, the failure of nodes in the power network leads to the fail-

re of dependent nodes in the gas network, which in turn may

ause further damage to the power network, leading to cascad-

ng failures and catastrophic consequences. It can be seen from

he figure that p c increases with the increase of the coupling

trength. The networks become more vulnerable with a large value

f coupling strength. The networks collapse as in a first order

hen q = 0.7. Once the fraction of nodes increases above a cer-
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ain threshold, the abrupt collapse happens to the interdependent

etworks. 

. Conclusion 

We analyze the vulnerability of CISs under deliberate attacks,

specially in interdependent systems, and we propose a method of

dentifying critical attack areas that uses intelligence available to

errorists. We use a fast modularity algorithm of community de-

ection that identifies dense areas that are likely to be the target

f deliberate attacks. We then use a methodological framework to

xamine vulnerability, including vulnerability models, vulnerabil-

ty metrics, interdependency models, and patterns of deliberate at-

acks. 

We use an interdependent infrastructure system of electrical

ower and gas networks to explore the vulnerability of both in-

ependent and interdependent networks to deliberate attacks. We

xamine and analyze the vulnerabilities of different critical areas

n both independent and interdependent scenarios. We believe our

odel can be applied to vulnerability studies of other interdepen-

ent systems, and that it is valuable for those developing means of

rotecting critical infrastructures. 

However, we mainly give a methodological framework to an-

lyze vulnerability of interdependent infrastructure systems, we

ave used only a simple power artificial-flow model and gas gen-

ralized betweenness-centrality model. The more accurate alterna-

ive current (AC) power-flow model will better capture power grid

ehavior, and analyzing the effect of different interface design cri-

eria and coupling strengths on system vulnerability will also be

n interesting direction for future research. 
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