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Topological properties of the limited penetrable horizontal visibility graph family
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The limited penetrable horizontal visibility graph algorithm was recently introduced to map time series in
complex networks. In this work, we extend this algorithm to create a directed-limited penetrable horizontal
visibility graph and an image-limited penetrable horizontal visibility graph. We define two algorithms and provide
theoretical results on the topological properties of these graphs associated with different types of real-value series.
We perform several numerical simulations to check the accuracy of our theoretical results. Finally, we present
an application of the directed-limited penetrable horizontal visibility graph to measure real-value time series
irreversibility and an application of the image-limited penetrable horizontal visibility graph that discriminates
noise from chaos. We also propose a method to measure the systematic risk using the image-limited penetrable
horizontal visibility graph, and the empirical results show the effectiveness of our proposed algorithms.

DOI: 10.1103/PhysRevE.97.052117

I. INTRODUCTION

The complex network analysis of univariate or multivariate
time series has recently attracted the attention of researchers
working in a wide range of fields. Over the past decade
several methodologies have been proposed for mapping time
series in complex networks [1–9]. These methods include
constructing a complex network from a pseudoperiodic time
series [2], using a visibility graph algorithm [3], a recurrence
network method [4], a stochastic method [5], a coarse geometry
theory [6], a nonlinear mutual information method [7], event
synchronization [8], and a phase-space coarse-graining method
[9]. These methods have been widely used to solve problems
in a variety of research fields [10–20].

Among all of these time series analysis algorithms, visibility
algorithms are the most efficient when constructing a complex
network from a time series. Visibility algorithms are a family
of rules for mapping a real-value time series on graphs, which
display different cases or scenarios. In all cases each time
series datum is assigned to a node, but the connection criterion
depend on the algorithm used. For example, in the natural
visibility graph (NVG), two nodes i and j are connected if the
geometrical criterion x(tk) < x(ti) + [x(tj ) − x(ti)]

tk−ti
tj −tk

,∀tk ∈
(ti ,tj ) is fulfilled within the time series [3]. In the parametric
natural visibility graph (PNVG) case there are three steps when
using this algorithm to map a time series into a complex
network: (i) build a natural visibility graph as described
above; (ii) set the direction and the angle ηij = arctg x(tj )−x(ti )

tj −ti

with i < j for every link of the natural visibility graph; and
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(iii) use the parameter view angle rule η, ηij < η to select links
from the directed and weighted graph [21]. In the horizontal
visibility graph (HVG) case, the algorithm is similar to the
natural visibility graph but it has a modified mapping criterion.
In this algorithm, two nodes i and j are connected if x(tk) <

inf(x(ti),x(tj )),∀tk ∈ (ti ,tj ) [22]. These visibility algorithms
have been successfully implemented in a variety of fields
[23–25].

Recently, a limited penetrable visibility graph (LPVG)
[26,27] and a multiscale limited penetrable horizontal visibility
graph (MLPHVG) [28] were developed from the visibility
graph and the horizontal visibility graph to analyze nonlin-
ear time series. The limited penetrable visibility graph and
multiscale limited penetrable horizontal visibility graph have
been successfully used to analyze a variety of real signals
across different fields, e.g., experimental flow signals and
electroencephalogram signals [2,27–30]. Research has shown
that the limited penetrable visibility graph and multiscale
limited penetrable horizontal visibility graph inherit the merits
of the visibility graph, but they are also more resistant to noise,
which makes them particularly useful when analyzing signals
polluted by unavoidable noise.

There are abundant empirical results that have been obtained
using the visibility graph algorithm and its extensions, e.g.,
the parametric natural visibility graph [21], the horizontal
visibility graph [22], the limited penetrable visibility graph
[26], and the multiscale limited penetrable horizontal visibility
graph [28]. Thus far there has been little research focusing on
rigorous theoretical results. Recently Lacasa et al. presented
topological properties of the horizontal visibility graph associ-
ated with random time series [22], periodic series [31], and
other stochastic and chaotic processes [32]. They extended
the family of visibility algorithms to map scalar fields of an
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arbitrary dimension onto graphs. They also provided analytical
results on the topological properties of the graphs associated
with different types of real-value matrices [33]. Wang et al. [34]
focused on a class of general horizontal visibility algorithms,
the limited penetrable horizontal visibility graph (LPHVG),
and presented exact results on the topological properties of
this visibility graph associated with random series. Here we use
previous works [2,31–34] and focus our attention on the limited
penetrable horizontal visibility graph, where we present some
of its analytical properties.

This paper is organized as follows. In Sec. II we introduce
the limited penetrable horizontal visibility graph family. In
Sec. III we derive the analytical properties of the different
versions of associated limited penetrable horizontal visibility
graph for a generic random time series (or a random matrix).
We also present several numerical simulations used to check
their accuracy. In Sec. IV we show some applications of the
directed-limited penetrable horizontal visibility graph and of
the image-limited penetrable horizontal visibility graph. In
Sec. V we present our conclusions.

II. LIMITED PENETRABLE HORIZONTAL VISIBILITY
GRAPH FAMILY

The LPHVG algorithm [28,34] and its extensions are called
the LPHVG family. We here present three versions of the
LPHVG algorithm with limited penetrable distance ρ, the
limited penetrable horizontal visibility graph, LPHVG(ρ),
the directed-limited penetrable horizontal visibility graph,
DLPHVG(ρ), and the image-limited penetrable horizontal
visibility graph of order n, ILPHVGn(ρ).

A. Limited Pepnetrable horizontal visibility graph

The limited penetrable horizontal visibility graph
[LPHVG(ρ)] [34] is a geometrically simpler and analytically
solvable version of the visibility graph [3], the limited
penetrable visibility graph [26], and the multiscale limited
penetrable horizontal visibility graph [28]. To define it, we
let XN (t) be a time series of N real numbers x1,x2,x3,...,xN .
We set the limited penetrable distance to ρ, and LPHVG(ρ)
maps the time series into a graph with N nodes and adjacency
matrix A. Nodes xi and xj are connected through an undirected
edge (Aij = Aji = 1) if xi and xj have a limited penetrable
horizontal visibility (see Fig. 1), i.e., if ρ � 0 intermediate
data xq follows

xq � inf{xi,xj }, ∀q ∈ (i,j ), ℵ(q) � ρ, (1)

where ℵ(q) is the number of q. The graph spanned by this
mapping is the limited penetrable horizontal visibility graph
[LPHVG(ρ)]. When we set the limited penetrable distance ρ

to 0, then LPHVG(0) degenerates into an horizontal visibility
graph [22]. When ρ �= 0 there are more connections between
any two LPHVG(ρ) nodes than in horizontal visibility graph.
Figure 1(b) shows the newly established connections (dashed
red lines) when we infer the LPHVG(1) using horizontal
visibility graph. Note that the LPHVG(ρ) of a time series has all
the properties of its corresponding horizontal visibility graph,
e.g., it is connected and invariant under affine transformations
of series data [22].

(a)

1 2 3 4 5 6 7 8 9 10 11

(b)

FIG. 1. Example of (a) a time series with 11 data values and
(b) its corresponding LPHVG(1), where every node corresponds to
time series data in the same order. The horizontal penetrable visibility
lines between data points define the links connecting nodes in the
graph.

B. Directed limited penetrable horizontal visibility graph

The limited penetrable horizontal visibility graph
[LPHVG(ρ)] is undirected, because penetrable visibility does
not have a predefined temporal arrow. Directionality can be
added by using directed networks. Here we address the directed
version and define a directed-limited penetrable horizontal
visibility graph [DLPHVG(ρ)], where the degree k(xt ) of
the node xt is split between an ingoing degree kin(xt ) and an
outgoing degree kout(xt ) such that k(xt ) = kin(xt ) + kout(xt ).
We define the ingoing degree kin(xt ) to be the number of links
of node xt with past nodes associated with data in the series,
i.e., nodes with t ′ < t . Conversely, we define the outgoing
degree kout(xt ) to be the number of links with future nodes,
i.e., nodes with t ′′ > t . Thus DLPHVG(ρ) maps the time
series into a graph with N nodes and an adjacency matrix
A = Ain + Aout, where Ain is a lower triangular matrix and
Aout is a upper triangular matrix. Nodes xt ′ and xt , t ′ < t

(or xt and xt ′′ , t < t ′′) are connected through a directed
edge xt ′ → xt , i.e., At ′t = 1 (or xt → xt ′′ , i.e., Att ′′ = 1) if it
satisfies Eq. (1). Figure 2 shows a graphical representation of
this algorithm.
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(a)

1 2 3 4 5 6 7 8 9 10 11

(b)

FIG. 2. Graphical illustration of DLPHVG(1). (a) Plot of a sample
time series XN (t) for N = 11. Each datum in the series is mapped to a
node in the graph. Arrows link the nodes and describe allowed directed
penetrable visibility. (b) Plot of the associated DLPHVG(1). In this
graph, each node has an ingoing degree kin, which accounts for the
number of links with past nodes, and an outgoing degree kout, which
in turn accounts for the number of links with future nodes.

For the degree distribution P (k), we use the ingoing and
outgoing degree distributions of a DLPHVG(ρ) to define the
probability distributions of kout and kin on the graph, which are
Pout(k) ≡ P (kout = k) and Pin(k) ≡ P (kin = k), respectively.
We observe an asymmetry of the resulting graph in a first
approximation when we use the invariance of the outgoing
(or ingoing) degree series under a time reversal.

C. Image-limited penetrable horizontal visibility
graph of order n

One-dimensional versions of the limited penetrable hori-
zontal visibility graph [LPHVG(ρ)] and directed-limited pen-
etrable horizontal visibility graph [DLPHVG(ρ)] are used to
map landscapes (time series) on complex networks. As in the
definition of image visibility graph of order n (IVGn) [33],
the definition of LPHVG(ρ) can also be extended and applied
to two-dimensional manifolds by extending the LPHVG(ρ)
criteria of Eq. (1) along one-dimensional sections of the
manifold. To define the image-limited penetrable horizontal

(a) (b)

(c) (d)

FIG. 3. Graphical illustration of ILPHVGn(ρ) for x1 = 2. In
Fig. 3(a) we depict a sample matrix when x1 is the central entry, which
shows the ILPHVG4(1) algorithm is evaluated along the vertical
and horizontal directions. In Fig. 3(b) illustrates the connectivity
pattern associated to x1 in the case of ILPHVG4(1). Fig. 3(c) shows
the ILPHVG8(1) algorithm evaluated both along the vertical and
horizontal directions and along diagonal directions. In Fig. 3(d) we
show the connectivity pattern associated to x1.

visibility graph of order n [ILPHVGn(ρ)] we let X be a N × N

matrix for an arbitrary entry (i,j ) and partition the plane into
n directions such that direction p is at an angle with the row
axis of 2π (p − 1)/n, where p = 1,2,...,n. The image-limited
penetrable visibility graph of order n, ILPHVGn(ρ), has N2

nodes, each of which is labeled using a pair (i,j ) associated
with the entry indices xij , such that two nodes, xij and xi ′j ′ , are
linked when (i) xi ′j ′ belongs to one of the n angular partition
lines, and (ii) xij and xi ′j ′ are linked in the LPHVG(ρ) defined
over the ordered sequence that includes (i,j ) and (i ′,j ′). For
example, in ILPHVG4(1) the penetrable visibility between two
points xij and xi ′j ′ is

i = i ′, xiq � inf{xij ,xi ′j ′ }, ∀q ∈ (j,j ′), ℵ(q) � ρ, (2)

or

j = j ′, xqj � inf{xij ,xi ′j ′ }, ∀q ∈ (i,i ′), ℵ(q) � ρ. (3)

Figure 3(a) shows a sample matrix in which x1 is the central
entry, which shows the ILPHVG4(1) algorithm evaluated
along the vertical and horizontal directions. Figure 3(b) shows
the connectivity pattern associated to the entry x1 of the
ILPHVG4(1) algorithm. Figure 3(c) shows the ILPHVG8(1)
algorithm evaluated along the vertical, horizontal, and diagonal
directions. Figure 3(d) shows the connectivity pattern associ-
ated to the entry x1 of the ILPHVG8(1) algorithm.

III. THEORETICAL RESULTS ON THE TOPOLOGICAL
PROPERTIES

Theorem 1. [34] If we let X(t) be a bi-infinite sequence of
independent and identically distributed (i.i.d.) random variable
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x with probability density f (x), then the degree distribution of
its associated LPHVG(ρ) is

P (k) =
{

1
2ρ+3

( 2ρ+2
2ρ+3

)k−2(ρ+1)
, k � 2ρ + 2,

0, otherwise.

The mean degree 〈k〉 is

〈k〉 = 4(ρ + 1).

Reference [34] provides a lengthy proof of this theorem. We
here propose an alternative shorter proof.

Proof. We let x be an arbitrary datum of the i.i.d. random
time series where its limited penetrable horizontal visibility
is interrupted by two bounding data, one datum xbl on its left
and one xbr on its right. There are 2ρ penetrable data that are
larger than x between the two bounding data, ρ penetrable data
x1

pl,x
2
pl,...,x

ρ
pl on the left and ρ data x1

pr,x
2
pr,...,x

ρ
pr on the right

of x. These 2ρ + 2 data are independent of f (x), then

�2ρ+2 =
∫ ∞

−∞

∫ ∞

x

∫ ∞

x

∫ ∞

x

...

∫ ∞

x

∫ ∞

x

...

∫ ∞

x

f (x)f (xbl)

× f (xbr)f
(
x1

pl

)
...f

(
x

ρ
pl

)
f

(
x1

pr

)
...f

(
xρ

pr

)
dxρ

pr

...dx1
prdx

ρ
pl... ...dx1

pldxbrdxbldx. (4)

We define the cumulative probability distribution function
F (x) of any probability distribution f (x) as

F (x) =
∫ x

−∞
f (t)dt. (5)

Then, we rewrite Eq. (4)

�2ρ+2 =
∫ ∞

−∞
f (x)[1 − F (x)]2ρ+2dx = 1

2ρ + 3
. (6)

The probability P (k) that the datum penetrates no more than
ρ time seeing k data is

P (k) = �(k)�2ρ+2 = 1

2ρ + 3
�(k), (7)

where �(k) is the probability that datum x penetrates no more
than ρ time, seeing at least k data. We can recurrently calculate
�(k)

�(k) = �(k − 1)(1 − �2ρ+2) = 2ρ + 2

2ρ + 3
�(k − 1),

�(2ρ + 2) = 1, (8)

from which we deduce

�(k) =
(

2ρ + 2

2ρ + 3

)k−2(ρ+1)

�(2ρ + 2) =
(

2ρ + 2

2ρ + 3

)k−2(ρ+1)

.

(9)

Thus, we finally obtain

P (k) =
{

�(k)�2ρ+2 = 1
2ρ+3

( 2ρ+2
2ρ+3

)k−2(ρ+1)
, k � 2ρ + 2,

0, otherwise.

(10)

Then the mean degree 〈k〉 of the limited penetrable horizontal
visibility graph associated to an uncorrelated random process

is

〈k〉 =
∞∑

k=2ρ+2

kP (k) =
∞∑

k=2ρ+2

k

2ρ + 3

(
2ρ + 2

2ρ + 3

)k−2(ρ+1)

= 4(ρ + 1). (11)

Theorem 1 shows the exact degree distribution for LPHVG(ρ),
which indicates that the degree distribution P (k) of LPHVG(ρ)
associated to i.i.d. random time series has a unified exponential
form, independent of the probability distribution from which
the series was generated.

Theorem 2. We let X(t) be a bi-infinite sequence of i.i.d.
random variable x with probability density f (x), and consider
a limited penetrable horizontal visibility graph associated with
X(t). We let 〈k(x)〉 be a mean degree of the node associated
with a datum of height x and define it as

〈k(x)〉

= 2(ρ + 1) − 2(ρ + 1)ln[1 − F (x)],F (x) =
∫ x

−∞
f (t)dt.

Proof. We define P (k|x) to be the conditional probability that
a given node has degree k when its height is x. Using the
constructive proof process of P (k) in Ref. [34], we calculate
P (k|x)

P (k|x)

=
k−θ∑
h=0

(2ρ+1)h
(−1)k−θ

h!(k−θ−h)!
[1−F (x)]θ {ln[1 − F (x)]}k−θ

= [1 − F (x)]θ {θln[1 − F (x)]}k−θ (−1)k−θ

(k − θ )!
,θ = 2(ρ + 1).

(12)

Then 〈k(x)〉 is

〈k(x)〉 =
∞∑

k=2(ρ+1)
kP (k|x). (13)

We let k − 2(ρ + 1) = α, 2(ρ + 1)ln[1 − F (x)] = λ and de-
duce

〈k(x)〉 = 2(ρ + 1)[1 − F (x)]2(ρ+1)
∞∑

α=0

(−1)αλα

α!

+ [1 − F (x)]2(ρ+1)
∞∑

α=1

(−1)αλα

(α − 1)!

= 2(ρ + 1) − λ = 2(ρ + 1) − 2(ρ + 1)ln[1 − F (x)].

(14)

Theorem 2 shows the relation between data height x and the
mean degree of the nodes associated with the data of height x.
The result indicates that the 〈k(x)〉 is a monotonically increas-
ing function of x and we conclude that the hubs of LPHVG(ρ)
are the data with largest values. We checked the accuracy of
the result within finite series and Fig. 4(a) shows a plot of the
numerical values of 〈k(x)〉 of LPHVG(ρ), with ρ = 0,2,4, and
6 associated to a random series of 1000 data extracted from
a uniform distribution for F (x) = x. The theoretical results
(red lines) show a good agreement with the data [Eq. (14)].
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FIG. 4. (a) The relation between data height x and the node degree
〈k(x)〉 under different penetrable distance ρ. (b) The relation between
data height x and the node degree 〈k(x)〉 under different time series
size N .

To investigate the finite size effect, Fig. 4(b) shows a plot of
the numerical values of 〈k(x)〉 of LPHVG(2) associated with
random series of 500, 1000, 1500, 2000 data. We use root mean
square error (RMSE) to measure the agreement between the
numerical and theoretical results. We find that when the size N

of the time series increases, the RMSE between the numerical
and theoretical results decreases, improving its accuracy.

Theorem 3. We let X(t) be an infinite periodic series
of period T with no repeated values within a period. The
normalized mean distance 〈〉 of LPHVG(ρ) associated with
X(t) is

〈d〉 ∼ [4(ρ + 1) − 〈k(T )〉],
where

〈k(T )〉 = 4(ρ + 1)

(
1 − 2ρ + 1

2T

)
, ρ  T .

Proof. To calculate 〈k(T )〉 we consider an infinite periodic
series of period T with no repeated values in a period and

denote it X(t) = {...,x0,x1,x2,...,xT ,x1,x2,...}, x0 = xT . We
let ρ  T for the subseries X̃(t) = {x0,x1,x2,...,xT } and,
without loss of generality, we assume that x0 = xT cor-
responds to the largest value of the subseries X̃(t), and
x1,...,xρ,xT −ρ,...xT −1 corresponds to the 2nd to (2ρ + 1)nd
largest value of the subseries. Thus, we construct the
LPHVG(ρ) associated with subseries X̃(t). We assume that
LPHVG(ρ) has E links and let xi be the smallest datum of
the subseries X̃(t). Because no data repetitions are allowed
in X̃(t), the degree of xi is 2(ρ + 1) when the graph is
constructed from LPHVG(ρ). We now remove node xi and
its 2(ρ + 1) links from LPHVG(ρ). The resulting graph now
has E − 2(ρ + 1) links and T nodes. We iterate this operation
T − (2ρ + 1) times and the resulting graph has 2(ρ + 1)
nodes, i.e., x0,x1,...,xρ,xT −ρ,...xT −1,xT . When these 2(ρ + 1)
nodes are connected by Er = (2ρ+2

2

)
links, the total number

of deleted links are Ed = 2(ρ + 1)[T − (2ρ + 1)]. Thus, the
mean degree of a limited penetrable horizontal visibility graph
associated with X(t) is

〈k(T )〉 = 2
Ed + Er

T

= 2{2(ρ + 1)[T − (2ρ + 1)] + (ρ + 1)(2ρ + 1)}
T

= 4(ρ + 1)

(
1 − 2ρ + 1

2T

)
, ρ  T . (15)

We let 〈	〉 be the mean distance of LPHVG(ρ), N be
the number of nodes, and the normalized mean distance be
〈d〉 = 〈	〉

N
. Note that 〈d〉 depends on T for horizontal visibility

graph associated with periodic orbits 〈d〉 ∼ T −1 for N → ∞
[31]. Thus, we deduce that 〈d〉 ∼ T −1 for LPHVG(ρ). Using
Eq. (15), we obtain T −1 ∼ [4(ρ + 1) − 〈k(T )〉] and

〈d〉 ∼ [4(ρ + 1) − 〈k(T )〉]. (16)

This result holds for every periodic or aperiodic series (T →
∞), independent of the deterministic process that generates
them, because the only constraint in its derivation is that data
within a period can not be repeated. Note that one consequence
of Eq. (15) is that each time series has an associated LPHVG(ρ)
with a maximum mean degree (for a aperiodic series) of
〈k(∞)〉 = 4(ρ + 1), which agrees with the previous result in
Eq. (11). In Eq. (16) the limiting solution 〈k(T )〉 → 4(ρ +
1),〈d〉 → 0 holds for all aperiodic, chaotic, and random series.
To check the accuracy of the analytical result, we generate four
periodic time series (T = 50, 100, 200, and 250) with 2000
data points. The data in each period come from a Logistic map
withμ = 4 [34]. We construct the limited penetrable horizontal
visibility graphs with penetrable distance ρ = 0,1,2,...,10
associated with this periodic time series. Figure 5(a) shows
a plot of the mean degree of the resulting LPHVG(ρ) values
with different ρ values that indicate a good agreement with the
theoretical results in Eq. (15). Figure 5(b) shows a calculation
of the normalized mean distance 〈d〉 of LPHVG(ρ) values
with ρ = 0, 1, and 2 associated with the period time series of
T = 100,200,300,...,1000. The numerical values of the mean
normalized distance 〈d〉 as a function of mean degree 〈k(T )〉
agrees with the theoretical linear relation of Eq. (16).

Theorem 4. [34] We let X(t) be a real value bi-infinite
time series of i.i.d. random variables x with probability
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FIG. 5. (a) Numerical results of Eq. (15) where we simulated
a periodic time series for T = 50,100,200, and 250, respectively,
with 2000 data points. (b) Numerical results of Eq. (16), where we
simulated a periodic time series with T = 100,200,300,...,1000. The
data in each period comes from the Logistic map with μ = 4.

distribution f (x) and examine its associated LPHVG(ρ). The
local clustering coefficient distribution is then
P (Cmin)

= 1

2ρ + 3
exp

{[
ϕ +

√
ϕ2 − 8Cmin(2ρ + 1)

2Cmin
− 2(ρ + 1)

]

× ln

(
2ρ + 2

2ρ + 3

)}
,

and
P (Cmax)

= 1

2ρ + 3
exp

{[
φ +

√
φ2 − 8Cmax(6ρ + 1)

2Cmax
− 2(ρ + 1)

]

× ln

(
2ρ + 2

2ρ + 3

)}
,

where ϕ = Cmin + 2(ρ + 1) and φ = Cmax + 2(2ρ + 1).
Theorem 5. [34] We let XN (t) be a bi-finite sequence of i.i.d.

random variables extracted from a continuous probability den-
sity f (x). Then the probability Pρ(n) that two data separated by
n intermediate data are two connected nodes in the LPHVG(ρ)
is

Pρ(n) = 2ρ(ρ + 1) + 2

n(n + 1)
, ρ = 0,1,2,...

Theorem 4 shows the distribution characteristics of the
minimum and the maximum clustering coefficients of the
nodes in LPHVG(ρ). Theorem 5 indicates that the limited
penetrable visibility probability Pρ(n) = 2ρ(ρ+1)+2

n(n+1) introduces
shortcuts in the LPHVG(ρ). With these shortcuts the limited
penetrable horizontal visibility graph reveals the presence of
small-world phenomena [34].

Theorem 6. We let X(t) be a bi-infinite sequence of i.i.d. of
random variable x with a probability density f (x). Then both
the in and out degree distribution of its associated DLPHVG(ρ)
is

Pin(k) = Pout(k) =
{

1
ρ+2

(
ρ+1
ρ+2

)k−(ρ+1)
, k � ρ + 1,

0, otherwise.

Proof. Let x be an arbitrary datum of the i.i.d. random
time series with x � xbr, and Pout(k) be the probability that
its limited penetrable horizontal visibility is interrupted by
one bounding datum on its right. There are ρ penetrable data
xp1,xp2,...,xpρ � x between x and the bounding data xbr.
These ρ + 1 data are independent of f (x). Then

�
ρ+1
out =

∫ ∞

−∞

∫ ∞

x

...

∫ ∞

x

∫ ∞

x

f (x)f (xp1)...f (xpρ)f (xbr)

× dxbrdxpρ...dxp1dx

=
∫ ∞

−∞
f (x)[1 − F (x)]ρ+1dx = 1

ρ + 2
. (17)

The probability Pout(k) that datum x penetrates no more than
ρ times, seeing k data is

Pout(k) = �out(k)�ρ+1
out = 1

ρ+2�out(k), (18)

where �(k) is the probability that x penetrates no more than
ρ times to the right, seeing at least k data. Then �(k) can be
recurrently calculated

�(k) = �(k − 1)
(
1 − �

ρ+1
out

) = ρ + 1

ρ + 2
�(k − 1)

=
(

ρ + 1

ρ + 2

)k−(ρ+1)

�(ρ + 1), (19)

from which, with �(ρ + 1) = 1, we deduce

�(k) =
(

ρ + 1

ρ + 2

)k−(ρ+1)

. (20)

Thus, we finally obtain

Pout(k) = �out(k)�ρ+1
out =

{
1

ρ+2

(
ρ+1
ρ+2

)k−(ρ+1)
,

0, otherwise.
(21)

To further check the accuracy of Eq. (21), we perform
several numerical simulations. We generate random series
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FIG. 6. (a) Plot of the in and out degree distributions of the
resulting graphs. (b) Semilog plot of the in and out degree distributions
of the resulting graphs. The theoretical results showed were calculated
using Eq. (21).

of 3000 data points from uniform, gaussian, and power law
distributions and their associated DLPHVG(ρ). Figure 6 shows
plots of the degree distributions with penetrable distances
ρ = 0, 1 and 2. We find that the theoretical results agree with
the numerics, placing aside finite size effects. As in the degree
distribution of LPHVG(ρ) [34], the deviations between the
tails of the in and out degree distributions of DLPHVG(ρ)
associated with i.i.d. random series are caused solely by finite
size effects.

Theorem 7. We let X be a N × N matrix with entries xij =
ξ , where ξ is a random variable sampled from a distribution
f (x). Then when n > 0 and in the limit N → ∞, the degree
distribution of the associated ILPHVGn(ρ) converges to

P (k) =
{

1
[n(ρ+1)+1]

[
n(ρ+1)

n(ρ+1)+1

]k−n(ρ+1)
, k � n(ρ + 1).

0, otherwise.

Proof. To derive general results, we consider the two
special cases n = 4 and n = 8. In the case n = 4, we let
x be an arbitrary datum in X, where the probability of its
image-limited penetrable horizontal visibility is interrupted
by four bounding datum, i.e., xbr on its right, xba above it,

xbl on its left, and xbb below it. There are 4ρ penetrable
data xpr1,...,xprρ,xpa1,...,xpaρ,xpl1,...,xplρ,xpb1...,xpbρ between
x and the four bounding data. These 4ρ + 4 data are indepen-
dent of f (x). Then

�[4(ρ + 1)]

=
∫ ∞

−∞

∫ ∞

x

...

∫ ∞

x

∫ ∞

x

...

∫ ∞

x

∫ ∞

x

...

∫ ∞

x

∫ ∞

x

...

...

∫ ∞

x

∫ ∞

x

∫ ∞

x

∫ ∞

x

∫ ∞

x

f (x)f (xpr1)...f (xprρ)f (xpa1)...

...f (xpaρ)f (xpl1)...f (xplρ)f (xpb1)...f (xpbρ)f (xbr)f (xba)

× f (xbl)f (xbb)dxbbdxbldxbadxbrdxpbρ...dxpb1dxplρ...

...dxpl1dxpaρ...dxpa1dxprρ...dxpr1dx

=
∫ ∞

−∞
f (x)[1 − F (x)]4ρ+4dx = 1

4ρ + 5
. (22)

The probability that the node x has a penetrable visibility of
exactly k nodes is

P (k) = {1 − �[4(ρ + 1)]}k−4(ρ+1)�[4(ρ + 1)]

= 1

4ρ + 5

(
4ρ + 4

4ρ + 5

)k−4(ρ+1)

, k � 4(ρ + 1). (23)

Similarly, when n = 8 from Eq. (22), then

�[8(ρ + 1)] =
∫ ∞

−∞
f (x)[1 − F (x)]8ρ+8dx = 1

8ρ + 9
.

(24)

Here the probability that node x has a penetrable visibility of
exactly k nodes is

P (k) = {1 − �[8(ρ + 1)]}k−8(ρ+1)�[8(ρ + 1)]

= 1

8ρ + 9

(
8ρ + 8

8ρ + 9

)k−8(ρ+1)

, k � 8(ρ + 1). (25)

From Eqs. (23) and (25) we deduce for a generic n

P (k) = {1 − �[n(ρ + 1)]}k−n(ρ+1)�[n(ρ + 1)]

=
{

1
[n(ρ+1)+1]

[
n(ρ+1)

n(ρ+1)+1

]k−n(ρ+1)
, k � n(ρ + 1).

0, otherwise.
(26)

Note that when n = 2 this result reduces to that in Eq. (10).
To check the accuracy of Eq. (26), we estimate the degree
distribution of ILPHVGn(ρ) associated with N × N random
matrices whose entries are i.i.d. uniform random variables
between 0 and 1. To illustrate the finite size effects, we
also define the cutoff value k0. When k > k0, all the degree
distributions of the numerical results are smaller than the
theoretical result in Eq. (26). Figures 7(a)–7(c) and 7(e)–
7(g) show semilog plots of the finite-size degree distributions
of ILPHVG4(ρ) and ILPHVG8(ρ) with N = 200. Note that
the distributions agree with Eq. (26) when k � k0. To assess
the convergence speed of Eq. (26) for finite N , we estimate the
cutoff value k0 for different finite N sizes [see Figs. 7(d)
and 7(h)]. Note that the location of the cutoff value k0 scales
logarithmically with the system size N , i.e., finite size effects
only affect the tail of the distribution, which quickly converges
with N .
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FIG. 7. (a) Semilog plot of the degree distribution of ILPHVG4(ρ)
associated to N × N random matrices. The solid line is the theoretical
value of P (k) given by Eq. (26). In every case we find an good
agreement with this equation for k � k0, where k0 is a cutoff value
that denotes the onset of finite size effects. (b) Plot of the cutoff k0

as a function of different size N for n = 4, suggesting a logarithmic
scaling. (c) Semilog plot of the degree distribution of ILPHVG8(ρ)
associated to N × N random matrices and the theoretical value of
P (k). (d) Plot of the cutoff k0 as a function of different size N for
n = 8, also suggesting a logarithmic scaling.

In addition to the above proof method for degree distribu-
tions of LPHVG(ρ) (Theorem 1), DLPHVG(ρ) (Theorem 6),
and ILPHVGn(ρ) (Theorem 7), we can also prove them from
the construction process of LPHVG(ρ), DLPHVG(ρ), and
ILPHVGn(ρ). We here give the proof for ILPHVGn(ρ), and the
proofs for LPHVG(ρ) and DLPHVG(ρ) follow analogously.
Generating a panel data of size N × N is equivalent to putting
N × N numbers into N × N positions. In the first step, we
randomly choose a position and put the largest number on it.
In the second step, we choose a position from the remaining
N2 − 1 positions and put the second largest number on it.

(a) (b)

(c) (d)

FIG. 8. Graphical illustration of the new edges generated of
ILPHVG4(ρ) and ILPHVG8(ρ) withρ = 0 and 1 when we add the l2th
largest number (the green node) into ILPHVG4(ρ) and ILPHVG8(ρ).

In step l, we randomly choose a position from N2 − l + 1
remaining positions and put the largest number l on it.

To derive the general results of a ILPHVGn(ρ) using
iterative construction process, we first examine the two spe-
cial cases n = 4 and n = 8. When n = 4, we construct the
ILPHVGn(ρ) from a matrix with l2 − 1 numbers in step l2.
We define LI (k,l2 − 1) the number of nodes with degree k.
When we add largest number l2 into the ILPHVG4(ρ), only
4(ρ + 1) new edges are generated, as shown in Fig. 8(a)
with ρ = 0, in Fig. 8(b) with ρ = 2, where the green node
is the largest number l2 node and the 4(ρ + 1) new edges
link to the 4(ρ + 1) nodes adjacent to node l2. The degree
of each 4(ρ + 1) node increases by 1. Because the new node
is placed randomly, l2 − 1 nodes have the same probability
4(ρ + 1)/(l2 − 1) of changing their degrees. With a probability
1 − 4(ρ + 1)/(l2 − 1) the other nodes degrees remain the
same. So the number of nodes with degree k in the new
ILPHVG4(ρ) containing l2 nodes is

L4(k,l2) =
[

1 − 4(ρ + 1)

l2 − 1

]
L4(k,l2 − 1)

+ 4(ρ + 1)

l2 − 1
L4(k − 1,l2 − 1) + δk,4(ρ+1), (27)

where

δk,4(ρ+1) =
{

1, k = 4ρ + 4,

0, otherwise,
because the degree of each new node is k = 4(ρ + 1). The
probability that nodes with degree k in the ILHVG4(ρ) con-
taining l2 nodes is calculated by

P4(k,l2) = L4(k,l2)/l2. (28)

Thus, we rewrite Eq. (28) to be

P4(k,l2) ≈
(

1 − 4ρ + 5

l2

)
P4(k,l2 − 1)

+ 4(ρ + 1)

l2
P4(k − 1,l2 − 1), (29)
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in which δk,2(ρ+1)/l2 = 0 for large l2. When l2 → ∞, we have

P4(k − 1,l2) = P4(k − 1,l2 − 1) = P4(k − 1),

P4(k,l2) = P4(k,l2 − 1) = P4(k). (30)

Combining Eqs. (29) and (30), we obtain

P4(k) = 4ρ + 4

4ρ + 5
P4(k − 1). (31)

By applying
∞∑

k=4(ρ+1)
P4(k) = 1, we obtain the solution to

Eq. (31),

P4(k) = (4ρ + 5)4ρ+3

(4ρ + 4)4ρ+4

(
4ρ + 4

4ρ + 5

)k

. (32)

Similarly, when n = 8 we add the largest number l2 into the
ILPHVG8(ρ), and 8(ρ + 1) new edges are generated shown
in Fig. 8(c) with ρ = 0, Fig. 8(d) with ρ = 2, the green node
is the largest number l2 node, and 8(ρ + 1) new edges link to
8(ρ + 1) nodes adjacent to node l2. We then change Eq. (27)
to

L8(k,l2) =
[

1 − 8(ρ + 1)

l2 − 1

]
L8(k,l2 − 1)

+ 8(ρ + 1)

l2 − 1
L8(k − 1,l2 − 1) + δk,8(ρ+1). (33)

Thus,

P8(k,l2) ≈
(

1 − 8ρ + 9

l2

)
P8(k,l2 − 1)

+ 8(ρ + 1)

l2
P8(k − 1,l2 − 1). (34)

When l2 → ∞, we have

P8(k) = 8ρ + 8

8ρ + 9
P8(k − 1). (35)

By applying
∞∑

k=8(ρ+1)
PI8(k) = 1 we obtain the solution to

Eq. (35)

P8(k) = (8ρ + 9)8ρ+7

(8ρ + 8)8ρ+8

(
8ρ + 8

8ρ + 9

)k

. (36)

From Eqs. (32) and (36), we deduce the probability for a
generic n,

Pn(k) = [n(ρ + 1) + 1]n(ρ+1)−1

[n(ρ + 1)]n(ρ+1)

[
n(ρ + 1)

n(ρ + 1) + 1

]k

. (37)

This result is consistent with the analytical expression Eq. (26).

IV. APPLICATION OF DLPHVG(ρ) AND ILPHVGn(ρ)

We use the analytical results of LPHVG(ρ) to describe
the global evolution of crude oil futures and to distinguish
between random and chaotic signals [34]. We also discuss some
applications of DLPHVG(ρ) and ILPHVGn(ρ).

TABLE I. Values of the irreversibility measure associated to the
degree distribution DKL[Pout(k)||Pin(k)] for DLPHVG(ρ) associated
to series of 3000 data generated from reversible and irreversible
processes.

Series description ρ = 0 ρ = 1 ρ = 2

Uniform distribution 0.000950 0.007106 0.007269
Gaussian distribution 0.002633 0.007106 0.005507
Power law distribution 0.000226 0.004257 0.005267
Logistic map (μ = 4) 0.342985 0.090773 0.081985
Hénon map (a = 1.4,b = 0.3) 0.158358 0.125637 0.140270

A. Measure real-valued time series irreversibility by
DLPHVG(ρ)

Time series irreversibility is an important topic in basic and
applied science [35]. Over the past decade several methods of
measuring time irreversibility have been proposed [36–38]. A
recent proposal uses the directed horizontal visibility algorithm
[39]. Here the Kullback-Leibler divergence between the out-
and in-degree distributions is defined by

DKL[Pout(k)||Pin(k)] =
∑

k

Pout(k)log
Pout(k)

Pin(k)
. (38)

Equation (38) measures the irreversibility of real-value station-
ary stochastic series, and here we explore the applicability of
DLPHVG(ρ). We first select an appropriate parameter ρ, then
we map a time series to a directed-limited penetrable horizontal
visibility graph, and we use Eq. (38) to estimate the degree of
irreversibility of the series. Using Theorem 6 and Eq. (38) we
find that the Kullback-Leibler divergence between the in and
out degree distributions associated with an i.i.d. random infinite
series is equal to zero. Using finite size analysis, we find that
this quantity tends asymptotically to zero for finite series of size
N . We set ρ = 0, 1, and 2, and calculate the numerical value of
the Kullback-Leibler divergence of the random series of 3000
data from uniform, Gaussian, and power-law distributions (see
the upper section of Table I). All numerical values for DKL are
approximately 0, which suggests that the i.i.d. time series is
reversible.

We next examine the chaotic Logistic (μ = 4) and Hénon
(a = 1.4,b = 0.3) map series. Figures 9(a) and 9(b) show
plots of the in and out degree distributions of DLPHVG(ρ),
ρ = 0,1, and 2 associated with the Logistic map at μ = 4 and
the Hénon map for a = 1.4 and b = 0.3 of 3000 data points.
Note that in each case there is a clear distinction between
the in and out degree distributions, and this differs from the
i.i.d. series case [see Fig. 6(b)]. We calculate the values of
the Kullback-Leibler divergence for each case (bottom section
of Table I) and we find that these values are positive and
much larger than those of the i.i.d. series. Figures 9(c) and
9(d) show a finite size analysis for chaotic maps. Note that
the DKL values associated with the chaos maps converges
asymptotically to a nonzero value for a series of size N , which
indicates that chaos maps are irreversible. Thus by select-
ing an appropriate parameter for ρ, the DKL[Pout(k)||Pin(k)]
of DLPHVG(ρ) captures the irreversibility of the time
series.
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FIG. 9. Plot of the in and out degree distributions of DLPHVG(ρ),
ρ = 0,1, and 2 associated to (a) the chaotic Logistic map at (μ = 4)
of 3000 data points and to the (b) Hénon map for (a = 1.4,b = 0.3) of
3000 data points, which different from the uncorrelated cases. Values
of the Kullback-Leibler divergence DKL associated to (c) the logistic
map with series size N and (d) the Hénon map with series size N ,
which converge asymptotically to a nonzero value.

B. Discriminating between noise and chaos using ILPHVGn(ρ)

Although chaotic processes display an irregular and unpre-
dictable behavior that is frequently perceived to be random,
chaos is a deterministic process that often hides patterns
that can be extracted using appropriate techniques. In recent
decades, some research efforts to distinguish between noise
and chaos have been widespread, and applications have been
developed in all scientific disciplines involving complex, irreg-
ular empirical signals [40–42]. Lacasaet al. [33] used visibility
graphs to distinguish spatiotemporal chaos from simple ran-
domness. We also examine spatially extended structures and
explore whether ILPHVGn(ρ) can distinguish spatiotemporal
chaos from simple randomness.

We define X(t) to be a two-dimensional square lattice of N2

diffusively-coupled chaotic maps that evolve in time [33]. In
each vertex of this coupled map lattice (CML) we allocate a
fully chaotic logistic map xt+1 = Q(xt ), with Q(x) = 4x(1 −
x), and the system is then spatially coupled,

xij (t + 1) = (1 − ε)Q[xij (t)] + ε
4

∑
i ′,j ′

Q[xi ′j ′(t)], (39)

where the sum extends to the Von Neumann neighborhood
of ij (four adjacent neighbors). We use periodic boundary
conditions with coupling strength ε ∈ [0,1]. Figure 10(a)
shows a semilog plot for N = 200 of the degree distribution
of ILPHVG8(ρ), ρ = 0,1, and 2 associated with a two-
dimensional uncorrelated random field of uniform random
variables (stars), and a two-dimensional coupled map lattice
of diffusively coupled fully chaotic logistic maps for ε = 0
(squares) and ε = 0.1 (diamonds). Figure 10(b) shows a plot
of the degree distribution of ILPHVG8(ρ), ρ = 0,1, and 2
associated with the two-dimensional coupled map lattices
of diffusively coupled chaotic logistic maps for ε = 0.7.
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FIG. 10. (a) Semilog plot of the degree distribution of
ILPHVG8(ρ), ρ = 0,1, and 2 associated to a two-dimensional un-
correlated random field of uniform random variables (stars), and
two-dimensional coupled map lattices of diffusively coupled fully
chaotic logistic maps, for coupling constant ε = 0 (squares) and
ε = 0.1 (diamonds). The dashed red, solid blue, and dotted green lines
are the results of Eq. (26) for ρ = 0, ρ = 1, and ρ = 2, respectively.
(b) Semilog plot of the degree distribution of ILPHVG8(ρ), ρ =
0,1, and 2 associated to two-dimensional coupled map lattices of
diffusively coupled fully chaotic logistic maps, for coupling constant
ε = 0.7 (black dots). (c) The χ 2 statistic in two-dimensional phase
space (time delay τ = 2). (d) Scalar parameter D as a function of
the coupling constant ε, computed from the degree distribution of
ILPHVG8(ρ), ρ = 0,1, and 2 associated to 100 × 100 CMLs of
chaotic logistic maps.

Equation (26) shows ρ = 0 (dashed red line), ρ = 1 (solid
blue line), and ρ = 2 (dotted green line).

Figures 10(a) and 10(b) show that the degree distribution of
ILPHVG8(ρ), ρ = 0,1, and 2 associated with the uncoupled
(ε = 0) and weakly coupled (ε = 0.1) cases is indistinguish-
able from the degree distribution associated with the i.i.d.
random field. Figure 10(b) shows that the degree distribution
deviates from the theoretical result in Eq. (26) only in the
strongly coupled case (ε = 0.7). Note that the coupled map
lattices from Eq. (39) when ε > 0 the degree distributions
of ILPHVG8(ρ) are statistically different from the theoretical
result in Eq. (26). Nevertheless, the degree distribution of
ILPHVG8(ρ), ρ = 0,1, and 2, associated with the i.i.d. random
field, uncoupled case (ε = 0), and weakly coupled case (ε =
0.1) are well approximated by Eq. (26). There are deviations
for k > k0 (k0 = 19 for ρ = 0, k0 = 36 for ρ = 1, and k0 = 51
for ρ = 2), but they are caused by finite-size effects (see Fig. 7).
To quantify potential deviations of the uncoupled and weakly
coupled cases from Eq. (26), we compute χ2 that measures the
deviation between the empirical degree distribution and the
theoretical result

χ2 = N2
∑

k

[Pnum(k) − Ptheo(k)]2

Ptheo(k)
, (40)
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where Pnum(k) is the degree distribution of the numerical result
and Ptheo(k) is the theoretical result from Eq. (26). Here we
consider 30 realizations of the i.i.d. random field and for
the uncoupled (ε = 0) and the weakly coupled map lattices
(ε = 0.1), we use 8 � k � 44 for ρ = 0, 16 � k � 77 for
ρ = 1, and 24 � k � 99 for ρ = 2 to compute the χ2 statistic.
Figure 10(c) shows the calculated results in a two-dimensional
phase space with a time delay τ = 2. Note that there are clear
distinctions between the uncorrelated i.i.d. random field, the
uncoupled map lattices (ε = 0), and the weakly coupled map
lattices (ε = 0.1) for ρ = 0 and ρ = 1, but when ρ = 2 the
distinction is no longer clear. We thus select an appropriate
parameter ρ and use the degree distribution of ILPHVG(ρ) to
distinguish noise from chaos.

Note that when we increase the coupling constant ε the spa-
tiotemporal dynamics of the coupled map lattice shows a rich
phase diagram. Using the degree distribution of ILPHVG8(ρ),
we show this spatiotemporal dynamic process. For each ε we
compute the degree distribution of the associated ILPHVG8(ρ)
and then we compute the distance D between the degree
distribution at ε and the corresponding result for ε = 0 in
Eq. (26),

D =
∑

k

∣∣∣∣Pρ(k) − 1

8ρ + 9

(
8ρ + 8

8ρ + 9

)k−8(ρ+1)∣∣∣∣, (41)

where Pρ(k) is the degree distribution of ILPHVGn(ρ), and D

is a scalar order parameter that describes the spatial configura-
tion of the CML. Figure 10(d) shows that when ρ = 0,1, and 2,
the evolution of D with ε changes from 0 to 1, indicating sharp
changes in the different phases—fully developed turbulence
with weak spatial correlations (I), periodic structure (II),
spatially coherent structure (III), and mixed structure (IV)—
between periodic and spatially coherent structures [33]. Thus,
the degree distribution of the ILPHVG8(ρ) can capture the
special spatial structure.

C. Measure the systematic risk using ILPHVGn(ρ)

Estimation of systematic risk has always been a hot issue in
research of system science [43–50]. Over the past decade sev-
eral methods of measuring systematic risk have been proposed,
such as the absorption ratio [44], the β coefficient[45], the net-
work methods [47–49], multivariate autoregressive conditional
heteroscedasticity method [50]. Here, we propose a method
to measure the systematic risk using ILPHVGn(ρ). There
are four steps in the proposed method, i.e., construct sliding
window, map the panel data into ILPHVGn(ρ)s, calculate the
correlation index matrix, and calculate the risk index.

Step 1. Construct sliding window. To characterize the evo-
lution process of the panel data XN×T = {xij }, i = 1,2,...,N

and j = 1,2,...,T using ILPHVGn(ρ), we divide the entire
scale of the panel data into equal small-scale segments (or
windows) and assume that the length of the sliding window
is L. From the definition of ILPHVGn(ρ), we let L = N .
We define l as the step length between sliding time windows
and to ensure that small-scale segments of the time series are
continuous, we require that l < L. This allows us to obtain
T ′ = [(T − L)/l + 1] for small-scale time windows, where
[...] denotes the rounding function.

Step 2. Map the panel data into ILPHVGn(ρ)s. In this step,
we first need to determine the value of parameter ρ and we
compute the absolute distance function �(ρ),

�(ρ) = ∣∣χ2
Real − χ2

Rand

∣∣, (42)

where χ2
Real and χ2

Rand are χ2 values for real and random panel
data, respectively. The larger � means a better distinction
between the real panel data and the random panel data.
Thus, we can determine the value of parameter ρ using
Eq. (42). In general, we set n = 4 or n = 8 and then, for
every small-scale time window t , we transform the panel data
into the a ILPHVGn(ρ) of time t . The topological structure
of ILPHVGn(ρ) changes with time t , therefore, we write
ILPHVGn(ρ,t), t = 1,2,...,T ′.

Step 3. Calculate the correlation index matrix. We use
the Euclidean distance to measure the relationship between
ILPHVGn(ρ)s. We define the Euclidean distance between
ILPHVGn(ρ,tm) and ILPHVGn(ρ,tn) to be

dtm,tn =
√√√√ L∑

i=1

L∑
j=1

[aij (tm) − aij (tn)], (43)

where aij (tm) ∈ A(tm) and aij (tn) ∈ A(tn), where A is the
adjacency matrix. We then determine the distance matrix

DT ′×T ′ = {
dtm,tn

}
; tm = 1,2,...,T ′; tn = 1,2,...,T ′, (44)

and assign a threshold value to ν

ν = min
{
d rand

tm,tn

}
tm �=tn

, d rand
tm,tn

∈ Drand
T ′×T ′ , (45)

here Drand
T ′×T ′ is the distance matrix associated with i.i.d. random

panel data. From Eq. (45), we can see that ν can be obtained
from the distance matrix of ILPHVGn(ρ)s associated with the
i.i.d. panel data, which is the critical value to measure the
correlation between the data in different time periods. Using
the threshold ν, we define the correlation index γ ,

γ (tm,tn) =
{

0, dtm,tn � ν,

1 − dtm,tn/ν, dtm,tn < ν,
(46)

here γ (tm,tn) is the correlation index of ILPHVGn(ρ) at time tm
and at time tn and γ (tm,tn) can be visualized using a recursive
graph G, constructed using the formula

G(tm,tn) = �
(
ν − dtm,tn

)
, (47)

where �(x) is the Heaviside function. We use this for-
mula to plot the dependence between ILPHV Gn(ρ,tm)
and ILPHV Gn(ρ,tn) in two-dimensional coordinates, in
which both the abscissa and the ordinate are the time t . In
the recursive graph, when the Euclidean distance between
ILPHV Gn(ρ,tm) and ILPHV Gn(ρ,tn) is sufficiently close,
i.e., when G(tm,tn) = 1, we plot a dot at (tm,tn) and (tn,tm).
Note that at (tm,tm) and (tn,tn), i.e., the dots remain in the
main diagonal, and we can use this result to characterize the
global dynamic changes in correlation γ . Using Eq. (46), we
can obtain the degree correlation index matrix {γd (i,t)} and the
clustering coefficient correlation index matrix {γc(i,t)} with i

and t = 1,2,...,T ′.
Step 4. Measure the systematic risk. According to the

information entropy, we develop a degree correlation index
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FIG. 11. Detailed procedure of the proposed method for system-
atic risk measuring.

entropy, denoted as Sd and the clustering coefficient correlation
index entropy, denoted as Sc, which is calculated by

Sd (t) = −
T ′∑
i=1

Pd (i,t)log[Pd (i,t)],Pd (i,t)

= γd (i,t)∑T ′
i=1

∑T ′
t=1 γd (i,t)

, (48)

Sc(t) = −
T ′∑
i=1

Pc(i,t)log[Pc(i,t)],Pc(i,t)

= γc(i,t)∑T ′
i=1

∑T ′
t=1 γc(i,t)

, (49)

then the risk measurement formula R can be obtained,

R(t) = ω1S̄d (t) + ω2S̄c(t), (50)

where ωi is the weight, and S̄d (t) and S̄c(t) are the normalized
vector of Sd (t) and Sc(t), respectively. The procedure of the
proposed method for systematic risk measuring is illustrated
in Fig. 11.

We choose the crude oil import values (unit: US Dollar
thousand) of 38 crude-oil-import-dependent countries as the
sample data, i.e., N = 38. The data cover the period from
January 2005 to December 2014 and consist of 120 monthly
observations, i.e., T = 120. All the data were obtained from
the US Energy Information Administration. We use the Z-score
standardizing processing method for data processing and the
standardized data is obtained as shown in Fig. 12(a). From
step 1, we set the length of sliding window L = N = 38
because this is the number of crude-oil-import-dependent
countries. To ensure that there are enough sliding windows,
we set the step length between the time windows equal to 1,
i.e., l = 1. Therefore, we obtain T ′ = (M − L)/l + 1 = 83
small-scale time windows. We use Eqs. (40) and (42) to
calculate the values of χ2 and �(ρ) with ρ changing from
0 to 9. Figure 12(b) plots the values of χ2 of the real data
and the random data. Figure 12(c) shows how the values of
�(ρ) changes with ρ. We find that when ρ = 3, the value
of � reaches the maximum, thus we choose ρ = 3 to build
ILPHVGn(ρ)s. We set n = 8 and by using Eqs. (43)–(45),
we perform 100 simulations of the random matrix to obtain
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FIG. 12. (a) The selected sample of real data for crude oil import
values. (b) χ 2 for the real data and for random data, respectively.
(c) φ(ρ) dependence on ρ. (d) The recursive graph of degree
correlation index matrix, (e) recursive graph of clustering coefficient
correlation index matrix, (f) the evolution of the systematic risk.

9031 and 334 for the threshold values of degree and clustering
coefficient, respectively. Then, using Eqs. (46) and (47), we
obtain the degree correlation index matrix {γd (i,j )} and the
clustering coefficient correlation index matrix {γc(i,j )} of the
system for crude-oil-import-dependent countries. The results
are shown in Figs. 12(d) and 12(e) where we can clear see
that the crude-oil-import-dependent countries system has both
short-range and long-range correlations. Figure 12(f) plots the
evolution of the systematic risk, where the red cycle line is
our result, and the blue diamond line is the result using the
absorption rate in literature which is also a measurement of
systematic risk [44]. Figure 12(f) indicates that the period of the
evolution of the risk in crude oil supply was divided into three
different periods. Before November 2009, the risk in crude oil
supply showed a upward trend due to the financial crisis. Then
the risk showed a trend of shock between December 2009 and
February 2012, and after February 2012 the risk shocked in a
downward trend, and down to the minimum on June 2014. Our
method can better reflect the evolutionary process of the risk
than the absorption rate; this is because this quantity is just the
sum of eigenvalues. The idea of absorption rate is to measure
systemic risk using the volatility of eigenvalues but this method
ignores the influence of other effects on the systematic risk.
Our proposed calculation formula [Eqs. (48)–(50)] can be
used to solve the problem of quantitative measures of the risk
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because it comprehensively considers effects of several factors
on system risk. Integrating the volatility and the real market
information, our calculation formula decrypts system risk into
a more reasonable final result.

V. DISCUSSIONS

We have introduced a directed-limited penetrable horizontal
visibility graph DLPHVG(ρ) and an image-limited penetrable
horizontal visibility graph [ILPHVGn(ρ)], both inspired by the
limited penetrable horizontal visibility graph LPHVG(ρ) [34].
These two algorithms are expansions of the limited penetrable
horizontal visibility algorithm. We first derive theoretical
results on the topological properties of LPHVG(ρ), including
degree distribution P (k), mean degree 〈k〉, the relation between
the datum height x and the mean degree 〈k(x)〉 of the nodes
associated to data with a height equal to x, the normalized
mean distance 〈d〉, the local clustering coefficient distribution
P (Cmin) and P (Cmax), and the probability of long distance visi-
bility Pρ(n). We then deduce the in and out degree distributions
Pin(k) and Pout(k) of DLPHVG(ρ), and the degree distribution
of ILPHVGn(ρ). We perform several numerical simulations
to check the accuracy of our analytical results. Furthermore,
we propose a method for deriving degree distributions of
LPHVG(ρ), DLPHVG(ρ), and ILPHVGn(ρ) by using an
iterative construction process of LPHVG(ρ), DLPHVG(ρ),
and ILPHVGn(ρ). In particular, we take ILPHVGn(ρ) for
example and give a detailed proof process. The proposed itera-
tive construction approach for deriving degree distributions is
simple to calculate and can be applied for more complicated
time series, such as Logistic maps and fractional Brownian
motions.

We then present applications of the directed-limited pene-
trable horizontal visibility graph and the image-limited pen-
etrable horizontal visibility graph, including measuring the
irreversibility of a real-value time series and discriminating
between noise and chaos. Empirical results consistent with
the results in references [33,39]. To further demonstrate the
practicality of our method, we propose a method to measure
the systematic risk using ILPHVGn(ρ), and empirical results
testify the efficiency of our methods.

Our theoretical results on topological properties are an
extension of previous findings [22,32–34]. In the structure of

the limited penetrable horizontal visibility graph family, the
limited penetrable parameter ρ is important and affects the
structure of the associated graphs. Using certain ρ values,
the exact results of the associated graphs reveals the essential
characteristics of the system, e.g., when ρ = 0 and ρ = 1,
using the degree distribution of ILPHVG8(ρ), we can distin-
guish between uncorrelated and weakly coupled systems. But
when ρ = 2, the distinction is no longer clear [see Fig. 10(c)].
Although we have given a method to determine ρ in this paper,
how to use real data to select an optimal limited penetrable
parameter ρ is still a interesting problem. As we know, ex-
tracting the underlying dynamic processes is an important topic
in the analysis of time-series of complex dynamical systems.
Recently, Scholz et al. [41] proposed a direct method to obtain
the deterministic and stochastic contribution of the sum of two
independent stochastic processes. Rinn et al. [42] presented
an R package for stochastic data analysis that is able to extract
the stochastic evolution equations of physical properties from
sets of their measurements: how to use the framework of
limited penetrable horizontal visibility graphs to distinguish
between additive and multiplicative stochastic contributions in
superposed time series; how to use this framework to uncover
dynamical features of its (chaotic or not) deterministic part. We
will introduce the concept of subgraphs of limited penetrable
horizontal visibility graphs and try to address these questions
by using the distribution of subgraphs in our further research.
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