
Physica A 492 (2018) 889–902

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Multiscale multifractal DCCA and complexity behaviors of
return intervals for Potts price model
Jie Wang a,b,*, Jun Wang a, H. Eugene Stanley b

a Institute of Financial Mathematics and Financial Engineering, School of Science, Beijing Jiaotong University, Beijing 100044, PR China
b Center for Polymer Studies and Department of Physics, Boston University, Boston, MA 02215, USA

h i g h l i g h t s

• A Potts financial model is developed to investigate volatility of return intervals.
• MM-DCCA based on Hurst surface is developed to analyze cross-correlation of return intervals.
• Using Lempel–Ziv complexity to illustrate complexity of return intervals in different scales.
• Empirical research shows the feasibility of proposed model in cross-correlation and complexity.

a r t i c l e i n f o

Article history:
Received 11 August 2017
Received in revised form 9 October 2017
Available online 16 November 2017

Keywords:
Return intervals
Potts price model
Multiscale multifractal DCCA
Lempel–Ziv complexity
Statistical physics

a b s t r a c t

To investigate the characteristics of extreme events in financial markets and the corre-
sponding return intervals among these events, we use a Potts dynamic system to construct
a random financial time series model of the attitudes of market traders. We use multiscale
multifractal detrended cross-correlation analysis (MM-DCCA) and Lempel–Ziv complexity
(LZC) perform numerical research of the return intervals for two significant China’s stock
market indices and for the proposed model. The new MM-DCCA method is based on the
Hurst surface and provides more interpretable cross-correlations of the dynamic mech-
anism between different return interval series. We scale the LZC method with different
exponents to illustrate the complexity of return intervals in different scales. Empirical
studies indicate that the proposed return intervals from the Potts system and the real stock
market indices hold similar statistical properties.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The financialmarket is a complex and highly volatile evolving dynamic system, and its corresponding financial time series
are inherently noisy, non-stationary, and chaotic. The statistical properties of price fluctuations [1–7] are essential when
analyzing and modeling financial market dynamics, which has long been a focus of economic research. Stock volatility is of
interest to traders because it quantifies risk, optimizes portfolios [8–13], and is a key input in such option pricing models
as the Black–Scholes [14]. Understanding that the primary causes of price movements are the arrival of new information
and interactions among market investors, a number of different market models have been introduced in an attempt to
reproduce and analyze the fluctuation behavior of stock markets [15–19]. A variety of financial price dynamics models have
been successfully used in modeling the financial markets based on the field of statistical physics systems or interacting

* Corresponding author at: Institute of Financial Mathematics and Financial Engineering, School of Science, Beijing Jiaotong University, Beijing 100044,
PR China.

E-mail addresses:wangjie@bjtu.edu.cn, jiewang@bu.edu (J. Wang).

https://doi.org/10.1016/j.physa.2017.11.019
0378-4371/© 2017 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.physa.2017.11.019
http://www.elsevier.com/locate/physa
http://www.elsevier.com/locate/physa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physa.2017.11.019&domain=pdf
mailto:wangjie@bjtu.edu.cn
mailto:jiewang@bu.edu
https://doi.org/10.1016/j.physa.2017.11.019


890 J. Wang et al. / Physica A 492 (2018) 889–902

particle systems, to model the main observed features of price dynamics, or the so called stylized facts, such as fat-tailed
distribution of returns, volatility clustering and multifractality [9–12,14,17]. Stauffer and Penna [20] and Yu andWang [21]
have developed pricemodels using lattice percolation and lattice-oriented percolation inwhich a percolation cluster defines
a group of traders who share the same market trading attitude. Zhang and Wang [22] used the stochastic contact system
to develop a random financial stock price model in which the epidemic spreading of the contact model defines the spread
of a stock market investment attitude among traders. Empirical results indicate that these simulative models reflect the
statistical characteristics of actual stock markets.

Here we employ the Potts model to simulate and characterize the time evolution of a market time series. This is a
famous statistical physics approach tomodeling nonequilibrium statistical mechanics and is an extension of the Isingmodel
[23–26]. We use a two-dimensional 3-state Potts model to develop a stock price time series model. Like the Ising model, the
Potts model has a second-order phase transition that separates a low-temperature ordered phase from a high-temperature
disordered phase. In this proposed financial model, the subunits in a two-dimensional Potts model are designated spins or
agents (with interactions between nearest neighbors), and the clusters of parallel spins in the square-lattice Potts model are
designated groups of market traders acting together.

Wang et al. [27] examined high-frequency financial data, studied the return intervals between price volatilities, and
found that the probability density function of return intervals follows a scaling function. Here we use the Lempel–Ziv
complexity (LZC) to explore the complex, dynamic behavior of the return intervals in the proposed Potts financial model
and in real stock markets. The LZC [28–30] is a non-parametric measure of complexity in a one-dimensional signal that is
related to the number of distinct substrings and the rate of their recurrence. Some empirical studies have investigated the
non-parametric measure of complexity in a one-dimensional signal that is related to the number of distinct substrings and
the rate of their recurrence. Empirical studies have investigated the scaling behavior of financial data [31,32], and several
models have been proposed to account for the observed multifractal features [33–35]. Zhou [36] extended multifractal
detrended fluctuation analysis (MF-DFA) to two time series in order to obtain the multifractal features in the powerlaw
cross-correlations between them, and they designated it multifractal detrended cross-correlation analysis (MF-DCCA).
Zebende [37] proposed a coefficient with the objective of quantifying the level of cross-correlation between nonstationary
time series. da Silva et al. [38] applied the detrended cross-correlation coefficient at the Brazil stockmarket.We here develop
and use method multiscale MF-DCCA (MM-DCCA) to investigate the multifractal behaviors of cross-correlations between
two return interval series. The goal is to apply LZC and MM-DCCA methods and investigate the complexity, multifractality,
and cross-correlation properties of the return interval time series of simulation data and of real stock markets.

2. Financial time series model

2.1. Brief description of Potts model

The Potts model is one of the statistical physics systems [39–41] proposed by Potts in the early 1950s. An extension of the
Isingmodel tomore than two components, themodel with generalQ components bears its current name. The Potts model is
related to a number of outstanding problems in lattice statistics, and its critical behavior is richer andmore general than that
of the Ising model. We consider the two-dimensional integer lattice Z2 and denote byB the set of bonds of the lattice (pairs
of nearest neighbors). In the Q -state Potts model, we let ΩZ2 = {1, 2, . . . ,Q }

Z2
denote the space of spin configurations on

Z2, an element of ΩZ2 usually notated σ = {σi : i ∈ Z2
}. The spin σi take on one-integer values from 1 to Q , and the Q is a

parameter of the model. For every σ ∈ ΩZ2 , the Hamiltonian system of the Q -state Potts model (J > 0) is

HZ2,b(σ ) = −J
∑
⟨i,j⟩

δσi,σj − b
∑

i

δσi,1 , (1)

where δ is the Kronecker symbol, δσi,σj = 1 only when σi = σj, ⟨i, j⟩ denotes pairs of nearest-neighbor spins on the lattice,
and the applied magnetic field b acts on the (arbitrarily chosen) state 1. Then the partition function is

ZZ2,h(σ ) =

∑
exp

(
K

∑
⟨i,j⟩

δσi,σj + h
∑

i

δσi,1

)
, (2)

where K = βJ and h = βb, β = 1/(kBT ), and kB and T are the Boltzmann constant and temperature, respectively. In
what follows we consider the Q -state Potts model with no external magnetic field (b = 0 and h = 0). When d ≥ 2 the
model sustains an order–disorder transition, and the critical value is βc = ln(1 +

√
Q ) in d = 2. When β > βc the Q -fold

permutation symmetry of Eq. (1) is broken, and one of the Q different ground states is singled out. When Q = 2 the model is
the familiar Ising model with a second-order transition.

2.2. Financial price time series model

We here use a two-dimensional 3-state Potts model on a L × L lattice to produce a financial agent-based price model.
Here the strength of interactions between neighboring elements is extremely important. It varies according to their location
in the lattice and, as typical of Potts models, small changes in interaction rules do not change the cooperative properties.
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Fig. 1. Graphical illustration of Potts model with β ≈ βc .

Although the optimal number of states allowed in the proposed model is thus not restricted to 3, we use a 3-state Potts
financial model that imitates (i) traders taking a selling position, (ii) traders taking a buying position, and (iii) traders taking
no trading position, which we classify as type 1, type 2, and type 3, respectively. We assume that stock price behavior
is strongly affected by the number of traders ω(1)(t) (traders of type 1), ω(2)(t) (traders of type 2), and ω(3)(t) (traders
of type 3). We consider a single stock and assume that there are L2 traders of this stock who are located in a square-
lattice L × L ⊂ Z2, and that each trader can trade a unit number of stock at each time t ∈ {1, 2, . . . , T }. At each time t ,
the fluctuation of stock price process is strongly influenced by the number of traders who take buying positions and the
number of traders who take selling positions. When the number of traders in selling positions is smaller than the number
of traders in buying positions, the stock price is considered low by market participants, and the stock price gradually
increases. The similar is true in the opposite case. Let ωij be the investing position of a trader (1 ≤ i ≤ L, 1 ≤ j ≤ L) at
time t , and ω(t) = (ω11(t), . . . , ω1L(t), · · · , ωL1(t), . . . , ωLL(t)) be the configuration of positions for L2 traders. A space of
all configurations of positions for L2 traders from time 1 to t is given by W = {ω : ω = (ω(1), . . . , ω(t))}. For a given
configuration ω ∈ W and a trading day t , let M (k)(ω(t)) =| ω(k)(t) | (k = 1, 2, 3), which represents the number of ω(1)(t),
ω(2)(t), and ω(3)(t) at time t , respectively. Here we assume that the price changes are proportional to the difference between
demand and supplyM (k)(ω(t)) (k = 1, 2, 3), which is affected by the intensity parameter β , where β represents the strength
of the spread of information. We define a random variable ξt with values 1, −1, 0 when an investor is buying, selling, or
neutral with probabilities p1, p−1 or 1 − (p1 + p−1), respectively. These investors send a bullish, bearish, or neutral signal
into the market. Fig. 1 uses three different colors to show the effect of investors in the proposed Potts financial model with
three different attitudes. For clarity we set Step= 100, L = 50 and β ≈ βc .

From the above description and [42,43], the stock price at trading day t is defined

P(t) = exp
{
α

3∑
k=1

M(k)(t)
L2

}
P(t − 1) (3)

M(k)(t) = M (k)(ω(t)) × γk × ξ k
t , (4)

where α(> 0) is the depth parameter of the market, random variable ξt (x) is the agent’s trading attitude (buying, selling
or neutral) toward the market and γk is the effective strength of each attitude of traders in the stock market such that
γ1 + γ2 + γ3 = 1.M (k)(ω(t)) represents the aggregate demand and supple, divided by L2 is a process of normalization. Then
we have

P(t) = P(0) exp
{
α

t∑
s=1

3∑
k=1

M(k)(s)
L2

}
, (5)

where P(0) is the stock price at time 0. Then the corresponding formula of the stock logarithmic return is

r(t) = rt = lnP(t) − lnP(t − 1), t ∈ {1, 2, . . ., T }. (6)



892 J. Wang et al. / Physica A 492 (2018) 889–902

Fig. 2. One-day return interval series of 5-min SSE, SZSE and two simulation series (β = 2, β = 3).

3. Return intervals and data collection

To understand the behavior of financial price fluctuations, the study of scaling properties in financial markets is essential.
The behavior of extreme events and the characteristics of return intervals among these events has attracted much recent
empirical research [44,45]. In contrast to daily volatility, intraday data exhibit specific patterns caused by differing trading
behaviors at different periods during the trading day. Herewedo a trend analysis of 5-minute return intervals in the Shanghai
Stock Exchange Composite Index (SSE) and the Shenzhen Stock Exchange Component Index (SZSE). We examine the daily
closing prices of SSE and SZSE from January 2013 to October 2015. The sampling time is five minutes and the data number
size is approximately 32000.

We let A(s) stand for the intraday pattern, which is the absolute value of price change at a particular moments of the
trading day averaged over all N trading days. It is defined

A(s) =

L∑
j=1

|r j(s)|
N

, (7)

where r j(s) is the logarithmic return at time s of day j. To avoid the impact of the daily fluctuation, the intraday pattern is
scaled and becomes

R(t) =
|r(t)|
A(s)

=
|r j(s)|
A(s)

, (8)

where r(t) = r j(s) depends on j and s. The normalized volatility C(t) is defined

C(t) =
R(t)√

E[R(t)]2 − (E[R(t)])2
. (9)

The threshold θ is measured in units of the standard deviation of C(t).
Fig. 2 shows an example of volatility C(t) with different thresholds θ (θ = 1.2, 1.5, 1.8, 2) for the SSE, the SZSE, and two

simulation time series of the model with β = 2 and β = 3). We generate a series of five-minute return intervals between
those events (denoted by {τ (θ )}). Fig. 2 shows how the return interval time series depends on the threshold θ . We focus on
the patterns of return intervals for the different threshold values of θ ∈ {1.2, 1.5, 1.8, 2}. Fig. 3(a) shows the fluctuation of
the price time series of the SSE and of two simulation time series with different parameters. Fig. 3(b) shows the return plots
r(t) and the corresponding return interval series τ for the SSE and the simulation data.

We next use the Potts financial model and real market data to explore several important fluctuation behaviors in the
return interval time series. In our computer simulation we use L = 100 with different β parameters, each covering 32000
data points, in order to compare the simulation data with real-market data of approximately the same size.

4. Complexity of return intervals

4.1. Lempel–Ziv complexity calculation

The Lempel–Ziv complexity (LZC) proposed by Lempel and Ziv [46] is a non-parametric measure of complexity in a one-
dimensional signal that is related to the number of distinct substrings and the rate of their recurrence. The LZC is used
to evaluate the randomness and complexity of a finite sequences and is closely related to such theoretical properties as
entropy and compression ratio. Because LZC analysis uses coarse-grained measurements, the original return interval time
series must be transformed into a finite symbol string before calculating the complexity. Here we use the 0-1-2 sequence
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Fig. 3. (a) Price time series of SSE and the simulative price time series of the model. (b) Plots of return series r(t) and the corresponding return interval
series τ for SSE and the simulation data of the model.

conversion in order to retain more original data information during the coarse-graining process. We calculate the median
xm, maximum xmax, andminimum xmin for each of return interval time series and obtain two thresholds: Td1 = xm−|xmin|/16
and Td2 = xm +|xmax|/16.We compare themwith threshold Td1 , Td2 and convert the original time series samples into a 0-1-2
sequence P = {s(1), s(2), . . . , s(n)}, with s(t) defined by [47]

s(t) =

{0, if x(t) ≤ Td1
1, if Td1 < x(t) < Td2
2, if x(t) ≥ Td2 .

(10)

We then scan string P from left to right and increase complexity counter c(n) by one unit each time a new subsequence
of consecutive characters is encountered in the scanning process. For a time series x(t), t ∈ 1, 2, . . . , n, we can measure the
LZC of x(t) using the following algorithm [28–30]:

(1) Let S and Q represent two subsequences of the original subsequence P and SQ be a concatenation of S and Q . Here
SQπ represents the sequence extracted from SQ in which the last character is deleted.

(2) Let ν(SQπ ) represent the set comprising all the different subsequences of SQπ .
(3) At the beginning, set the complexity counter c(n) = 1, S = s(1), Q = s(2), SQ = {s(1), s(2)}, and SQπ = s(1).
(4) In general we assume that S = {s(1), . . . , s(r)}, Q = s(r + 1), so SQπ = {s(1), . . . , s(r)}. If Q ∈ ν(SQπ ), then Q is a

subsequence of SQπ , not a new sequence.
(5) S does not change and we renew Q by adding s(r + 2) to Q , i.e., Q = {s(r + 1), s(r + 2)}, then we determine judge

whether Q belongs to ν(SQπ ) or not.
(6) Repeat steps (4) and (5) untilQ no longer belongs to ν(SQπ ) andQ = {s(r+1), . . . , s(r+i)} is no longer a subsequence

of SQπ = {s(1), . . . , s(r + i − 1)} but a new sequence. We thus increase c(n) by one.
(7) Thereafter S and Q are combined and renewed, becoming {s(1), . . . , s(r + i)}, and s(r + i + 1), respectively.
(8) Repeat the previous steps until Q contains the last character, at which time the number of different subsequences is

c(n), i.e., is a measure of Lempel–Ziv complexity.
To obtain a complexity measure that is independent of sequence length, we normalize c(n). If the length of the sequence

is n and the number of different symbols in the symbol set is γ (here γ = 2), the upper bound of c(n) is given by
c(n) < n/[(1 − εn)logγ (n)][24], where εn is a small quantity and εn → 0 (n → ∞). In general, n/logγ (n) is the upper
limit of c(n), where the base of the logarithm is γ , i.e., limn→∞c(n) = b(n) = n/logγ (n), and c(n) can be normalized via b(n),
L(n) = c(n)/b(n). Here L(n) is the normalized LZC of x(t) and reflects the increasing rate of new pattern generation along
with the sequence and captures the temporal structure of the time series [28,29].

4.2. Empirical research by LZC

Wenowexamine real stockmarket indices SSE and SZSE and the simulation data of the Potts financialmodel (β = 2, 3, 4).
We first set θ = 1.2, 1.5, 1.8, 2 and calculate the corresponding return intervals of each index. We next analyze the LZC of
the return intervals using different exponents, labeled (τ (θ ))q. For different values of q, (τ (θ ))q are different volatility series
that display varying levels of volatility. We calculate the LZC values of (τ (θ ))q with q varying from 0.4 to 10. Fig. 4 shows
the LZC analysis results of (τ (θ ))q. Fig. 4(a) shows that when θ = 1.2 and q = 1 the LZC values are close to 0.6 for all time
series. Increasing q decreases the LZC values, indicating that (τ (θ ))q becomes regular and periodic with this increase of q,
and that the generation rate of new volatility behaviors also decreases when q increases. The simulation data plots when
β = 2, 4 run throughout the real stock market data, and the plot of β = 3 is the highest. Fig. 4(b)–(d) indicate that the trend
of the LZC plots of the simulation data and of the real data is the same, and that the LZC values of the simulation data are
larger than those of SSE and SZSE. Table 1 shows that the LZC values of (τ (θ ))q of the real data and the simulation data are
close to 0.6 for q = 0.4, 0.6, 0.8, 1, which indicate the relatively high rate of new pattern generation in the enlarged return
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Fig. 4. LZC plots of return intervals with different values of θ from Potts financial model (β = 2, 3, 4) and the real stock market indexes SSE, SZSE.

Table 1
LZC values of (τ (θ ))q with different exponent q.

LZC SSE SZSE β = 2 β = 3 β = 4 SSE SZSE β = 2 β = 3 β = 4

θ = 1.2 θ = 1.5

q = 0.4 0.5955 0.5773 0.5920 0.6088 0.5860 0.6401 0.6400 0.6390 0.6472 0.6420
q = 0.6 0.5940 0.5760 0.5883 0.6042 0.5839 0.6226 0.6285 0.6241 0.6306 0.6291
q = 0.8 0.5878 0.5723 0.5845 0.5962 0.5809 0.6050 0.6088 0.6072 0.6142 0.6120
q = 1 0.5798 0.5648 0.5785 0.5867 0.5756 0.5851 0.5915 0.5898 0.5966 0.5953
q = 2 0.4821 0.4826 0.4920 0.4928 0.4863 0.4632 0.4817 0.4836 0.4953 0.4899
q = 3 0.3446 0.3308 0.3558 0.3662 0.3416 0.3130 0.3422 0.3493 0.3676 0.3561
q = 4 0.2261 0.1830 0.2239 0.2550 0.2004 0.2089 0.2064 0.2434 0.2628 0.2387
q = 5 0.1526 0.0835 0.1307 0.1825 0.1041 0.1360 0.1176 0.1661 0.1828 0.1574
q = 6 0.1075 0.0398 0.0824 0.1322 0.0585 0.0942 0.0723 0.1204 0.1332 0.1099

θ = 1.8 θ = 2

q = 0.4 0.6444 0.6307 0.6305 0.6499 0.6378 0.6321 0.6494 0.6461 0.6467 0.6514
q = 0.6 0.6281 0.6217 0.6219 0.6350 0.6278 0.6179 0.6302 0.6302 0.6334 0.6353
q = 0.8 0.6082 0.6064 0.6081 0.6179 0.6137 0.6016 0.6113 0.6138 0.6190 0.6182
q = 1 0.5874 0.5894 0.5929 0.6003 0.5986 0.5847 0.5910 0.5966 0.6034 0.6004
q = 2 0.4619 0.4769 0.4915 0.4920 0.5006 0.4567 0.4752 0.4896 0.5010 0.4998
q = 3 0.3342 0.3366 0.3653 0.3748 0.3794 0.3357 0.3452 0.3689 0.3842 0.3862
q = 4 0.2387 0.2281 0.2622 0.2827 0.2849 0.2435 0.2387 0.2717 0.2818 0.2904
q = 5 0.1628 0.1517 0.1864 0.2098 0.2081 0.1816 0.1668 0.2002 0.2021 0.2173
q = 6 0.1166 0.1048 0.1362 0.1563 0.1514 0.1361 0.1180 0.1491 0.1449 0.1645

intervals in both the real data and simulation data. Thus we see the randomness in the increased fluctuation behavior. When
q = 1, 2, 3, 4, 5, 6, the LZC of (τ (θ ))q decreases as q increases, indicating a decrease in randomness in the smaller return
intervals. Thus when they are smaller the return intervals become regular and periodic. When θ = 1.2, the maximum
LZC value (when q = 0.4) is smaller than 0.6 for both real data and simulation data. Inversely, when θ = 1.5, 1.8, 2, the
maximum LZC value (when q = 0.4) is bigger than 0.6. This indicates that when θ is smaller, the randomness of return
interval time series is weaker.
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5. Multiscale multifractal detrended cross-correlation

Here we use MM-DCCA to analyze the multifractal features between two cross-correlated non-stationary time se-
ries [33,48–50]. This method can simultaneously characterize the monofractality and multifractality of a time series across
a wide range of frequencies (scales) and is resistant to nonstationarities. We first describe the MF-DCCA method before
introducing the MM-DCCA method.

5.1. Multifractal detrended cross-correlation analysis

We consider two time series {x(t)} and {y(t)} (t = 1, 2, . . . ,N), whereN is the length of the series. Calculating the profiles
of two time series,

Xi =

i∑
k=1

[xk − x], Yi =

i∑
k=1

[yk − y], i = 1, 2, . . . ,N, (11)

where x and y are the averages of two time series {x(t)} and {y(t)}, respectively. We divide X(i) and Y (i) into Ns = [N/s]
non-overlapping segments of equal length s. To take thewhole series into account, we repeat the same procedure by starting
from the opposite end. Thuswe get 2Ns segments of equal length s and estimate the local trends for each of the 2Ns segments
using an orderm polynomial fit. The corresponding detrended covariance for v = 1, 2, . . . ,Ns is

F 2
DCCA(s, v) =

1
s

s∑
j=1

|x((v − 1)s + j) − xv(j)| |y((v − 1)s + j) − yv(j)|, (12)

and for v = Ns + 1,Ns + 2, . . . , 2Ns,

F 2
DCCA(s, v) =

1
s

s∑
j=1

|x(N − (v − Ns)s + j) − xv(j)| |y(N − (v − Ns)s + j) − yv(j)|. (13)

The trends xv(j) and yv(j) are the fitting polynomials with orderm in segment v. We then average over all segments to obtain
the order q fluctuation function

Fq(s) = {
1

2Ns

2Ns∑
v=1

[F 2
DCCA(s, v)]

q/2
}
1/q, F0(s) = exp{

1
4Ns

ln[F 2
DCCA(s, v)]}. (14)

To analyze the scaling behavior we study log–log plots of Fq(s) versus s for each value of q. Two cross-correlated series
exhibits a power-law expression: Fq(s) ∝ shxy(q). The power-law relationship between the two correlated series is hxy(q).
When hxy(q) depends on q there is multifractality, but when the scaling exponent hxy(q) is independent of q the cross-
correlations between the two time series are monofractal. In addition, the different scaling of small and large fluctuations
makes h(q) strongly dependent on q. When q is positive, segments v with a large variation dominates the average Fq(s).
Thus when q is positive, h(q) describes the scaling behavior of the segments with large fluctuations. When q is negative, the
segments v with a small variance will dominate the average Fq(s). Thus when q < 0 the scaling exponent h(q) describes
the scaling behavior of segments with small fluctuations. In particular, when the time series {x(t)} is identical to {y(t)}, the
MF-DCCA reverts back to MF-DFA.

5.2. Empirical results by MM-DCCA

Inspired by thework of Gieraltowski et al. [51], we use theHurst surfacemethod. This is an improvedmethod of analyzing
the multifractal cross-correlation between two different non-stationary time series that does not require that we avoid
datasets or narrow the range of investigated scales to either only large or only small. Cross-correlations can occur when the
analysis is of a data window that is too narrow (finite scale size effect) [52]. They also can occur when there are different
correlation features for small and large scales between two different non-stationary time series [53,54]. Both are the case
because for extremely low scales s < 10 arithmetic underflow often occurs, for scales in the range s ∈ [10, 50] short-term
correlations produce the scaling properties, and for scales s > 50 long-term correlations produce the scaling properties.

Here we compare the simulation data of our model with real stock market data. We use a fitting window that moves
through the entire range of scales s and obtain a series of overlapped windows. This give us a quasi-continuous change of
hxy(q) dependence versus the range of scale s. We place this relationship on a Hurst surface so that the points on the surface
represent the generalized dependence hxy(q, s). Note that in the calculation of hxy(q, s) the window itself (the window range)
is changed. To present the Hurst surface in a three-dimensional diagram, we calibrate the scale axis using the maximum of
the fitting window, which starts at s = 50 (i.e., the maximum of the initial scale range [10, 50]) and ends at s = 600
(the maximum of the range [120, 600]). We obtain the MF-DCCA results for many fitting windows synchronously, so the
dependence hxy(q, s) yields information about the fluctuation levels at different frequency bands, and this allows us to
perform a multifractal analysis without any initial time-scale assumptions.
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Fig. 5. (a)(b)(c) Fluctuations of Fq(s) versus s with small scale s ∈ [10, 50] of return intervals for θ = 1.2. (d)(e)(f) Fluctuations of Fq(s) versus s with large
scale s ∈ [120, 600] of return intervals for θ = 1.2.

Fig. 6. (a)(b)(c) Fluctuations of Fq(s) versus s with small scale s ∈ [10, 50] of return intervals for θ = 1.5. (d)(e)(f) Fluctuations of Fq(s) versus s with large
scale s ∈ [120, 600] of return intervals for θ = 1.5.

The empirical data come from the intraday data of {SSE vs. SZSE}, and two pairs of model simulation data with different
parameter sets ( {β = 2 vs. β = 3} and {β = 3 vs. β = 4}). Because the MM-DCCAmethod is most effective when the series
length is as long as possible, we choose the return interval series θ = 1.2 and θ = 1.5. Examining the log–log plots of Fq(s)
in the smallest scale s ∈ [10, 50] and the largest scale s ∈ [120, 600], Fig. 5 shows the log–log plots of Fq(s) versus s for the
above three pairs of return interval data when θ = 1.2. We analyze the scaling behaviors of fluctuation Fq(s) for different
values of q at a small scale s ∈ [10, 50] and at a large scale s ∈ [120, 600]. Note that the empirical research shows that the
correlations of return intervals for different simulation data {β = 2 vs. β = 3}, {β = 3 vs. β = 4} and the real data {SSE
vs. SZSE} display cross-correlations similar to power-law scaling and share its fluctuation property. Fig. 6 shows that the
cross-correlation fluctuation behaviors are similar in the return interval time series {β = 2 vs. β = 3}, {β = 3 vs. β = 4},
and {SSE vs. SZSE} when θ = 1.5.

Fig. 7 shows the results of MM-DCCA (Hurst surface) displayed using a slipping fitting window { [10, 50], [20, 100], . . . ,
[120, 600] } for simulation data {β = 2 vs. β = 3} and {β = 3 vs. β = 4}, and real data {SSE vs. SZSE} with threshold
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Fig. 7. (a)(b)(c) Hurst surfaces of return intervals from {β = 2 vs. β = 3}, {β = 3 vs. β = 4} and {SSE vs. SZSE} when θ = 1.2. (d)(e)(f) Hurst surfaces of
return intervals from {β = 2 vs. β = 3}, {β = 3 vs. β = 4} and {SSE vs. SZSE} when θ = 1.5.

values θ = 1.2 and θ = 1.5 and a range of q from −10 to 10. As mentioned above, when the power-law exponent hxy(q, s)
is a constant, the market is monofractal, otherwise it is multifractal. Using this method, by observing the shape of Hurst
surface we can distinguish the cross-correlation properties in all the available scales simultaneously. Fig. 7(a)–(c) show that
the shapes of the three Hurst surfaces are similar, especially in Fig. 7(a) and (c), and that {β = 2 vs. β = 3} and {SSE vs. SZSE}
are multifractal in both small and large scales. In addition, {β = 2 vs. β = 4} and {SSE vs. SZSE} show a similar oscillation
on the Hurst surface. Fig. 7(d)–(f) show that when θ = 1.5 these three plots are multifractal, and that {β = 2 vs. β = 4}
exhibits oscillations on the Hurst surface similar to those on the Hurst surface {SSE vs. SZSE}.

Tables 2 and 3 provide the numerical results of the generalized Hurst exponent h(q), where q ∈ {−10, −9, . . . , 9, 10}.
Herewe select the small scale [10, 50], middle scale [60, 300], and large scale [120, 600] to illustrate the cross-correlations of
the different return interval series. The two tables show that the value of cross-correlation exponent hxy(q) decreases when
q increases. Thus different values of hxy(q) for different orders of q are clearly multifractal. As in all other Hurst exponent
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Table 2
Generalized Hurst exponents hxy(q) of return intervals with θ = 1.2.

q β = 2 vs. β = 3 β = 2 vs. β = 4 SSE vs. SZSE

sss sms sls sss sms sls sss sms sls
q = −10 0.8058 0.5419 0.5546 0.8643 0.5883 0.6176 0.8957 0.7663 0.6938
q = −9 0.7902 0.5381 0.5508 0.8414 0.5848 0.6140 0.8824 0.7564 0.6826
q = −8 0.7720 0.5344 0.5465 0.8150 0.5810 0.6105 0.8668 0.7458 0.6701
q = −7 0.7514 0.5309 0.5417 0.7853 0.5772 0.6073 0.8489 0.7348 0.6563
q = −6 0.7287 0.5274 0.5368 0.7528 0.5733 0.6045 0.8286 0.7237 0.6416
q = −5 0.7048 0.5392 0.5302 0.7191 0.5695 0.6023 0.8065 0.7130 0.6262
q = −4 0.6806 0.5241 0.5269 0.6860 0.5657 0.6007 0.7834 0.7032 0.6106
q = −3 0.6571 0.5186 0.5209 0.6553 0.5620 0.5998 0.7602 0.6949 0.5949
q = −2 0.6351 0.5208 0.5194 0.6270 0.5586 0.5995 0.7371 0.6877 0.5793
q = −1 0.6148 0.5175 0.5086 0.6008 0.5554 0.5994 0.7138 0.6811 0.5637
q = 0 0.5958 0.5139 0.5012 0.5765 0.5527 0.5988 0.6893 0.6722 0.5470
q = 1 0.5784 0.5099 0.4935 0.5543 0.5501 0.5982 0.6682 0.6640 0.5316
q = 2 0.5616 0.5049 0.4858 0.5346 0.5480 0.5962 0.6469 0.6507 0.5142
q = 3 0.5452 0.5001 0.4779 0.5178 0.5460 0.5932 0.6258 0.6337 0.4953
q = 4 0.5293 0.4941 0.4703 0.5040 0.5441 0.5890 0.6033 0.6189 0.4747
q = 5 0.5141 0.4772 0.4628 0.4931 0.5422 0.5840 0.5789 0.5929 0.4529
q = 6 0.4999 0.4608 0.4557 0.4843 0.5398 0.5784 0.5545 0.5729 0.4312
q = 7 0.4870 0.4506 0.4489 0.4771 0.5372 0.5725 0.5323 0.5548 0.4110
q = 8 0.4755 0.4402 0.4424 0.4709 0.5343 0.5666 0.5130 0.5391 0.3931
q = 9 0.4655 0.4306 0.4364 0.4652 0.5314 0.5608 0.4967 0.5257 0.3778
q = 10 0.4570 0.4203 0.4307 0.4598 0.5284 0.5553 0.4831 0.5145 0.3648

Note: sss , sms and sls stand for small scale [10, 50], middle scale [60, 300] and large scale [120, 600], respectively.

Table 3
Generalized Hurst exponents hxy(q) of return intervals with θ = 1.5.

q β = 2 vs. β = 3 β = 2 vs. β = 4 SSE vs. SZSE

sss sms sls sss sms sls sss sms sls
q = −10 0.7606 0.5838 0.5658 0.8901 0.5659 0.6139 0.9733 0.8055 0.6154
q = −9 0.7416 0.5731 0.5611 0.8681 0.5548 0.6109 0.9572 0.7989 0.6081
q = −8 0.7201 0.5619 0.5562 0.8405 0.5422 0.6083 0.9373 0.7914 0.6001
q = −7 0.6964 0.5504 0.5512 0.8059 0.5381 0.6079 0.9129 0.7828 0.5912
q = −6 0.6715 0.5392 0.5462 0.7638 0.5259 0.6048 0.8832 0.7731 0.5819
q = −5 0.6468 0.5285 0.5412 0.7155 0.5226 0.6018 0.8479 0.7619 0.5720
q = −4 0.6238 0.5186 0.5364 0.6662 0.5159 0.5989 0.8076 0.7494 0.5620
q = −3 0.6032 0.5098 0.5319 0.6232 0.5102 0.5960 0.7644 0.7357 0.5521
q = −2 0.5849 0.5018 0.5278 0.5902 0.5079 0.5929 0.7211 0.7210 0.5426
q = −1 0.5684 0.4947 0.5241 0.5650 0.5048 0.5893 0.6807 0.7057 0.5340
q = 0 0.5528 0.4884 0.5212 0.5439 0.5009 0.5849 0.6445 0.6896 0.5266
q = 1 0.5383 0.4824 0.5184 0.5245 0.4789 0.5787 0.6126 0.6747 0.5197
q = 2 0.5241 0.4767 0.5164 0.5139 0.4659 0.5727 0.5826 0.6592 0.5142
q = 3 0.5101 0.4713 0.5147 0.5048 0.4496 0.5647 0.5528 0.6437 0.5093
q = 4 0.4963 0.4941 0.5132 0.4846 0.4359 0.5556 0.5228 0.6280 0.5047
q = 5 0.4828 0.4659 0.5117 0.4639 0.4142 0.5453 0.4940 0.6123 0.4998
q = 6 0.4698 0.4608 0.5102 0.4433 0.3959 0.5347 0.4682 0.5970 0.4944
q = 7 0.4575 0.4556 0.5084 0.4234 0.3700 0.5240 0.4465 0.5825 0.4883
q = 8 0.4459 0.4498 0.5065 0.4049 0.3659 0.5137 0.4289 0.5692 0.4820
q = 9 0.4353 0.4446 0.5044 0.3882 0.3562 0.5040 0.4147 0.5573 0.4757
q = 10 0.4256 0.4395 0.5027 0.3735 0.3459 0.4902 0.4032 0.5467 0.4697

Note: sss , sms and sls stand for small scale [10, 50], middle scale [60, 300] and large scale [120, 600], respectively.

calculations, we interpret the values of hxy(q) as follows [12,24]. When h < 0.5 the cross-correlations between the two
time series are antipersistent. When h = 0.5 there are no cross-correlations or only short-term cross-correlations between
the two time series. When h > 0.5 the cross-correlations between the two time series are long-term. The higher the h,
the stronger the cross-correlations. The scaling exponent h(2) is the well-known Hurst exponent, and Table 2 shows that
all the h(2) values at different scales for {β = 2 vs. β = 4} and {SSE vs. SZSE} are bigger than 0.5, which means that the
cross-correlations of return intervals from the simulation data and the real data are strongly persistent. When we examine
the Hurst surface we see that the scaling multifractal and cross-correlation properties of the return interval series of the
simulation data are similar to those of real market indices.

The relationships between classical multifractal scaling exponents τxy(q) = qhxy(q) − 1 are similar [11]. When τxy(q) is
linear with q, the cross-correlation of the correlated series is monofractal, otherwise it is multifractal. Fig. 8 shows plots of
the multiple behaviors of multifractal exponents τxy(q) of return intervals for the simulation data {β = 2 vs. β = 3}, {β = 3
vs. β = 4}, and real stock data {SSE vs. SZSE} when θ = 1.2. Here the subplot is the corresponding Hurst surface in each
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Fig. 8. (a)(b)(c) The exponents τxy(q) of return intervals from the simulation data {β = 2 vs. β = 3}, {β = 3 vs. β = 4} and the real data {SSE vs. SZSE}
when θ = 1.2. (d)(e)(f) The exponents τxy(q) of return intervals from the simulation data {β = 2 vs. β = 3}, {β = 3 vs. β = 4} and the real data {SSE vs.
SZSE} when θ = 1.5.

plot. These plots show that τxy(q) is nonlinearly dependent on q and is empirical evidence that multifractality exists in the
six pairs of return intervals.

Using the Legendre transformationwe obtain α = hxy(q)+qh′
xy(q), and f (α) = q[α−hxy(q)]+1, where h′

xy(q) denotes the
derivative of hxy(q) with respect to q, and α is the Hölder exponent or singularity strength that characterizes the singularities
in the time series. For multifractality, different portions are characterized by different α values and produce a spectrum f (α).
We estimate multifractality strength using the width of the multifractal spectrum, which is given by ∆α = αmax − αmin.
Fig. 9 shows the multiscale multifractal spectrum f (α) of the return intervals for θ = 1.2 and θ = 1.5. At the y-axis, 1, 2, 3
is multifractal spectrum f (α) of {β = 2 vs. β = 3}, {β = 3 vs. β = 4}, and {SSE vs. SZSE} when θ = 1.2. Here 4, 5, 6 is the
multifractal spectrum f (α) of {β = 2 vs. β = 3}, {β = 3 vs. β = 4}, and {SSE vs. SZSE} when θ = 1.5. Each pair of return
intervals have 12 multifractal spectrum f (α) curves under the moving window {[10, 50], [20, 100], . . . , [120, 600] }.

Tables 4 and 5 show the range of multifractal degrees ∆h, ∆α, and ∆f for the simulation return intervals and the real
series, where ∆h = h(qmin) − h(qmax), ∆f = f (αmin) − f (αmax). Note that in all these time series the values of ∆h for
the return intervals are far from zero. This suggests that both simulation data and real data have multifractality properties
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Fig. 9. Multifractal spectra f (α) of return intervals for θ = 1.2 and θ = 1.5 from {β = 2 vs. β = 3}, {β = 3 vs. β = 4} and {SSE vs. SZSE} in different scales.

Table 4
Multifractal strength and fractal asymmetric statistics of return intervals when θ = 1.2.

Scale β = 2 vs. β = 3 β = 2 vs. β = 4 SSE vs. SZSE

∆h ∆α ∆f ∆h ∆α ∆f ∆h ∆α ∆f

[10, 50] 0.3488 0.4832 0.1723 0.4044 0.4674 0.3897 0.4125 0.5936 0.0499
[20, 100] 0.1524 0.2419 0.2345 0.1902 0.3259 0.3503 0.3726 0.4894 −0.3013
[30, 150] 0.0687 0.1324 0.4692 0.1145 0.2266 0.1794 0.2255 0.3338 −0.7981
[40, 200] 0.1216 0.2374 −0.4132 0.0553 0.1163 0.3498 0.2233 0.3840 −0.3709
[50, 250] 0.1823 0.2769 −0.5889 0.0612 0.1254 −0.0971 0.2213 0.3983 −0.0690
[60, 300] 0.2119 0.3092 −0.7396 0.0599 0.1195 0.1108 0.2517 0.4398 0.0763
[70, 350] 0.2367 0.3425 −0.5575 0.0982 0.1533 −0.2681 0.2686 0.4519 −0.0982
[80, 400] 0.2329 0.3601 −0.5234 0.0975 0.1563 0.0830 0.2288 0.3776 0.0826
[90, 450] 0.1996 0.3221 −0.3046 0.0674 0.0916 −0.0252 0.2733 0.4532 0.0535
[100, 500] 0.1757 0.2855 −0.1620 0.0549 0.0750 −0.0636 0.3213 0.4969 −0.0285
[110, 550] 0.1487 0.2399 −0.1392 0.0731 0.1693 0.0228 0.3229 0.5025 −0.0444
[120, 600] 0.1292 0.2096 −0.0442 0.0622 0.1421 −0.0862 0.3290 0.5100 −0.1021

Table 5
Multifractal strength and fractal asymmetric statistics of return intervals when θ = 1.5.

Scale β = 2 vs. β = 3 β = 2 vs. β = 4 SSE vs. SZSE

∆h ∆α ∆f ∆h ∆α ∆f ∆h ∆α ∆f

[10, 50] 0.3350 0.4713 0.1029 0.5294 0.5677 −0.2561 0.5701 0.6694 −0.2390
[20, 100] 0.1203 0.1970 0.0019 0.1289 0.1976 −0.3217 0.2791 0.4253 0.1728
[30, 150] 0.0608 0.1012 −0.2683 0.0716 0.1479 0.5625 0.2804 0.3199 −0.4655
[40, 200] 0.1110 0.2138 0.5769 0.1143 0.1746 0.2949 0.2237 0.3323 −0.5735
[50, 250] 0.1491 0.2781 −0.5162 0.1579 0.2786 −0.6611 0.2032 0.3370 0.3943
[60, 300] 0.1942 0.2187 −0.5521 0.2081 0.3435 0.4386 0.2589 0.4096 −0.1969
[70, 350] 0.1331 0.2519 0.4273 0.1413 0.2747 0.6480 0.2506 0.3929 −0.3508
[80, 400] 0.1149 0.2186 −0.4506 0.1929 0.3489 0.3872 0.2021 0.3501 −0.3784
[90, 450] 0.1012 0.1989 0.5324 0.0584 0.1202 −0.0436 0.1916 0.3088 −0.1476
[100, 500] 0.0866 0.1747 −0.4476 0.0756 0.1469 −0.2114 0.1933 0.3190 −0.1910
[110, 550] 0.0725 0.1435 −0.3585 0.1074 0.1895 −0.4349 0.1559 0.2742 0.1287
[120, 600] 0.0637 0.1291 0.2896 0.1266 0.2197 −0.3459 0.1458 0.2672 0.2459

across a range of scales. Tables 4 and 5 also show the calculation results of ∆α, and we see that the values of ∆α exhibit
the same trend as those of ∆h. Note that in Tables 4 and 5 the spectrum is wider in small scales than in large scales because
the multifractal properties are richer in small scales. The ∆f value is the asymmetry of the multifractal spectra. From the
calculation results in Tables 4 and 5, ∆f > 0 in the small scale [10, 50] for all the simulation and real data, but in [120, 600]
∆f < 0 indicate that the asymmetry of the return intervals of the model is similar to that in the multifractal spectra of the
real return intervals.

6. Conclusion

Using a Potts dynamic systemwehavedeveloped a financialmodel to investigate the volatility behaviors of return interval
time series. By applying the LZC method and using different exponents, we find that the trend of the LZC complexity of
simulation data is the same as in real data, and when θ = 1.5, 1.8, 2 the trend of the LZC results of all the return intervals
is the same. We also find that increasing q decreases the randomness of the return intervals. In the empirical analysis of the
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MM-DCCA, we examine the shape of the Hurst surface and find that the return intervals in the proposed model data have
similar multifractal cross-correlation results as real stock data. The numerical values of h(2) > 0.5 and ∆h > 0.05 in both
simulation data and real data verifies the multifractality and cross-correlation properties in all the experimental scales. The
behavior of the return intervals in the empirical results are statistically similar to those in the simulated data and the real
market data and confirm the rationality in the construction of this proposed price model.
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