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• The proposed PIRank method can capture different structural features.
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a b s t r a c t

One of the most interesting challenges in network science is to understand the relation
between network structure and dynamics on it, andmany topological properties, including
degree distribution, community strength and clustering coefficient, have been proposed
in the last decade. Prominent in this context is the centrality measures, which aim at
quantifying the relative importance of individual nodes in the overall topology with regard
to network organization and function. However, most of the previous centrality measures
have been proposed based on different concepts and each of them focuses on a specific
structural feature of networks. Thus, the straightforward and standard methods may lead
to some bias against node importance measure. In this paper, we introduce two physical
processes with potential complementarity between them. Then we propose to combine
them as an elegant integration with the classic eigenvector centrality framework to im-
prove the accuracy of node ranking. To test the produced power iteration ranking (PIRank)
algorithm, we apply it to the selection of attack targets in network optimal attack problem.
Extensive experimental results on synthetic networks and real-world networks suggest
that the proposed centrality performs better than other well-known measures. Moreover,
comparing with the eigenvector centrality, the PIRank algorithm can achieve about thirty
percent performance improvementwhile keeping similar running time. Our experiment on
randomnetworks also shows that PIRank algorithmcan avoid the localizationphenomenon
of eigenvector centrality, in particular for the networks with high-degree hubs.
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Fig. 1. Illustration of vital nodes with different structural features. (a) Local dominant node. (b) Intermediary nodes. (c) Network including vital nodes with
complex structural features. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

1. Introduction

Networked data have become ubiquitous, and networks describing physical systems, protein interactions, computer
communications, and people relationships are all becoming increasingly important in our day-to-day life. Complex network
analysis has proven to be a successful tool formodeling andmining enormous networked data. Because of the heterogeneous
of complex networks, some network nodes are more important to network function than others. Measuring the relative
importance of individual nodes is important in both theoretical research and practical application. For example, identifying
and protecting the crucial elements of the Internet so that the functioning of the system can be maintained, vaccinating
influential individuals in contact networks so that the spread of an epidemic can be suppressed, and identifying and removing
key vertices in amolecular network so that the bacteria can be eliminated. This context raises a fundamental question: given
the data, how should one construct the node centrality measure such that it can capture structural features effectively?

In the last decade, node ranking problem has been particularly proposed to measure the importance of nodes within a
given network [1], and a variety of centrality measures have been suggested based on different interpretations, including
neighbor-based local centralities (degree centrality, local centrality [2], and collective influence [3]), location-based global
centralities (closeness centrality [4], betweens centrality [5], and k-shell centrality [6,7]), and path counting centralities
(eigenvector centrality [8], Katz’s centrality [9], PageRank [10], andRA centrality [11,12]). Because of the variety of networked
systems, the vital nodes in every task are concretized from different perspective. For example, the vital nodes in influence
maximization problem are the influential sources that spread information [13], and the vital nodes in network disruption
problem are the intermediate nodes that maintain network integrity [14]. Specifically, influence maximization problem has
attracted attention recently [15–17], and many single node ranking methods [18–20] and multiple spreaders identification
methods [21–23] been proposed for the problem.Meanwhile, researchers begin to be concerned about node rankingmethod
for temporal networks [24]. Therefore, vital nodes may mean different things in various applications, and there is no
general consensus on the definition. This paper focus on the fundamental problem, i.e. vital nodes identification based on
network structure analysis, and explore the method to optimize the ranking accuracy. In face of such a problem, most of the
existing centrality measures focus on a specific structural feature and have limits in node ranking. For example, the degree
correlated local centralities (degree centrality, local centrality), global centralities (closeness centrality, betweens centrality)
and randomwalk based centralities (PageRank, LeaderRank [25]) are all towards to high degree nodes. However, researchers
have unveiled that lowdegree nodes always be very important andmeaningful inmany complex systems [26–28]. Therefore,
to identify vital nodes accurately, centralitymeasures should be optimized to capture network nodes’ structural information
as comprehensively as possible. To illustrate this idea, Fig. 1 gives an example of vital nodeswith different structural features.
In detail, the local dominant node with red color in Fig. 1(a) preserves connections with most of the network nodes, the
intermediary nodes with red color in Fig. 1(b) maintain the network’s integrality and havemore control on communications
between network components, and in Fig. 1(c) the nodes with blue color have features of local dominant node and the nodes
with red color have features of local dominant node and intermediary node simultaneously. It is easy to see that the nodes
with colors play critical role in network structure and accurate node ranking should consider all the strucutral features.

As representative of the class of spectral centralities, eigenvector centrality measures the importance of a node based on
the influence of its neighbors. High-influence neighbors contributemore to central node’s influence than low-influence ones,
and a node is influential if it hasmany influential neighbors. Eigenvector centrality calculates based only on local information
in each step but can utilize global network information through successive iteration. It assigns a relative importance score
vi for node i that is proportional to the sum of the scores of the neighbors of node i. Mathematically, this can be written
as vi = λ−1

∑
jAijvj, where λ is a constant of proportionality and Aij is an element of the adjacency matrix A of a network

having value one if there is an edge between node i and j and zero otherwise. In the matrix form, we have Av = λv, which
means that the vector v of centralities vi is an eigenvector of the adjacencymatrix A. Because centralities are all nonnegative,
the Perron–Frobenius theorem [29] guarantees that the vector v of centralities vi must be the leading eigenvector of non-
negative real square matrix A. Meanwhile, physical diffusion process mass diffusion (MD) and heat conduction (HC) have
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been proposed to design diffusion-based recommendation algorithms in user–object bipartite networks recently [30–33].
The MD process works by equally distributing the resource to the nearest neighbors, while the HC process redistributes the
resource via a nearest-neighbor averaging process [32]. The standard MD process and HC processes are in fact randomwalk
processes on bipartite network, in which MD process always achieve high accuracy but low diversity while HC process has
high diversity but low accuracy.

In this paper,we aim to address the vital nodes identification problembyproposing a sophisticated and efficient centrality
to capture structural information comprehensively. Inspired by the application of the above physical processes in the field
of recommendation [31], we melt the MD and HC processes into the framework of eigenvector centrality, and propose a
power iteration ranking (PIRank) algorithm. The general idea behind this is that the physical processes have similar iterative
updating mechanismwith the eigenvector centrality, and the hybrid of the physical processes with different preference has
a potential to identify vital nodes accurately. To integrate the MD and HC processes, a nonlinear hybridization mechanism
is defined in PIRank. By analyzing the characteristics of top vital nodes and the node ranking performance under varying
hybrid parameter settings, we explore the rationality of the proposed nonlinear hybridization mechanism. To evaluate the
performance of the proposed PIRank algorithm, we apply it in synthetic networks and real-world networks, experimental
results show that our method outperforms other state-of-the-art methods in network optimal attack problem. In addition
to this, our experiment shows that PIRank algorithm can avoid the localization phenomenon of eigenvector centrality in
networks with high-degree hub nodes. Except the proposed algorithm, our work provides a optimizing paradigm for the
centralitymeasures akin to iterative updating process, and demonstrates that theymay can be improved further by consider
more structural features.

The remainder of this paper is organized as follows. Section 2 of this paper introduces the preliminaries of our work,
including standard centralities, and standard MD and HC processes. Section 3 describes our hybrid updating-mechanism-
based PIRank algorithm for node ranking. Section 4 presents an empirical evaluation of the proposed algorithm. Section 5
presents a discussion and our conclusions.

2. Preliminaries

2.1. Standard centrality measures

Let A = {aij} ∈ RN,N as the adjacency matrix of network G where aij = 1 if node i is connected with node j and aij = 0
otherwise. We also use notion Γ (i) to denote the set of neighbors of node i, Γ (i) = {j ∈ V : aij = 1}. Here we provide the
basic definitions of the centrality measures that will be used in the rest of the paper. For more details, we refer readers to
the literature cited.

Degree centrality. Degree measures the network scope on which a node can have direct impact. The degree centrality of
node i can be calculated as

CDC (i) =
N∑
j=1

aij = |Γ (i)| (1)

The computational complexity of degree centrality is O(N).
Closeness centrality. The closeness centrality [34] of node i is defined as the sum of the length of the shortest paths

between the node and all other nodes in the network. The more central a node is, the closer it is to all other nodes. To
compare the nodes of networks of different sizes, the sum of the length of the shortest paths is usually normalized by the
size of the network, and represents the average length of the shortest paths. Thus, the closeness centrality of node i is given
by

CCC (i) =
N − 1∑N

j=1 dij
(2)

where dij is the length of the shortest paths between the node i and j. The computational complexity of closeness centrality
is O(N3).

K-shell centrality. k-shell centrality [35] is obtained by employing k-shell decomposition on the network. The k-shell
decomposition removes all nodes with degree equals to 1 firstly. This causes new nodes with degree k ≤ 1 to appear. The
nodes are also removed and the process is continued until all remaining nodes are of degree k > 1. All the removed nodes and
the links between them form the k-shell with index ks = 1. In a similar fashion, we continue the process until all higher-layer
shells are identified and subsequently with higher values of ks. The computational complexity of k-shell centrality is O(E).

Eigenvector centrality. Eigenvector centrality [8] computes the centrality of a node based on the centrality of its
neighbors. The eigenvector centrality of node i is defined as

CEC (i) =
1
λ

∑
j∈V

aijCEC (j) (3)

where λ is a constant. In the matrix form, Av = λv, the vector of centralities is the leading eigenvector of the adjacency
matrix. The computational complexity of eigenvector centrality is O(N2).
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Collective Influence centrality. CI centrality [36] considers the degree of the target node and its neighbors that are a
certain number of steps away from it. The CI centrality of node i is defined as

CIℓ(i) = (ki − 1)
∑

j∈∂Ball(i,ℓ)

(kj − 1) (4)

where ki is the degree of node i, and ∂Ball(i, ℓ) denotes the set of the nodes that are at distance ℓ to node i. The computational
complexity of CI centrality is O(N⟨k⟩ℓ).

Enhanced Collective Influence centrality (ECI). ECI centrality [14] is the enhancement of CI centrality by considering
more local structure information. The ECI centrality of node i is defined as:

ECIℓ(i) =
H(i)

1+
∑

x,y∈∂Ball(i,µ),µ≤ℓ

|Γ (x)
⋂

Γ (y)|
|Γ (x)

⋃
Γ (y)|

· CIℓ(i) (5)

where |Γ (x)
⋂

Γ (y)|
|Γ (x)

⋃
Γ (y)| is the connection intensity of node x and y, H(i) is the normalized information entropy to characterize the

neighbor diversity of node i.

2.2. Standard MD and HC processes

An undirected network system can be represented as G(V , E), where V is the set of nodes, E the set of edges, ri the
resource of node i, i ∈ V , and Γi the set of its neighbors. Standard MD process works by assigning nodes an initial level of
resource denoted by ri = ri(0). At each iteration each node’s resource is then redistributed evenly to its neighbors. In this
redistribution procedure, the updated resource of each node is equal to the sum of contributions from its neighbors,

ri(t + 1) =
∑
j∈Γi

rj(t)
dj

. (6)

where dj is the degree of node j, rj(t) is node j’s resource level at time t . Through the iterations of the redistribution procedure,
the resources of all network nodes tend to be constant. The process converges and reaches equilibrium when the resources
no longer change. The resource preserved by a node is proportional to the probability that random walkers released at the
other nodes happen to arrive at this node in iterative updating. The ranking list of network nodes is generated by ranking all
nodes in decreasing order according to their final resource.

Similar to MD process, HC process also redistributes resources in a manner akin to random-walk process. Network nodes
have different initial temperature, and heat transfers from high temperature nodes to low temperature neighbors. The
difference is that HC process updates nodes’ states via a nearest-neighbor averaging procedure in which the sum of the
temperatures of their neighbors is divided by their degree, while MD process works by equally distributing the resource to
the nearest neighbors. Mathematically,

ri(t + 1) =
1
di

∑
j∈Γi

rj(t). (7)

Through the iterations of the averaging procedure, the gaps between high temperature nodes and low temperature nodes
are narrowed. Note that the total heat in standard HC process is variable, and the total amount of resources in standard
MD process keeps constant. For MD process, the resource will be evenly distributed to its neighbors. On the contrary, in HC
process the resource is redistributed via an averaging procedure, with nodes receiving a level of resource being equal to the
mean amount possessed by their neighboring nodes (see Fig. 2).

3. Power iteration node ranking (PIRank) algorithm

According to the definition in Section 2.2, with standard MD process, the resource of every node is not solely determined
by neighbor nodes’ resource level, but also determined by neighbor nodes’ number and their degree. The contribution of high
degree neighbors to the central node may be little even through they have very high resource level. Therefore, MD process
prefers local dominant nodes with low degree neighbors. With standard HC process, the resource account of every node is
the average value of neighbor nodes’ resource level and is unrelated to neighbor nodes’ number and degree. So standard HC
process prefers intermediary nodes bridging resource-rich neighbors. Thus, there is a potential complementarity between
standard MD and HC processes and combining themmay enable us to identify vital nodes with different structural features.

In addition, as the preferences of standard MD and HC processes to nodes with different degree, in order to regulate the
preferences’ influence on the nodes’ steady state, iterative updating operations should be normalized by a function of node
degree. Take Karate network [37] as an example, we apply HC process with randomized initialization on it to investigate
the problem empirically. And to the iterative updating operations of the processes, we make a preliminary attempt through
dividing nodes’ state by nodes’ degree and the square root of nodes’ degree respectively, and the results are shown in Fig. 3.
Comparing the ranking result in Fig. 3(a) and the network topology in Fig. 3(c), we can find that the ranking result is not
consistence with the ground truth. The reason behind the result is that important nodes temperature may become very low
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Fig. 2. Illustrating the updating mechanism of standard mass diffusion and heat conduction process. (a) The balanced redistribution procedure of standard
MD process. (b) The averaging procedure of standard HC process. The network has N = 6 nodes and M = 9 links. The networks in the left panel of (a) and
(b) are initialized randomly, the networks in the middle panel of (a) and (b) are the results after one iterative updating, and the networks in the right panel
of (a) and (b) are the results after two iterative updating. The final results of the iterative updating can be used for node ranking.

Fig. 3. Illustration of the iterative updating of HC process on Karate network. (a) The iterative updating of HC process from step one to five with nodes’
degree normalization. (b) The iterative updating of HC process from step one to five with the square root of nodes’ degree normalization. (c) Topology of
Karate club network.

because of their high degree, even if they get lots of heat, while trivial nodes may obtain high temperature because of their
small degree and thus be put in the top positions in ranking list. Rather than Fig. 3(a), the result in Fig. 3(b) instead is close
to the ground truth about Karate network. Therefore, the HC process based node ranking can be improved by controlling
the influence of node degree, and a adjustable regularization mechanism is necessary for accurate node ranking. To the MD
process, there is similar results with HC process.

3.1. Hybrid updating mechanism

Because of the preferences about vital node and the role of node degree in the updating rule of standard MD and HC
processes, now the goal is to construct a hybrid updatingmechanism and regulate hownode degree affects node importance.
Typically, the hybrid combination of the physical processes should provide a smooth transition between them. And by tuning
the hybridization parameter appropriately, the hybrid updating mechanism gets a good performance for the identification
of vital nodes with specified structural feature. Define N = |V |, M = |E| and adjacent matrix A = {aij} ∈ RN,N in which
aij = 1(i ̸= j) if node i and j are connected, and aij = 0 otherwise, the iterative updating operation on network nodes can be
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formulated as:

R(t + 1) = W · R(t) =

⎡⎢⎣w11 · · · w1n
...

. . .
...

wn1 · · · wnn

⎤⎥⎦
⎡⎢⎣r1(t)

...

rn(t)

⎤⎥⎦ , (8)

where R(t) is a N-dimensional vector containing the ranking scores held by all nodes at step t , W is the transition matrix,
and R(t + 1) is the scores held by all nodes at step t + 1. This formulation defines the updating mechanism of eigenvector
centrality when W equals the adjacent matrix A. As MD process evenly distributes node’s resource to its neighbors, the
element wM

ij of the transition matrixWM corresponding to MD process can be defined as

wM
ij =

aij
dj

, (9)

where dj is the degree of node j. HC process updates node’s state by a nearest-neighbor averaging process, thus the element
wH

ij of the transition matrixWH corresponding to HC process can be defined as

wH
ij =

aij
di

, (10)

To concretize the hybrid updating mechanism and provide a smooth transition between the two physical processes, we
combine MD and HC processes through a nonlinear hybridization and incorporate hybridization parameter λ into transition
matrix normalization. Mathematically, the transition matrixWM+H of the hybrid updating mechanism is defined as

wM+H
ij =

aij
dλ
i · d

1−λ
j

, (11)

Clearly, it will degenerate to MD algorithm when λ = 0 and degenerate to HC algorithm when λ = 1. Based on transition
matrix WM+H , the iterative updating operation in Eq. (3) can be reformulated in matrix formulation as

R(t + 1) = WM+H
· R(t) (12)

where WM+H
= {wM+H

ij } ∈ RN,N . Then the total resource node i received will be:

ri(t + 1) =
N∑
j=1

aij
dλ
i · d

1−λ
j

· rj(t) =
∑
j∈Γ (i)

rj(t)
dλ
i · d

1−λ
j

, (13)

where Γi is the set of neighbors of node i. Thus we can find that the resource account of node i is the sum of the resource
of its neighbors weighted by the inverse of the degree nonlinear hybridization of node i and its neighbors, and the resource
redistributed by a node to its neighbors is proportional to the probability pij = 1/dλ

i ·d
1−λ
j when there exist an edge between

them. Based on probability matrix P = {pij} ∈ RN,N , the updating matrixWM+H can be rewritten asWM+H
= A⊙ P, and the

iterative hybrid updating operation can be reformulated further as R(t + 1) = A⊙ P · R(t).

3.2. PIRank algorithm

It is noteworthy that the proposed hybrid updating mechanism provides the opportunity that the resource is prevented
to be centralized on a few high degree nodes and the low degree nodes become more significant than high degree nodes.
Thus, the hybrid updating mechanism based centrality measure can provide diversity while pursuing accuracy about vital
network nodes. Moreover, we can find that the eigenvector centrality is a special form of iterative updating algorithm,
thus the proposed hybrid updating mechanism can utilize its framework and solution method. Therefore, we propose a
power iteration node ranking (PIRank) algorithm based on classic eigenvector centrality. As power iteration is themost basic
method of computing eigenvalue and eigenvector [38], here we adopt power iteration for problem solving. Meanwhile, the
same way for PIRank solving with eigenvector centrality would better reveal the principle causes behind the performance
difference between them.

In PIRank algorithm, the nodes are randomly initialized, the hybrid updatingmechanism is used to update nodes’ ranking
score, and the steady states of network nodes are used for node ranking. The Pseudo code of PIRank algorithm is given in
Algorithm 1, and there are seven steps in the algorithm, where the network nodes are initialized with randomized scores
in line 1. In line 2, the influence strength between arbitrary node pairs is calculated based on adjacency relation and node
degree, and constructing updating matrix using the influence strength. In line 3, updating network nodes’ ranking score
based on power iteration method. In line 4, calculating the difference between successive ranking score vectors. In line 5,
updating the current value of the counter. In line 6, determining whether the algorithm converges based on the differences
between successive score vectors. Finally, the returned steady ranking scores are used for vital nodes identification.

An effective node ranking algorithm only need to run updating rule to get correct ranking list rather than final
convergence. We thus set the stopping point of PIRank at δt+1 ≈ δt and not at R(t + 1) ≈ R(t). The algorithm converges
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Algorithm 1 PIRank algorithm
Input: Network G = (V , E), and adjacent matrix A.
Output: Nodes’ ranking score.
1: Initialize. Choose an initial vector R(0) that contains the centrality scores of all nodes, and t ← 0.
2: Determine the updating matrixW = {wij} ∈ RN,N in which wij =

aij
dλ
i ·d

1−λ
j

, i.e.,W = A⊙ P.

3: Update. R(t + 1)← W·R(t)
∥W·R(t)∥2

.
4: Calculate the error. δt+1 ← |R(t + 1)− R(t)|.
5: Increment t . t + 1← t .
6: Repeat 3, 4, and 5 until

⏐⏐δt+1 − δt
⏐⏐ approach zero.

7: Return the ranking score vector R(t + 1).

when the dominant and the subdominant eigenvalues of W, respectively denoted by λ′ and λ′′, differ in absolute value
and

⏐⏐λ′⏐⏐ >
⏐⏐λ′′⏐⏐. The rate of convergence is proportional to

⏐⏐λ′/λ′′⏐⏐. When the subdominant eigenvalue is smaller than the
dominant eigenvalue, there is rapid convergence. In practice, convergence usually occurs in fewer than ten iterations, and
always more than 90% nodes reach their steady state after five iterations. The power iteration solution requires that the
transition matrixW be symmetric, but it always converges even when there are poorly conditioned matrices.

The total computational time includes three parts as follows: the time of initializing ranking scores, the time of calculating
updating matrix, and the time of updating the ranking scores. For the first part, the time of initializing ranking scores is O(n).
For the second part, the computational complexity is O(⟨k⟩n) = O(m) where ⟨k⟩ is the average degree of network and m
is the number of edges. For the third part, the computational complexity mainly comes from matrix multiplication, and
the complexity of every updating operation is O(n3) in native solving. However, because of real-world networks always are
large scale and sparse, the updating operation can be realized along the interactions between nodes in the actual coding
process. Thus, the complexity of updating operation is O(⟨k⟩n) = O(m). Because of the iteration number before convergence
is small, the computational complexity of this step can be approximated as O(m). So, the total computational complexity of
this algorithm is O(n)+ O(m).

4. Models and materials

Optimal targeted attack model. As the largest connected part of networks is the basis of network function, the optimal
targeted attack problem studies how to select nodes and remove them continuously to disrupt network structure as
thoroughly as possible. Consider a network G = (V , E), with a set of N = |V | nodes tied together by M = |E| links. Let Gq is
the network that results from removing a fraction q of the nodes based on a specified centrality measure. The key quantity
that we will study here is the relative size of the giant component Gc

q of Gq to the initial network G, which is denoted by
G(q). Thus, the optimal targeted attack problem is finding the minimum number of nodes q to be removed such that G(q) is
minimized. Moreover, the number of components C(q) of network Gq is also an effectivemetric. To quantify the performance
of centralities in optimal attack targets identification, this paper removes nodes sequentially based on different centralities
and compare the resulted G(q) and C(q). To decrease complexity, a tiny fraction f of nodes (instead of a single node) are
removed in each step.

Data Description. The synthetic networks include networks generated by the Erdos–Renyi random graphmodel [39], the
Barabasi–Albert scale-free networkmodel [40] and the Lancichinetti–Fortunato–Radicchi (LFR) networkmodel [41]. The four
representative real-world networks include: (1) Erdos network [42]. The network is a scientific collaboration network in
which each node represents a scientist and each edge represents the cooperative connection between each pair of scientists.
(2) Polblogs network [43]. This network represents the interactions between political blogs during the 2004 US presidential
election. (3) Protein network [44]. This network is an undirected network of protein interactions contained in yeast. A node
represents a protein and an edge represents a metabolic interaction between two proteins. (4) Router network [45]. This
network represents the Internet at the router level, in which each node is a router and each edge a connection between
two routers. The all networks are turned into undirected and simple connected networks for performance evaluation. The
statistical properties of the networks, including the number of nodes N , the number of edges M , the average degree ⟨k⟩,
the maximum node degree kmax, the clustering coefficient C , the assortative coefficient r and the degree heterogeneity
H = ⟨k

2
⟩

⟨k⟩2
[46] are summarized in Table 1.

It needs to be emphasized that the PIRank method is not proposed to solve certain specific problem. To test the proposed
PIRank algorithm, here we take the optimal network targeted attack problem as an example. We apply PIRank method
to identify the target nodes and remove them to disrupt network structure [47–49]. Especially, for any network under
consideration, centralitymeasures are calculated for all nodes to determine nodes importance, and the nodes are removed in
order of the centralitymeasure, from highest to lowest. Then the effect of removing a given number of the nodes on the giant
component’s size is analyzed to evaluate the centrality. Moreover, as outlier nodes have no effect on networks’ robustness,
all networks are preprocessed by deleting their outlier nodes. To evaluate the performance of PIRank method in the above
problems, we choose five classic centrality measures as baselines, including degree centrality, closeness centrality, k-shell
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Table 1
The basic topological features of the networks studied in this work. Structural properties include node number N , edge number M , average degree ⟨k⟩,
maximum node degree kmax , clustering coefficient C , assortative coefficient r and degree heterogeneity H = ⟨k

2
⟩

⟨k⟩2
.

Networks N M ⟨k⟩ kmax C r H

ER 1000 3000 6.098 18 0.006 −0.001 1.155
SF 400 1975 9.875 72 0.081 −0.056 1.766
LFR_1 1000 2782 5.564 49 0.413 −0.275 2.475
LFR_2 1000 4769 9.538 50 0.344 −0.238 1.777
LFR_3 1000 5109 10.218 50 0.108 −0.165 1.772
Erdos 474 1639 8.036 51 0.357 0.185 2.021
Polbblogs 469 2106 8.981 125 0.331 −0.219 2.610
Protein 1511 5873 7.773 61 0.212 −0.073 2.106
Routers 2113 6632 8.493 107 0.407 −0.006 2.646

Fig. 4. Degree distribution of the top 350 vital nodes of Protein network resulted from PIRank algorithm with varied hybridization parameters.

centrality, ECI centrality and Eigenvector centrality. As ECI centrality is the enhancement of CI centrality and its advantage
has already investigated in Ref. [14], CI centrality is not selected in this paper. For more details of these centrality measures,
we refer the reader to the literature cited.

5. Experimental results

5.1. Parameter analysis

In this subsection, we prove the rationality of the proposed nonlinear hybrid mechanism by numerical analysis. Toward
this end, the nonlinear hybridization mechanism defined by Eq. (11) is reformulated as wM+H

ij =
aij

d
λ1
i ·d

λ2
j

, where λ1 and

λ2 are the hybridization parameters. Firstly, two sets of experiments are performed with restricted condition λ1+λ2=1
and λ1+λ2 ̸= 1 respectively, in which we investigate the degree distribution of the vital nodes with varying hybridization
parameters λ1 and λ2. The results are shown in Fig. 4, and we can find that the ranking positions of network nodes are
strongly and positively correlated with their degree when parameters λ1 and λ2 are low, e.g., λ1 = 0.3 and λ2 = 0.3. With
the increase of their values, the node ranking position becomes independent of node degree gradually. In particular, when
λ1 = 0.7 and λ2 = 0.7, they are completely unrelated. According to the definition of vital nodes [50], the above two cases,
i.e. the strong correlation and the independence between node importance and node degree, are all counterintuitive. By
contrast, from the results of experiments under λ1 + λ2 = 1.0, we find that there is a balance between the above two cases.
This intermediate state between the two cases is consistentwith the general cognition about vital nodes. Therefore, although
the method for parameter value selection is not yet clear, the restricted condition λ1+λ2=1 of the nonlinear hybridization
mechanism defined in Eq. (11) is rational.

As PIRankmethod is proposed based on eigenvector centrality, herewe verify PIRankmethod’s validity by quantifying the
improvement of over eigenvector centrality. We apply the revised PIRank algorithm with updating matrix wM+H

ij =
aij

d
λ1
i ·d

λ2
j

into the optimal targeted attack problem, where λ1 and λ2 are the hybridization parameters. We calculate the sum R of the
giant connected components’ sizeGc

q under varying number of attacked nodes, R =
∑

qG
c
q, thenwemeasure the performance
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Fig. 5. (Color online) The improvement of PIRank over Eigenvector centrality for network attack under varied hybrid parameter.

improvement by Imp = RPIRank−REigen
REigen

, where RPIRank and REigen are the total size of the giant components under PIRank and
eigenvector centrality guided attack process respectively. With varied hybridization parameter λ1 and λ2, the performance
improvement of PIRank method over eigenvector centrality in the four real-world networks are shown in Fig. 5. From Fig. 5,
we have three main findings. First, for any values of parameter λ1, the optimum value of the improvement exists in all
networks as long as the sum of parameter λ1 and λ2 is equal to 1. That is, the optimal values of parameter λ2 approaches 0.3,
0.5 and 0.7 respectively when parameter λ1 is equal to 0.7, 0.5, 0.3. Thus, the rationality of the restricted condition λ1+λ2=1
is proved once again. Second, we can find from Fig. 5 that the performance improvement of PIRank is greater than 30% in all
the cases when the sum of parameter λ1 and λ2 is equal to 1. The results imply that the proposed PIRank method is effective
and the nonlinear hybridizationmechanism is reasonable. Third, we can find from Fig. 5 that the performance improvement
of PIRank increases with the rise of hybridization parameter λ2, which indicates that more satisfactory performance may be
got if MD process is predominant in the nonlinear hybridization mechanism.

To further analyze the influence of hybridization parameter λ on PIRank’s performance, we apply PIRank method with
different parameter values for network optimal attack problem, inwhich parameterλ corresponds to parameterλ1 in the last
paragraph. The results are shown in Fig. 6, in which the size of the giant connected component G(q) declines with network
nodes being removed successively. We can find from Fig. 6 that the attack schemes guided by PIRank method with different
parameter values lead to different disruption patterns in every network, but the performance of PIRankmethod for network
attack problemgenerally deteriorateswith the increase of parameterλ in all the networks. In all networks, the attack scheme
guided by PIRank method with parameter λ = 1.0, i.e. standard HC process, has the worst performance in all the cases,
followed by the cases with λ = 0.8 and λ = 0.6. Moreover, we find that the best performance are always arise in the cases
when λ = 0.0, λ = 0.2 and λ = 0.4, and the difference between them is very small inmost of the networks. This phenomena
indicates that the combination of the MD and HC process is necessary for node ranking, and the good performance of PIRank
algorithm comes from MD process’ dominant position in the nonlinear hybridization mechanism.

5.2. Performance evaluation

According to the analysis about hybridization parameter in the last subsection, we fix λ = 0.3 in the forthcoming
experiments. We first evaluate PIRank method’s performance in synthetic networks, including Erdos–Renyi network, Scale-
Free network and Lancichinetti–Fortunato–Radicchi (LFR) network. The Erdos–Renyi random graph model generates a ER
network of N nodes and M = (⟨k⟩/2)N links by first selecting M different node pairs uniformly at random from the whole
set of N(N − 1)/2 candidate pairs and then adding a link between the chosen two nodes. Each node in the network has ⟨k⟩
attached links on average. In the first panel of Fig. 7, we report the size G(q) of the giant connected component Gc

q of the
ER network under varied number q of nodes being removed in decreasing rank order with respect to different centrality
measures. From Fig. 7, it can be seen that PIRank centrality and ECI centrality outperform the degree centrality, closeness
centrality, k-shell centrality and eigenvector centrality in the selection of the attacked nodes, and PIRank centrality has
comparable performance with ECI centrality. We notice from the first panel of Fig. 7 that, during the attack processes
guided by degree centrality, closeness centrality, k-shell centrality and eigenvector centrality, the size of the giant connected
component decreases gradually and smoothly. In contrast, if the attacked nodes are selected based on PIRank centrality,
although the giant connected component initially shrinks slowly, the giant component’s size decreases sharply after about
400 nodes are removed. The result means that a smaller number of removed nodes are needed to break down the network
in PIRank-guided attack scheme than that of the others, and PIRank method is more effective than them.

In order to further demonstrate the advantages of PIRank method, we compare the components number C(q) of the ER
network under varied number q of nodes being removed guided by the different centrality measures. In the first panel of
Fig. 8, we can observe that the component number C(q) of the ER network increases with the network nodes being removed,
then C(q) reaches maximum at the peak of the curves where the network is in a very fragile state. Then C(q) slows down
gradually withmore nodes being removed until the giant component of the network disappears. Comparing the peaks of the
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Fig. 6. (Color online) Sensitive analysis of PIRank to hybrid parameter λ. λ regulates the normalization corresponding to HC’s averaging procedure, and
1− λ regulates the normalization corresponding to MD’s redistribution procedure.

curves, it can be seen that the attack schemes guided by PIRank centrality, ECI centrality and degree centrality disrupt the ER
network faster and more thoroughly than that guided by closeness centrality, k-shell centrality and eigenvector centrality.

We then examine Scale-Free (SF) network, which is generated starting with a set of connected nodes. After that, new
nodes with m = 5 edges are included in the network. The probability of the new node i to connect with a node j in the
network is proportional to the degree of j, i.e., p(i, j) = kj/

∑
µ∈V kµ. The networks generated by this model present a power-

law degree distribution, p(k) = k−γ , where γ = 3. There are many highly connected (hub) nodes in SF network, and the
degrees of them greatly exceed the mean node degree. To SF network, we find from Fig. 7 that PIRank-guided attack scheme
is more efficient than the other attack schemes. In order to break down the SF network, the PIRank method only needs to
delete about 200 nodes, while the closeness centrality, k-shell centrality and eigenvector centrality would need to delete
about 300 nodes. In Fig. 8, we present SF network’s component number C(q) under varied number of nodes being removed.
With the number of attacked nodes increases, the component number C(q) corresponding to PIRank centrality grow much
faster and get much greater values than the other centralities. As Fig. 8 shows the network attack process before networks’
giant connected component disappearing, we can find that the giant connected component of the SF network under the
PIRank guided attack scheme disappears much earlier than that of the others. So, PIRank centrality is more effective than
the others for SF network disruption.

Community structure is one of the most important structural properties of complex networks. Here we use LFR
benchmark to generate synthetic networks with build-in communities, with node number N = 1000, maximum degree
kmax = 50 and the exponent for the degree distribution ep = 2. Then, we vary the average degree ⟨k⟩ and the mixing
parameter µ to evaluate the performance of PIRank in these networks. We notice from Fig. 7 that, the network with smaller
average node degree, i.e. ⟨k⟩ = 5, is more sensitive to the network attack process and being disrupted more earlier than the
other networks. The networks with ⟨k⟩ = 10 are generally more robust to network attack. The size of the giant component
under closeness centrality, k-shell centrality and eigenvector centrality guided attack schemes decreases slowly and almost
linearly, and the number of the nodes that need to be removed to shrink the giant component sharply are all greater than
400. In the optimal targeted attack process of these networks, PIRank still is the best method among the centralities for
attacked nodes selection. From the perspective of component number C(q), with the average node degree ⟨k⟩ and themixing



812 T. Wu et al. / Physica A 506 (2018) 802–815

Fig. 7. (Color online) Giant component’s size curves under varied number of removed nodes.

parameter µ increasing, the community networks becomes more robust with respective of maximum component number
and its position, as shown in Fig. 8. According to the results in Fig. 8, we can conclude that PIRank-guided attack scheme has
excellent performance in the community networks. In general, PIRank centrality obtains quantitatively the best results over
all community networks for the network attack problem.

Nextwe evaluate the performance of PIRankmethodwith baselinemeasures in four real-world networks, including Erdos
network, Polblogs network, Protein network and Router network. The last four panels of Fig. 7 show the dynamics of the giant
component’s size G(q) with varied number q of nodes being removed. The removal order of nodes is determined based on
different centrality measures. It can be seen from the results that all the real-world networks exhibit similar disruption
patterns with the synthetic networks. That is, the size of the networks’ giant component all decrease gradually with the
number of the removed nodes increases. After a specific point of the number of the nodes being removed, the giant connected
component shrinks sharply with the deletion of a little additional nodes. According to Fig. 7, we can find that the size of the
giant component G(q) corresponding to PIRank method generally declines more rapidly than that of the other methods
with the number of the removed nodes increases. Moreover, we compare the real-world networks’ component number C(q)
resulted by the centralities, as shown in the last four panels of Fig. 8. The results show that the number of the components of
the networks increase initially with more nodes being removed, and then they decrease after reaching the maximum value.
The differences between the component number curves guided by different centralities are the height and the position of
the peaks. To a specific network, the higher and the earlier of the curve peaks, the better the performance of the centrality
measure. In this sense, PIRank method obtains admirable performance from the perspective of component number in the
real-world networks. It is interesting to note that the points where the number of the components achieves the maximum
value in Fig. 8 are consistent with the number of the removed nodes which lead the giant connected components disappear
sharply in Fig. 7. After that, more nodes being removed just reduces the number of the components but has less influence on
the size of the giant components of the networks. Generally speaking, the PIRankmethod obtains quantitatively satisfactory
results in all these disruption cases, and PIRank-guided attack scheme allows attackers to disrupt networks more quickly
and completely by deleting a smaller number of nodes than that of the others.

To further demonstrate the advantages of PIRankmethod over other centralities for the network optimal attack problem,
we compare the number of the removed nodes when the component’s number is maximized and the giant component
disappears in every network attack process, as shown in Table 2. We can find that the number of the removed nodes needed
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Fig. 8. (Color online) Component number curves under varied number of removed nodes.

Table 2
The number of the removed nodes when the component’s number is maximized and the giant component disappears. (In the network optimal attack
problem, the targeted nodes are removed successively until the size of the network’s giant connected component is reduced to one. The maximum values
of the removed node number corresponding to component number peak and giant component disappearing are highlighted in bold.)

Algorithm ER SF LFR1 LFR2 LFR3 Erdos Polblogs Protein Routers

Degree 651/922 243/344 265/889 570/992 563/971 213/375 242/451 654/1506 624/1286
Closeness 747/969 286/393 254/997 538/989 573/990 203/380 239/467 621/1481 693/1390
K-shell 726/967 277/378 316/994 560/978 597/972 267/374 246/451 841/1486 814/1353
ECI 596/920 256/361 293/996 520/983 542/957 199/379 177/434 718/1458 645/1384
Eigenvector 717/972 294/390 263/995 558/996 588/989 187/379 241/466 665/1484 813/1386
PIRank 641/882 218/289 291/626 492/933 577/954 223/341 168/437 671/1362 601/1255

Table 3
Running time of centrality measures in all networks when the components number is maximized and the giant component disappears.

Algorithm ER SF LFR1 LFR2 LFR3 Erdos Polblogs Protein Routers

Degree 0.80/1.13 0.14/0.20 0.46/1.55 0.80/1.39 0.79/1.36 0.12/0.21 0.18/0.33 1.41/3.25 1.22/2.87
Closeness 2.53/3.54 0.35/0.63 0.33/0.41 3.26/5.03 3.10/4.96 0.28/1.04 0.50/0.99 5.57/11.7 4.46/10.2
K-shell 0.01/0.13 0.01/0.24 0.02/1.88 0.02/2.12 0.01/1.65 0.01/0.26 0.01/0.51 0.02/3.96 0.02/3.32
ECI 22.1/22.8 99.9/11.0 46.4/59.9 138/143 410/514 23.8/37.1 61.3/90.3 23.8/420 38.4/569
Eigenvector 0.95/2.38 0.25/0.42 2.48/2.99 1.40/2.82 0.92/2.88 0.18/0.48 0.28/0.92 2.20/6.39 1.62/5.36
PIRank 1.19/2.65 0.54/0.70 3.18/3.91 1.61/3.13 1.26/5.04 0.33/0.73 0.93/1.02 2.38/10.8 1.93/9.42

for the PIRank-guided network attack process is minimal in most of the networks. Thus, PIRank method is more effective
for the network optimal attack problem than the other methods. Moreover, we also demonstrate the efficiency of PIRank
method from the perspective of running time. The running time of the centrality measures on all the networks are shown
in Table 3. Among all the measures, K-shell has the smallest computation time, but its performance is unsatisfactory for
targeted nodes selection. ECI centrality takes a great deal of time although it performs better than closeness and K-shell
centrality. PIRank method has the same amount of running time as closeness and eigenvector centrality in all the networks
while has the best performance for the network optimal attack problem.
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(a) Performance of centralities in random network. (b) Performance of centralities in random network with a single hub
node.

Fig. 9. (Color online) Localization and centrality in networks .

5.3. Localization and centrality measures

Although PIRank method has been proved superior to the classic eigenvector centrality, the backside causes are yet fully
to be understood. Besides PIRank’s ability of capturing different structural features, avoiding localization transition may be
another explanation. Eigenvector centrality has been found to be defective, and the leading eigenvector of the adjacency
matrix can undergo a localization transition in which most of the weight of the vector concentrates around one or a few
nodes in the network and vanishing weight is assigned to the average node [51]. The work also shows that the fundamental
cause of the localization phenomenon is the presence of ‘‘hubs’’ within networks, nodes of unusually high degree, which are
a common occurrence in many real-world networks. We argue that the answer of the superiority of PIRank method over
eigenvector centrality lies partly in the ability that avoids localization transition and gives useful results in regimes where
the eigenvector centrality fails.

In order to prove the argument, here we consider the following simple undirected networkmodel consisting of a random
graph plus a single hub node. In a network of n nodes, n − 1 of them form a random graph in which every pair of nodes is
connected with probability c/(n−2), where c is the average degree. The nth node is the hub and is connected to every other
node with probability d/(n− 1), where d is the expected degree of the hub. According to the work [51], when d > c(c + 1),
the hub eigenvalue becomes the leading eigenvalue and a non-vanishing fraction of the eigenvector centrality falls on the
hub node and its neighbors.

We apply PIRank method and eigenvector centrality on the generated random network with n = 200, c = 5 and d = 60,
and the resulted centrality of the network nodes are shown in Fig. 9. We can find from Fig. 9 that PIRank method and
eigenvector centrality have similar performance in the random graph without the hub node while eigenvector centrality
deteriorate clearly in the random graph with a hub node. From Fig. 9(b), we notice that there is a localization phenomenon
arising in eigenvector centrality and the eigenvector values corresponding to the hub nodewith index 201 and its neighbors,
i.e. the nodes with index from 1 to 60, are collectively higher than that of the other nodes. In contrast, the PIRank method is
not obviously affected by the change of node degree distribution.

6. Conclusions and discussion

Node ranking in complex networks is an important and challenging problem. In this paper, we introduced physical
processes for structural features capturing to improve the performance of node ranking. We showed that although the
proposed PIRank method adopts the same iterative framework with the basal eigenvector centrality, the nonlinear hybrid
updatingmechanism defined based on the physical processes can help to improve the performance remarkably. Meanwhile,
the PIRankmethodwas proved to outperform the other centralities and renders a satisfactory performance in all experiment
networks. We also prove the rationality of the proposed nonlinear hybrid updating mechanism of PIRank method by
parameter analysis. We found with surprise that the redistribution mechanism stemmed frommass diffusion process plays
a major role while the average procedure motivated by mass heat conduction process is complementary when PIRank gets
good performance. We believe that the effect of structural feature integration may exist in many backgrounds [52–54], the
hidden information revealed by structural feature integration can help to improve the accuracy of network structuremining
algorithms.

Although structural features integration is useful for the optimization of node ranking, for real applications, how to
identify complementary structural features and design the corresponding mechanisms is still an open and challenging
problem. In addition, because real-world networks are always dynamic and multiple layers, it would be a worthwhile topic
for future research to probe the ways of applying the proposed method in temporal and multiplex networks.
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