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Abstract. Financial fluctuations play a key role for financial markets
studies. A new approach focusing on properties of return intervals can
help to get better understanding of the fluctuations. A return interval
is defined as the time between two successive volatilities above a given
threshold. We review recent studies and analyze the 1000 most traded
stocks in the US stock markets. We find that the distribution of the return
intervals has a well approximated scaling over a wide range of thresh-
olds. The scaling is also valid for various time windows from one minute
up to one trading day. Moreover, these results are universal for stocks of
different countries, commodities, interest rates as well as currencies. Fur-
ther analysis shows some systematic deviations from a scaling law, which
are due to the nonlinear correlations in the volatility sequence. We also
examine the memory in return intervals for different time scales, which
are related to the long-term correlations in the volatility. Furthermore,
we test two popular models, FIGARCH and fractional Brownian motion
(fBm). Both models can catch the memory effect but only fBm shows a
good scaling in the return interval distribution.

Keywords: Financial marekts, Econophysics, Volatility, Return inter-
val, Scaling, Long-term correlation.

1 Introduction

Large and unpredictable fluctuations constitute risk for investments as well as
the whole economy. For instance, the credit crisis nowadays is along with turmoil
in financial markets, which causes huge losses for many investors and likely initi-
ates a recession worldwide. Moreover, significant risk could be inherent not only
in market crashes, but also in less hazardous fluctuations if they are unexpected
and investments are not well protected against them. Banks have to properly
estimate the risk of their investments and make provisions in order to be able
to withstand large fluctuations without going bankrupt. The importance of fi-
nancial markets attract many researchers and in particular, collaborative work
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joining economists and physicists (which created a new interdisciplinary field
of econophysics [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,20,19,21,22,23,24,25]
[26,27,28,29,30,31,32,33,34,35]) has resulted in a better understanding of eco-
nomic fluctuations. Until relatively recently, theories of economic fluctuations
invoked the label of “outliers” (bubbles and crashes) to describe fluctuations that
do not agree with the existing theory. However, econophysics research found ev-
idence that the probability distribution of price fluctuations can be described by
a power law [27,28,29,30,31,32,33,34,35]. There are no “outliers” since this law
also holds for extremely large and unpredictable changes of magnitude sufficient
to wreak havoc.

Statistical physics deals with systems comprising a very large number of in-
teracting subunits, for which predicting the exact behavior of the individual sub-
unit would be impossible. Hence, one is limited to making statistical predictions
regarding the collective behavior of the subunits. Recently, it has come to be
appreciated that many such systems consisting of a large number of interacting
subunits obey universal laws, therefore they are independent of the microscopic
details. The finding, in physical systems, of universal properties that do not
depend on the specific form of the interactions gives rise to the intriguing hy-
pothesis that universal laws or behavior may also be present in economic and
social systems [34,35]. An often-expressed concern regarding the application of
physics methods to the social sciences is that physical laws are applied to systems
with a very large number of subunits (at the order of Avogadro’s number, 1023),
while social systems comprise a much smaller number of elements. Fortunately,
due to the rapid development of electronic trading and data storing in the last
few decades, financial data bases have become available with a huge amount of
data points (say 108), enabling physicists to analyze them as dynamic systems.
The data size becomes comparable to nano systems and the “thermodynamic
limit” is reached so that methods from statistical physics can be applied. It is
worth to note that there is only a small amount of extremely large events even in
very huge data bases. To understand these devastating events, it is of great im-
portance to find laws describing the entire data set in order to approach extreme
events by extensive analysis on small fluctuations.

Two important conceptual advances on universal laws are scaling and univer-
sality. A system obeys a scaling law if its relation is characterized by the same
functional form and exponent over a certain range of scales (“scale invariance”).
The typical behavior for scaling is data collapse, all curves can be “collapsed”
onto a single curve, after a certain scale transformation on the measure. The
general principles of scale invariance used here have proved useful in interpret-
ing a number of other phenomena, ranging from elementary particle physics
and galaxy structure to finance [35,36,37]. At one time, many imagined that
the “scale-free” phenomena are relevant to only a fairly narrow slice of physi-
cal phenomena [38,39]. However, the range of systems that apparently display
power law and scale-invariant correlations has increased dramatically in recent
years, ranging from base pair correlations in noncoding DNA [40], lung inflation
[41] and interbeat intervals of the human heart [42] to complex systems involving
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large numbers of interacting subunits that display “free will,” such as city growth
[43], university research budgets [44], and even bird populations [45]. In many
of these diverse systems, the same scaling function exists for a significant range
which is remarkable, apparently suggesting the universality of laws. Moreover,
many systems share the same scaling functions and characteristic exponents and
therefore belong to one universality class. This connection provides the people a
comprehensive view over these diverse systems.

Scaling and universality are important properties of a data set describing the
global behavior of the probability distribution. This usually does not fully char-
acterize a sequence of data points which also depends on the time organization of
the sequence. Only if it is uncorrelated, the data points are independent of each
other and the sequence is totally determined by the distribution. In most cases,
the records is correlated, it will affect the order in the data set. This behavior is
called “memory”, as the data points “remember” previous values. Trivially the
memory decays with the time lag. The decay of memory, which could be charac-
terized by the autocorrelation function, may follows different types of function.
One typical function is exponential, and the existing of memory is described by
a characteristic time scale. The memory almost disappears at the scales above
the characteristic time and thus it only exists for a short-term. Such kind of
time series is called short-term correlated. Another typical function for the au-
tocorrelation is a power law. In this case there is no finite characteristic scale
and the correlation exists for a much longer time, therefore it is called long-term
correlated . Note that short-term memory always exists in a long-term correlated
time series. As for the study of financial markets, the temporal structure in a
time series is of great importance since it influences the performance of any
movement. Many studies show that price change (“return”) does not exhibit
any linear correlations extending over more than a couple of minutes, but their
absolute value, which is a measure of volatility, exhibits long-term correlations
(see Ref [34] and references therein). This leads to long periods of high volatility
as well as other periods where the volatility is low (“volatility clustering”).

Extreme events do not only occur in economics, but also appear in very dif-
ferent fields like climate or earthquakes. For instance, Gutenberg and Richter
related huge earthquakes to everyday tremors in one single power law curve
[46,47]. If one wants to prepare for a dangerous earthquake, it might be less im-
portant to exactly know how strong the next shock will be, but rather to know
when a large shock will occur. A good approach is to study the time (“return
interval”) between two successive shocks larger than a threshold above which a
shock would damage a building. This way one can gather information on the
temporal structure of the fluctuations. Recently Bunde et al. [48,49,50,51] stud-
ied the return intervals for climate records and found that the long-term memory
leads to a stretched exponential distribution and clustering of extreme events.
They also suggested that these phenomena should therefore also occur in heart-
beat records, internet traffic and stock volatility where long-term correlations
occur. For financial data, a first effort was conducted by Yamasaki et al. who
studied the daily data of currencies and US stocks and showed the scaling in the
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distribution and long-term memory in the sequence [52]. Following this, Wang
et al. studied the intraday data of 30 stocks which constitute of Dow Jones
Industrial Average (DJIA) index, Standard and Poor’s 500 (S&P 500) index,
currencies, interest rates as well as oil and gold commodities and found simi-
lar behaviors [53,54]. Similar analysis have been done for the Japanese [55] and
Chinese [56,57] stock markets. To compare with the empirical data, Vodenska-
Chitkushev et al. examined return intervals from two known models, FIGARCH
and fractional Brownian motion (fBm) and showed that both models simulate
the memory effects but only fBm yield the scaling feature [58]. Bogachev et al.
related the nonlinear correlations to the multiscaling behavior in return inter-
vals [59], they also showed that the return interval distribution follows a power
law function for multifractal data sets [63]. Recently, Wang et al. studied sys-
tematically 500 components of S&P 500 index and demonstrated a systematic
deviation from the scaling. They showed that this multiscaling behavior is re-
lated to the nonlinear correlations in volatility sequence [60]. Further, Wang et
al. analyzed the relation between multiscaling and several essential factors, such
as capitalization and number of trades, and found certain systematic depen-
dence [61]. The multiscaling behavior is also found in the Chinese stock market
[62]. These studies help us to better understand the volatility and therefore may
lead to better risk estimation and portfolio management [64,65,66,67]. Return
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Fig. 1. (Color online) Illustration of volatility return intervals. The volatility is in units
of its standard deviation. The solid circles are volatility values of the GE stock on Jan
8, 2001. Return intervals τq=2 and τq=3 for two typical thresholds q are displayed.
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intervals have also been studied in many other fields (see Ref [68] and references
therein). It is calculated in similar ways but with different names, like waiting
time, interocurrence time or interspike interval.

In this paper we analyze the volatility return intervals of the entire US stock
markets. The database analyzed is the Trades And Quotes (TAQ) from New York
Stock Exchange (NYSE). The period studied is from Jan 2, 2001 to Dec 31, 2002,
totally 500 trading days. TAQ records every trade for all securities in the US
markets. To avoid many missing points in 1-min resolution, we choose to analyze
only the 1000 most traded stocks. Their numbers of trades range from 600 to
60,000 times per day. The volatility is defined the same as in Ref [53]. First, we
compute the absolute value of the logarithmic change of the minute price, then
remove the intraday U-shape pattern, and finally normalize the series with its
standard deviation. Therefore the volatility is in units of standard deviations.
With 1-min sampling interval, a trading day has 390 points (after removing
the market closing hours), and each stock has about 195,000 records. We also
examine the S&P 500 index, a benchmark of US stock markets. The data is
from Jan 2, 1984 to Dec 31, 1996, totally 130,000 points with 10-min sampling
interval. For a typical stock, General Electric (GE), we find volatilities above a
certain threshold q and calculate time intervals between them, as illustrated in
Fig. 1. These time intervals consist the return interval series and the only free
parameter is the threshold q.

2 Distribution of Return Intervals

We begin by analyzing the distribution, one of most important statistical prop-
erties for a time series. The distribution can be characterized by probability
density function (PDF) or cumulative distribution function (CDF). Previous
studies [52,53,54,55,56,57,58,59,60,61,62] showed that PDF for the return inter-
val τ , P (τ), can be well approximated by a scaling law if τ is scaled by its average
〈τ〉 (〈...〉 stands for the average over a data set), i.e.,

P (τ) = 1/〈τ〉 · f(τ/〈τ〉). (1)

The scaling function f does not depend explicitly on q, but only through the
mean interval 〈τ〉. If P (τ) is known for one value of q, Eq. (1) can make predic-
tions for other values of q—in particular for very large q (extreme events), which
are difficult to study due to the lack of statistics.

2.1 Stretched Exponential Distribution

An important question is, what is the form of scaling function f? For many
markets, the function was suggested to be in a good approximation to a stretched
exponential (SE) [52,53,54,55,56,57,58,59,60,61,62],

f(x) ∼ e−(x/x∗)γ

. (2)
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Here x∗ is the characteristic scale and γ is the shape parameter, which is re-
lated to the correlations in the volatility sequence and thus called “correlation
exponent” [49]. For an uncorrelated series, f reduces to the regular exponential
function and γ = 1. From Eq. (2), the PDF function can be rewritten as

P (τ) ∼ e−(τ/a)γ

. (3)

Then a is the characteristic scale. From the definition of PDF and 〈τ〉, one may
find that the parameter a depends exclusively on γ [68,60],

a = 〈τ〉 · Γ (1/γ)/Γ (2/γ). (4)

Here Γ (a) ≡ ∫ ∞
0

ta−1e−tdt is the Gamma function. However, due to the dis-
creteness and finite size effects, there are some systematic deviations from the
scaling law [51,60]. To avoid them, we will also use a as a free parameter in the
SE fit. To simplify the calculation and without loss of generality, we assume τ/a
is continuous, then the corresponding CDF, C(τ), is the integral of the PDF,

C(τ) ≡
∫ ∞

x

P (τ)dτ ∼ Γ (1/γ, (τ/a)γ). (5)

where Γ (a, x) ≡ ∫ ∞
x

ta−1e−tdt is the incomplete Gamma function. Since CDF
accumulates the information of the series and has a better statistics than PDF,
in the following we obtain the correlation exponent γ by fitting the CDF with
Eq. (5).

As an example, we plot three CDFs (for q = 2, 4 and 6 respectively) of the
GE stock in Fig. 2. The three curves are distant from the other, due to the
difference in 〈τ〉. The least-square fits with Eq. (5) are illustrated by the solid
lines. We use the classical method, Kolmogorov-Smirnov (KS) Statistic D, to
test the goodness-of-fit [69,70]. D is defined as the maximum absolute difference
between the cumulative distribution of the original data C(τ) and that of the fit
F (τ),.

D ≡ max(|C(τ) − F (τ)|). (6)

When D is larger than a certain value, which is called critical value (CV ), the
SE distribution is rejected. CV is decided by the significance level and data size.
In this paper we choose 1% significance level and

CV = 1.63/
√

N, (7)

where N is the number of data points.
We fit CDF with SE function for the 1000 most traded stocks [71]. The range

of threshold is from q = 1 to 6, and the number of fit that is not rejected
(“good fit”) is listed in Table 1. We can see that most of the cases have a good
fit by a SE function. A question naturally arises, for different thresholds, how
similar are these correlation exponents? Previous research show that the scaling
in distribution is well approximated [52,53,54,55,56,57,58,59,60,61,62]. Trivially,
γ for different thresholds are strongly related, and their discrepancy should be
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Fig. 2. (Color online) Cumulative distribution function (CDF) of return interval τ .
CDF of three typical thresholds q = 2, 4 and 6 for the GE stock are plotted. Examples
of two types of fit, the dashed lines (left shifted for better visibility) are the power law
fit for the distribution tails and the solid lines on symbols are the stretched exponential
fit for the whole distributions.

Table 1. Number of good fit on return interval CDF of the 1000 stocks. If KS statistics
D (Eq. (6)) is smaller than the critical value CV (Eq. (7)), the corresponding distri-
bution is not rejected. Two types of distribution, stretched exponential (for the whole
range) and power law (for the tail), are tested.

Threshold q 1 2 3 4 5 6

Stretched exponential fit 791 795 815 933 977 986

Power law fit 31 349 626 826 839 710

small. To test this assumption we plot in Fig. 3 the dependence of the γ for other
thresholds on the γ obtained for q = 2. Remarkably, all four cases show significant
tendency and the slopes of linear fit are very close to 1. This result supports the
well-approximated scaling in the distribution of return intervals. Note that the
fluctuation is larger for a higher q, and the slope slightly decreases, which may
be due to the limited data size of return intervals for large thresholds. We also
test the dependence of other pairs of thresholds and observe similar behaviors.
All these behaviors are consistent with Ref [61]. Moreover, we compare the value
of the parameter a with Eq. (4) and find that a from the fit is in the same order
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Fig. 3. (Color online) Relation between correlation exponent γ (Eq. (3)) of different
thresholds. γ for four thresholds, q = 3 to 6 strongly depend on γ for q = 2, as indicated
by dashed lines from the linear fit. All slopes of fit are quite close to 1, which suggests
a good scaling in the distribution of return interval. Note that the fluctuation becomes
stronger for a larger q, which relates to the smaller data size for the return interval
with a larger q.

as that from Eq. (4), and usually the former is smaller. The ratio between two
a is centered from 0.4 (for q = 1) to 0.8 (for q = 6) for the 1000 stocks [72].

2.2 Power Law Tail

For financial time series, the distribution tail usually is characterized by a power
law function [27,28,29,30,31,32,33,34,35]. As for the return interval, Yamasaki et
al. suggested that the scaling function is also consistent with a power law tail for
large intervals, where the tail exponent is around 1 for both stock and currency
data [52]. Moreover, Bogachev and Bunde have shown that the distributions of
return intervals are governed by power laws [63]. Then CDF of return intervals
would follow

C(τ) ∼ τ−ζ , (8)

where ζ is the tail exponent. To test this hypothesis we examine the distribution
tail for the 1000 stocks. A popular way to fit the tail is using the Maximum
Likelihood Estimator, specifically, it also called Hill estimator for a power law
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Fig. 4. (Color online) Probability density function (PDF) of tail exponent ζ from power
law fit on the cumulative distribution of return intervals. The distribution systemati-
cally shifts from right to left, with increasing of the threshold.

tail [32,33,73]. The range of fit is not fixed by the Hill estimator [32,33], thus we
examine the entire tail and choose the range that has the minimum KS statistics
[33]. Examples of power law fits are demonstrated by the dashed lines in Fig. 2.
We still use KS statistics to test the goodness-of-fit. For threshold q = 1 to 6,
the numbers of good fit are listed in Table 1. For return intervals of q = 1 and
2, only for a small portion of the 1000 stocks, the power law distribution is not
ruled out. However, for other cases, the power law distribution is not ruled out
for a significant portion of stocks. In Fig. 4 we plot the PDF for tail exponent ζ.
Interestingly, all PDFs are centered around a certain value which systematically
shift from large value to small, with increasing the threshold. For q = 2, ζ is
centered around 2, and for q = 5, ζ is centered around 1. The latter is consistent
with Ref [52], which suggests that the difference may due to the limited size of
data points. Ref [52] was using daily data, which is about 1/20 of the intraday
data in the current paper (∼ 10, 000 points for the daily data vs. ∼ 195, 000
points for the intraday data). Similarly, the number of return intervals for q = 5
is only about 1/14 of that for q = 2 (average over the 1000 stocks, ∼ 850 points
for q = 5 vs. ∼ 11, 800 points for q = 2). We also must note that, for q = 2, only
about 1/3 of the 1000 stocks have a good power law fit (Table 1).



12 F. Wang et al.

2.3 Universality of Scaling

Fig. 3 supports quite impressive the universality hypothesis of the correlation
exponent γ since it holds for a broad market, the 1000 most traded stocks in the
US markets, with a wide range of thresholds. Recent studies confirmed that the
scaling is also valid for other important markets, such as the Japanese market, a
typical mature market, and the Chinese market, a prominent emerging market.
Jung et al. analyzed the intraday data for 1817 stocks (1 year) and daily data for 3
typical companies (28 years) from the Japanese market [55]. They showed similar
results as that of the US markets. For the Chinese market, 2 indices and 30 liquid
stocks (both 2.5 years) were investigated, their behavior is also consistent with
the US markets [56,57,62]. Moreover, currencies [52,54], interest rates, oil and
gold commodities [54] were also found to follow a scaling law. Remarkably, γ is
centered between 0.3 and 0.4 for all cases as seen in Fig. 3 and the similar γ
was found in other investigations [52,53,54,55,56,57,58,59,60,61,62]. To conclude,
the scaling in return interval distribution is valid for two dimensions, different
financial assets and different volatility thresholds.
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Fig. 5. (Color online) Distribution of correlation exponent γ for four sampling intervals,
Δt = 1, 5, 10 and 30 minutes. With increasing of the sampling interval, the distribution
tends to be wider. However, their centers are still close, changing from 0.31 for Δt = 1
minute to 0.37 for Δt = 30 minutes, which suggests that scaling is a good approximation
for this range of sampling intervals. The broader distribution for lower resolution may
be related to its smaller data size.
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For statistical analysis, the time resolution of the records is an important
aspect since the system may exhibit diverse behaviors in different time windows
Δt. This is the third dimension for testing the universality of scaling. In Ref
[54], Wang et al. have shown that the scaling is valid even to a sampling interval
of 1 trading day. Here we change the volatility sampling interval from 1 minute
to 5, 10 and 30 minutes, and then examine its return interval CDF. For 1-day
resolution, there is only 500 points for a stock and the statistics is poor, we do
not test it here. Also for a good statistics we focus on return intervals of a typical
threshold, q = 2. Similar to the 1-min resolution, most of cases can be well fit by
Eq. (5). For instance, with 5-min resolution, the SE hypothesis for 812 of 1000
stocks are not rejected under 1% significance level. In Fig. 5 we show the PDF
of γ for Δt = 1, 5, 10 and 30 minutes. The shape of PDF systematically changes
with increasing the sampling interval, the center shifts to right slightly and the
width increases, which is consistent with the change of data size. For a lower
resolution, we have fewer data points and consequently stronger fluctuations for
γ values. Therefore, these curves show the persistence of the scaling for a broad
range of sampling intervals.

2.4 Multiscaling

Financial time series are known to show complex behavior and are not of uniscal-
ing nature [74]. The distribution of activity measure such as the intertrade time
has multiscaling behavior [75,76]. From the previous sections we also see some
weak but systematic tendencies, which indicate possible multiscaling
(Fig. 3). Thus, a detailed analysis of the scaling properties of the volatility
return intervals is of interest. Moment μm, which is defined as

μm ≡ 〈(τ/〈τ〉)m〉1/m, (9)

accumulates the information over the entire data set and therefore provides a
good way for testing the deviations from a scaling law. Pure scaling yields that
μm should be independent on 〈τ〉. Here m is the order of moment. Wang et al.
studied the moments for 500 component stocks of S&P 500 index and found that
μm has a certain tendency with 〈τ〉, indicating multiscaling in the distribution of
τ [60]. As shown in Fig. 6, the four moments of GE have similar tendencies, they
increase to a certain value in the small 〈τ〉 regime and then start to decrease.
To quantify the tendency, Wang et al. suggested to fit the moments with a
power-law [60],

μm ∼ 〈τ〉δ . (10)

If the distribution of return intervals follows a scaling law, the exponent δ should
be close to 0. In other words, a significant non-zero δ suggests multiscaling. Here
we call δ multiscaling exponent since it characterizes the multiscaling behavior
[60]. The power law fit is demonstrated by dashed lines in Fig. 6. For very small
and very large values of 〈τ〉, Wang et al. identified the discreteness and finite
size effects respectively [60], which was also recognized for the general case by
Eichner et al. [51]. To avoid these effects, we fit Eq. (10) only in the medium
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Fig. 6. (Color online) Dependence of moments μm on mean interval 〈τ 〉 for the GE
stock. Four orders, m = 2, 4, 8 and 16 are showed. Dashed lines are power law fits in
the range of 10 < 〈τ 〉 ≤ 100. Adapted from [61].

range, 10 < 〈τ〉 ≤ 100. As shown in Fig. 7, over the 500 component stocks of
S&P 500, the average δ systematically changes with m, which supports the exist-
ing of multiscaling features in the return interval distribution. Furthermore, we
can see that δ are centered around 0 for the surrogate data, suggesting that the
multiscaling behavior in the original records is related to the nonlinear correla-
tions in volatility sequence. The surrogate records are generated by the Schreiber
method [77,78] where nonlinearities are removed, and the corresponding μm is
independent with 〈τ〉. Ren and Zhou also employed moment analysis on two
Chinese indices and confirmed the multiscaling behavior in the return interval
distribution [62].

A second way to test the multiscaling is by examining the relation between
the correlation exponent γ and threshold q. Wang et al. have shown that γ has
a certain dependence on the threshold q for the broad market, especially for
small thresholds [61], which is consistent with Fig. 3. A third method for test-
ing is using KS statistics to test compare return interval distributions of two
thresholds. If D > CV , the null hypothesis that two distributions are same is
rejected. For the Japanese market, Jung et al. have shown a good scaling by the
KS test [55]. However, for the Chinese market, Ren and Zhou found that the
null hypothesis is not rejected only for 12 of 30 liquid stocks. For other 18 stocks,
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Fig. 7. (Color online) Distribution of multiscaling exponent α for S&P 500 constituents.
The exponent α is obtained from the power-law fit for moments in the medium range
10 < 〈τ 〉 ≤ 100. (a) Histogram of α for the original volatility and (b) for surrogate. The
distributions have a systematic shift with m in (a) while all of them almost collapse
in (b). This suggests that the multiscaling behavior in the original records dues to the
nonlinear correlations in the volatility sequence. Adapted from [60].

the distributions are significantly different for different thresholds therefore they
don’t obey a single scaling law [62].

2.5 Size Effect

The following question arises, what is the origin for the multiscaling behavior
in the return interval distribution? Recently Wang et al. carried out a multi-
factor analysis and found similar relations over the factors [61]. Here we focus
on the most popular measure, the market capitalization or the size of a stock,
which is clearly related to the market activity [76]. Fig. 8 is the scatter plot of
the relationship between γ and capitalization for the 1000 stocks. For all the
four thresholds, the points are distributed in a wide area, which indicates an
insignificant dependence. To better view a possible tendency, we group points
according to their logarithmic value of capitalization and plot the average and
standard deviation (as the error bar) of γ in each bin, as shown by the triangles
in Fig. 8. An increasing trend for most of the range and a drop for very large
capitalization is noticed. Interestingly, this behavior is consistent for all four
thresholds. Note that the change of average γ is almost in the range of the error
bar. Thus, γ systematically depends on the capitalization but the dependence is
not strong, which suggests that there is a certain underline nonlinear mechanism
and some sort of filtering maybe needed to identify it. Wang et al. also analyzed
the dependence on the number of trades, risk and return. They found consistent
relation for the risk and return. They also showed that γ is independent on the



16 F. Wang et al.

10
8

10
9

10
10

10
11

0.2

0.4

0.6

γ
10

8
10

9
10

10
10

11

0.2

0.4

0.6

γ

10
8

10
9

10
10

10
11

Capitalization

0.2

0.4

0.6

10
8

10
9

10
10

10
11

0.2

0.4

0.6

(a) q=2 (b) q=3

(c) q=4 (d) q=5

Fig. 8. (Color online) Size effect of correlation exponent γ. Scatter plot of four thresh-
olds, q = 2 to 5 are displayed. To better view the tendency, we calculate the average
and standard deviation in logarithmic bins of capitalization, as shown by the trian-
gle (average) and error bar (standard deviation). For the four thresholds, average γ
increases with the capitalization for most of the range.

number of trades. Similarly, they found a certain dependence on these factors
for the multiscaling exponent δ [61].

3 Memory Effects in the Return Interval Sequence

The temporal structure is an essential feature to characterize a time series. It can
be examined in different time scales. Here we analyze it in three scales, short,
medium and long term.

3.1 Short-Term Memory

The short-term memory can be measured by the conditional PDF, P (τ |τ0),
which is the probability of finding a return interval τ immediately after a return
interval of size τ0 [49,50,51,52,53,54]. In records without memory, P (τ |τ0) should
be identical to P (τ) and independent of τ0. When memory exists, it should
depends on the choice of τ0. Due to the poor statistics for a single value of return
interval, a binning of τ0 is needed. Yamasaki et al. split the entire database into 8
equal-size subsets, Q1, Q2, ..., Q8, with intervals in increasing length [52,53,54].
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Fig. 9. (Color online) Mean conditional return interval 〈τ |τ0〉/〈τ 〉 vs τ0/〈τ 〉 for the GE
stock. Symbols are for three different thresholds q = 2, 3 and 4. To compare with the
real data results (filled symbols), we also plot the corresponding results for shuffled
records (open symbols). The distinct difference between the two records implies the
memory effect in the original interval sequence. Adapted from [54].

It is found that for τ0 in Q1, the probability is higher for small τ , while for
τ0 in Q8, the probability is higher for large τ . Thus, large (small) τ0 tends to
be followed by large (small) τ (“clustering”), which indicates memory in the
sequence. Note that for all thresholds P (τ |τ0) seems to collapse onto a single
scaling function for each of the τ0 subsets, and they can be well fit by a SE
function according to Eq. (3). These results are consistent for the US markets,
currencies, interest rates and commodities [52,53,54]. Similar results have been
found for the Japanese market [55] and Chinese market [56,57].

Further, the short-term memory is also seen clearly in the mean conditional
return interval immediately after a given τ0 subset, 〈τ |τ0〉, which is the first
moment of P (τ |τ0). A power law dependence of 〈τ |τ0〉 on τ0 for the GE stock is
showed in Fig. 9, as an example. We can see that large (small) τ tend to follow
large (small) τ0, similar to the clustering in P (τ |τ0). Correspondingly, shuffled
data (open symbols in Fig. 9) are almost constant as expected, demonstrating
that the value of τ is independent of the previous interval τ0.
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Fig. 10. (Color online) Cumulative distribution of size for return interval clusters.
The cluster consists of consecutive return intervals that are all above (“positive clus-
ter”, open symbols) or below (“negative cluster”, filled symbols) the median of return
intervals. For the shuffled records, the distribution follows an exponential function.
However, for the original records, their distributions for both positive and negative
clusters have much longer tails, suggesting a significant memory in return intervals.
Adapted from [54].

3.2 Clustering

Clustering phenomena are displayed by P (τ |τ0) and 〈τ |τ0〉, indicating the mem-
ory in the return intervals. However, both functions measure the intervals that
immediately follow an interval τ0. In order to investigate longer clustering in a
straighter way, we analyze “clusters” of return intervals, which are composed by
successive intervals with similar size [53,54,55,56,58]. To obtain good statistics
we divide the sequence of return intervals into two bins, separated by the median
of the entire database. We denote intervals that are above the median by sign
“+”, and the ones below the median by “–”. Accordingly, consecutive “+” or
“–” intervals form a positive or negative cluster.

The distribution of cluster sizes n reveal the memory information in the se-
quence. Fig. 10 shows the cumulative distribution of the cluster size for the GE
stock. Both positive and negative clusters have quite long tails, compared to that
for the shuffled records which follows an exponential function and shows a much
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are around 1 trading day. Solid lines are for power law fits on the two regimes. For short
scale, two α (slopes in the plot) are almost same. For long scale, two α are different
but they are strongly related.

faster decay. For the positive clusters, the distribution still has good statistics
even for size n = 18, while the negative clusters extend to n = 25. Thus, the
memory effects persist for quite long times (e.g., the average return interval for
GE with threshold q = 2 is about 9 minutes, so there are still some clusters
corresponding to even 200 minutes in the time scale). Note that the distribution
of positive clusters is very similar for different thresholds q = 2, 3, 4, while the
negative clusters show the same effect only for n ≤ 10. Similar clustering has
been found also in earthquake and climate data [50,79].

3.3 Long-Term Correlations

The volatility is known to have long-term correlations [31], thus an examina-
tion of long-term correlations in the return interval is needed. We apply the De-
trended Fluctuation Analysis (DFA) method [80,81,82] to the volatility and their
return interval sequence. Without loss of generality, we investigate the return in-
terval for a typical threshold q = 2. After removing trends, DFA computes the
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Fig. 12. (Color online) Dependence of long-term correlations in the volatility and the
return interval (q = 2) sequence. The results for two scale regimes are showed. As
indicated by the two linear fits on the symbols (dashed lines), the dependence is not
strong for the short scale but it is significant for the long scale. The weak relation for
short scale is related to the small range of their α.

root-mean-square fluctuation F (�) of a time series within windows of � points,
and determines the exponent α from the scaling function,

F (�) ∼ �α. (11)

The correlation in the time series is characterized by the exponent α ∈ (0, 1). If
α > 0.5, the records has positive correlations If α = 0.5, it has no correlation
(white noise). If α < 0.5, it has negative correlations.

Similar to the volatility [31], there is a crossover in the DFA curve for return
interval thus the entire regime can be split into two sub-regimes � < �∗ and
� > �∗ (�∗ is chose for that the corresponding time spanned is 390 minutes or
1 trading day) [31,53]. As an example, we show DFA curves for volatility and
return interval (q = 2) of the GE stock in Fig. 11. We see that the corresponding
values for α are distinctly different in the two regimes. However, both α are
significantly larger than 0.5, suggesting long-term correlations in return intervals.
In the short scale regime (� < �∗), we find α = 0.64±0.04 for the return interval
of the 1000 stocks, while α = 0.66 ± 0.02 for the volatility. The two cases are
almost the same. In the long scale regime (� > �∗), we find α = 0.80 ± 0.06 for
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the return interval and α = 0.88 ± 0.06 for the volatility. and the discrepancy
is slightly larger but in the range of the error bars. Here error bar refers to the
standard deviation of the 1000 stocks. Such behavior suggests a common origin
for the strong persistence of correlations in both volatility and return interval
records, and in fact the clustering in return intervals is related to the known
effect of volatility clustering [19]. To further examine the relation between two
types of α, we draw the scatter plot for the dependence of two α in two regimes
respectively, as shown in Fig. 12. We can see a significant dependence for α in
the long scale. However, α for the short scale are crowded together so that there
is no strong tendency.

4 Models

To further understand the financial fluctuations, Vodenska-Chitkushev et al.
simulated models for the volatility series and tested the corresponding return
intervals. Two popular long-term memory models, FIGARCH [83] and fractional
Brownian motion (fBm) [84] are examined (see Ref [58] and references therein).

4.1 FIGARCH

Fractional integrated generalized autoregressive conditional heteroscedasticity
(FIGARCH) [83] is a popular model for the return simulation. In this model the
return rt can be generated by the following process,

rt = μ + a(L) · εt. (12)

Here μ is the mean value of return, L is the lag operator, a(L) is the coeffi-
cient from the autoregressive moving average (ARMA) procedure, and εt is the
disturbance term,

εt ≡ zt · σt. (13)

zt is an i.i.d. process with zero mean and unit variance, and the conditional
variance σ2

t is determined by the following process,

σ2
t = σ2 + λ(L) · (ε2t − σ2). (14)

Here σ2 is the unconditional variance of εt, and λ(L) is from ARCH and GARCH
coefficients which follows λ(L) ∼ (1−L)d. d ∈ (0, 1) is the fractional differencing
parameter and λ(L) can be expanded into an infinite polynomial of L. FIGARCH
process can captures the long-term dependence in volatilities, which is connected
to the parameter d. When d increases, the long-term memory will gradually
vanish.

After extracting parameters from the S&P 500 index data, we simulate returns
from which volatilities are derived and analyze their return intervals properties
[58]. First, we test the scaling of return intervals distribution, as shown in Fig.
13. There are significant deviations from the scaling for both small and large
intervals. This result manifests that FIGARCH does not show good scaling in
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Fig. 13. (Color online) Scaling in the distribution of return intervals for two models,
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For FIGARCH, the scaled PDF, P (τ ) · 〈τ 〉, does not collapse onto a single curve,
especially for small and large scaled interval τ/〈τ 〉, which suggests no good scaling. For
fBm, the three scaled PDFs collapse for most of range (the small deviations at very
small or very large scaled intervals correspond to discreteness and finite size effects
respectively). This indicates a good scaling in the distribution for the fBm model.

the return interval distribution. Further, we examine the cluster size distribution,
which is demonstrated in Fig. 14. We can see that FIGARCH captures the
memory effects for both positive and negative clusters. Their effects are slightly
stronger than the empirical memory.

4.2 Fractional Brownian Motion

Fractional Brownian motion (fBm) [84] is a generalization of Brownian motion.
The only difference from a regular Brownian motion is that the increments of fBm
are correlated. The long-range dependence of the increments can be characterized
by the Hurst parameter H ∈ (0, 1), which is the only parameter to index a
fBm process BH(t). Note that BH(t) reduces to a regular Brownian motion
when H = 1/2, while H > 1/2 (H < 1/2) corresponds to positive (negative)
correlation. An important feature of fBm is the scale invariance,

BH(c · t) = cH · BH(t) (15)



Return Intervals Approach to Financial Fluctuations 23

5 10 15

Cluster size

10
-3

10
-2

10
-1

10
0

C
D

F

S&P 500
shuffled
FIGARCH
fBm

5 10 15 20

Positive cluster Negative cluster

Fig. 14. (Color online) Cluster size distribution for the FIGARCH and fBm models.
The output of two models are very close to that of S&P 500 index and significantly
away for the shuffled data, which suggests that the memory in the empirical data can
be repeated by both FIGARCH and fBm. The figure shows that FIGARCH slightly
overestimates the memory while fBm slightly underestimates it.

for all c > 0. Since the return only has short-term correlations while the volatility
has long-term correlations, we simulate the return by

rt = eBH (t+1)−BH(t) · ηt (16)

where ηt is an i.i.d. process with zero mean and unite variance.
We simulate return intervals with fBm process and calculated their PDF and

distributions of cluster size [85]. PDF of return intervals is showed in Fig. 13,
which has a well-approximated scaling. In Fig. 14, the cluster size distributions
of fBm process is quite close to the empirical data. The two curves are only
slightly smaller for both positive and negative cluster.

5 Conclusions

We analyzed the properties of the return intervals for the 1000 most traded stocks
in the US markets, as well as reviewed recent studies on return interval analysis.
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We showed that there is a good scaling in the return interval distribution and the
scaling function can be approximated by a stretched exponential with correlation
exponent around 0.4. Importantly, the behavior is universal for a wide range
of thresholds, many financial assets and a broad scale of sampling intervals.
On the other hand, we found that the power law distribution is not ruled out
for the distribution tail, especial for return intervals of large thresholds. The
tail exponent systematically shifts from 2 to 1 for the threshold from 2 to 5
standard deviations. We also employed moment analysis to examine the existence
of multiscaling in the distribution. Further we connected this behavior to the
company size and found a weak dependence.

Further more we analyzed memory effects in various time scales, from the
immediate conditional PDF and mean interval, clusters classified by the median
of return intervals to long-term correlations. We showed memories in all of these
investigations. Interestingly, the long-term correlations in return intervals are
strongly related to the long-term correlations in the volatility sequence.

Moreover, we tested two popular long-term memory models, FIGARCH and
fBm. Only fBm shows a good scaling in the distribution. However, both models
catch the memory effect. FIGARCH slightly overestimates the effect while fBm
slightly underestimate it.
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