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Coupled nonlinear systems under certain conditions exhibit phase synchronization, which may change for
different frequency bands or with the presence of additive system noise. In both cases, Fourier filtering is
traditionally used to preprocess data. We investigate to what extent the phase synchronization of two coupled
Rössler oscillators depends on �1� the broadness of their power spectrum, �2� the width of the bandpass filter,
and �3� the level of added noise. We find that for identical coupling strengths, oscillators with broader power
spectra exhibit weaker synchronization. Further, we find that within a broad bandwidth range, bandpass filter-
ing reduces the effect of noise but can lead to a spurious increase in the degree of phase synchronization with
narrowing bandwidth, even when the coupling between the two oscillators remains the same.
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In recent years both theoretical and experimental studies
of coupled nonlinear oscillators have demonstrated that such
oscillators can exhibit phase synchronization �1–5�. Analysis
of experimental data has also indicated the presence of phase
synchronization in a range of coupled physical, biological,
and physiological systems �6–17�. In many of these studies,
an important practical question is how multivariate time se-
ries characterized by a relatively broad power spectrum are
phase synchronized in a specific frequency range �18–24�.
The presence of internal or external noise may also be an
obstacle when quantifying phase synchronization from ex-
perimental data �18,19,25–27�. In both cases a bandpass filter
is traditionally applied either to reduce the noise effect or to
extract the frequency range of interest. Thus, it is important
to know to what extent the width of the bandpass filter in-
fluences the results of the phase synchronization analysis, as
well as what is the range of the index values obtained from
the analysis that indicate a statistically significant phase syn-
chronization.

To address these questions, we consider a system of two
coupled Rössler oscillators �1,2� defined as

ẋ1,2 = − �1,2y1,2 − z1,2 + C�x2,1 − x1,2� ,

ẏ1,2 = �1,2x1,2 + ay1,2,

ż1,2 = f + z1,2�x1,2 − b� �1�

with parameter values a=0.165, f =0.2, and b=10. For the
mismatch of natural frequencies, we choose �1,2=�0±��,
with �0=0.6 and ��=0.005 �Fig. 1�a��. The time step in
our simulation is �t=2� /103, and the signal length
n=int�t /�t� with t=104, where int�x� denotes the integer part
of x.

We first investigate the characteristics of the system de-
fined in Eq. �1� by comparing them with the characteristics
of a second set of two coupled Rössler oscillators �3,4� stud-
ied in �3�. The system �3,4� is also described by Eq. �1�, and
has the same values for the parameters a, f , and b as system
�1,2�. The only differences are the natural frequency �0=1

and the frequency mismatch ��=0.015 �Fig. 1�b��. We ob-
serve a significantly broader power spectrum for system �1,2�
with �0=0.6 and frequency mismatch ��=0.005 �Fig. 1�c��.
Further, we observe that the instantaneous phase differences
��1,1= ��x1

�t�−�x2
�t�� mod�2�� for system �1,2� exhibits

larger fluctuations �Fig. 1�d��, described by a broader distri-
bution �Fig. 1�e��, compared to system �3,4�, suggesting a
weaker 1:1 phase synchronization for system �1,2�. To quan-
tify the degree of phase synchronization in the two Rössler
systems we use the synchronization index �= �Smax

−S� /Smax �18�, where S�−�k=1
N Pkln Pk is the Shannon

entropy �28� of the distribution P���1,1� of ��1,1, and
Smax=ln N, where N=int�exp�0.626+0.4 ln�n−1.0��� is the
optimized number of bins over which the distribution is ob-
tained �29�. For system �3,4� with a narrow power spectrum
we obtain a significantly larger value of � compared to the
system �1,2� characterized by a broader power spectrum �Fig.
1�f��. Varying the values of the coupling strength C, we find
that the phase synchronization index � is consistently higher
for system �3,4� characterized by the narrower power spec-
trum. Thus, for the same coupling strength C and for identi-
cal other parameters, system �1,2� with �0=0.6, which has a
broader power spectrum, exhibits weaker synchronization
compared to system �3,4� with �0=1, which has a narrow
power spectrum. These findings are complementary to a re-
cent study indicating a different degree of phase synchroni-
zation for the spectral components of coupled chaotic oscil-
lators �30�.

Recent work has shown that coupled Rössler oscillators
may exhibit different degrees of synchronization for different
ranges of time scales obtained via wavelet transform �31�.
Here, we ask to what extent the width of a bandpass filter
affects the degree of phase synchronization between two
coupled Rössler oscillators. While the output observables
x1and x2 of system �1,2� are clearly not in phase �Fig. 2�a��,
after Fourier bandpass filtering in the range of �f =0.01 cen-
tered at the peak of the power spectrum 2�f 	0.54 �Fig.
1�c��, the observables x1 and x2 appear 1:1 synchronized with
well-aligned peaks �Fig. 2�b��. The effect of the bandpass
filter can be clearly seen in the behavior of the instantaneous
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phase difference ��1,1 �Fig. 2�c�� and in the shape of the
probability density function P(��1,1�t�) �Fig. 2�d��. After
bandpass filtering, ��1,1 becomes smoother with fewer fluc-
tuations, and the distribution P���1,1� exhibits a more pro-
nounced peak. To quantify how the degree of synchroniza-
tion changes with the width �f of the bandpass filter, we
calculate the synchronization index � �Fig. 2�e��. We find
that for very large values of the bandwidth �f , the index � is
the same as the value �0 obtained for the system �1,2� with-
out any filtering, and that � remains unchanged for interme-
diate values of �f . However, for decreasing �f , the index �
increases rapidly from the expected value �0 �Figs. 1�f� and
2�c��. Such deviation to higher values of ���0, while the
coupling constant C in Eq. �1� remains fixed, indicates a
spurious effect of synchronization due to the bandpass filter.
Thus, applying a bandpass filter with a too narrow bandwidth
when preprocessing empirical data may lead to overestima-
tion of the phase synchronization �as defined by index ��
between two empirical systems where the coupling strength
is not known a priori.

Many physical and biological systems are influenced by
external noise, which can mask their intrinsic properties. Re-

cent studies have shown that noise can bias the estimation of
the driver-response relationship in coupled nonlinear oscilla-
tors leading to change in synchronization measures �32�.
Specifically, external noise may weaken the detection of the
coupling and reduce the synchronization between two
coupled dynamical systems. To address this problem, we
next test the effect of external noise on the degree of phase
synchronization of the two coupled Rössler oscillators de-
fined in Eq. �1�. Adding uncorrelated and unfiltered Gaussian
noise � to the output observables x1 and x2, while keeping
the coupling constant C in Eq. �1� fixed, we find that the
synchronization index � decreases with increasing noise
strength 	� �i.e., higher standard deviation 	� compared to
the standard deviation 	 of the output signals x1 and x2� �Fig.
3�a��. The dependence of � on the value of the coupling
constant C for different noise strength is shown in Fig. 3�b�.
We find that the transition to the state of maximum degree of
synchronization �indicated by a horizontal plateau for � in
Fig. 3�b�� occurs at decreasing values of the coupling con-
stant C for increasing noise strength 	�. For very strong
noise �	�=	=8.3�, the two Rössler oscillators in Eq. �1�
appear not to be synchronized, characterized by low values
for the index �, even for very large values of the coupling

FIG. 1. �Color online� Differences in the synchronization of two Rössler systems with identical coupling strengths and different power
spectra. Phase plot trajectories of the variables x vs their Hilbert transform xH for �a� system �1,2�, with x1 corresponding to �1=�0+��,
where �0=0.6 and ��=0.005; �b� system �3,4�, with x3 corresponding to �3=�0+��, where now �0=1 and ��=0.015. For both Rössler
systems C=0.03. �c� Power spectra of the time sequence x1 �dashed line� and x3 �solid line�. A broader spectrum is observed for system �1,2�
compared to system �3,4�. �d� Instantaneous phase difference ��1,1���x1�t�−�x2�t�� mod�2�� for system �1,2� �dashed line�, and ��1,1

���x3�t�−�x4�t�� mod�2�� for system �3,4� �solid line�, and �e� their corresponding distributions P���1,1�. System �1,2� exhibits larger
fluctuations in ��1,1 and is characterized by a broader distribution P���1,1�. �f� Synchronization index � as a function of the coupling
strength C. For identical values of C, system �3,4� �solid line�, which is characterized by a narrower power spectrum, exhibits stronger
synchronization �larger index �� compared to system �1,2� with a broader power spectrum. Specifically, for identical coupling strength C
=C0=0.03, the index �=�0 ��� for system �1,2�, while �=0.3��0 ��� for system �3,4� although the frequency mismatch for system �3,4� is
much larger. The effect of a Fourier bandpass filter applied to the system �1,2� while keeping C=0.03 fixed is equivalent to an increase of
the coupling strength of the system leading to a larger index �1��0 ��� as also shown in Fig. 2�e�.

XU et al. PHYSICAL REVIEW E 73, 065201�R� �2006�

RAPID COMMUNICATIONS

065201-2



FIG. 4. �Color online� Combined effects of external noise and
Fourier bandpass filtering on the synchronization. �a� Cumulative
distribution function F����1−
0

�P����d��for the synchronization
index � obtained from 100 different realizations of pairs of white
noise signals without coupling. The length of the noise signals is
int�107/2��. Tails of the distributions for each bandwidth indicate
the maximum values of � one can obtain simply as a result of
bandpass filtering when there is no synchronization between two
white noise signals. �b� Synchronization index � obtained for sys-
tem �1,2� defined in Eq. �1� with additive white noise as a function
of the bandwidth �f for C=0.03. While the effect of noise is gradu-
ally reduced by the Fourier bandpass filter with decreasing band-
width �f , there is an artificially increased synchronization �sharp
increase in �� when 2��f 
1, as also shown in Fig. 2�e�.

FIG. 2. �Color online� Effects of bandpass filtering on synchro-
nization. Time sequence of the variables x1 and x2 of system �1,2�
�a� before and �b� after applying a bandpass Fourier filter with
bandwidth �f =0.01. After bandpass filtering the sequences x1 and
x2 are better aligned in time �with almost matching peaks�. �c� In-
stantaneous phase difference ��1,1 and �d� the distribution P���1,1�
before �dashed line� and after �solid line� the Fourier bandpass fil-
tering. After filtering, ��1,1 is characterized by fewer fluctuations
and a much narrower distribution P���1,1�, indicating a stronger
synchronization, although the coupling strength C=0.03 remains
constant. �e� Dependence of the index � on the bandwidth 2��f for
fixed C=0.03. A filter with a relatively broader bandwidth �2��f
�1� leaves the synchronization index � practically unchanged, �
=�0, where �0 characterizes the synchronization between x1 and x2

before filtering. Narrowing �f leads to a sharp increase in �, which
is an artifact of the Fourier filtering as the coupling C and all other
parameters remain unchanged, e.g., for �f =0.005, �=�1	4�0.

FIG. 3. �Color online� Effect of external additive white noise on
phase synchronization for system �1,2� defined in Eq. �1�. �a� De-
pendence of the synchronization index � on the noise strength 	�

for fixed value of the coupling constant C. �b� Dependence of the
synchronization index � on the coupling strength C for different
levels of white noise which are defined through the standard devia-
tion 	�.
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constant C �Fig. 3�b��. We note, that with increasing noise
strength 	� the position of the crossover to the plateau of
maximum synchronization shifts to smaller values of C in
Fig. 3�b�, indicating that with increasing 	� the level of the
plateau drops faster compared to the decline in the growth of
� with increasing coupling C.

To reduce the effect of noise in data analysis, a common
approach is to apply a bandpass filter. In the case of the
coupled Rössler oscillators defined in Eq. �1�, we next ask to
what extent a bandpass filter can reduce the effect of external
noise while preserving the expected “true” phase synchroni-
zation as presented by �0 in Fig. 1�e�. To answer this ques-
tion, we first need to determine what are the limits to which
spurious phase synchronization can be obtained purely as a
result of bandpass filtering of two uncorrelated and not
coupled Gaussian noise signals. Our results for the synchro-
nization index � obtained from multiple realizations of pairs
of uncoupled white noise signals show that the synchroniza-
tion index � can reach different maximum values �max, indi-
cated by arrows in Fig. 4�a�, for different bandwidth
�f—with decreasing bandwidth �max increases. The values
of �max provide an estimate of the maximum possible effect
additive noise may have on the spurious “detection” of phase
synchronization in coupled nonlinear oscillators. Thus, em-
pirical observations of synchronization index ���max may
indicate presence of a genuine phase synchronization be-
tween the outputs of two coupled oscillators, which is not an
artifact of external noise. Our simulations show that the

value of �max does not change significantly with the length of
the uncorrelated noise signals. In Fig. 4�b� we show how the
synchronization index � for system �1,2� depends on the
strength of the added noise and on the width �f of the band-
pass filter. For very broad bandwidth �f the noise is not
sufficiently filtered, and the synchronization between the two
oscillators decreases �� decreases� with increasing noise
strength 	�. With decreasing band width �f , i.e., applying a
stronger filter, the effect of the noise is reduced, and corre-
spondingly the index � increases—approaching the value �0

expected for the system �1,2� without noise. On the other
hand, applying a filter with too narrow bandwidth �f leads to
a spurious synchronization effects with ���0 �Fig. 4�b��,
following closely the dependence of � on �f shown in Fig.
2�e� for a Rössler system without noise.

In summary, our results indicate that phase synchroniza-
tion between coupled nonlinear oscillators may strongly de-
pend on the width of the power spectrum of these oscillators.
Further, we find that while external noise can affect the de-
gree of phase synchronization, bandpass filtering can reduce
noise effects but can also lead to a spurious overestimation of
the actual degree of phase synchronization in the system.
This is of importance when analyzing empirical data in spe-
cific narrow frequency ranges, for which the coupling
strength may not be known a priori.
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