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Quantifying signals with power-law correlations: A comparative study of detrended fluctuation
analysis and detrended moving average techniques
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Detrended fluctuation analysipFA) and detrended moving averag@MA) are two scaling analysis meth-
ods designed to quantify correlations in noisy nonstationary signals. We systematically study the performance
of different variants of the DMA method when applied to artificially generated long-range power-law corre-
lated signals with aa priori known scaling exponent, and compare them with the DFA method. We find that
the scaling results obtained from different variants of the DMA method strongly depend on the type of the
moving average filter. Further, we investigate the optimal scaling regime where the DFA and DMA methods
accurately quantify the scaling exponewf, and how this regime depends on the correlations in the signal.
Finally, we develop a three-dimensional representation to determine how the stability of the scaling curves
obtained from the DFA and DMA methods depends on the scale of analysis, the order of detrending, and the
order of the moving average we use, as well as on the type of correlations in the signal.
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I. INTRODUCTION nals with small or large values ai,. Based on single real-
ization as well as on ensemble averages of a large number of

There is growing evidence that output signals of manyartificially generated signals, we also compare the best fitting
physical [1-15], biological [16-19, physiological[20-35  range (i.e., the minimum and the maximum scalesver
and economic systen{86—43, where multiple component which the correlation exponemi, can be reliably estimated
feedback interactions play a central role, exhibit complexpy the DFA and DMA methods.
self-similar fluctuations over a broad range of space and/or The outline of this paper is as follows. In Sec. Il, we
time scales. These fluctuating signals can be characterized bgview the DFA method and we introduce variants of the
long-range power-law correlations. Due to nonlinear mechabMA method based on different types of moving average
nisms controlling the underlying interactions, the output sig-ilters. In Sec. Il we compare the performance of DFA and
nals of complex systems are also typically nonstationarypMA on correlated and anticorrelated signals. We also test
characterized by embedded trends and heterogeneous segrd compare the stability of the scaling curves obtained by
ments (patches with different local statistical properlies these methods by estimating the local scaling behavior
[44-44. Traditional methods such as power-spectrum andyithin a given window of scales and for different scaling
autocorrelation analysigt8—5Q are not suitable for nonsta- regions. In Sec. IV we summarize our results and discuss the
tionary signals. advantages and disadvantages of the two methods. In Appen-

Recently, new methods have been developed to addressix A we consider higher order weighted detrended moving
the problem of accurately quantifying long-range correla-average methods, and in Appendix B we discuss moving
tions in nonstationary fluctuating signalg) the detrended average techniques in the frequency domain.
fluctuation analysigsDFA) [16,23,5], and(b) the detrended

moving average methoOMA) [52-56. An advantage of Il. METHODS
the DFA method44-47 is that it can reliably quantify scal- . )
ing features in the fluctuations by filtering out polynomial A. Detrended fluctuation analysis

trends. However, trends may not necessarily be polynomial, The DFA method is a modified root-mean-squénes)
and the DMA method was introduced to estimate correlatiorhna|ysis of a random walk. Starting with a siguoél), where
properties of nonstationary signals without any assumptiong=1 ... N, andN is the length of the signal, the first step of

on the type of trends, the probability distribution, or otherthe DFA method is to integrate(i) and obtain
characteristics of the underlying stochastic process.

Here, we systematically compare the performance of the ] : )
DFA and different variants of the DMA method. To this end y(i) =2 [u(j) -], 1)
we generate long-range power-law correlated signals with an =1
a priori known correlation exponent, using the Fourier \here
filtering method[57]. Tuning the value of the correlation N
exponentyy, we compare the scaling behavior obtained from 1 ,
the DFA and different variants of the DMA methods to de- u= NZ u(i) 2
termine:(1) how accurately these methods reproduge(2) 1=
what are the limitations of the methods when applied to sigis the mean.
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The integrated profilg/(i) is then divided into boxes of fers to the last datapoint covered by the window. Thus, the
equal lengtm. In each boxn, we fit y(i) using a polynomial operatory, in Eq. (6) is “causal,” i.e., the averaged value at
function y, (i), which represents the local trend in that box. each data pointdepends only on the past-1 values of the
When a different order of a polynomial fit is used, we have asignal. The backward moving average is however affected by
different order DFA¢ (e.g., DFA-1 if¢=1, DFA-2 if =2,  arather slow reaction to changes in the signal, due to a delay

eto). of lengthn/2 (half the window sizgcompared to the signal.
Next, the integrated profilg(i) is detrended by subtract- () Centered moving averagéhis is an alternative mov-
ing the local trendy,(i) in each box of lengthn: ing average method, where the average of the signal data
_ _ _ points within a window of siza is placed at the center of the
Yo(i) = y(i) = ya(i). (3)  window. The moving average function is defined as
Finally, for each box, the rms fluctuation for the integrated (2]
and detrended signal is calculated: ~ . .
’ Y == S yi+k, (7)

LN Ni=—{(n+1)/2)+1
F(n) = NE [Ya(D)7?. (4) L . : o
i=1 wherey(i) is the integrated signal defined in Ed) and[x]

The above calculation is then repeated for varied box Iengtr'1s the integer part ok. The functioniy, defined in Eq(7) is

n to obtain the behavior d¥(n) over a broad range of scales. not Causal’ since the cer)tered moving average perfqrms
. ) . . . dynamic averaging of the signal by mixing data points lying
For scale-invariant signals with power-law correlations, ther% the left and to the right side 6f In practice, while the
i_sapower-law relationship between the rms fluctuation func'dynamical system under investigation evolve’s with time
tion F(n) and the scale: according toy(i), the output of Eq(7) mixes past and future
F(n) ~ n“. (5)  values ofy(i). However, this averaging procedure is more
] . . sensitive to changes in the signal without introducing delay
Because power laws are scale invariahtn) is also iy the moving average compared to the signal.
called the scaling function and the parametas the scaling (I) Weighted moving averagén dynamical systems the
exponent. The value af represents the degree of the corre- most recent data points tend to reflect better the current state
lation in the signal: if«=0.5, the signal is uncorrelated of the underlying “forces.” Thus, a filter that places more
(white noise; if a>0.5, the signal is correlated; #<0.5,  emphasis on the recent data values may be more useful in

the signal is anticorrelated. determining reversals of trends in data. A widely used filter is
the exponentially weighted moving average, which we em-
B. Detrended moving average methods ploy in our study. In the following we consider the backward

The DMA method is a new approach to quantify correla-and the centered weighted moving average.
tion properties in nonstationary signals with underlying (&) Backward moving averag&he weighted backward
trends[52,53. Moving average methods are widely used inMoving average is defined as
fields such as chemical kinetics, biological processes, and
finance [56,58—61 to quantify signals where large high- V(i) = (L =Ny(i) + \Yq(i = 1), (8)
frequency fluctuations may mask characteristic low-
frequency patterns. Comparing each data point to the movinghere the parametex=n/(n+1), n is the window sizej
average, the DMA method determines whether data follow=2,3, ... N andy,(1) =y(1). Expanding the terrf,(i—1) in
the trend, and how deviations from the trend are correlatedgq. (8), we obtain a recursive relation of step one with pre-
Step 1 The first step of the DMA method is to detect vious data points weighted by increasing powers o8ince
trends in data employing a moving average. There are twa <1, the contribution of the previous data points becomes
important categories of moving averadé: simple moving  exponentially small. The weighted backward moving aver-
average andll) weighted moving average. age of higher ordef > 1 (WDMA- ¢) where( is the step size
() Simple moving averageThe simple moving average in the recursive Eq(8) is defined in Appendix A.
assigns equal weight to each data point in a window of size (b) Centered moving averagédhe weighted centered
n. The position to which the average of all weighted datamoving average is defined as
points is assigned determines the relative contribution of the
“past” and “future” points. In the following we consider the 1
backward and the centered moving average. V(i) = EWh(i) +¥n)], 9)
(a) Backward moving averag€or a window of sizen the

imple backward i is defined
simple backward moving average is defined as where 3£(i) is defined by Eq.(8), and J%(0)=(1-\)y(i)

! . +A\YR(i+1), where i=N-1,N-2,...,1 and¥}(N)=y(N).
Ynli) = HE y(i =k, ©  The termyf(i) is the weighted contribution of all data points
k=0 to the right ofi (from i+1 to the end of the signa\l), and
wherey(i) is the integrated signal defined in E). Here,  ¥:(i) is the weighted contribution of all data points to the left
the average of the signal data points within the window re-of i.

n-1
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The exponentially weighted moving average reduces the

correlation between the current data point at which the mov- (a) Anti-correlated signal: ¢,;=0.2
ing average window is positioned and the previous and fu-
ture points. o'l
Step 2 Once the moving averagdg,(i) is obtained, we = 0
next detrend the signal by subtracting the trgqdrom the g
integrated profiley(i) A
. . - . 0 » DMA
Cy(i) = y(i) =¥,(30). (10 10°¢ © WDMA-1
For the backward moving average, we then calculate the 10° 16‘ 162 163 164 165 1()6

fluctuation for a window of size as

1 N
F(n) = \/N——n+12 [Ca(i) T (11

For the centered moving average the fluctuation for a win-
dow of sizen is calculated as

1 N-[n/2]
F(n)=\/— > [CP (12)

N-n+ 1i:[(n+l)/2]

Step 3 Repeating the calculation for differenf we ob-
tain the fluctuation functiorr(n). A power law relation be-
tween the fluctuation functioR(n) and the scale [see Eq.
(5)] indicates a self-similar behavior.

When the moving averadg, is calculated as in Eq6),

Eqg. (7), Eq. (8) and Eq.(9), we have the detrended moving
method (DMA), the centered detrened moving average
(CDMA), the weighted detrended moving average with order
¢ (WDMA-¢) and the weighted centered detrended moving
averagelWCDMA), respectively.

I1l. ANALYSIS AND COMPARISON n

Using the modified Fourier filtering meth¢87], we gen- FIG. 1. A comparison of the scaling behavior obtained from the

erate uncorrelated, positively correlated, and anticorrelatefly, » \WoMA-1 DEA-0. and DFA-1 methods for artificially gen-

signals u(i), vyhere 1=1,2, N and N,: 2%, W!th a zerp erated power-law correlated signals with a scaling expoagnthe
mean and unit standard deviation. By introducing a designefingth of the signals iél=22. Scaling curved(n) versus scale
power-law behavior in the Fourier spectru5,57, the  for (a) an anticorrelated signal witky=0.2, (b) an uncorrelated
method can efficiently generate signals with long-rangesignal with «y=0.5, and(c) a positively correlated signal with

power-law correlations characterized by arpriori known  =0.8. At small scales, all methods exhibit a weak crossover, which

correlation exponent. is more pronounced for anticorrelated signals. At large scales, the
F(n) curves obtained from DMA, WDMA-1, and DFA-0 exhibit a

A. Detrended moving average method and DFA clear crossover to a flat region for all signals, independent of the

. . ) . type of correlations. No such crossover is observed for the scaling
In this section we investigate the performance of thegyryes obtained from the DFA-1 method, suggesting a more accu-
DMA and WDMA-1 methods when applied to signals with rate estimate of the scaling exponentat large scales.

different type and degree of correlations, and compare them

to the DFA method. Specifically, we compare the features ofignal. We investigate if the results of the DMA and
the scaling functionF(n) obtained from the DMA and WDMA-1 method also have a similar dependence on the
WDMA-1 methods with the DFA method, and how accu- scalen. We also show how the scaling results depend on the
rately these methods estimate the correlation properties @rder¢ when WDMA-( with €=2,3,4,5 areapplied to the
the artificially generated signalgi). Ideally, the output scal- signals(see Appendix A

ing function F(n) should exhibit a power-law behavior over  To compare the performance of different methods, we first
all scalesn, characterized by a scaling exponentvhich is  study the behavior of the scaling functigin) obtained from
identical to the given correlation exponegt of the artificial ~ DFA-0, DFA-1, DMA, and WDMA-1. In Fig. 1 we show the
signals. Previous studidd4—4¢ show that the scaling be- rms fluctuation functionF(n) obtained from the different
havior obtained from the DFA method depends on the gtale methods for an anti-correlated signal with correlation expo-
and the order of the polynomial fit when detrending the nentay=0.2, an uncorrelated signal wity=0.5, and a posi-
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exponenta obtained from the DFA- are limited toa<+¢
+1. Thus the DFA¢ can quantify the correlation properties
of signals characterized by exponewj<¢+1. For signals
with ap><€¢+1 we find that the output exponeatfrom the
DFA-¢ method remains constant at¢+1. These findings
suggest that in order to obtain a reliable estimate of the cor-
relations in a signal one has to apply the DEFAer several
increasing orderd until the obtained scaling exponent
stops changing with increasing

Since the accuracy of the scaling exponent obtained from
the different methods depends on the range of scaleger
which we fit the rms fluctuation functio&(n) (as seen in
Fig. 1), and since different methods exhibit different limita-
tions for the range of scaling exponent values demon-
strated in Fig. 2 we next investigate the local scaling be-

FIG. 2. A comparison of the performance of the different scalinghf"“”or of theF(n) C!"rves to quam'fy the performance of the .
methods(DMA, WDMA-1, DFA-0, DFA-1, and DFA-2 when ap- dlﬁgrent methods in greater detalls. To ensure a good esti-
plied to artificially generated signals with long-range power-law Mation of the_lé‘iclﬁl' scaling beha}VIor, we calculdtén) at
correlations. Herey, is the correlation exponent of the generated SCalesn=4x2"%i=0,1,2,...,which in log scale provides
signals andk is the exponent value estimated using different meth-64 equidistant points foF(n) per bin of size log 2. To esti-
ods. For all methods we obtainby fitting the corresponding scal- Mate the local scaling exponeay,, we locally fitF(n) in a
ing curvesF(n) in the rangen e [10?, 10%]. Flat regions indicate the Window of sizew=3 log 2, e.g,a is the slope of(n) in a
limitations of the methods in accurately estimating the degree ofvindow containing 3< 64 points. To quantify the detailed
correlations in the generated signals, as the “output” exponent features of the scaling curve(n) at different scales), we
remains unchanged when the “input” exponegtis varied. slide the windoww in small steps of SiZA:;l‘ log 2 starting
) , , , ) i at n=4, thus obtaining approximately 70 equidistani. in
tively correlated signal with,=0.8. We find that in the in- |54 scale per each scaling curve. We consider the average
termediate regim&(n) (obtained from all method®xhibits  \3jye of ay,. obtained from 50 different realizations of sig-

an approximate power-law behavior characterized by &gis with the same correlation exponent

single scaling exponent. At large scalesn for DFA-O, In Fig. 3, we compare the behavior @f,. as a function of
DMA, and WDMA-1, we observe a crossover iin) lead- o scalen to more accurately determine the best fitting

ing to a flat regime. With increasing, this crossover be- range in the scaling curves(n) obtained from the DMA,
comes more pronounced and moves to the intermediate scaypma-1. DFA-0. and DFA-1. A rms fluctuation function

ing range. In contrast, such a crossover at large scales is ngkniniting a perfect scaling behavior would be characterized
observed for DFA-1, indicating that the DFA-1 method CaNpy o, .= ay, for all scalesn and for all values ofx, denoted

better quantify the corrglation properties at large scales. ABy horizontal lines in Fig. 3. A deviation of the,,. curves
small scalesn the scaling curves=(n) obtained from all {4 these horizontal lines indicates an inaccuracy in quan-
methods exhibit a crossover which is more pronounced fofifying the correlation properties of a signal and the limita-
anticorrelated signals(a,=0.29 and becomes less pro- {jon of the methods. Our results show that the performance
nounced for uncorrelate@,=0.5 and positively correlated of different methods depends on the “input} and scalen.
signals(ap=0.8). At small scales and for,< 0.8 we observe thai for all

We next systematically examine the performance of thénethods deviates up from the horizontal lines suggesting an
DFA-0, DFA-1, DMA, and WDMA-1 methods by varying,  overestimation of the real correlation exponeigt This ef-
over a very broad range of valu€8.1< «y<3.5) (Fig. 2.  fect s less pronounced for uncorrelated and positively corre-
For all four methods, we compam, with the exponentr  |ated signals. At intermediate scales. exhibits a horizontal
obtained from fitting the rms fluctuation functiéitn) in the  plateau indicating that all methods closely reproduce the in-
scaling range 1B<n<10%, i.e., the range where all methods put exponent foray<0.8. This intermediate scaling regime
perform well according to our observations in Fig. 1. If the changes for different types of correlations and for different
methods work properly, for each value of the “input” expo- methods. At large scales of>10%, the DMA, WDMA-1,
nentay we expect the estimated “output” exponent tode and DFA-O methods strongly underestimate the actual corre-
=ay. We find that the scaling exponeni obtained from lations in the signal, withy,. curves sharply dropping for all
different methods, saturates as the “input” correlation expovalues ofag [Figs. 3a)—3(c)]. In contrast, the DFA-1 method
nent aq increases, indicating the limitation of each method.accurately reproduces, at large scales witla,. following
The saturation of scaling exponent at1 indicates that the horizontal lines up to approximately/ 10 [Fig. 3(d)]. In
DMA and WDMA-1 do not accurately quantify the correla- addition, the DFA-1 method accurately reproduces the corre-
tion properties of signals witly,> 1. lation exponent at small and intermediate scales even when

In contrast, the DFA: method can quantify accurately the ay>1 [Fig. 3(d)], while the DMA, WDMA-1, and DFA-0
scaling behavior of strongly correlated signals if the appro-are limited toay<0.8.
priate ordert of the polynomial fit is used in the detrending  For a certain “input” correlation exponent, we can es-
procedure. Specifically, we find that the values of the scalingimate the good fitting regime d#(n) to be the length of the
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1.2 " - T ;
(a)DMA ®0,0.1

FIG. 3. A comparison of the local scaling exponenyi. as a function of the scale for the DMA, WDMA-1, DFA-0, and DFA-1
methods. We consider signals of lengtk 22° and varying values of the correlation exponegt The local scaling exponeni,,. quantifies
the stability of the scaling curves(n) (see Fig. 1 and is expected to exhibit small fluctuations around a constant vaglifeF(n) is well
fitted by a power-law functioneg is denoted by horizontal dotted lines. Symbols denote the estimated valuggs afd represent average
results from 50 realizations of artificial signals for each value of the “input” scaling expaeemeviations from the horizontal lines at
small or at large scales indicate limitations of the methods to accurately quantify the built-in correlations in different scaling ranges.

plateau in Fig. 3. For example, fay,=0.2 the calculated
scaling exponend,,. obtained from the DMA method is ap-
proximately equal to the expected valug=0.2 within a
range of two decade§l(?<n<10%. Similarly, the good
fitting range ofF(n) obtained from the DFA-O fory=0.2 is
about three decad¢s0?<n< 10°). However, the calculated
local scaling exponent,. can fluctuate for different realiza-
tions of correlated signals. Although the mean value obtained
from many independent realizations is close to the expected
value, the fluctuation of the estimated scaling exponent can
be very large. Thus, it is possible fef,; to deviate froma,

and the scaling range estimated from Fig. 3 may not be a
good fitting range. Therefore, it is necessary to study the
dispersion of the local scaling exponent to determine the
reliability of the “good” fitting range estimated from Fig. 3.
In Figs. 4—6 we show the results faj,. from 20 different
realizations of the correlated signal widy=0.2, an=0.5,

and a(=0.8, respectively. For all methods, we observe that
there is a large dispersion ef,, indicating strong fluctua-
tions in the scaling functiofir(n) at large scales (n~ 10°

for DMA and WDMA-1 andn~ 10* for DFA-0 and DFA-1
(Figs. 4—6. This suggests that the good fitting range ob-

Anti-correlated signal: c,=0.2
(a) DMA

0.4

FIG. 4. Values of the local scaling exponend. as a function of

tained only from the mean value ef,., as shown in Fig. 3, the scalen obtained from 20 different realizations of artificial anti-
may be overestimated. correlated signals with an identical scaling exponegt0.2.
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Uncorrelated signal: ,=0.5

0.7 (a) DMA

0.5

0.3
0.7

0.5

0.3
0.7

0.5 =

0.3
0.7

0.5

03+
10

FIG. 5. Values of the local scaling exponeny. as a function of
the scalen obtained from 20 different realizations of artificial un-
correlated signals with an identical scaling exponegit0.5.

To better quantify the best fitting range for different meth-

ods and for different types of correlations we develop a

three-dimensional representati@fig. 7). Based on 50 real-
izations of correlated signals with different values of 0.1
< @< 1.1, for each scala we define the probabilitp (nor-
malized frequencyto obtain values forg— < ajoc < g+ 6,
where §=0.02 (arguments supporting this choice éfare
presented in Sec. lll BAgain, as in Fig. 3, for each realiza-
tion of correlated signals with a givesm,, we calculateq,q,

Correlated signal: o,=0.8

1t (a) DMA

0.8

0.6
1

0.8

0.6
1

0.8

0.6
1

0.8

0.6
10

FIG. 6. Values of the local scaling expone#{. as a function of
the scalen obtained from 20 different realizations of artificial posi-
tively correlated signals with an identical scaling exponegt
=0.8.
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(b) DFA-0

09

08

0.7

406

105

104

10.3

10.2

40.1

0.1 02 03 04 05 06 0.7 08 09 1.0 141

(c)WDMA-1

405

104

403

102

0.1

01 02 03 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
%y

(d) DFA-1

105

10.4

103

10.2

0.1

0.1 0.2 03 04 05 06 0.7 08 09 1.0
O(0

1.1

FIG. 7. Probability density of the estimated values af- 6
< ape< agt 6, where §=0.02 for a varying scale rangeand for
different values of the “input” correlation exponeag. Separate
panels show the performance of the DMA, WDMA-1, DFA-0 and
DFA-1 methods, respectively, based on 50 realizations of correlated
signals for each value ok, The probability density valueg are
presented in color, with the darker color corresponding to higher
values as indicated in the vertical columns next to each panel. A
perfect scaling behavior would correspond to dark-colored columns
spanning all scales for each value ofy.
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FIG. 8. A comparison of the local scaling exponeqy. as a function of the scalefor the DMA, CDMA, DFA-0, and DFA-1 methods.
We consider signals of lengtN=22?0 and varying values of the correlation exponert The local scaling exponent,. quantifies the
stability of the scaling curve&(n) and is expected to exhibit small fluctuations around a constant vajue F(n) is well fitted by a
power-law functionayg is denoted by horizontal dotted lines. Symbols denote the estimated valugs @fid represent average results from
50 realizations of artificial signals for each value of the “input” scaling expoagnbDeviations from the horizontal lines at small or at large
scales indicate limitations of the methods to accurately quantifying the built-in correlations in different scaling ranges. Error bars represent
the standard deviation for each average value gf at different scales, and determine the accuracy of each method.

by fitting the rms fluctuation functiof(n) in a window of  we can reliably quantify the scaling exponent, since DFA-1
sizew=3 log 2 sliding in steps oA=7 log 2. Vertical color has the advantage to quantify signals wigr> 1 [Fig. 7(d)].
bars in Fig. 7 represent the value of the probability This cannot be obtained by the other three metHddgs.
p—darker colors corresponding to higher probability to ob-7(a-7(c)].

tain accurate values fag,.. Thus dark-colored columns in
the panels of Fig. 7 represent the range of scaletere the
methods perform best.

For the DMA and WDMA-1 methods, we find that with  To test the accuracy of the CDMA method we perform the
high probability(p>0.7), accurate scaling results can be ob-same procedure as shown in Fig. 3. We calculate the local
tained in the scaling range of two decades for<Od}y  scaling exponenty, for signals with different “input” cor-
=<0.6. However, WDMA-1 performs better at small scalesrelation exponenty, and for a broad range of scalagFig.
compared to DMA. For an explanation of why the WDMA-1 8). We find that for 0.3< «;<<0.8 the CDMA method per-
performs better at small scales compared to DMA, see Apforms better than the DMA for all scales and the average
pendix B. In contrast, DFA-O exhibits an increased fittingvalue of a follows very closely the expected values @f
range of about three decades for €.4,=<0.8, while for the indicated by horizontal lines in Fig. 8. For anticorrelated
DFA-1 we find the best fitting range to be around three designals with ay=<0.3, both DMA and CDMA overestimate
cades foray>0.5. For strongly anticorrelated signalg, the value ofa, at small scalesi<1C?. For strongly corre-
<0.2), all methods do not provide an accurate estimate ofated signals withag>0.8, CDMA underestimates, at
the scaling exponents,. However, by integrating anticorre- small scalesn<1(? in contrast to DMA which overesti-
lated signals withny<<0.3 and applying the DFA-1 method, matesag. For correlated signals withy>1.1[not shown in

B. Centered moving average method and DFA
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(a) DMA

10°%

105

104

103

10.2

10.1

i) FIG. 10. Local scaling exponem,. as a function of the scale

for the WCDMA method. We consider signals of lendtk 220 and
varying values of the correlation expone#j. The expected value

of the exponenty, is denoted by horizontal dotted lines. Symbols
denote the estimated values of,. and represent average results
from 50 realizations of artificial signals for each value of the “in-
put” scaling exponenty. Deviations from the horizontal lines at
small or at large scales indicate limitations of the methods to accu-
rately quantify the built-in correlations in different scaling ranges.
Error bars represent the standard deviation for each average value
105 of o at different scales, and determine the accuracy of the
method.

0.1 0.2 03 04 05 06 0.7 08 09 1.0 11

10.4

10.3

scalesn. We find that with increasing scales the standard
deviation gradually increases, and that for DMA the standard
TR deviation is less than 0.02 while for DFA the standard devia-
ol N N P tion is less than 0.01 in the range of scatasgp toN/100 (N
0.1 02 03 04 05 ao-e 07 0.8 09 1.0 141 is the signal length For all methods at scales>N/100, the

0 standard deviation increases more rapidly, and thus the sta-
bility of the methods in reproducing the same value of the
exponent for different realizations decreases.

In Fig. 10 we present the dependencendf on the scale

10.2

FIG. 9. Probability density of the estimated values wf- &6
<< gt 8, where §=0.02 for a varying scale rangeand for

different values of the “input” correlation exponeag. The two f h ighted d d ded .
panels show the performance of the DMA and CDMA methods,n or the weighted centere etrended moving average

respectively, based on 50 realizations of correlated signals for eacWethOd' Compared to the CDMA method, the WCDMA
value ofay. The probability density valugsare presented in color, Method weakens the overestimationagf; at small scale for
with the darker color corresponding to higher values, as indicated inticorrelated signals and provides accurate resultg,pht
the vertical columns next to each panel. A perfect scaling behaviopmMall scales for positively correlated signals with €.a,
would correspond to dark-colored columns spanning all scafes ~ <1. Compared to the DFA method, the WCDMA performs
each value o, better at small scales for 05a7<1.0. However, at larger
scalesn>1(?, the standard deviation of DFA-1 is smaller
Fig. 8(c)] the deviation ofy,,. from the expected value, for ~ than that of WCDMA[Figs. 8d), 10, and 1], indicating
the CDMA method becomes even more pronounced andhore reliable results for the local scaling exponept ob-
spreads to large scales. At intermediate and large scaldégined from DFA-1.
CDMA performs much better-e, closely follows the hori- Finally, we test how the choice of the parametewill
zontal lines[Figs. §a)—8(c)]. These differences in the per- affect the probability density plots shown in Fig. 7 and Fig.
formance of the DMA and CDMA methods are also clearly9. To access the precision of the methods one has to increase
seen in the probability density plots shown in Fig. 9. the confidence level by decreasifAgin Fig. 7 and Fig. 9 we
Next, we compare the stability of the DMA, CDMA, have choser$=0.02 to correspond to the value of the stan-
DFA-0, and DFA-1 methods in reproducing the same “input”dard deviation forq,. at scalemn<10* as estimated by the
value ofaq for different realizations of correlated signals. We DMA method (Fig. 8). We demonstrate that the distribution
generate 50 realizations of signals for eaghand we obtain  plot for DMA with §=0.02 (shown in Fig. 7 changes dra-
the average value and the standard deviatiomygf for a  matically when we choosé=0.01[as shown in Fig. 1®)].
range of scales. The values of the standard deviation areThis result confirms the observation from Figéa)g&and &d)
represented by error bars in Fig. 8 for each valugigfat all  that the DFA-1 method is more stablemaller standard
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FIG. 11. A comparison of the local scaling exponeq, as a
function of the scale obtained from(a) the WCDMA method and jj -1
(b) the DFA-1 method. Symbols denote the estimated valueg,ef A
. . . . . o
calculated as in Fig. 10 for different “input” scaling exponeats 0102 03 04 05 0L0.6 0.7 08 09 1.0 1.1
>1. Error bars representing the standard deviation around the av 0
p g

erageq,. are smaller for the DFA-1 method at all scalesindi-

cating that the DFA-1 method provides more reliable results. FIG. 12. Probability density of estimated values a5

<< agtd, where §=0.01 for varying scale range and for
o different values of the “input” correlation exponeag. The two
deviation and more accuratéaverage ofa, closer to the  panels show the performance of the DMA and DFA-1 methods,
theoretically expected value,) than the DMA method. respectively, based on 50 realizations of correlated signals for each
value ofag. The probability density valugs are presented in color,
with darker color corresponding to higher values as indicated in the
I\V. DISCUSSION vertical columns next to each panel. A perfect scaling behavior

) ) would correspond to dark-colored columns spanning all seafes
We have systematically studied the performance of theach value ofx,.

different variants of DMA method when applied to signals

with long-range power-law correlations, and we have com-scaling ranges based on an ensemble of multiple signal real-
pared them to the DFA method. Specially, we have considizations.

ered two categories of detrended moving average methods— We find that the simple backward moving average DMA
the simple moving average and the weighted movingmethod and the weighted backward moving average method
average—in order to investigate the effect of the relativeWDMA- ¢ have limitations when applied to signals with very
contribution of data points included in the moving averagestrong correlations characterized by scaling exponent
window when estimating correlations in signals. To investi->0.8. A similar limitation is also found for thé=0 order of
gate the role of “past” and “future” data points in the dy- the DFA method. However, for higher ordér the DFA<
namic averaging process for signals with different correlaimethod can accurately quantify correlations with< ¢ +1.
tions, we have also considered the cases of backward aWe also find that at large scales the DMA, WDMA-and
centered moving average within each of the above two catbFA-0 methods underestimate the correlations in signals
egories. Finally, we have introduced a three-dimensional repwith 0.5< ay<1.0, while the DFA¢ method can more ac-
resentation to compare the performance of different variantsurately quantify the scaling behavior of such signals. Fur-
of the DMA method and the DFA methods over different ther, we find that the scaling curves obtained from the DFA-1
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(a) WDMA—2 ' ' " [e a0 (b) WDMA-3

FIG. 13. A comparison of the local scaling exponefy. as a function of the scale for the WDMA-¢ method with different ordef
=2,...,5 of the weighted moving average. We consider signals of lég2t® and varying values of the correlation exponegtThe local
scaling exponendy,. quantifies the stability of the scaling curvegn) (see Fig. 1, and is expected to exhibit small fluctuations around a
constant valuey, if F(n) is well fitted by a power-law functionwg is denoted by horizontal dotted lines. Symbols denote the estimated
values ofq. and represent average results from 50 realizations of artificial signals for each value of the “input” scaling expoRent
small values of¢ at small and intermediate scalesWDMA-¢ accurately reproduces the scaling behavior of signals witkc@¢< 0.8,
while for large?, the scaling behavior of anticorrelated signals wiii< 0.4 are better reproduced at small scales.

method are stable over a much broader range of scales comethod. Further, we find that the performance of the
pared to the DMA, WDMA-1, and DFA-0 methods, indicat- WCDMA is comparable to the DFA-1 method for signals
ing a better fitting range to quantify the correlation exponentith 0.5<a,<1. At small scales the WCDMA performs
ag. In contrast, we find that WDMA-with a higher orde,  petter than the DFA-1 method, while at the intermediate
more accurately reproduce the correlation properties of antiscales 18<n<10*, DFA-1 provides more reliable local
correlated signalgay<0.5 at small scales. Accurate results scaling exponent with smaller standard deviation based on
for anticorrelated signals can also be obtained from the&g independent realizations for eaa. For very strongly
DFA-1 method after first integrating the signal and thus re-correlated signals withay>1, we find that the DFA-1
ducing the value of the estimated correlation exponent by Imethod performs much better at all scales compared to

In contrast to the simple backward moving averageywCDMA and all other variants of the DMA method.
(DMA) and DFA-0 methods, the centered moving average

CDMA provides a more accurate estimate of the correlations

in signals with 0.3< @y<<0.7 at small scales<1(?, and in ACKNOWLEDGMENTS

signals with ap>0.7 at intermediate scales 2Qn<10%

However, the CDMA method strongly underestimates corre- This work was supported by NIH Grant HL0O71972 and
lations in signals withap>0.7 at small scale$n<10?), by the MIUR (PRIN 2003029008

while the DFA-1 method reproduces quite accurately the cor-

relations of signals witlwy> 0.7 at both small and interme-

diate scales. We also find that by introducing weighted cen- APPENDIX A

tered moving average WCDMA, one can overcome the
limitation of the CDMA method in estimating correlations in
signals withap>0.5 at small scaleén<10%). On the other To account for different types of correlations in signals,
hand, the WCDMA method is characterized by larger erromwe consider the-order weighted moving averag&/DMA-
bars for gy, at intermediate scales compared to the CDMAY), defined as

1. Higher order weighted moving average
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FIG. 14. Probability density of estimated valuesagf- 6< oo < ap+ 8, where 5§=0.02 for the varying scale rangeand for different
values of the “input” correlation exponeag. Separate panels show the performance of the WDMA-2, WDMA-3, WDMA-4, and WDMA-5
methods, respectively, based on 50 realizations of correlated signals for each valdloé probability density valugs are presented in
color, with the darker color corresponding to higher values, as indicated in the vertical columns next to each panel. A perfect scaling behavior
would correspond to dark-colored columns spanning all seafes each value ofy,.

(1 _)\)f‘l when estimating the scaling behavior of anticorrelated and
V(i) = —= > y(i = k) + NV, (i - ©), (A1)  uncorrelated signals.
€ i We apply the WDMAY{ method for increasing values 6f

to correlated signals with varied values of the scaling expo-

nentag. To study the performance of the WDMAmethods,
wherek=n/(n+¢), € is the order of the moving averag€i)  we estimate the scaling behavior of the rms fluctuation func-
is defined in Eq.(1). The relative importance of the two tion F(n) at different scales by calculating the local scaling
terms entering the function in EGA1) can be further under-  exponenta in the same way as discussed in Fig. 3. We find
stood by analyzing the properties of the transfer functionthat at large scales fof=2,...,5, theay, curves deviate
H(f) in the frequency domaifsee Appendix B significantly from the expected valueg—presented with

Compared to the traditional exponentially weighted mov-horizontal dashed lines in Fig. 13. This indicates that the

ing average(of order {=1) where the terms in Eq(Al) ~ WDMA-¢ method significantly underestimates the strength
decrease exponentially, the higher order 1 allows for a  of the correlations in our artificially generated signals. Fur-
slower, step-size decrease of the terms in @d) with a  ther, as for¢=1, we find that for higher ordef >1 the
“step” of size (. The fluctuation functiorF(n) is obtained ~WDMA-¢ methods exhibit an inherent limitation to accu-
following Eq. (10) and Eq.(11). The WDMA-( allows for a  rately quantify the scaling behavior of positively correlated
more gradual decrease in the distribution of weights in theignals witha,>0.7. This behavior is also clear from our
moving average box, and thus may be more appropriatéhree-dimensional presentation in Fig. 14. For anticorrelated
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0 FIG. 16. Plot of the functiorjH(f)|? for the simple moving
-0.2

0.2 average witm=4, [H,(f)|%; for the weighted moving average, with
n=4 and =2, |H, 5(f)|?, respectively; for the weighted moving
average witn=4 and€=4 |H, 4f)|?, respectively.

FIG. 15. Plot of the moving average filter kernel in the tifag
and in the frequency domaib), respectively. . .
In the frequency domainy,(i) is characterized by the

signals, however, the WDMA-performs better at small and transfer functiorH,(f) (the Dirichlet kernel, which is
intermediate scales for increasing ordems a decreases

(Fig. 13 (see Appendix B These observations are also con- H.(f) = Siﬂ(nﬂf)e_m,,f

firmed from the three-dimensional probability histograms in " nf '

Fig. 14, where it is clear that the scaling range for the best fit

shrink_s for positive_ly correla_ted signa[%>0.5) for in- H.(f) takes the valuesH (0)=1 and H,(kf)=0 for k
creasing orde¥, while for anticorrelated signalex;<0.5), =1,2,..n.

there is a broader range of scales over which a be6witih

(B2)

The transfer functiomd(f) of any filter should ideally be a

a probability ofp>0.7) is observed.

APPENDIX B

window of constant amplitude, going to zero very quickly
above the cutoff frequency b/ By observing the curves of
Fig. 15b) and Fig. 16, it is clear that the filtering perfor-

1. Moving average methods in frequency domain mance ofH,(f) is affected by the presence of the side lobes

In this appendix, the performance of the DMA algorithm @t frequency higher than b/ _
is discussed in the frequency domain. The interest of the AS observed in Fig. 16H,(f)|* presents a side lobe al-
frequency domain derives from the simplification designedowing the components of the signgli), with a frequency
to describe the effect of the detrending functigg(i) in  between 1h and 2h (i.e., time scales between2 andn) to
terms of the product of the square modulus of the transfepass through the filter, thus giving a spurious contribution to
function H,(f) and ofS(f), the power spectral density of the Ya(i). These components contribute to the rfiis) [defined

noisy signaly(i).

in Eqg. (11)] less than what should correspondricon the

The simple moving averagg,(i) of window sizen is  basis of the scaling law(n) ~n*, with the consequence of

defined as
n-1

Tuli) = =3 yi - k),
N=0o

increasing the slopE(n) at small scales.
We next discuss the reasons why the weighted moving
average might reduce this effect. The exponentially weighted
(B1) moving averagéWDMA-¢) weights recent data more than
older data. It is defined as

corresponding to the discrete form of the causal convolution

integral, where the convolution kernel introduces the (1-)) -1
memory effect. Equation(B1) is a sum with a constant Vneli) = > y(i —K) + Ny (i —€). (B3)
memory kerneh(t), i.e., a step function with an amplitude L=

1/n [Fig. 15a@)]. The functionh(t) uniformly weights the
contribution of all the past events in the wind$@,n), thus

The coefficients are commonly indicated &sightsof the
filter and are given by

it works better for random paths with a correlation exponent

centered around 0.5. For higher degrees of correlation or

anticorrelation, it should be taken into accoyat already A= ——. (B4)
explained in the section describing the DMA functidhat €+n

each data point is more correlated to the most recent points

than to the points further away.

n

Taking the Fourier transform on E(B3), we obtain
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1 — ne 127t
~ . . From Eg.(B7), one can find that the cutoff frequency for

the_re Y(f), Ynzg(f) are the Fourier transforms gof(i) and |Hn((f)|2qis min{l/[ZWVF(n+€)],1/€}. In Fig. 16, ?he tra)rlls-

Yn,(i), respectively. Further, we have fer function of the weighted moving averages with4 and

€£=2 and withn=4 and{ =4, respectively, are shown. It can
be observed that the effect of the side lobe to the perfor-

Ve = (L= MHADY(EH) + AV (De™2™, (BS) oo (F) = HL(6). 87)

3 1-x mance of [H, »(f)|> and |H, 4(f)]? has become negligible
Y o(f) = ————H(HY(f). B6 42 a4 9'g
() 1 - \e 2t HY(H) (B6) compared to that oH,(f)|?, with the consequence of reduc-
ing the high frequency components in the detrended signal
and thus reducing the deviation of tlg, as discussed in
Thus the transfer function is the paper.
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