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Detrended fluctuation analysissDFAd and detrended moving averagesDMA d are two scaling analysis meth-
ods designed to quantify correlations in noisy nonstationary signals. We systematically study the performance
of different variants of the DMA method when applied to artificially generated long-range power-law corre-
lated signals with ana priori known scaling exponenta0 and compare them with the DFA method. We find that
the scaling results obtained from different variants of the DMA method strongly depend on the type of the
moving average filter. Further, we investigate the optimal scaling regime where the DFA and DMA methods
accurately quantify the scaling exponenta0, and how this regime depends on the correlations in the signal.
Finally, we develop a three-dimensional representation to determine how the stability of the scaling curves
obtained from the DFA and DMA methods depends on the scale of analysis, the order of detrending, and the
order of the moving average we use, as well as on the type of correlations in the signal.
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I. INTRODUCTION

There is growing evidence that output signals of many
physical f1–15g, biological f16–19g, physiological f20–35g
and economic systemsf36–43g, where multiple component
feedback interactions play a central role, exhibit complex
self-similar fluctuations over a broad range of space and/or
time scales. These fluctuating signals can be characterized by
long-range power-law correlations. Due to nonlinear mecha-
nisms controlling the underlying interactions, the output sig-
nals of complex systems are also typically nonstationary,
characterized by embedded trends and heterogeneous seg-
ments spatches with different local statistical propertiesd
f44–46g. Traditional methods such as power-spectrum and
autocorrelation analysisf48–50g are not suitable for nonsta-
tionary signals.

Recently, new methods have been developed to address
the problem of accurately quantifying long-range correla-
tions in nonstationary fluctuating signals:sad the detrended
fluctuation analysissDFAd f16,23,51g, andsbd the detrended
moving average methodsDMA d f52–56g. An advantage of
the DFA methodf44–47g is that it can reliably quantify scal-
ing features in the fluctuations by filtering out polynomial
trends. However, trends may not necessarily be polynomial,
and the DMA method was introduced to estimate correlation
properties of nonstationary signals without any assumptions
on the type of trends, the probability distribution, or other
characteristics of the underlying stochastic process.

Here, we systematically compare the performance of the
DFA and different variants of the DMA method. To this end
we generate long-range power-law correlated signals with an
a priori known correlation exponenta0 using the Fourier
filtering methodf57g. Tuning the value of the correlation
exponenta0, we compare the scaling behavior obtained from
the DFA and different variants of the DMA methods to de-
termine:s1d how accurately these methods reproducea0; s2d
what are the limitations of the methods when applied to sig-

nals with small or large values ofa0. Based on single real-
ization as well as on ensemble averages of a large number of
artificially generated signals, we also compare the best fitting
range si.e., the minimum and the maximum scalesd over
which the correlation exponenta0 can be reliably estimated
by the DFA and DMA methods.

The outline of this paper is as follows. In Sec. II, we
review the DFA method and we introduce variants of the
DMA method based on different types of moving average
filters. In Sec. III we compare the performance of DFA and
DMA on correlated and anticorrelated signals. We also test
and compare the stability of the scaling curves obtained by
these methods by estimating the local scaling behavior
within a given window of scales and for different scaling
regions. In Sec. IV we summarize our results and discuss the
advantages and disadvantages of the two methods. In Appen-
dix A we consider higher order weighted detrended moving
average methods, and in Appendix B we discuss moving
average techniques in the frequency domain.

II. METHODS

A. Detrended fluctuation analysis

The DFA method is a modified root-mean-squaresrmsd
analysis of a random walk. Starting with a signalusid, where
i =1, . . . ,N, andN is the length of the signal, the first step of
the DFA method is to integrateusid and obtain

ysid = o
j=1

i

fus jd − ūg, s1d

where

ū ;
1

N
o
j=1

N

us jd s2d

is the mean.
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The integrated profileysid is then divided into boxes of
equal lengthn. In each boxn, we fit ysid using a polynomial
function ynsid, which represents the local trend in that box.
When a different order of a polynomial fit is used, we have a
different order DFA-, se.g., DFA-1 if ,=1, DFA-2 if ,=2,
etcd.

Next, the integrated profileysid is detrended by subtract-
ing the local trendynsid in each box of lengthn:

Ynsid ; ysid − ynsid. s3d

Finally, for each boxn, the rms fluctuation for the integrated
and detrended signal is calculated:

Fsnd ;Î 1

N
o
i=1

N

fYnsidg2. s4d

The above calculation is then repeated for varied box length
n to obtain the behavior ofFsnd over a broad range of scales.
For scale-invariant signals with power-law correlations, there
is a power-law relationship between the rms fluctuation func-
tion Fsnd and the scalen:

Fsnd , na. s5d

Because power laws are scale invariant,Fsnd is also
called the scaling function and the parametera is the scaling
exponent. The value ofa represents the degree of the corre-
lation in the signal: if a=0.5, the signal is uncorrelated
swhite noised; if a.0.5, the signal is correlated; ifa,0.5,
the signal is anticorrelated.

B. Detrended moving average methods

The DMA method is a new approach to quantify correla-
tion properties in nonstationary signals with underlying
trendsf52,53g. Moving average methods are widely used in
fields such as chemical kinetics, biological processes, and
finance f56,58–61g to quantify signals where large high-
frequency fluctuations may mask characteristic low-
frequency patterns. Comparing each data point to the moving
average, the DMA method determines whether data follow
the trend, and how deviations from the trend are correlated.

Step 1. The first step of the DMA method is to detect
trends in data employing a moving average. There are two
important categories of moving average:sId simple moving
average andsII d weighted moving average.

(I) Simple moving average. The simple moving average
assigns equal weight to each data point in a window of size
n. The position to which the average of all weighted data
points is assigned determines the relative contribution of the
“past” and “future” points. In the following we consider the
backward and the centered moving average.

(a) Backward moving average. For a window of sizen the
simple backward moving average is defined as

ỹnsid ;
1

n
o
k=0

n−1

ysi − kd, s6d

whereysid is the integrated signal defined in Eq.s1d. Here,
the average of the signal data points within the window re-

fers to the last datapoint covered by the window. Thus, the
operatorỹn in Eq. s6d is “causal,” i.e., the averaged value at
each data pointi depends only on the pastn−1 values of the
signal. The backward moving average is however affected by
a rather slow reaction to changes in the signal, due to a delay
of lengthn/2 shalf the window sized compared to the signal.

(b) Centered moving average. This is an alternative mov-
ing average method, where the average of the signal data
points within a window of sizen is placed at the center of the
window. The moving average function is defined as

ỹnsid =
1

n
o

k=−fsn+1d/2g+1

fn/2g

ysi + kd, s7d

whereysid is the integrated signal defined in Eq.s1d andfxg
is the integer part ofx. The functionỹn defined in Eq.s7d is
not “causal,” since the centered moving average performs
dynamic averaging of the signal by mixing data points lying
to the left and to the right side ofi. In practice, while the
dynamical system under investigation evolves with timei
according toysid, the output of Eq.s7d mixes past and future
values ofysid. However, this averaging procedure is more
sensitive to changes in the signal without introducing delay
in the moving average compared to the signal.

(II) Weighted moving average. In dynamical systems the
most recent data points tend to reflect better the current state
of the underlying “forces.” Thus, a filter that places more
emphasis on the recent data values may be more useful in
determining reversals of trends in data. A widely used filter is
the exponentially weighted moving average, which we em-
ploy in our study. In the following we consider the backward
and the centered weighted moving average.

(a) Backward moving average. The weighted backward
moving average is defined as

ỹnsid ; s1 − ldysid + lỹnsi − 1d, s8d

where the parameterl=n/ sn+1d, n is the window size,i
=2,3, . . . ,N andỹns1d;ys1d. Expanding the termỹnsi −1d in
Eq. s8d, we obtain a recursive relation of step one with pre-
vious data points weighted by increasing powers ofl. Since
l,1, the contribution of the previous data points becomes
exponentially small. The weighted backward moving aver-
age of higher order,.1 sWDMA-,d where, is the step size
in the recursive Eq.s8d is defined in Appendix A.

(b) Centered moving average. The weighted centered
moving average is defined as

ỹnsid =
1

2
fỹn

Lsid + ỹn
Rsidg, s9d

where ỹn
Lsid is defined by Eq.s8d, and ỹn

Rsid=s1−ldysid
+lỹn

Rsi +1d, where i =N−1,N−2, . . . ,1 and ỹn
RsNd;ysNd.

The termỹn
Rsid is the weighted contribution of all data points

to the right of i sfrom i +1 to the end of the signalNd, and
ỹn

Lsid is the weighted contribution of all data points to the left
of i.
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The exponentially weighted moving average reduces the
correlation between the current data point at which the mov-
ing average window is positioned and the previous and fu-
ture points.

Step 2. Once the moving averageỹnsid is obtained, we
next detrend the signal by subtracting the trendỹn from the
integrated profileysid

Cnsid ; ysid − ỹnsid. s10d

For the backward moving average, we then calculate the
fluctuation for a window of sizen as

Fsnd =Î 1

N − n + 1o
i=n

N

fCnsidg2. s11d

For the centered moving average the fluctuation for a win-
dow of sizen is calculated as

Fsnd =Î 1

N − n + 1 o
i=fsn+1d/2g

N−fn/2g

fCnsidg2. s12d

Step 3. Repeating the calculation for differentn, we ob-
tain the fluctuation functionFsnd. A power law relation be-
tween the fluctuation functionFsnd and the scalen fsee Eq.
s5dg indicates a self-similar behavior.

When the moving averageỹn is calculated as in Eq.s6d,
Eq. s7d, Eq. s8d and Eq.s9d, we have the detrended moving
method sDMA d, the centered detrened moving average
sCDMAd, the weighted detrended moving average with order
, sWDMA-,d and the weighted centered detrended moving
averagesWCDMAd, respectively.

III. ANALYSIS AND COMPARISON

Using the modified Fourier filtering methodf57g, we gen-
erate uncorrelated, positively correlated, and anticorrelated
signals usid, where i =1,2, . . . ,N and N=220, with a zero
mean and unit standard deviation. By introducing a designed
power-law behavior in the Fourier spectrumf45,57g, the
method can efficiently generate signals with long-range
power-law correlations characterized by ana priori known
correlation exponenta0.

A. Detrended moving average method and DFA

In this section we investigate the performance of the
DMA and WDMA-1 methods when applied to signals with
different type and degree of correlations, and compare them
to the DFA method. Specifically, we compare the features of
the scaling functionFsnd obtained from the DMA and
WDMA-1 methods with the DFA method, and how accu-
rately these methods estimate the correlation properties of
the artificially generated signalsusid. Ideally, the output scal-
ing functionFsnd should exhibit a power-law behavior over
all scalesn, characterized by a scaling exponenta which is
identical to the given correlation exponenta0 of the artificial
signals. Previous studiesf44–46g show that the scaling be-
havior obtained from the DFA method depends on the scalen
and the order, of the polynomial fit when detrending the

signal. We investigate if the results of the DMA and
WDMA-1 method also have a similar dependence on the
scalen. We also show how the scaling results depend on the
order, when WDMA-, with ,=2,3,4,5 areapplied to the
signalsssee Appendix Ad.

To compare the performance of different methods, we first
study the behavior of the scaling functionFsnd obtained from
DFA-0, DFA-1, DMA, and WDMA-1. In Fig. 1 we show the
rms fluctuation functionFsnd obtained from the different
methods for an anti-correlated signal with correlation expo-
nenta0=0.2, an uncorrelated signal witha0=0.5, and a posi-

FIG. 1. A comparison of the scaling behavior obtained from the
DMA, WDMA-1, DFA-0, and DFA-1 methods for artificially gen-
erated power-law correlated signals with a scaling exponenta0. The
length of the signals isN=220. Scaling curvesFsnd versus scalen
for sad an anticorrelated signal witha0=0.2, sbd an uncorrelated
signal with a0=0.5, andscd a positively correlated signal witha0

=0.8. At small scales, all methods exhibit a weak crossover, which
is more pronounced for anticorrelated signals. At large scales, the
Fsnd curves obtained from DMA, WDMA-1, and DFA-0 exhibit a
clear crossover to a flat region for all signals, independent of the
type of correlations. No such crossover is observed for the scaling
curves obtained from the DFA-1 method, suggesting a more accu-
rate estimate of the scaling exponenta0 at large scales.
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tively correlated signal witha0=0.8. We find that in the in-
termediate regimeFsnd sobtained from all methodsd exhibits
an approximate power-law behavior characterized by a
single scaling exponenta. At large scalesn for DFA-0,
DMA, and WDMA-1, we observe a crossover inFsnd lead-
ing to a flat regime. With increasinga0 this crossover be-
comes more pronounced and moves to the intermediate scal-
ing range. In contrast, such a crossover at large scales is not
observed for DFA-1, indicating that the DFA-1 method can
better quantify the correlation properties at large scales. At
small scalesn the scaling curvesFsnd obtained from all
methods exhibit a crossover which is more pronounced for
anticorrelated signalssa0=0.2d and becomes less pro-
nounced for uncorrelatedsa0=0.5d and positively correlated
signalssa0=0.8d.

We next systematically examine the performance of the
DFA-0, DFA-1, DMA, and WDMA-1 methods by varyinga0
over a very broad range of valuess0.1øa0ø3.5d sFig. 2d.
For all four methods, we comparea0 with the exponenta
obtained from fitting the rms fluctuation functionFsnd in the
scaling range 102,n,104, i.e., the range where all methods
perform well according to our observations in Fig. 1. If the
methods work properly, for each value of the “input” expo-
nent a0 we expect the estimated “output” exponent to bea
=a0. We find that the scaling exponenta, obtained from
different methods, saturates as the “input” correlation expo-
nent a0 increases, indicating the limitation of each method.
The saturation of scaling exponent ata=1 indicates that
DMA and WDMA-1 do not accurately quantify the correla-
tion properties of signals witha0.1.

In contrast, the DFA-, method can quantify accurately the
scaling behavior of strongly correlated signals if the appro-
priate order, of the polynomial fit is used in the detrending
procedure. Specifically, we find that the values of the scaling

exponenta obtained from the DFA-, are limited toaø,
+1. Thus the DFA-, can quantify the correlation properties
of signals characterized by exponenta0ø,+1. For signals
with a0.,+1 we find that the output exponenta from the
DFA-, method remains constant ata=,+1. These findings
suggest that in order to obtain a reliable estimate of the cor-
relations in a signal one has to apply the DFA-, for several
increasing orders, until the obtained scaling exponenta
stops changing with increasing,.

Since the accuracy of the scaling exponent obtained from
the different methods depends on the range of scalesn over
which we fit the rms fluctuation functionFsnd sas seen in
Fig. 1d, and since different methods exhibit different limita-
tions for the range of scaling exponent valuessas demon-
strated in Fig. 2d, we next investigate the local scaling be-
havior of theFsnd curves to quantify the performance of the
different methods in greater details. To ensure a good esti-
mation of the local scaling behavior, we calculateFsnd at
scalesn=432i/64, i =0,1,2, . . .,which in log scale provides
64 equidistant points forFsnd per bin of size log 2. To esti-
mate the local scaling exponentaloc, we locally fit Fsnd in a
window of sizew=3 log 2, e.g,aloc is the slope ofFsnd in a
window containing 3364 points. To quantify the detailed
features of the scaling curveFsnd at different scalesn, we
slide the windoww in small steps of sizeD= 1

4 log 2 starting
at n=4, thus obtaining approximately 70 equidistantaloc in
log scale per each scaling curve. We consider the average
value of aloc obtained from 50 different realizations of sig-
nals with the same correlation exponenta0.

In Fig. 3, we compare the behavior ofaloc as a function of
the scalen to more accurately determine the best fitting
range in the scaling curvesFsnd obtained from the DMA,
WDMA-1, DFA-0, and DFA-1. A rms fluctuation function
exhibiting a perfect scaling behavior would be characterized
by aloc=a0 for all scalesn and for all values ofa0 denoted
by horizontal lines in Fig. 3. A deviation of thealoc curves
from these horizontal lines indicates an inaccuracy in quan-
tifying the correlation properties of a signal and the limita-
tion of the methods. Our results show that the performance
of different methods depends on the “input”a0 and scalen.
At small scales and fora0,0.8 we observe thataloc for all
methods deviates up from the horizontal lines suggesting an
overestimation of the real correlation exponenta0. This ef-
fect is less pronounced for uncorrelated and positively corre-
lated signals. At intermediate scalesaloc exhibits a horizontal
plateau indicating that all methods closely reproduce the in-
put exponent fora0,0.8. This intermediate scaling regime
changes for different types of correlations and for different
methods. At large scales ofn.104, the DMA, WDMA-1,
and DFA-0 methods strongly underestimate the actual corre-
lations in the signal, withaloc curves sharply dropping for all
values ofa0 fFigs. 3sad–3scdg. In contrast, the DFA-1 method
accurately reproducesa0 at large scales withaloc following
the horizontal lines up to approximatelyN/10 fFig. 3sddg. In
addition, the DFA-1 method accurately reproduces the corre-
lation exponent at small and intermediate scales even when
a0.1 fFig. 3sddg, while the DMA, WDMA-1, and DFA-0
are limited toa0,0.8.

For a certain “input” correlation exponenta0, we can es-
timate the good fitting regime ofFsnd to be the length of the

FIG. 2. A comparison of the performance of the different scaling
methodssDMA, WDMA-1, DFA-0, DFA-1, and DFA-2d when ap-
plied to artificially generated signals with long-range power-law
correlations. Herea0 is the correlation exponent of the generated
signals anda is the exponent value estimated using different meth-
ods. For all methods we obtaina by fitting the corresponding scal-
ing curvesFsnd in the rangenP f102,104g. Flat regions indicate the
limitations of the methods in accurately estimating the degree of
correlations in the generated signals, as the “output” exponenta
remains unchanged when the “input” exponenta0 is varied.
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plateau in Fig. 3. For example, fora0=0.2 the calculated
scaling exponentaloc obtained from the DMA method is ap-
proximately equal to the expected valuea0=0.2 within a
range of two decadess102,n,104d. Similarly, the good
fitting range ofFsnd obtained from the DFA-0 fora0=0.2 is
about three decadess102,n,105d. However, the calculated
local scaling exponentaloc can fluctuate for different realiza-
tions of correlated signals. Although the mean value obtained
from many independent realizations is close to the expected
value, the fluctuation of the estimated scaling exponent can
be very large. Thus, it is possible foraloc to deviate froma0
and the scaling range estimated from Fig. 3 may not be a
good fitting range. Therefore, it is necessary to study the
dispersion of the local scaling exponent to determine the
reliability of the “good” fitting range estimated from Fig. 3.
In Figs. 4–6 we show the results foraloc from 20 different
realizations of the correlated signal witha0=0.2, a0=0.5,
and a0=0.8, respectively. For all methods, we observe that
there is a large dispersion ofaloc, indicating strong fluctua-
tions in the scaling functionFsnd at large scalesn sn,103

for DMA and WDMA-1 andn,104 for DFA-0 and DFA-1d
sFigs. 4–6d. This suggests that the good fitting range ob-
tained only from the mean value ofaloc, as shown in Fig. 3,
may be overestimated.

FIG. 3. A comparison of the local scaling exponentaloc as a function of the scalen for the DMA, WDMA-1, DFA-0, and DFA-1
methods. We consider signals of lengthN=220 and varying values of the correlation exponenta0. The local scaling exponentaloc quantifies
the stability of the scaling curvesFsnd ssee Fig. 1d and is expected to exhibit small fluctuations around a constant valuea0 if Fsnd is well
fitted by a power-law function.a0 is denoted by horizontal dotted lines. Symbols denote the estimated values ofaloc and represent average
results from 50 realizations of artificial signals for each value of the “input” scaling exponenta0. Deviations from the horizontal lines at
small or at large scales indicate limitations of the methods to accurately quantify the built-in correlations in different scaling ranges.

FIG. 4. Values of the local scaling exponentaloc as a function of
the scalen obtained from 20 different realizations of artificial anti-
correlated signals with an identical scaling exponenta0=0.2.
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To better quantify the best fitting range for different meth-
ods and for different types of correlations we develop a
three-dimensional representationsFig. 7d. Based on 50 real-
izations of correlated signals with different values of 0.1
,a0,1.1, for each scalen we define the probabilityp snor-
malized frequencyd to obtain values fora0−d,aloc,a0+d,
where d=0.02 sarguments supporting this choice ofd are
presented in Sec. III Bd. Again, as in Fig. 3, for each realiza-
tion of correlated signals with a givena0, we calculatealoc

FIG. 5. Values of the local scaling exponentaloc as a function of
the scalen obtained from 20 different realizations of artificial un-
correlated signals with an identical scaling exponenta0=0.5.

FIG. 6. Values of the local scaling exponentaloc as a function of
the scalen obtained from 20 different realizations of artificial posi-
tively correlated signals with an identical scaling exponenta0

=0.8.

FIG. 7. Probability density of the estimated values ofa0−d
,aloc,a0+d, whered=0.02 for a varying scale rangen and for
different values of the “input” correlation exponenta0. Separate
panels show the performance of the DMA, WDMA-1, DFA-0 and
DFA-1 methods, respectively, based on 50 realizations of correlated
signals for each value ofa0. The probability density valuesp are
presented in color, with the darker color corresponding to higher
values as indicated in the vertical columns next to each panel. A
perfect scaling behavior would correspond to dark-colored columns
spanning all scalesn for each value ofa0.

XU et al. PHYSICAL REVIEW E 71, 051101s2005d

051101-6



by fitting the rms fluctuation functionFsnd in a window of
sizew=3 log 2 sliding in steps ofD= 1

4 log 2. Vertical color
bars in Fig. 7 represent the value of the probability
p—darker colors corresponding to higher probability to ob-
tain accurate values foraloc. Thus dark-colored columns in
the panels of Fig. 7 represent the range of scalesn where the
methods perform best.

For the DMA and WDMA-1 methods, we find that with
high probabilitysp.0.7d, accurate scaling results can be ob-
tained in the scaling range of two decades for 0.4øa0
ø0.6. However, WDMA-1 performs better at small scales
compared to DMA. For an explanation of why the WDMA-1
performs better at small scales compared to DMA, see Ap-
pendix B. In contrast, DFA-0 exhibits an increased fitting
range of about three decades for 0.4øa0ø0.8, while for the
DFA-1 we find the best fitting range to be around three de-
cades fora0.0.5. For strongly anticorrelated signalssa0

,0.2d, all methods do not provide an accurate estimate of
the scaling exponentsa0. However, by integrating anticorre-
lated signals witha0,0.3 and applying the DFA-1 method,

we can reliably quantify the scaling exponent, since DFA-1
has the advantage to quantify signals witha0.1 fFig. 7sddg.
This cannot be obtained by the other three methodsfFigs.
7sad–7scdg.

B. Centered moving average method and DFA

To test the accuracy of the CDMA method we perform the
same procedure as shown in Fig. 3. We calculate the local
scaling exponentaloc for signals with different “input” cor-
relation exponenta0 and for a broad range of scalesn sFig.
8d. We find that for 0.3,a0,0.8 the CDMA method per-
forms better than the DMA for all scalesn, and the average
value of aloc follows very closely the expected values ofa
indicated by horizontal lines in Fig. 8. For anticorrelated
signals witha0ø0.3, both DMA and CDMA overestimate
the value ofa0 at small scalesn,102. For strongly corre-
lated signals witha0.0.8, CDMA underestimatesa0 at
small scalesn,102, in contrast to DMA which overesti-
matesa0. For correlated signals witha0.1.1 fnot shown in

FIG. 8. A comparison of the local scaling exponentaloc as a function of the scalen for the DMA, CDMA, DFA-0, and DFA-1 methods.
We consider signals of lengthN=220 and varying values of the correlation exponenta0. The local scaling exponentaloc quantifies the
stability of the scaling curvesFsnd and is expected to exhibit small fluctuations around a constant valuea0 if Fsnd is well fitted by a
power-law function.a0 is denoted by horizontal dotted lines. Symbols denote the estimated values ofaloc and represent average results from
50 realizations of artificial signals for each value of the “input” scaling exponenta0. Deviations from the horizontal lines at small or at large
scales indicate limitations of the methods to accurately quantifying the built-in correlations in different scaling ranges. Error bars represent
the standard deviation for each average value ofaloc at different scalesn, and determine the accuracy of each method.

QUANTIFYING SIGNALS WITH POWER-LAW… PHYSICAL REVIEW E 71, 051101s2005d

051101-7



Fig. 8scdg the deviation ofaloc from the expected valuea0 for
the CDMA method becomes even more pronounced and
spreads to large scales. At intermediate and large scales
CDMA performs much better—aloc closely follows the hori-
zontal linesfFigs. 8sad–8scdg. These differences in the per-
formance of the DMA and CDMA methods are also clearly
seen in the probability density plots shown in Fig. 9.

Next, we compare the stability of the DMA, CDMA,
DFA-0, and DFA-1 methods in reproducing the same “input”
value ofa0 for different realizations of correlated signals. We
generate 50 realizations of signals for eacha0, and we obtain
the average value and the standard deviation ofaloc for a
range of scalesn. The values of the standard deviation are
represented by error bars in Fig. 8 for each value ofaloc at all

scalesn. We find that with increasing scalesn, the standard
deviation gradually increases, and that for DMA the standard
deviation is less than 0.02 while for DFA the standard devia-
tion is less than 0.01 in the range of scalesn up toN/100 sN
is the signal lengthd. For all methods at scalesn.N/100, the
standard deviation increases more rapidly, and thus the sta-
bility of the methods in reproducing the same value of the
exponent for different realizations decreases.

In Fig. 10 we present the dependence ofaloc on the scale
n for the weighted centered detrended moving average
method. Compared to the CDMA method, the WCDMA
method weakens the overestimation ofaloc at small scale for
anticorrelated signals and provides accurate results ofaloc at
small scales for positively correlated signals with 0.5,a0
,1. Compared to the DFA method, the WCDMA performs
better at small scales for 0.5,a0,1.0. However, at larger
scalesn.102, the standard deviation of DFA-1 is smaller
than that of WCDMAfFigs. 8sdd, 10, and 11g, indicating
more reliable results for the local scaling exponentaloc ob-
tained from DFA-1.

Finally, we test how the choice of the parameterd will
affect the probability density plots shown in Fig. 7 and Fig.
9. To access the precision of the methods one has to increase
the confidence level by decreasingd. In Fig. 7 and Fig. 9 we
have chosend=0.02 to correspond to the value of the stan-
dard deviation foraloc at scalesn,104 as estimated by the
DMA method sFig. 8d. We demonstrate that the distribution
plot for DMA with d=0.02 sshown in Fig. 7d changes dra-
matically when we choosed=0.01 fas shown in Fig. 12sbdg.
This result confirms the observation from Figs. 8sad and 8sdd
that the DFA-1 method is more stablessmaller standard

FIG. 9. Probability density of the estimated values ofa0−d
,aloc,a0+d, whered=0.02 for a varying scale rangen and for
different values of the “input” correlation exponenta0. The two
panels show the performance of the DMA and CDMA methods,
respectively, based on 50 realizations of correlated signals for each
value ofa0. The probability density valuesp are presented in color,
with the darker color corresponding to higher values, as indicated in
the vertical columns next to each panel. A perfect scaling behavior
would correspond to dark-colored columns spanning all scalesn for
each value ofa0.

FIG. 10. Local scaling exponentaloc as a function of the scalen
for the WCDMA method. We consider signals of lengthN=220 and
varying values of the correlation exponenta0. The expected value
of the exponenta0 is denoted by horizontal dotted lines. Symbols
denote the estimated values ofaloc and represent average results
from 50 realizations of artificial signals for each value of the “in-
put” scaling exponenta0. Deviations from the horizontal lines at
small or at large scales indicate limitations of the methods to accu-
rately quantify the built-in correlations in different scaling ranges.
Error bars represent the standard deviation for each average value
of aloc at different scalesn, and determine the accuracy of the
method.
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deviationd and more accuratesaverage ofaloc closer to the
theoretically expected valuea0d than the DMA method.

IV. DISCUSSION

We have systematically studied the performance of the
different variants of DMA method when applied to signals
with long-range power-law correlations, and we have com-
pared them to the DFA method. Specially, we have consid-
ered two categories of detrended moving average methods—
the simple moving average and the weighted moving
average—in order to investigate the effect of the relative
contribution of data points included in the moving average
window when estimating correlations in signals. To investi-
gate the role of “past” and “future” data points in the dy-
namic averaging process for signals with different correla-
tions, we have also considered the cases of backward and
centered moving average within each of the above two cat-
egories. Finally, we have introduced a three-dimensional rep-
resentation to compare the performance of different variants
of the DMA method and the DFA methods over different

scaling ranges based on an ensemble of multiple signal real-
izations.

We find that the simple backward moving average DMA
method and the weighted backward moving average method
WDMA-, have limitations when applied to signals with very
strong correlations characterized by scaling exponenta0
.0.8. A similar limitation is also found for the,=0 order of
the DFA method. However, for higher order,, the DFA-,
method can accurately quantify correlations witha0,,+1.
We also find that at large scales the DMA, WDMA-,, and
DFA-0 methods underestimate the correlations in signals
with 0.5,a0,1.0, while the DFA-, method can more ac-
curately quantify the scaling behavior of such signals. Fur-
ther, we find that the scaling curves obtained from the DFA-1

FIG. 11. A comparison of the local scaling exponentaloc as a
function of the scalen obtained fromsad the WCDMA method and
sbd the DFA-1 method. Symbols denote the estimated values ofaloc

calculated as in Fig. 10 for different “input” scaling exponentsa0

.1. Error bars representing the standard deviation around the av-
eragealoc are smaller for the DFA-1 method at all scalesn, indi-
cating that the DFA-1 method provides more reliable results. FIG. 12. Probability density of estimated values ofa0−d

,aloc,a0+d, where d=0.01 for varying scale rangen and for
different values of the “input” correlation exponenta0. The two
panels show the performance of the DMA and DFA-1 methods,
respectively, based on 50 realizations of correlated signals for each
value ofa0. The probability density valuesp are presented in color,
with darker color corresponding to higher values as indicated in the
vertical columns next to each panel. A perfect scaling behavior
would correspond to dark-colored columns spanning all scalesn for
each value ofa0.
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method are stable over a much broader range of scales com-
pared to the DMA, WDMA-1, and DFA-0 methods, indicat-
ing a better fitting range to quantify the correlation exponent
a0. In contrast, we find that WDMA-, with a higher order,,
more accurately reproduce the correlation properties of anti-
correlated signalssa0,0.5d at small scales. Accurate results
for anticorrelated signals can also be obtained from the
DFA-1 method after first integrating the signal and thus re-
ducing the value of the estimated correlation exponent by 1.

In contrast to the simple backward moving average
sDMA d and DFA-0 methods, the centered moving average
CDMA provides a more accurate estimate of the correlations
in signals with 0.3,a0,0.7 at small scalesn,102, and in
signals with a0.0.7 at intermediate scales 102,n,104.
However, the CDMA method strongly underestimates corre-
lations in signals witha0.0.7 at small scalessn,102d,
while the DFA-1 method reproduces quite accurately the cor-
relations of signals witha0.0.7 at both small and interme-
diate scales. We also find that by introducing weighted cen-
tered moving average WCDMA, one can overcome the
limitation of the CDMA method in estimating correlations in
signals witha0.0.5 at small scalessn,102d. On the other
hand, the WCDMA method is characterized by larger error
bars foraloc at intermediate scales compared to the CDMA

method. Further, we find that the performance of the
WCDMA is comparable to the DFA-1 method for signals
with 0.5,a0,1. At small scales the WCDMA performs
better than the DFA-1 method, while at the intermediate
scales 102,n,104, DFA-1 provides more reliable local
scaling exponent with smaller standard deviation based on
50 independent realizations for eacha0. For very strongly
correlated signals witha0.1, we find that the DFA-1
method performs much better at all scales compared to
WCDMA and all other variants of the DMA method.
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APPENDIX A

1. Higher order weighted moving average

To account for different types of correlations in signals,
we consider the,-order weighted moving averagesWDMA-
,d, defined as

FIG. 13. A comparison of the local scaling exponentaloc as a function of the scalen for the WDMA-, method with different order,
=2, . . . ,5 of the weighted moving average. We consider signals of lengthN=220 and varying values of the correlation exponenta0. The local
scaling exponentaloc quantifies the stability of the scaling curvesFsnd ssee Fig. 1d, and is expected to exhibit small fluctuations around a
constant valuea0 if Fsnd is well fitted by a power-law function.a0 is denoted by horizontal dotted lines. Symbols denote the estimated
values ofaloc and represent average results from 50 realizations of artificial signals for each value of the “input” scaling exponenta0. For
small values of, at small and intermediate scalesn, WDMA-, accurately reproduces the scaling behavior of signals with 0.4,a0,0.8,
while for large,, the scaling behavior of anticorrelated signals witha0,0.4 are better reproduced at small scales.
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ỹnsid ;
s1 − ld

,
o
k=0

,−1

ysi − kd + lỹnsi − ,d, sA1d

wherel=n/ sn+,d, , is the order of the moving average,ysid
is defined in Eq.s1d. The relative importance of the two
terms entering the function in Eq.sA1d can be further under-
stood by analyzing the properties of the transfer function
Hsfd in the frequency domainssee Appendix Bd.

Compared to the traditional exponentially weighted mov-
ing averagesof order ,=1d where the terms in Eq.sA1d
decrease exponentially, the higher order,.1 allows for a
slower, step-size decrease of the terms in Eq.sA1d with a
“step” of size ,. The fluctuation functionFsnd is obtained
following Eq. s10d and Eq.s11d. The WDMA-, allows for a
more gradual decrease in the distribution of weights in the
moving average box, and thus may be more appropriate

when estimating the scaling behavior of anticorrelated and
uncorrelated signals.

We apply the WDMA-, method for increasing values of,
to correlated signals with varied values of the scaling expo-
nenta0. To study the performance of the WDMA-, methods,
we estimate the scaling behavior of the rms fluctuation func-
tion Fsnd at different scalesn by calculating the local scaling
exponentaloc in the same way as discussed in Fig. 3. We find
that at large scales for,=2, . . . ,5, thealoc curves deviate
significantly from the expected valuesa0—presented with
horizontal dashed lines in Fig. 13. This indicates that the
WDMA-, method significantly underestimates the strength
of the correlations in our artificially generated signals. Fur-
ther, as for,=1, we find that for higher order,.1 the
WDMA-, methods exhibit an inherent limitation to accu-
rately quantify the scaling behavior of positively correlated
signals witha0.0.7. This behavior is also clear from our
three-dimensional presentation in Fig. 14. For anticorrelated

FIG. 14. Probability density of estimated values ofa0−d,aloc,a0+d, whered=0.02 for the varying scale rangen and for different
values of the “input” correlation exponenta0. Separate panels show the performance of the WDMA-2, WDMA-3, WDMA-4, and WDMA-5
methods, respectively, based on 50 realizations of correlated signals for each value ofa0. The probability density valuesp are presented in
color, with the darker color corresponding to higher values, as indicated in the vertical columns next to each panel. A perfect scaling behavior
would correspond to dark-colored columns spanning all scalesn for each value ofa0.
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signals, however, the WDMA-, performs better at small and
intermediate scales for increasing order, as a0 decreases
sFig. 13d ssee Appendix Bd. These observations are also con-
firmed from the three-dimensional probability histograms in
Fig. 14, where it is clear that the scaling range for the best fit
shrinks for positively correlated signalssa0.0.5d for in-
creasing order,, while for anticorrelated signalssa0,0.5d,
there is a broader range of scales over which a best fitswith
a probability ofp.0.7d is observed.

APPENDIX B

1. Moving average methods in frequency domain

In this appendix, the performance of the DMA algorithm
is discussed in the frequency domain. The interest of the
frequency domain derives from the simplification designed
to describe the effect of the detrending functionỹnsid in
terms of the product of the square modulus of the transfer
function Hnsfd and ofSsfd, the power spectral density of the
noisy signalysid.

The simple moving averageỹnsid of window size n is
defined as

ỹnsid ;
1

n
o
k=0

n−1

ysi − kd, sB1d

corresponding to the discrete form of the causal convolution
integral, where the convolution kernel introduces the
memory effect. EquationsB1d is a sum with a constant
memory kernelhstd, i.e., a step function with an amplitude
1/n fFig. 15sadg. The functionhstd uniformly weights the
contribution of all the past events in the windowf0,nd, thus
it works better for random paths with a correlation exponent
centered around 0.5. For higher degrees of correlation or
anticorrelation, it should be taken into accountsas already
explained in the section describing the DMA functiond that
each data point is more correlated to the most recent points
than to the points further away.

In the frequency domain,ỹnsid is characterized by the
transfer functionHnsfd sthe Dirichlet kerneld, which is

Hnsfd =
sinsnpfd

npf
e−inpf . sB2d

Hnsfd takes the valuesHns0d=1 and Hnskf0d=0 for k
=1,2, . . .n.

The transfer functionHsfd of any filter should ideally be a
window of constant amplitude, going to zero very quickly
above the cutoff frequency 1/n. By observing the curves of
Fig. 15sbd and Fig. 16, it is clear that the filtering perfor-
mance ofHnsfd is affected by the presence of the side lobes
at frequency higher than 1/n.

As observed in Fig. 16,uH4sfdu2 presents a side lobe al-
lowing the components of the signalysid, with a frequency
between 1/n and 2/n si.e., time scales betweenn/2 andnd to
pass through the filter, thus giving a spurious contribution to
ỹnsid. These components contribute to the rmsFsnd fdefined
in Eq. s11dg less than what should correspond ton on the
basis of the scaling lawFsnd,na, with the consequence of
increasing the slopeFsnd at small scales.

We next discuss the reasons why the weighted moving
average might reduce this effect. The exponentially weighted
moving averagesWDMA-,d weights recent data more than
older data. It is defined as

ỹn,,sid ;
s1 − ld

,
o
k=0

,−1

ysi − kd + lỹn,,si − ,d. sB3d

The coefficients are commonly indicated asweightsof the
filter and are given by

l =
n

, + n
. sB4d

Taking the Fourier transform on Eq.sB3d, we obtain

FIG. 15. Plot of the moving average filter kernel in the timesad
and in the frequency domainsbd, respectively.

FIG. 16. Plot of the functionuHsfdu2 for the simple moving
average withn=4, uH4sfdu2; for the weighted moving average, with
n=4 and ,=2, uH4,2sfdu2, respectively; for the weighted moving
average withn=4 and,=4 uH4,4sfdu2, respectively.
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Ỹn,,sfd = s1 − ldH,sfdYsfd + lỸn,,sfde−i2p,f , sB5d

where Ysfd, Ỹn,,sfd are the Fourier transforms ofysid and
ỹn,,sid, respectively. Further, we have

Ỹn,,sfd =
1 − l

1 − le−i2p,f H,sfdYsfd. sB6d

Thus the transfer function is

Hn,,sfd =
1 − l

1 − le−i2p,f H,sfd. sB7d

From Eq. sB7d, one can find that the cutoff frequency for
uHn,,sfdu2 is minh1/f2pÎnsn+,dg ,1 /,j. In Fig. 16, the trans-
fer function of the weighted moving averages withn=4 and
,=2 and withn=4 and,=4, respectively, are shown. It can
be observed that the effect of the side lobe to the perfor-
mance of uH4,2sfdu2 and uH4,4sfdu2 has become negligible
compared to that ofuH4sfdu2, with the consequence of reduc-
ing the high frequency components in the detrended signal
and thus reducing the deviation of thealoc, as discussed in
the paper.
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