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Appearance of a fractional Stokes–Einstein
relation in water and a structural interpretation
of its onset
Limei Xu1,2, Francesco Mallamace3*, Zhenyu Yan2, Francis W. Starr4, Sergey V. Buldyrev2,5

and H. Eugene Stanley2*

The Stokes–Einstein relation has long been regarded as one
of the hallmarks of transport in liquids. It predicts that the
self-diffusion constant D is proportional to (τ/T)−1, where τ
is the structural relaxation time and T is the temperature.
Here, we present experimental data on water confirming
that, below a crossover temperature T× ≈ 290 K, the Stokes–
Einstein relation is replaced by a ‘fractional’ Stokes–Einstein
relation D ∼ (τ/T)−ζ with ζ ≈ 3/5 (refs 1–6). We interpret
the microscopic origin of this crossover by analysing the OH-
stretch region of the Fourier transform infrared spectrum over
a temperature range from 350 down to 200 K. Simultaneous
with the onset of fractional Stokes–Einstein behaviour, we
find that water begins to develop a local structure similar to
that of low-density amorphous solid H2O. These data lead to
an interpretation that the fractional Stokes–Einstein relation
in water arises from a specific change in the local water
structure. Computer simulations of two molecular models
further support this interpretation.

We first present our experimental results on water confined in
MCM-41-S nanotubes. We measure the self-diffusionD by nuclear
magnetic resonance, and we measure the translational relaxation
time τ by using incoherent, quasi-elastic neutron scattering1,2
(QENS). Thus, the Stokes–Einstein relation,

D∼ (τ/T )−1 (1)

can be tested. Our data (Fig. 1a) confirm equation (1) at high
temperatures, but show that, on cooling below a crossover
temperature T×≈ 290K, the Stokes–Einstein relation (1) gives way
to a ‘fractional Stokes–Einstein relation’2–6,

D∼ (τ/T )−ζ (2)

with ζ ≈ 0.62.
As a first step to obtain a structural interpretation of this

fractional Stokes–Einstein behaviour, we turn to measurements
of the infrared spectrum1,2,7–9. For water, this spectrum can
be split into two contributions, one resembling the spectrum
of high-density amorphous (HDA) solid H2O and the other
resembling the spectrum of low-density amorphous (LDA) solid
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H2O. We interpret these two contributions as corresponding
to water molecules with more HDA-like local structure, or
more LDA-like local structure, respectively10. Figure 1b shows the
relative populations of molecules with locally LDA-like structure
and molecules with locally HDA-like structure calculated by
decomposition of the infrared spectra. With decreasing T , the
LDA-like population increases, whereas the HDA-like population
decreases. The fractional Stokes–Einstein crossover temperature
T× seems to roughly coincide with the onset of the increase of
the population of molecules with LDA-like local structure (and a
corresponding decrease of the population of the molecules with
HDA-like local structure), consistent with the possibility that the
changes in intramolecular vibrational properties may be connected
to the onset of fractional Stokes–Einstein behaviour.

To more clearly see the change in the relative populations of
molecules with LDA-like local structure (and, correspondingly,
with HDA-like local structure), we calculate the derivatives of
the relative populations with respect to temperature (Fig. 1c). The
derivatives of the relative populations become noticeably non-zero
at the same value of the crossover temperature, T× ≈ 290K. In
contrast, we find that the maximal rate of change of the vibrational
spectrum occurs at a much lower temperature, Tmax ≈ 245K,
approaching theWidom temperature 225K for bulkwater11.

As these experiments examine water confined to cylindrical
pores of ≈2 nm diameter, it is natural to question whether the
findingsmight be instructive for understanding bulkwater at lowT .
There are two reasons to believe that the answer is yes: (1) computer
simulations of confined water on a hydrophilic surface12 show that
hydrophilic silica-confined water has similar behaviour to bulk
water, indicating that the hydrophilic surfaces do not have serious
effects on the properties of water, except for significantly lowering
the freezing temperature and stabilizing the liquid phase, which
enables the study of the supercooled region made impossible in
bulk water owing to crystallization; (2) the presence of hysteresis
in a temperature cycle (on cooling/heating) is a signature of an
interaction between water and silica. However, for the MCM-41-S
confined system, only negligible hysteresis was observed by means
of X-ray scattering and calorimetric experiments13,14. Thus, it is
plausible that the MCM-41-S confined water provides information
regarding bulk water.

As experiments on bulkwater atT <250K are impractical owing
to crystallization, we carry out constant-T and constant-density
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Figure 1 | Experimental results for water at P= 1 bar. a, Parametric relation of D as a function of τ/T. The onset of the fractional Stokes–Einstein relation
around T×≈ 290 K is indicated by the change of slope from ζ = 1 to ζ =0.62, whereas Tmax≈ 245 K is determined from c. b, The relative population of
different species of water molecules in experiment. (1) LDA: all molecules represented by group I of the infrared spectra (see the Methods section); (2)
HDA: all of the other molecules. c, The derivative of the relative population with respect to temperature for LDA-like and HDA-like species.
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Figure 2 |Analogue of Fig. 1 for bulk TIP5P water. a, Parametric relation of D as a function of τ/T. The Stokes–Einstein relation breaks down around
T≈ 320 K, whereas Tmax≈ 255 K. b, The relative population of different species of molecules in the simulation for TIP5P along paths of constant density
ρ= 1 g cm−3. The crossing of relative populations of LDA and HDA corresponds to the temperature where the specific heat CP shows a maximum, similar
to the experimental results in Fig. 1b. c, Derivative of the relative population with respect to temperature. For each species (LDA and HDA), the maximum
change occurs at Tmax≈ 255 K. The breakdown of the Stokes–Einstein relation occurs at temperature T× when each species starts to change more rapidly.

molecular dynamics simulations of N = 512 water molecules
interacting with the TIP5P potential15 at a fixed density
ρ=1 g cm−3. In addition, direct access to themolecular coordinates
makes it possible to connect the changes in D to changes in the
local molecular structure.

The relaxation time τ is defined as the time when the coherent
intermediate scattering function decays by a factor of e for the wave
vector q of the first peak of the static structure factor. The diffusion
coefficient is computed from the root-mean-square displacement
of the oxygens as a function of temperature. Analogous to the
experimental results in Fig. 1a, we show the simulation results of
TIP5P water forD as a function of τ/T (Fig. 2a). We see that below
T×≈ 320K the Stokes–Einstein relation crosses over to a fractional
Stokes–Einstein relation16 of equation (2) with ζ =0.77.

We next use our simulations to make a connection to local
structure, rather than intramolecular vibration. This provides a
more intuitive connection to the real space structure of the fluid.
Similar to the experimental approach, we wish to relate the onset
of the fractional Stokes–Einstein relation to the emergence of
LDA-like local structure in the liquid. We identify different local
structures by carrying out a direct calculation for each molecule
i= 1,2,...,N of the local tetrahedral structural order parameter
Qi (ref. 17), defined as

Qi≡ 1−
3
8

3∑
j=1

4∑
k=j+1

(
cosφjk+

1
3

)2

where φjk is the angle formed by the lines joining the oxygen atom
of molecule i with pairs of its four nearest neighbours j and k.

The possible values of Qi vary between Qi = 0 for the limit of
uncorrelated angles andQi=1 for the perfect tetrahedral network.

For each molecule, we calculate its local orientational order Qi.
We assign a locally ‘LDA-like’ molecule if Qi > 0.8, and an ‘HDA-
like’ molecule ifQi≤0.8. Our decomposition to different structural
groups is based on the probability density function P(Q). As shown
in Fig. 2d of ref. 18, for density ρ = 1 g cm−3, P(Q) changes
with temperature. At very low temperature (T = 240K), P(Q) has
one dominant peak near Q ≈ 0.9, indicating a more tetrahedral
local structure similar to ice. At intermediate temperatures, P(Q)
starts to develop a shoulder at Q ≈ 0.5, indicating a change in
the population of the local structure; and at higher temperatures
(T = 340K), P(Q) has a broader distribution with two peaks at
Q≈ 0.5 and Q≈ 0.9, respectively. Thus, the decomposition of the
local structure to (1) the low-density-liquid-like structure (locally
tetrahedral structure in the first shell with Q ≈ 0.9) and (2) the
high-density-liquid-like structure (non-tetrahedral structure with
Q < 0.8) is a reasonable and valid decomposition based on the
number of hydrogen bonds and the distribution of the local
tetrahedral order parameterQ.We can count nL and nH the number
of molecules with ‘LDA-like’ and ‘HDA-like’ local structures,
respectively. The relative populations are defined as nL/N and
nH/N , as shown in Fig. 2b.

We observe in Fig. 2b a gradual increase in LDA-like local
structures, and a decrease in HDA-like local structure. The
derivatives of the relative populations of the LDA-like and the
HDA-likemolecules with respect to temperature (Fig. 2c) show that
the change does not have a sharp onset at T× ≈ 320K. For each
species (LDA-like and HDA-like), the maximum change defines
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Figure 3 |Definition and properties of the Jagla model potential. a, The spherically symmetric ‘two-scale’ Jagla ramp potential with attractive and
repulsive ramps. Here, UR= 3.56U0, UA=−U0, a is the hard-core diameter, b= 1.72a is the soft-core diameter and c= 3a is the long-distance cutoff.
b, Sketch of the phase diagram for the Jagla potential. Studies along path α in the one-phase region are reported in this letter. Unlike water, the HDA phase
in the ramp model is a more ordered structure (lower entropy S) than the LDA phase (higher entropy), leading to a positively sloped coexistence line
because1S/1V>0. LDL: low-density liquid; HDL: high-density liquid.
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Figure 4 |Analogue of Fig. 1 for the two-scale spherically symmetric Jagla model. a, The Jagla system obeys the fractional Stokes–Einstein relation with
ζ ≈0.87 for different paths over a broad range of temperatures, and follows the normal Stokes–Einstein relation with ζ = 1 at high temperatures. The
breakdown occurs roughly around T×≈0.6. b, Relative population of HDA-like and LDA-like molecules in the Jagla liquid along the constant-pressure path
P=0.3. c, The derivatives of relative populations with respect to temperature. Similar to the results for TIP5P shown in Fig. 2c, the maximal changes occur
at Tmax≈0.40, and the breakdown occurs at temperature T×≈0.60 where the relative population starts to show rapid changes.

a temperature Tmax ≈ 255K for the structural evolution19,20. Like
our experimental results, T× > Tmax for TIP5P, indicating that the
change to fractional Stokes–Einstein behaviour can be connected
with the emergence of more highly structured regions of the liquid,
rather than the maximal rate of change.

To explore whether this behaviour is specific to water, or
if similar behaviour occurs for other pure substances that may
possibly possess a liquid–liquid critical point21,22, we also study the
two-scale spherically symmetric Jagla ramp model23,24 of a liquid
(Fig. 3). This model reproduces the thermodynamic and dynamical
anomalies of liquid water, as well as exhibiting a liquid–liquid
critical point. For the Jagla potential (Fig. 3)23, we implement a
discrete molecular dynamics simulation for N = 1,728 particles
interacting through step potentials in a constant-temperature and
constant-volume ensemble.

We examine the Stokes–Einstein relation and relative popu-
lations along a constant-pressure path P = 0.30 that remains in
the one-phase region (path α of Fig. 3)23. Figure 4 shows for the
Jagla model the analogue of Figs 1 and 2. We find for T > T× the
normal Stokes–Einstein relation with ζ = 1, and for T <T×≈ 0.6 a
fractional Stokes–Einstein relation with ζ ≈0.87.

Analogous to the structural analysis done for TIP5P, we
next consider the relative population of HDA-like and LDA-like
molecules in the Jagla liquid. In the Jagla liquid, the changes in
the structure can be deduced from the number of particles in
the first and second coordination shell. In our study, for each
molecule, we calculate its number of nearest neighbours, n, within
a distance r/a≤ 1.3 (first minimum in pair correlation function).

We define a locally ‘LDA-like’ molecule if n< 2, and an ‘HDA-like’
molecule if n≥ 2. Thus, we can calculate the relative populations
nL/N and nH/N . Figure 4b shows that the relative population
of the more ordered phase (HDA-like for the Jagla model and
LDA-like for water) starts to increase sharply at T× ≈ 0.6, whereas
the relative population of the less-ordered phase (LDA for the
Jagla model) starts to decrease, just as observed experimentally and
in the TIP5P model.

Similar to the experimental and TIP5P results, the temperature
derivative of relative populations (Fig. 4c) shows that themaximum
change occurs at a temperature Tmax ≈ 0.4 below the onset
temperature of the sharp changes of the relative populations, that
is, Tmax < T×. The maxima we observe in the rates of change of
the different species of molecules is reminiscent of the observation
that thermodynamic response functions exhibit maxima in the
supercooled region of water. The constant-pressure specific heat
is the most commonly examined of these response functions, and
the locus of the specific-heat maxima is often referred to as the
Widom line19. Hence, it is natural to expect that there may be
some connection between the location of the maximal rates of
change in the molecular structure we measure and the Widom
temperature for that pressure25.

For the Jagla model, Tmax coincides closely with the Widom
temperature TW(P). The Jagla model has a liquid–liquid critical
point at Tc = 0.375, Pc = 0.245 (ref. 24), and we consider cooling
along the P = 0.3 isobar, near to the critical pressure. As response
functionsmust diverge at the critical point, the locus of anymaxima
must become asymptotically close as we approach the critical point.
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Therefore, the coincidence between TW and Tmax is expected. As a
result, the breakdown of the Stokes–Einstein relation is influenced
by the liquid–liquid critical point.

For the experimental results and TIP5P water, we work at a pres-
sure that ismuch lower than that of the expected critical pressure for
each system. As we work far away from the critical point, the posi-
tions of the temperature maxima of the various response functions
may differ by a significant amount, as they must coincide only near
the critical point26. For TIP5P, we find that TW≈255K, identical to
Tmax. This suggests that the loci for the maximum in specific heat
and the maximal rate of change of the local structure coincide even
at relatively low pressure. However, for water, we found a larger
difference, withTW≈225K (ref. 11) andTmax≈245K.

Both our experimental findings and our simulation results
are consistent with the possibility that, in water, the fractional
Stokes–Einstein relation (2) sets in near the temperature where
the relative populations of molecules with LDA-like and HDA-
like local structures start to rapidly change. A structural origin
for the failure of the Stokes–Einstein relation can be understood
by recognizing that the Stokes–Einstein relation defines an
effective hydrodynamic radius. The different species have different
hydrodynamic radii, so when their relative populations change,
the classical Stokes–Einstein relation (based on the assumption
of the fixed hydrodynamic radius) breaks down. Moreover, a
connection between the local structure of water and its dynamics
is expected16,27,28; molecules with a locally tetrahedral geometry are
more ‘sluggish’ than less well-networked molecules. This effect also
occurs in solutions, where a failure of the scaling between diffusion
and relaxation has been interpreted in terms of changes in the
local network structure29. For these reasons, our structure-based
interpretation for the failure of the Stokes–Einstein relation is
particular to water, and the breakdown occurs at almost twice
the glass-transition temperature Tg. An explanation for the failure
of the Stokes–Einstein relation for liquids in general, where the
breakdown typically occurs within 20–40% of Tg, must involve
understanding how the intermittency of the molecular motion
couples to diffusion and relaxation mechanisms approaching
the glass transition. Such a general explanation should also be
applicable to water, where the emergence of intermittency of the
dynamics occurs at unusually high T owing to water’s unusual
thermodynamics and corresponding changes in the fluid structure.

Methods
We carried out infrared absorption measurements at ambient pressure in the
oxygen–hydrogen stretching (OHS) vibrational spectral regions. We used a
Bomem DA8 Fourier transform spectrometer, operating with a Globar source,
in combination with a KBr beam splitter and a DTGS/KBr detector. To avoid
saturation effects, we used the attenuated total reflection geometry, which is
generally insensitive to sample thickness. The spectra of interest were recorded at
a resolution of 4 cm−1, automatically adding 200 repetitive scans to obtain a good
signal-to-noise ratio and highly reproducible spectra. They were then appropriately
normalized by taking into account the effective number of absorbers. Our spectra
for confined water were not smoothed, and the only manipulation used was the
baseline adjustment. Investigated samples (water confined in MM-41-S annotates)
have hydration levels ofH ∼0.5 (0.5 g of H2Oper gram ofMM-41-5).

Different approaches, such as mixture and continuous models developed in
terms of scattering theory, have been applied to analyse the spectra of water by
means of Gaussian components unambiguously classified as hydrogen-bonded or
non-hydrogen-bonded OHS oscillators by considering different hydrogen-bonded
geometries30–32. We work in an intermediate picture between the continuous and
discrete models, assuming the existence of a percolating hydrogen-bond network
with a characteristic hydrogen-bond lifetime of the order of a picosecond. The
Gaussian components’ peaks are located at: (I) 3,120 cm−1, (II) 3,220 cm−1, (III)
3,500 cm−1 and (IV) 3,620 cm−1.

The network contributes to the OHS vibrational spectra with two main
collective modes. The first, at 3,120 cm−1, is assigned to fully bonded water
molecules, owing to its similarity to the OHS band observed in low-density
amorphous LDA ice30. The second, at 3,220 cm−1, is associated with water
molecules having an average degree of connectivity larger than that of dimers,
but lower than those in a hydrogen-bonded tetrahedral structure. The highest
wavenumber components are the only ones present in bulkwater in the temperature

region 600<T < 640K near the liquid–gas critical point Tc = 647K, and so they
are ascribed to dimeric and monomeric water.

In summary, the OHS spectra of water can be decomposed into three main
groups: (I), (II and III) and (IV), where (II–III and IV) represent the HDA-like
water. Components I and II make the largest contribution to the OHS spectra in
the supercooled region. Using this classification, the relative population of local
structures in water can be calculated on the basis of the decomposition, which is
defined as the relative area (the ratio of each component’s integrated area to the
total OHS integrated area)1. The overall continuity we found between supercooled
and amorphous water (see, for example, Fig. 3 of ref. 1) in the infrared spectral
parameter supports the experimental validity of our data interpretation.

For the microscopic average correlation time, our experiment used incoherent
QENS and the spectral data were analysed by using the relaxing cage model. The
typical wave vector is in the range 0.2Å−1<q<2Å−1. A proper choice of the energy
resolution and of the dynamical range is also important for this type of QENS
experiment.We use two spectrometers, one with an energy resolution of 0.8 µV and
a dynamical range of±11 µV and the other with an energy resolution of 20 µV and a
dynamical range of±0.5mV. Further experimental details are given in refs 1, 2.
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