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ABSTRACT Different from numerical attributes, measuring the similarity between categorical attributes
is more complex due to their non-inherently ordered characteristic, especially in an unsupervised scheme.
This work, therefore, presents a new method, Heterogeneous Graph-based Similarity measure (HGS),
to measure the similarity between categorical data for unsupervised learning. In order to capture the possible
complex relationships hidden among attributes, a heterogeneous weighted graph is creatively constructed by
extracting the information from categorical data. Both objects and attribute values are represented as nodes
and their occurrence and co-occurrence relationships are shown as edges. Based on a derived node-pair
graph, three rules are used to iteratively update the similarity scores between object pairs and attribute-value
pairs until the scores converge. We also analyze its complexities and validate the metric properties and
convergence. In experiment validation, five state-of-the-art measures are compared with HGS based on
20 UCI datasets and 6 high-dimensional datasets in the medical domain in both k-modes and spectral
clustering and similarity search experiments. The results show although no measure can outperform all other
measures on all datasets, HGS can perform better in both clustering and similarity search tasks on the whole.
Finally, six studies further discuss the convergence, time cost, and parameter sensitivity of the HGS, explore
its application to imbalanced class distribution, and compare it with its variants by different initialization
and graph construction.

INDEX TERMS Unsupervised learning, similarity measure, categorical data, heterogeneous graph-based
similarity (HGS).

I. INTRODUCTION
With the continuous increase of data produced from media,
medical, and social network, etc., to find the relationship
between objects has caught the attention of researchers.
Similarity, as an important relationship, is a numeral mea-
sure of the degree to which the two data objects are alike,
which is usually described as a distance with dimensions
representing features of the object [1]. It’s fundamental and
essential for effective data analytics in various domains,
such as data mining [2], recommendation [3], and infor-
mation retrieval [4], [5], which can determine whether the
learning process is reliable and the outcome is accurate.
Normally, various attributes can be utilized to determine
the similarity between objects. When they are described by
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numerical attributes, it’s more natural to compare them by
a series of mature methods, like Euclidean and Minkowski
distances [6]. However, when they are described by cat-
egorical (nominal) attributes, the similarity analysis is
much more complex with the values unordered and even
incomparable [7]. Thus, it’s very difficult and unstraight-
forward to quantify the difference between categorical
objects.

The wide existence of categorical data makes it an
urgent problem to calculate the similarity between categor-
ical objects, especially in an unsupervised scheme, because
tagging data requires a lot of manpower and resources.
However, unlike supervised learning, similarity measure in
the unsupervised scheme for categorical data has received
much less attention until now [8], [9]. Without both the
label information and the numerical attributes, it’s much
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TABLE 1. An example: Evaluation of applications for nursery schools.

challengeable to distinguish different categorical values [10].
Currently, only limited efforts have been made, mainly
including matching-based [11], frequency-based [12], and
information theory [13] based methods. However, all of these
methods fail to capture the intrinsic characteristics and rec-
ognize the complex hidden relationship between attributes.
Matching-based methods can just measure the similarity
roughly. When all the objects share an equal number of iden-
tical attribute values, their similarities will be the same. As for
frequency-based and information theory-based methods, they
will easily fail when the attribute values are uniformly dis-
tributed.

Taking a typical categorical dataset, the Nursery
dataset [14], as an example, which is obtained from the forms
of various families applying for nursery schools. As shown
in Table 1, six families (objects) are presented with four
categorical attributes: parents’ occupation, family’s house
condition, the form of family, and the financial condition
of the family. By the rule of matching, we can’t tell among
families 4, 5, and 6. None of them is similar to family
1 because they don’t have any matching attributes with
family 1. While from both frequency and information theory
perspectives, family 1 is more similar to family 5 than family
4 and 6 because they share closer frequency of ‘‘foster’’
and ‘‘incomplete’’ in ‘‘family form’’ attribute. Although
they try to capture the difference from the distribution of
attribute values, they are still insufficient. Because the com-
plex relationship hidden among attributes has been neglected.
For instance, a family’s finance and the house condition
are always related to the parents’ occupation. In the table,
when the parents’ occupation is usual, the family’s finance
is inconvenient, and the house condition tends to be less
convenient or critical. While a pretentious occupation can
always bring convenient finance to the family and convenient
house condition. Besides, whether a family is complete or not
can also be closely related to the family’s house condition
and finance, and even the parent’s selection of occupation.
For instance, a single mother may choose jobs that can have
much flexible time to take care of her children. Thus, from
the above analysis, the failure of these methods may lie in
only capturing information within attribute while neglecting
the genuine information hidden among attributes.

The above example shows that much more complex
relationships may be embedded in categorical attributes.

The occurrence of one attribute may depend on another one
or even a set of other attributes. Owing to the deficient infor-
mation that can be utilized in unsupervised learning, it can
be very meaningful to adequately capture this information.
Obviously, the complex co-occurrences and co-dependencies
among attributes are not straightforwardly quantified. Thus,
we consider finding an effective tool to extract relationship
information. As a predominant tool to represent relationships,
a graph structure is very effective to visualize the data and
capture the hidden relationship among attribute values [15].
Various relationships can be represented as different types of
edges and the weights on edges can represent the strengths of
the relationships, e.g., the number of co-occurrence [16].

Drawing on the graph operation, SimRank [17] is a tradi-
tional similarity measure on a graph which iteratively calcu-
lates the similarity scores between nodes on the graph and can
converge to a stable state fastly. However, the homogeneous
design can only capture the relationships between objects
or attribute values, while neglecting much more complex
but valuable information between object and attribute value,
between attribute value and attribute value. Inspired it, in this
work, we creatively introduce the graph structure to capture
the information from the categorical dataset. In addition to
objects being represented as nodes in SimRank, we also
modeled attribute values as nodes since the complex relation-
ships may be hidden among specific attribute values. More
precisely, both objects and attribute values are represented as
nodes and the occurrence relationships between objects and
attribute values, and the co-occurrence relationships between
attribute values, are represented as the different types of
edges.

On the base of the heterogeneous graph structure, to cal-
culate the similarity between object nodes is another chal-
lenge. As the analysis above, a set of attribute values may
co-occur in the same object. For instance, in the Table 1,
the usual parents’ occupation, less convenient house condi-
tion, inconvenient finance, and less convenient house con-
dition tend to co-occur in the same family. Compared with
the pairwise relationship, it’s more challengeable to mine
complex relationships, that is, one attribute possibly depends
on multiple other attributes. In order to make use of this
information, we further consider deriving a node pair graph
from the previously constructed heterogeneous graph. The
score of each node pair can be set as the similarity value
between the nodes within the pair. Through iterating the
scores across the whole graph, the score can ‘‘flow’’ across
the whole graph, traveling between node pairs via the edges.
Thus, during this iterative process, the complex relation-
ship information can be captured and reflected in the final
score.

Our assumption is that similar objects may possess sim-
ilar attribute values, while similar attribute values may also
belong to similar objects. So we can infer that if the values
of the attribute are similar, the values of another attribute
that tend to co-occur with them are more possibly similar.
Hence, the iteration process can be conducted between object

VOLUME 7, 2019 112663



Y. Ye et al.: Heterogeneous Graph-Based Similarity Measure for Categorical Data Unsupervised Learning

pairs and attribute-value pairs, and between attribute-value
and attribute-value pairs.

Therefore, our work first constructs a heterogeneous graph
composed of multiple types of nodes and edges by extract-
ing the occurrence and co-occurrence information from the
categorical dataset. Based on it, a node-pair graph is derived
as the basis of the score iteration process, during which the
scores flow across thewhole graph until convergence. Finally,
we can obtain the similarity measure for both objects and
attribute values.

The rest of paper is organized as follows. Some related
works in categorical learning are introduced in the fol-
lowing section. In Section III, the problem was formu-
lated and a learning framework is present. In Section IV,
we first illustrate the detailed graph construction process.
Then, the detailed algorithm of categorical data similar-
ity measure (HGS) is proposed. In Section V, we prove
the metric properties and the convergence of solution and
analyze its computational efficiency compared with other
methods. In the following Section VI, we carry out clus-
tering and similarity search experiments on 26 datasets
by comparing with five common-used methods and exten-
sive discussions on the characteristics, time and parameter
sensitivity of the HGS. Finally, a conclusion is drawn in
Section VII.

II. RELATED WORKS
In recent years, the increasing efforts have been contributed to
addressing similarity learning for categorical data in various
contexts. As known, it’s much more complex than that for
numerical data owing to its unorder characteristic. Three
major groups are intended to solve this problem. The most
simple one is matching-based (or overlap ) measure, like
Hamming distance (Hamming) [11], which naturally counts
the number of attributes that are matched between two objects
as the similarity value. It’s very fast and easy to use in various
fields. Another popular method group is frequency-based
measure, like Inverse Occurrence Frequency (IOF), Occur-
rence Frequency (OF) [18]. By comparing the frequency dis-
tribution of categorical values within the attribute, we found it
can work better in some conditions than the overlap measure.
Furthermore, the difference between IOF and OF lies in
the weight on less or more frequent values. The final one
is information-theoretical similarity (Lin) [13]. However, all
these methods are too rough to precisely capture more details
of useful information. They only see the local difference
within attributes, however, lose more possible valuable infor-
mation that may hide between attributes. Besides, they do not
consider the distribution of values, which is often captured for
numerical attributes.

Believing the dependence between attributes, a variety
of intensive data-driven methods have been proposed to
capture the context information reflecting the dependency
among the data samples as a supervision to improve unsu-
pervised learning [19]. Elementary exploration introduced
the Pearson or Jaccard coefficient to extract the correlation

between attributes. ALGO_DISTANCE (ALGO in short)
has considered the attribute-value distribution in the data
set and incorporated the co-occurrence relationship between
attribute-value pairs [20]. Compared with Hamming and
OF, it has shown more suitability and effectiveness. How-
ever, it can’t distinguish objects when the attribute val-
ues in the whole dataset are equally distributed and their
co-occurrent is similar. Much more efforts have been con-
tinuously contributed to capturing the co-occurrence rela-
tionship between values for various attributes. By combining
the intra-relationships and inter-relationships of attribute val-
ues, Coupled Object Similarity (COS) measure learned the
similarity for categorical data [21]. Based on COS, Couple
Metric Similarity (CMS) was proposed recently as a similar-
ity metric [22]. However, in these works, only the pairwise
relationship is considered, which neglected more possible
complex relationships. Furthermore, they only considered
the intra-coupling relationship when both categorical values
co-occur with the same values of another attribute. The abso-
lute rule may lose the relationship when both categorical
values co-occur with similar categorical values.

Iterated Contextual Distances (ICD) [23] is an iterative
algorithm to calculate the similarity for attributes, sub-
relations, and raws based on the 0-1 information table. How-
ever, it only calculates the attribute similarity instead of
detailed attribute value similarity. Thus, we can’t directly
apply it in categorical unsupervised learning. Drawing on
the graph operation, SimRank is a traditional similarity mea-
sure on the graph which iteratively calculates the similarity
scores between nodes and can converge to a stable state
fastly. But it’s only for the homogeneous network which con-
structs graph composed of only one type of nodes (objects)
and only focuses on object-to-object relationship, which is
a structure-based method. P-Rank [25] and C-Rank [26] are
variations of SimRank. Compared with SimRank, P-Rank
enriches SimRank by jointly encoding both in- and out-link
relationships into structural similarity computation. C-Rank
is specific for measuring the similarity of two papers, which
uses both in-link and out-link by disregarding the direction of
references. However, in our work, we construct an undirected
heterogeneous graph composed of both objects and attributes.
Each object is connected to the equal number of attribute
values. Thus, there is no problem with the dealing of in-link
and out-link information.

Similarity computation in heterogeneous networks
between objects developed recently. Several similarity
measures have been proposed in heterogeneous networks
recently, which can be divided into two broad categories:
(1) content-based similarity measures that treat each object
as a bag of items; and (2) structural-based similarity mea-
sures that considered the object-to-object relationship in
terms of links. [27] proposed HeteRank similarity measure,
which fully integrates the multi-type relationships into sim-
ilarity computation by utilizing all the meetings between
objects. [28] proposed another measure, AvgSim, to evalu-
ate two objects through two random walk processes along
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TABLE 2. The most similar families across different methods. Each entry
represents the most similar family for the family in each row via the
measure listed in the column.

the given meta-path and the reverse meta-path. The above
methods are structural-based methods. In order to bal-
ance structure and content, [29] proposed a graph cluster-
ing method which measures the similarity between objects
by balancing structural similarity and attribute similarity.
In [30], SimCC method was proposed to measure the sim-
ilarity for scientific papers based on both content and
citations. [31] present a similarity measure NetSim for x-star
network schema, which first constructs attribute graph to
calculate attribute similarity, then calculated the similarity of
centers. The works that combined both structural and content
information in the calculation of similarity have shown their
superiority to the link only based methods.

Therefore, inspired by the iterative idea and the combina-
tion of both structure and content similarity, we proposed a
heterogeneous graph-based similarity measure for the unsu-
pervised learning on categorical data. There are two types of
nodes and two types of edges in the graph to extract the infor-
mation from the dataset. Compared with the methods above,
our method not only considers the relationship between
objects and attributes, but we also take the co-occurrence
relationship between attribute values into consideration. This
operation can capture more subtle dependence between
attribute values. Meanwhile, we use the iterative process
to balance the attribute similarity and structural similarity,
which can distinguish the difference between objects more
effectively.

To show the difference of methods directly, we calcu-
late the similarity scores of data in Table 1 and find their
similar objects via the methods mentioned before including
Hamming, OF, Lin, ALGO, CMS, and the HGS method
proposed in this work. As the result shown in Table 2,
Hamming can’t precisely distinguish objects. For instance,
concerning family 6, Hamming considers family 4 and 5 are
the most similar to it, while other methods consider fam-
ily 5 is more similar to it. The largest difference lies in
family 3. The Hamming method considers the most similar
families with it are family 1, 2, and 4 due to their equal
number of matching attributes, while Lin method regards
family 1 as the most similar one with it. Both OF and CMS
believes family 4 is the most similar to family 3 because
their attribute values share a similar frequency, while both
ALGO and HGS methods consider the most similar one is
family 2.

III. PROBLEM FORMULATION
In this section, we formulate the problem focused in this
work and present a canonical description. Then, an overall
framework of the algorithm is given as a good guidance for
our work.

A. PROBLEM STATEMENT
Given a dataset composed of a number of objects observed
by several categorical attributes, we can first organize it as
an information table I = {O,A,U}, where O = {o1, . . . , on}
represents n objects,A = {a1, . . . , am} representsm attributes

and U =
mS
j=1

Uj represents all attribute values, in which

dom(Uj) = {uj,1, . . . , uj,rj}, where |dom(Uj)| = rj is the
number of values for attribute aj. Obviously, the total number

of attribute values is finite, which is
mP
j=1

rj = |U |. The
objective of this work is to obtain the similarity matrix S =
[sij]n⇥n between corresponding object pairs, where sij is the
similarity between ith and jth object. In unsupervised learning,
the calculation of similarity between object pairs is totally
based on their values difference on various attributes.

B. LEARNING FRAMEWORK
Recall the basic recursive assumption illustrated above is
‘‘two objects are similar if their corresponding attribute val-
ues are similar’’ and ‘‘attribute values are similar if their
connected objects are similar’’. In this section, we propose
the heterogeneous graph-based categorical data similarity
measure that captures the structure context across objects and
attribute values. The learning framework is shown in Fig. 1.

As the figure is shown, a heterogeneous graph structure
G is constructed consisting of two types of nodes and two
types of edges. Both the object and all attribute values are
represented as nodes. One type of edge is connected between
attribute value nodes, and the other is added between object
nodes and attribute value nodes. Furthermore, a node-pair
graph Ĝ was derived from G. After the graph construction,
the score of each attribute-value pair is initialized and iter-
atively calculated based on the three rules by employing
the structure information from Ĝ. Until convergence, both
object-pair and attribute-value pair similarity values can be
obtained. In the following subsections, more detailed proce-
dures about graph model construction and similarity calcula-
tion will be illustrated.

IV. HGS: HETEROGENEOUS GRAPH BASED
CATEGORICAL DATA SIMILARITY MEASURE
In this section, we illustrate the detailed learning framework
of HGS, graph model construction method and the iterative
calculation process of the similarity score for object pairs and
attribute-value pairs based on three basic rules.

A. HETEROGENEOUS GRAPH CONSTRUCTION
The dataset D was modeled as a heterogeneous undirected
weighted graph G = (V ,E,W ), where V = V1

S
V2
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FIGURE 1. Learning framework of HGS similarity measure. A graph G and its derived node-pairs graph Ĝ were constructed from
categorical dataset. Then the similarity of object pairs and attribute-value pairs were iteratively calculated based on three rules.

is the set of nodes, E = E1
S
E2 represents the set of

edges and W = W1
S
W2 represents weights on the edges.

The graph is a heterogeneous graph composed of two types
of nodes and two types of edges. More precisely, nodes

in V1 = {v11, . . . , vn1} and V2 =
mS
j=1

V j
2 represent objects

in O and attribute values in U , respectively, where V j
2 =

{vj,12 , . . . , v
j,rj
2 } are the set of all values of jth attribute Uj.

Edges in E1 connect nodes between V1 and V2 when the
object inV1 present the attribute values inV2.While forE2, its
edges connect nodes between V2 when both attribute values
occur in the same object. In other words, if both nodes in V2
are connected to the same node in V1, there will be an edge
between them in E2. W1 represents the weight of edges in
E1, but it is an adjacent matrix, where the entry equals to 1
with the existence of a relation, otherwise, 0. Because each
object can be connected to an attribute value one time. On the
contrary,W2 is the set of weights on edges in E2 representing
the co-occurrence number of both attribute values in the same
object. For instance, the weight between the attribute ‘‘usual’’
of parents’ occupation and the attribute ‘‘less_conv’’ house
condition is 2, because they co-occur in both family 1 and
family 2.

Besides, we have ignored the node pair between various
attributes because they are not meaningful comparison. For
example, we can’t compare the car’s price ‘‘high’’ with its
door number ‘‘2’’. So these node pairs are deleted during
the graph construction step, which can save more calculating
space. For any node vx1, x = 1, . . . , n in V1, we denote all
its neighbour set as I (vx1) and the single node is denoted as
Ik (vx1). While for nodes in V2, they are connected to nodes
in both V1 and V2. Thus, for any node vj,x2 , x = 1, . . . , rj

TABLE 3. List of detailed notations.

in V2, denote its neighbour set in V1 and V2 as I (vj,x2 ) and

N (vj,x2 ) =
mS
i=1

Ni(v
j,x
2 ), in which i means this attribute value

object belongs to ith attribute. Similarly, the single object
of I (vj,x2 ) is denoted as Ik (v

j,x
2 ). While for N (vj,x2 ), its single

object is denoted as Ni,k (v
j,x
2 ). In order to clarify clearly,

detailed notations are listed in Table 3.
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In order to further formulate the calculation, a node-pair
graph Ĝ = (V̂ , Ê, Ŵ ) was constructed on the base of the
graph G above. Precisely, V̂ = V̂1

S
V̂2, in which nodes

in V̂1 = {(vp1, vq1), p  q, p, q = 1, . . . , n} represent the
ordered node pairs within V1 of G. The ordered pair means
the node pair (a, b) and (b, a) are only represented as a
single node (a, b). Similar as V̂1, V̂2 is derived from the node
pairs in V2 of G. The difference is, V̂2 represents the node

pairs within the same attribute. To be specific, V̂2 =
kS
j=1

V̂ j
2,

where V̂ j
2 = {(vj,p2 , vj,q2 ), p, q = 1, . . . , nj}. As for the edges,

Ê = {Ê1 S
Ê2}, where edges in Ê1 connect nodes between

V̂1 and V̂2, while edges in Ê2 connect nodes within V̂2.
Furthermore, Ŵ = Ŵ1

S
Ŵ2 represent the weights on Ê1 and

Ê2, respectively. Since W 1
1 is an adjacent matrix, its derived

matrix Ŵ1 is also an adjacent matrix, of which the entry is
1 when relation exists between node pairs and attribute values
pairs. On the contrary, Ŵ2 is more complex. Without loss
of generality, we use < ., . > and w(., .) represent an edge
and its weight, respectively. < (o1, o2), (a1, a2) > exists in
Ê1 when both the edges < o1, a1 > and < o2, a2 > or
< o2, a1 > and< o1, a2 > exist in E1.While for Ê2, the edge
< (a1, b1), (a2, b2) > means the co-existence of both edges
< a1, a2 > and < b1, b2 > in E2. In reference to [22],
the weight of < (a1, b1), (a2, b2) > can be derived from both
the weights of < a1, a2 > and < b1, b2 >, which can be
calculated by

ŵ2((a1, a2), (b1, b2))

= max(w2(a1, b1),w2(a2, b2))
2 ⇤ max(w2(a1, b1),w2(a2, b2))�min(w2(a1, b1),w2(a2, b2))

(1)

Obviously, when w2(a1, b1) = w2(a2, b2), the weight
ŵ2((a1, a2), (b1, b2)) = 1, whereas, the weight is less
than 1 when the weights on both edges are different. The
larger difference they are, the smaller weight of their derived
edges.

In order to clarify our model more clearly, a simple exam-
ple is shown in Table 4. Three objects o1, o2 and o3, are
observed by two attributesA andB, where dom(A) = {a1, a2},
dom(B) = {b1, b2}. More precisely, the attribute values of
o1 are a1 and b1, respectively, while o2 has attribute values
a2 and b1. Then the graph G was constructed in Fig. 2.
As seen in the graph, three objects and four attribute val-
ues are represented as nodes. while for edges, precisely,
for o1, the edges were inserted between o1 and a1, o1
and b1, while for o2, edges were inserted between o2 and
a2, o2 and b1. Furthermore, edges were inserted between
attribute values. Because both a1 and b1 were synchronously
connected to o1, and a2 and b1 were synchronously con-
nected to o2, so a1 and b1, a2 and b1 were also connected,
respectively.

In the bottom of Fig. 2, Ĝ is derived from G, in which six
ordered object pairs and six ordered attribute value pairs are
represented as nodes. While for edges, o1o2 was connected

TABLE 4. A tiny example.

FIGURE 2. A simple example of constructed graph G and the derived
node-pairs graph Ĝ.

to a1a2 as the existence of both edges (o1, a1) and (o2, a2)
in G. For the edge between attribute value pairs, a1a1 and
b1b1 were connected because both of them were connected to
node o1o1.

B. HGS SIMILARITY SCORE CALCULATION
Based on the derived node-pair graph Ĝ, in this subsection,
we can formulate the calculation process of the similarity
of object pairs. First, the similarity scores of attribute-value
pairs are initialized. Second, three rules are employed to
iteratively calculate the scores until the scores converge or
reach the iterative maximum count. Similarity can be seen as
a ‘‘flowing’’ that propagates in Ĝ from node to node, thus the
similarity scores are mutually reinforced. Finally, the scores
of object node pairs are what we want. Denote the score of
each node pair (a, b) at rth iteration as s(r, (a, b)). According
to SimRank, when r ! 1, s(r, (a, b)) will converge to
s(a, b). The detailed proof is provided in subsection V-B.
And in the practical instance, the speed of converging is very
fast.

1) SIMILARITY SCORE INITIALIZATION
Before iterative calculation, the score of each attribute-value
pairs should be first given. As the base case, an object
or attribute value is maximally similar to itself [22]. Thus,
during each rth iteration, for any object pair (vx1, v

y
1), x 

y, when x = y, s(r, (vx1, v
y
1)) is set as 1. Similarly, for

any attribute-value pair (vj,x2 , vj,y2 ), x  y, j = 1, . . . , rj,
when x = y, s(r, (vj,x2 , vj,y2 )) = 1. They will never
be changed during each iteration. Besides, the similarity
scores of all attribute-value pairs at first iteration should
be given. For any attribute value vj,x2 and vj,y2 , x 6= y,
their Jaccard similarity coefficient of occurrence frequency
in dataset was compared [32]. Denote the neighbor set
of vj,x2 and vj,y2 in V1 as I (vj,x2 ) and I (vj,y2 ), respectively.
Therefore, the similarity score s(1, (vj,x2 , vj,y2 )) is initialized
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as

s(1, (vj,x2 , vj,y2 )) =
8
<

:

log(p) · log(q)
log(p · q) + log(p) · log(q) , x 6= y

1, x = y
(2)

where log denotes the logarithm, p = |I (vj,x2 )| + 1 and q =
|I (vj,y2 )| + 1. I (vj,x2 ) and I (vj,y2 ) denote the set of object nodes
related to attribute value nodes vj,x2 and vj,y2 , respectively.
Additionally, the weights between the attribute-value pairs
should be calculated according to Eq. 1.

2) SIMILARITY SCORE ITERATIVE CALCULATION
After initialization of attribute-value pair similarity scores,
we will update the similarity scores according to three rules.
The scores will flow from attribute-value pairs to object pairs,
then return to attribute-value pairs again. Before they return
to object pairs, the scores will flow between attribute-value
pairs. In the long run, the similarity scores will flow through
the whole network and finally converge. In the following,
we formulate three basic rules and explain the detailed cal-
culation of iterative calculation. It should be mentioned that
to implement the experiment much faster, we only scan the
database one time and save the relations in a sparse matrix.
Thus the proceeding of remaining iterations doesn’t necessar-
ily access the database again.

(1) Rule 1: Attribute-Value Pair Similarity To Object
Pair Similarity

As the rule 1 shows, after the initialization of
attribute-value pair similarity scores, we can obtain the object
pair similarity via their correlation matrix. The intuition is
that similar objects tend to perform similar values on the same
attribute. The similarity score of object pair can be deter-
mined by the similarity scores of all its related attribute-value
pairs. Therefore, for any x, y = 1, . . . , n and x 6= y, the object
node pair (vx1, v

y
1), we update its similarity score in (r + 1)th

iteration by

s(r + 1, (vx1, v
y
1)) = C1

m

mX

k=1

s(r, (Ik (vx1), Ik (v
y
1))). (3)

where C1 2 (0, 1) can be seen as both a memory coefficient
that object pair keep the state as its previous iteration and a
confidence coefficient from attribute value pair similarity to
object pair similarity. I (vx1) denotes the set of neighbours inV2
of vx1 and Ik (v

x
1) denotes the single attribute value node. Their

similarity scores in current iteration will partially derive from
their own scores in previous iteration and partially from their
neighbours. Because each object is related tom attributes and
only the values within attribute are compared, both |I (vx1)| and|I (vy1)| are equal to m, so the number of neighbours of object
pair (vx1, v

y
1) is also m.

(2) Rule 2: Object Pair Similarity To Attribute Value
Pair Similarity

Similar as rule 1, similar attribute values may co-occur
in similar objects. Following the above rule, for any

j = 1, 2 . . . ,m, x, y = 1, . . . , rj and x 6= y, we update the
similar scores of attribute-value pair (vj,x2 , vj,y2 ) by

s(r + 1, (vj,x2 , vj,y2 ))

= C2

|I (vj,x2 )||I (vj,y2 )|

|I (vj,x2 )|X

k1=1

|I (vj,y2 )|X

k2=1

s(r, (Ik1 (v
j,x
2 ), Ik2 (v

j,y
2 )))

(4)

Similar as C1, C2 2 (0, 1) can be considered both a memory
coefficient that attribute value pair keeps its previous state
and a confidence coefficient from object similarity to attribute
value similarity, and Ik1 (v

j,x
2 ), Ik2 (v

j,y
2 ) represent single node in

I (vj,x2 ) and I (vj,y2 ), respectively.
(3) Rule 3: Attribute-Value Pair Similarity To Attribute

Value Pair Similarity
Owing to the interdependence, the occurrence of one

attribute value may depend on that of another attribute value.
For instance, a person’s education degree may correlate with
his salary. Commonly, a higher education degree may cor-
respond to a higher salary. Compared to a bachelor degree,
a philosophy degree (Ph.D.) may be more similar to a master
degree. Thus, the salary similarity between persons of Ph.D.
andmaster degreemay be higher than that between persons of
Ph.D. and bachelor degree. Therefore, we think the similarity
score of an attribute-value pair can ‘‘flow’’ to the pairs of
its neighbours. Intuitively, for any j = 1, 2 . . . ,m, x, y =
1, . . . , rj and x 6= y, we re-update the similarity score of
attribute-value pair (vj,x2 , vj,y2 ) from all its attribute value pair
neighbours:

s(r + 1, (vj,x2 , vj,y2 ))

= 1

mP
i=1

|Ni(vj,x2 )|P
k1=1

|Ni(vj,y2 )|P
k2=1

!i
k1k2

mX

i=1

|Ni(vj,x2 )|X

k1=1

|Ni(vj,y2 )|X

k2=1

!i
k1k2 ⇤ s(r, (Ni,k1 (vj,x2 ),Ni,k2 (v

j,y
2 )))

(5)

where !i
k1k2 is the short of ŵ2((v

j,x
2 , vj,y2 ), (Ni,k1 (v

j,x
2 ),

Ni,k2 (v
j,y
2 ))) which represents the weight of the edge

from attribute-value pair (vj,x2 , vj,y2 ) to its single neighbour
attribute-value pair (Ni,k1 (v

j,x
2 ),Ni,k2 (v

j,y
2 )) that belongs to ith

attribute.
The HGS algorithm can be summarized as algorithm 1.

V. THEORETICAL ANALYSIS
In this section, we prove the metric properties of HGS,
including positivity, reflexivity, commutativity, and triangle
inequality. Besides, the convergence proof of the solution is
given in the second part. Finally, the computational complex-
ity of HGS is analyzed.
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Algorithm 1 HGS Similarity Measure Algorithm for the
Unsupervised Learning on Categorical Data
Input: I = {O,A,U}: Information table, where

O: n objects
A: m attributes
U : the combination of all attribute values.

Output: S = [sij]n⇥n: the similarity matrix between
object pairs.

1 Graph Construction
Heterogeneous graph G = (V ,E,W ) construction
Node-pair graph Ĝ = (V̂ , Ê, Ŵ ) derived from G

2 Save graph structure in adjacent matrix W1 and W2
W1: the adjacent matrix between object node and
attribute-value node;
W2: the adjacent matrix between attribute-value and
attribute-value node;

3 Calculate the weight matrix for node-pair graph. Ŵ1:
the adjacent matrix between object pair and
attribute-value pair node;
Ŵ2: calculate the adjacent matrix between attribute-value
and attribute-value node according to Eq.1;

4 Initizalze
maxIter = 10;C1 = 0.8;C2 = 0.8;
s(r, (vx1, v

y
1)) = 1 for any r when x = y;

s(r, (vj,x2 , vj,y2 )) = 1 for any r and j when x = y;
s(1, (vj,x2 , vj,y2 )) = log(p)·log(q)

log(p·q)+log(p)·log(q) when x 6= y;
5 for r 2 [1,MaxIter] do
6 for x 2 [1, n] do
7 for y 2 [i, n] do
8 Calculate s(r, (vx1, v

y
1)) according to Eq. 3;

9 end
10 end
11 for i 2 [1,m] do
12 for j 2 [1, ri] do
13 for k 2 [1, ri] do
14 Update s(r + 1, (vi,j2 , vi,k2 )) according to

Eq. 4
15 end
16 end
17 end
18 for i 2 [1,m] do
19 for j 2 [1, ri] do
20 for k 2 [1, ri] do
21 Update s(r + 1, (vi,j2 , vi,k2 )) according to

Eq. 5
22 end
23 end
24 end
25 end

A. HGS METRIC VALIDATION
Given s(vx1, v

y
1), which represents the similarity score between

object nodes vx1 and vy2 obtained by HGS, in the following
section, we prove it possesses the properties as follows.

1) Positivity: 0 < s(vx1, v
y
1)  1.

Accordingly, if vx1 6= vy1, s(v
x
1, v

y
1) is the average of sim-

ilarity scores of its related attribute-value pairs in Ĝ during
each iteration, otherwise, s(vx1, v

y
1) = 1. In the first iteration,

the similarity score of attribute value pairs was initialized by
Eq. 2, accordingly s(vj,x2 , vj,y2 ) 2 (0, 1]. So after all iteration,
the similarity score has flowed between attribute-value and
object pairs by average operation. Therefore, as the average
similarity scores, s(vx1, v

y
1) also satisfies positivity property.

2) Reflexivity: s(vx1, v
y
1) = 1 , vx1 = vy1.

First, we prove vx1 = vy1 ) s(vx1, v
y
1) = 1. When vx1 = vy1,

for node pairs that consist of identical objects, their similarity
in every iteration s(r, (vx1, v

y
1)) has been set as 1 and was

never changed in all iterations. So s(vx1, v
y
1) = 1. Further,

we prove the sufficiency s(vx1, v
y
1) = 1 ) vx1 = vy1.

If vx1 6= vy1, they are connected to at least one attribute-value
pair consisting of different values. However, according to
Eq.2, the attribute value is most similar to itself. Thus, only
the attribute-value pairs consisting of the same values can
have a score of 1. Otherwise, the attribute-value pairs will
be less than 1. According to Eq.3 and Eq.4, only when vx1 =
vy1, their connected attribute-value pair consist of the same
values. Besides, as the existence of confidence coefficients
C1 2 (0, 1) and C2 2 (0, 1), s(r, (vx1, v

y
1)) < 1 even all the

attribute-value pairs that they are connected to are equal to 1.
Thus, in the long run, s(r, (vx1, v

y
1)) can’t possibly converge to

s(vx1, v
y
1) = 1. So, if s(vx1, v

y
1) = 1, then vx1 = vy1.

3) Commutativity: s(vx1, v
y
1) = s(vy1, v

x
1).

In our iterative calculation, the object pairs vx1, v
y
1 and

vy1, v
x
1 have been combined as one object pair vx1, v

y
1. Thus,

s(vx1, v
y
1) = s(vy1, v

x
1).

4) Triangle Inequality: 1
s(vx1,v

z
1)

+ 1
s(vz1,v

y
1)

� 1 + 1
s(vx1,v

y
1)

Denote all the attribute-value nodes that are related to vx1,
vy1 and v

z
1 as I (v

x
1), I (v

y
1) and I (v

z
1), respectively, in which the

single node is denoted as Ik (vx1), Ik (v
y
1) and Ik (v

z
1). Therefore,

according to Eq. 3,

1
s(vx1, v

z
1)

+ 1
s(vz1, v

y
1)

� 1
s(vx1, v

y
1)

� 1

= m
C1

(
1

mP
k=1

s((Ik (vx1), Ik (v
z
1)))

+ 1
mP
k=1

s((Ik (vz1), Ik (v
y
1)))

)

� 1
mP
k=1

s((Ik (vx1), Ik (v
y
1)))

) � 1 (6)

Because C1 < 1, hence the HGS similarity metric satisfies
triangle inequality when the following equation holds.

1

1
m

mP
k=1

s((Ik (vx1), Ik (v
z
1)))

+ 1

1
m

mP
k=1

s((Ik (vz1), Ik (v
y
1)))

� 1

1
m

mP
k=1

s((Ik (vx1), Ik (v
y
1)))

� C1 (7)
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Thus, if for any k = 1, . . . ,m, the following equation holds,
so does the Eq. 7.

1
s((Ik (vx1), Ik (v

z
1)))

+ 1
s((Ik (vz1), Ik (v

y
1)))

� 1
s((Ik (vx1), Ik (v

y
1)))

� 1 (8)

The similarity scores of their pairs are determined in the last
iteration. According to Eq. 5, the scores could be changed by
average operation, which however doesn’t change the triangle
inequality property.

All the possible cases are considered. We denote |Ik (vx1)|+
1, |Ik (vy1)| + 1, and |Ik (vz1)| + 1 as x, y and z, respectively.
As |Ik (vx1)|, |Ik (vy1)|, |Ik (vz1)| = 1, so x, y, z = 2, and
logx, logy, logz � 0.

(1) when Ik (vx1) = Ik (v
y
1) = Ik (vz1), according to Eq. 2,

s((Ik (vx1), Ik (v
z
1)) = s((Ik (v

y
1), Ik (v

z
1)) = s((Ik (vx1), Ik (v

y
1)) =

1, hence
1

s((Ik (vx1), Ik (v
z
1)))

+ 1
s((Ik (vz1), Ik (v

y
1)))

= 1 + 1
s((Ik (vx1), Ik (v

y
1)))

(9)

(2) when Ik (vx1) = Ik (v
y
1) or Ik (v

y
1) = Ik (vz1) or Ik (v

x
1) =

Ik (vz1):
When Ik (vx1) = Ik (v

y
1), s((Ik (v

x
1), Ik (v

y
1) = 1, so

1
s((Ik (vx1), Ik (v

z
1)))

+ 1
s((Ik (vz1), Ik (v

y
1)))

� 1
s((Ik (vx1), Ik (v

y
1)))

� 1

= log(x · z) + logx · logz
logx · logz + log(z · y) + logz · logy

logz · logy � 2

= log(x · z)
logx · logz + log(z · y)

logz · logy > 0 (10)

When Ik (v
y
1) = Ik (vz1), s((Ik (v

y
1), Ik (v

z
1)) = 1, y = z, so

1
s((Ik (vx1), Ik (v

z
1)))

+ 1
s((Ik (vz1), Ik (v

y
1)))

� 1
s((Ik (vx1), Ik (v

y
1)))

� 1

= log(x · z) + logx · logz
logx · logz � log(x · y) + logx · logy

logx · logy
= log(x · z)

logx · logz � log(x · y)
logx · logy

= log(x · z) · logy� log(x · y) · logz
logx · logy · logz

= logy� logz
logy · logz = 0 (11)

When Ik (vx1) = Ik (vz1), the case is similar as when Ik (v
y
1) =

Ik (vz1).
(3)when Ik (vx1) 6= Ik (v

y
1) 6= Ik (vz1)

1
s((Ik (vx1), Ik (v

z
1)))

+ 1
s((Ik (vz1), Ik (v

y
1)))

� 1
s((Ik (vx1), Ik (v

y
1)))

� 1

= log(x · z) + logx · logz
log(x · z) + log(z · y) + logz · logy

log(z · y)
� log(x · y) + logx · logy

log(x · y) � 1

= logx · logz
log(x · z) + logz · logy

log(z · y) � logx · logy
log(x · y)

= 2
logz

> 0 (12)

Therefore, the following equation holds.
1

s((Ik (vx1), Ik (v
z
1)))

+ 1
s((Ik (vz1), Ik (v

y
1)))

� 1 + 1
s((Ik (vx1), Ik (v

y
1)))

(13)

The above proof of triangle inequality is in reference to the
proof provided by paper [22], [37].

B. CONVERGENCE PROOF OF HGS
In this part, we prove the uniqueness of the converged
solution to the HGS similarity measure for objects and
attribute-values. The similarity scores between objects are
iteratively calculated from Eq. 3 and that between attribute
values are iteratively calculated from Eq. 4 and 5. For every
object pair (vx1, v

y
1) 2 V̂1, suppose s1(vx1, v

y
1) and s2(v

x
1, v

y
1)

are the two solutions obtained from HGS measure. For all
object pairs (vx1, v

y
1), let �1(vx1, v

y
1) = s1(vx1, v

y
1) � s2(vx1, v

y
1).

Similarly, for any attribute-value pair (vj,x2 , vj,y2 ) 2 V̂2,
let s1(v

j,x
2 , vj,y2 ) and s2(v

j,x
2 , vj,y2 ) are the two solutions and

�2(v
j,x
2 , vj,y2 ) = s1(vx1, v

y
1)�s2(vx1, vy1) represents the difference

for all attribute-value pairs.M1 = max
vx1,v

y
1

|�1(vx1, vy1)| andM2 =
max
vj,x2 ,vj,y2

|�2(vj,x2 , vj,y2 )| be the maximum absolute values of any

difference, respectively. If the solution is unique, there should
be s1(vx1, v

y
1) = s2(vx1, v

y
1) for all object pairs (vx1, v

y
1) and

s1(v
j,x
2 , vj,y2 ) = s2(v

j,x
2 , vj,y2 ). Thus, we want to prove M1 = 0

and M2 = 0.
When vx1 = vy1, the similarity score between vx1 and v

y
1 keeps

as 1, therefore, �1(vx1, v
y
1) = 0, and M1 = 0;

Similarly, when vj,x2 = vj,y2 , the similarity score between
vj,x2 and vj,y2 keeps as 1, therefore, �2(v

j,x
1 , vj,y2 ) = 0, andM2 =

0;
Otherwise,

�1(vx1, v
y
1)

= s1(vx1, v
y
1) � s2(vx1, v

y
1)

= C1

m

mX

k=1

(s1((Ik (vx1), Ik (v
y
1))) � s2((Ik (vx1), Ik (v

y
1)))

= C1

m

mX

k=1

�2(Ik (vx1), Ik (v
y
1)) (14)

�2(v
j,x
2 , vj,y2 )
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= s1(v
j,x
2 , vj,y2 ) � s2(v

j,x
2 , vj,y2 )

= C2

|I (vj,x2 )||I (vj,y2 )|

|I (vj,x2 )|X

k1=1

|I (vj,y2 )|X

k2=1

{s1(Ik1 (vj,x2 ), Ik2 (v
j,y
2 )) � s2(Ik1 (v

j,x
2 ), Ik2 (v

j,y
2 ))}

= C2

|I (vj,x2 )||I (vj,y2 )|

|I (vj,x2 )|X

k1=1

|I (vj,y2 )|X

k2=1

�1(Ik1 (v
j,x
2 ), Ik2 (v

j,y
2 ))

(15)

Let |�1(vx1, vy1)| = M1 for some object pairs (vx1, v
y
1) 2

V̂1 and �2(v
j,x
2 , vj,y2 ) = M2 for some attribute-value pairs

(vj,x2 , vj,y2 ). Thus, we have

M1 = |�1(vx1, vy1)|

=
�����
C1

m

mX

k=1

�2(Ik (vx1), Ik (v
y
1))

�����

 C1

m

mX

k=1

���2(Ik (vx1), Ik (v
y
1))

��

 C1

m

mX

k=1

M2

= C1

m
m ⇤M2

= C1M2 (16)

and

M2 = |�2(vj,x1 , vj,y1 )|

=

�������

C2

|I (vj,x2 )||I (vj,y2 )|

|I (vj,x2 )|X

k1=1

|I (vj,y2 )|X

k2=1

�1(Ik1 (v
j,x
2 ), Ik2 (v

j,y
2 ))

�������

 C2

|I (vj,x2 )||I (vj,y2 )|

|I (vj,x2 )|X

k1=1

|I (vj,y2 )|X

k2=1

����1(Ik1 (v
j,x
2 ), Ik2 (v

j,y
2 ))

���

 C2

|I (vj,x2 )||I (vj,y2 )|

|I (vj,x2 )|X

k1=1

|I (vj,y2 )|X

k2=1

M1

= C2

|I (vj,x2 )||I (vj,y2 )|
|I (vj,x2 )| ⇤ |I (vj,y2 )| ⇤M1

= C2M1 (17)

Therefore,

M1 � C1M2  0
M2 � C2M1  0

(1 � C1)M2 + (1 � C2)M1  0 (18)

Since 0 < C1 < 1 and 0 < C2 < 1, M1 � 0 and M2 � 0,
we can infer that M1 = 0 and M2 = 0. Therefore, both the
similarity values of object pairs and attribute-value pairs can
converge to unique value, respectively.

C. COMPUTATIONAL COMPLEXITY OF HGS
In HGS measure s(r, (vx1, v

y
1)) is the average of its related

attribute value similarity scores s(r, (Ik (vx1), Ik (v
y
1))), k =

1, . . . ,m during iterative process. The higher score
s(r, (vx1, v

y
1)) is, the more similar two objects are.

Accordingly, in the calculation process of HGS, a node-
pair graph Ĝ is constructed to formulate the calculation. The
adjacent matrices between object-pairs and attribute-value
pairs, between attribute-value pairs and attribute-value pairs
need to be obtained. Due to the iterative process, to improve
the calculating efficiency, the adjacent matrices need to
be saved in calculation space. Hence, the most time and
space-consuming is to calculate two adjacent matrices. Sup-
pose the maximal number of distinct values for each attribute
is R = m

max
j=1

(rj), the number of attributes is m, and the

number of object pairs is 1
2n(n � 1), then the maximum

of attribute-value pairs is 1
2 (mR(R + 1)). Hence, the time

complexity of calculating the first adjacent matrix is 1
4n(n�

1)mR(R + 1), while calculating the later adjacent matrix is
1
4m

2R2(R + 1)2. Thus, the upper complexity limit of HGS
is O(n2mR2 + m2R4). Normally, the number of attributes
m is far less than the number of objects, n. Therefore,
when there are many objects in the database, during the
calculation, the adjacent matrix between object pairs and
attribute-value pairs can be initialized as a sparse matrix
to save calculation storage and accelerate the calculation
speed.

VI. EXPERIMENTS AND DISCUSSIONS
In this section, we conduct the k-modes clustering, spec-
tral clustering, and similarity search experiments based on
HGS and five comparable similarity measures on 26 datasets.
The detailed dataset information and experiment design are
first illustrated. Then the clustering and similarity search
experiments are conducted and their results are respectively
shown in the following parts. Six extensive discussions are
further carried out, which analyze the convergence, param-
eter sensitivity of HGS, compare HGS with its variants
from various graph construction and different similarity
score initializations, and explore its application to imbal-
anced data and the comparison of its time cost with other
methods.

A. DATASETS
In order to validate the effectiveness of HGS, 20 public
datasets downloaded from UCI are used for the experi-
ments. Each dataset is composed of multiple objects which
are described by multiple categorical attributes and the
corresponding class information that the object belongs
to. Besides, 4 high-dimensional microbiome datasets,
‘‘crc_wang’’ [40], ‘‘ibd_morgan’’ [41], ‘‘ibd_papa’’ [42],
and ‘‘Ob_ross’’ [43] are derived from a publicly available
database(MicrobiomeHD) [44], which has collected human
gut microbial raw data sets including case and control sub-
jects. All the datasets have been processed by the same
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16s processing pipeline and the relative abundance of OTUs
at the genus level of each subject is obtained. In order to
transform microbiome datasets into the categorical dataset,
we transform the abundance value that is larger than 0 into
1 representing that the subject has or doesn’t have the corre-
sponding genus. Another high-dimensional dataset ‘‘Bats of
Guyana’’ is derived from [45], which records the real DNA
barcode of bats and the detailed species and subspecies that
they belong to. Here we have used this dataset two times
by using their species and subspecies as class information,
respectively. Therefore, we have 26 datasets in total for
experiments.

In Table 5, we presented their detailed information, includ-
ing the number of objects (O), the number of attributes
(A), the total number of all attribute values (V ), the num-
ber of classes (C) and the imbalanced Ratio (IR) (The
detailed calculation is present in Section VI-D.5. Each
dataset is composed of multiple objects which are described
by multiple categorical attributes and the corresponding
class information that the object belongs to. Before the
graph construction, the dataset was first processed. Because
this work only considers categorical data, the numerical
attributes were removed from the datasets. Due to the
existence of missing values, the rows with missing values
were removed from initial data. Furthermore, to improve
the calculation efficiency, attributes with only single value
were removed because they don’t help distinguish different
objects.

B. CLUSTERING EXPERIMENT AND RESULTS
1) BASELINE CLUSTERING METHODS AND SIMILARITY
MEASURES
In experiments, a typical similarity-based clustering algo-
rithm, spectral clustering [33], and a distance-based categor-
ical algorithm, k-modes [34], are used for the experiments.
To measure the similarity between objects, HGS and other
five state-of-the-art similarity/distance measures, including
Hamming Distance (Hamming for short), Occurrence Fre-
quency (OF), the information theory based method proposed
by Lin. et al. (Lin), ALGO_DISTANCE (ALGO) [9], and the
Coupled Metric Similarity (CMS) are applied, respectively.
It should be noted that, for spectral clustering, we chose
the non-normalized Laplacian matrix to find its Eigenvalue
as the input of the k-means clustering algorithm. As the
performance of spectral clustering algorithm relies on the
k-means clustering algorithm, the result from spectral clus-
tering may be varied in different runs. Thus, we repeated the
spectral clustering experiments on each dataset for five times
and calculate the average performance as the final result.
Furthermore, in order to make the result comparable, in k-
modes clustering experiment, the initial cluster centers are
selected according to rule 1 defined in [35] and used for all
measure-based clustering experiments. However, we found
the selection of cluster centers didn’t change the final result
by trying different sets of initial cluster centers. As for the
value of K , we decide it by the simple rule described by [data

TABLE 5. The data information of 26 datasets. Each column refers to the
dataset name, object number (O), attribute number (A), the number of
total attribute values (C), the number of classes (C), imbalanced ratio of
the dataset (IR), and the abbreviation of the set name, respectively.

mining book], which is

K =
r
n
2
,

where n is the number of objects in the database.
It should be mentioned that during k-modes clustering

process, we find the number of cluster centers may decrease
when some special condition occurs. For instance, in first
iteration, there are three cluster centers a, b and c. Then we
allocate all the objects to these three centers and form three
clusters A, B and C . Afterward, we update the cluster centers
by finding the modes within each cluster according to the rule
defined in [34]. Hereafter, the distance between every object
and new centers are recalculated. The extreme condition may
occur here when all the objects in cluster C are nearest to
a or b. And no object in cluster A and B is the nearest to c.
Therefore, in the next iteration, all the objects in clusterC will
be re-allocated to cluster A or B, then C will become empty.
In this condition, we need to update the number of cluster
centers from K = 3 to K = 2.

In the experiment, HGS, OF, and CMS measure the sim-
ilarity for objects. In order to apply them in k-modes algo-
rithm, we should derive the distance or dissimilarity measure.
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According to the rule provided in [2], for objects ox and
oy, if their similarity value is s(ox , oy), their distance value
d(ox , oy) can be

d(ox , oy) = 1
s(ox , oy)

� 1 (19)

In addition, two coefficients C1 and C2 need to be set in
HGS. C1 in Eq. (3) reflects the memory coefficient from its
previous state and the confidence extent from attribute-value
pair to object pair similarity. In contrast, C2 reflects the
confidence coefficient from an object pair to attribute value
pair similarity. In experiments, both C1 and C2 are set as 0.8.
We will further explore their effects in the discussion section.
As it’s fast to converge, the iterationmaximum timewas set as
10. All the experiments are conducted in MATLAB R2018a
by macOS 10.13.6 with 8GB memory.

2) CLUSTERING EVALUATION METHODS
After the experiments, two common-used methods, F-score
and Normalized Mutual Information (NMI) are used to mea-
sure the clustering experiment. The larger value indicates a
better clustering performance, hence, a better corresponding
similarity measure. Furthermore, in order to make our result
more convincing, we compute the rand index (RI) and purity
index [47] to evaluate the results in the experiment. As the
limit of the scope, we finally show them in the supplementary
materials. Here we show the calculations of F-score and NMI
as follows.

(1) F� -score (or F-measure)

F� = (1 + �2)PR
�2P+ R

, (20)

where P = TP
TP+FP means precision rate, R = TP

TP+FN means
recall ratio, in which TP (true positive) denotes the number
of objects belonging to the same class are also assigned into
the same clusters, TN (true negative) denotes the number of
objects belonging to same classes are wrongly assigned into
different clusters, FP (false positive) decision assigns two
objects belonging to different classes to the same clusters, and
FN (false negative) decision assigns two dissimilar objects to
different clusters. Here we set � = 1, i.e. F-score in short.

(2) Normalized mutual information (NMI)

NMI =

kP
i=1

cP
j=1

ni,jlog(
n·ni,j
ni·nj )

s
(
kP
i=1

nilognin )(
cP
j=1

njlog
nj
n )

(21)

where c represents the true number of classes while k is the
number of clusters derived from the clustering algorithm, n
means the total number of objects in dataset, and ni,j denotes
the number of objects belonging to class jwhich are clustered
into cluster i.

TABLE 6. The NMI of Hamming, OF, Lin, ALGO, CMS vs. HGS-based
spectral clustering.

3) CLUSTERING RESULTS
In this section, the experiment results from spectral clustering
and k-modes clustering based on six comparative measures
conducted on 26 datasets are shown and discussed.

(1) Comparison of HGS with other similarity measures
derived spectral clustering.

In this part, spectral clustering experiments were con-
ducted on 26 datasets based on Hamming, OF, Lin, ALGO,
CMS, and our proposed HGS. We use NMI and F-score here
to evaluate the category result and show them in Table 6 and
Table 7, respectively. In both tables, the results for six mea-
sures are shown in columns and the bottom of the table shows
the average performance on thewhole. Besides, the best result
among the six measures for each dataset is bold. Combining
the performances from two tables, our measure HGS per-
forms best on the whole, with the best average performance
of 0.253 for NMI and 0.496 for F-score. According to NMI,
Hamming distance and Lin rank the second and third place
after HGS, while for F-score, CMS and ALGO distance tied
for the second place. Lin method ranks third for NMI while
Hamming distance achieves better for F-score. More pre-
cisely, from the perspective of NMI, HGS outperforms other
measures in 8 datasets, while according to F-score, HGS
achieves best in 7 datasets. Even though when HGS doesn’t
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TABLE 7. The F-score of Hamming, OF, Lin, ALGO, CMS vs. HGS-based
spectral clustering.

rank top, it can still obtain the comparable performance.
On the contrary, OF measure gets the worst result on the
average of NMI while Lin measure performs not good in the
average evaluation of F-score. However, it’s interesting that
no measure can outperform all other measures in all datasets
due to various characteristics. We can see every measure has
performed best in at least one dataset. Therefore, it’s essential
to explore the characteristic to find a suitable measure.

(2) Comparison of HGS with other similarity measures
based on k-modes clustering

Similar to before, Hamming, OF, Lin, ALGO, CMS, and
our proposed HGS enabled k-modes clustering experiments
were conducted on 26 datasets. The evaluation results and the
average measure of NMI and F-score were shown in Table 8
and Table 9, respectively. Combining both evaluations, our
HGS and ALGO perform an equally excellent performance,
where HGS performs the best by NMI with 0.274 while
ALGO is best for F-score with 0.462. Hamming distance
ranks second according to both metrics. In the following,
HGS and ALGO rank third according to F-score and NMI,
respectively. More accurately, from the perspective of NMI,
HGS performs the best in 10 datasets while ALGO is best
in 5 datasets. On the contrary, ALGO obtains the best perfor-
mance in 9 datasets while HGS wins in 7 datasets according

TABLE 8. The NMI of Hamming, OF, Lin, ALGO, CMS vs. HGS-enabled
k-modes clustering.

to F-score. Subsequently, Hamming wins in 6 datasets via
NMI and 3 datasets by F-score. Occurrence frequency and
Linmeasures performworst in the k-modes clustering on both
evaluations.

The clustering results evaluated by RI and purity indexes
are shown in the supplementary materials as Tables 1-4 (See
details in Supplementary materials). Similar to NMI and
F-score, the results also show the effectiveness of our pro-
posed HGS methods in both k-modes and spectral clustering
experiments.

C. SIMILARITY SEARCH EXPERIMENT
In order to further validate our proposed method, in addition
to the clustering experiment, we conduct the top-k similarity
search experiments on the 26 datasets in Table 5 with HGS
and other methods mentioned above. During the experiment,
by computing the similarity matrix between all object pairs,
we pick up the k objects with the top-k highest similar-
ity score compared to the query object. According to the
pre-defined label information that the dataset brings when
we downloaded them, we evaluate the similarity search effec-
tiveness by judging whether the k objects belong to the class
of the query object. The similarity search accuracy (SSA) is
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TABLE 9. The F-score of Hamming, OF, Lin, ALGO, CMS vs. HGS-enabled
k-modes clustering.

calculated by

SSA = km
k

,

where km represents the number of the precisely matched
objects. As the limit of the scope, here we present the similar-
ity search experiment results when k = 1, 5, 10 in Fig. 3 and
the average accuracy for all datasets in Table 10. As shown
in Figure 3, each curve respectively represents the accu-
racy in similarity search experiment of each method. On the
whole, HGS always run higher than other curves. Another
comparative method is the CMS method with Hamming dis-
tance being the average and stable performance. Compar-
ative speaking, occurrence frequency and Lin methods are
not stable. They have arrived at the bottom of all curves
for several times. The results in Table 10 show again this
phenomenon. Our method HGS performed best when k =
5 and k = 10, with 0.780 and 0.754, respectively. When
k = 1, it has obtained 0.800 for accuracy, which is only a
difference of 0.001 from the first CMSwith 0.801. Of course,
the performance of CMS is not inferior, with 0.799 for k = 5
and 0.752 for k = 10. The subsequent method is Lin on
the average, and Hamming distance performs worst when
k = 1 and k = 5, while OF performs worst when k = 10.

TABLE 10. The average accuracy comparison of all methods for all
datasets in similarity search when k = 1, 5, 10.

To summarize, the phenomenon shows that in the similarity
search task, our proposed HGS method can perform compa-
rably with the CMS method and better than other methods on
the whole.

D. DISCUSSIONS
1) CONVERGENCE ANALYSIS
As an iterative algorithm, we need to pay attention to
whether or how fast it can converge. In reference to the
proof in section V-B, during calculations, similarity scores
are non-decreasing and can converge fast. In order to show the
convergence process more directly, we present the calculation
on the Nursery dataset in Table 1 by HGS. In Fig. 4, the first
one plots the changes of scores of attribute-value pairs in
y-axis with iteration on the x-axis, while the bottom one
plots the change of scores of family pairs during iteration.
As seen, after nearly 4 iterations, the scores have approached
to the stable states. Because we iterate from attribute-value
pairs, at zero coordinate, the scores of all family pairs are
zero while attribute-value pairs have non-zero scores. The
change of scores for attribute-value pairs(occupation usual vs.
pretentious) and another attribute-value pair(finance inconve-
nient vs. convenient) keep the same and finally converge to
the same similarity score. They iterate from different scores
and finally reach the highest scores among all pairs. Though
sharing the same frequency in the table, less convenient,
critical, and convenient house condition have been effectively
distinguished. Compared with the other pairs, critical and
convenient house condition are less similar, which is also in
line with reality. In the bottom of the figure, we only compare
family 3 with families 1,2, and 4, family 6 with families
4 and 5, which have much more divergences according to
the results in Table 2. As seen, after the fourth iteration, all
the scores have converged to the stable states. Although the
score of family 3 vs. 2 is the highest compared with family
3 vs. 1 and family 3 vs. 4, they are very close. Besides, in the
first iteration, family 3 is more similar to family 4. While
after iteration, the score of family 3 vs. 2 has caught up and
gone beyond its opponent. The phenomenon shows that the
iteration process can capture the information from the global
information structure and obtain stable and reliable results.

2) COMPARISON OF HGS AND ITS VARIANTS
In this part, we compare HGS with its two variants. As the
presentation in Section IV, HGS is calculated iteratively
based on a heterogeneous weighted undirected graph via
three rules. Here, we are considering two other possible
measures. One measure is based on a bipartite graph (called
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FIGURE 3. The accuracy of HGS similarity measure versus other methods based similarity search when k = 1, 5, 10. The
dataset order is resorted ascending according to the HM results.

FIGURE 4. The converging process of HGS similarity measure for Car
dataset in Table 1.

BGS), in which we remove the edges between attribute
values and only iterate the scores between object pair and
attribute-value pairs according to the rules of 1 and 2 (see
Section IV-B.2). Another measure is based on an attribute
graph (called AGS), for which we remove the edges between
object pair and attribute-value pair, and the scores will only
be iterated between attribute-value pairs according to the rule
3 until convergence. Finally, the object-pair scores will be the
average score of all corresponding attribute-value pairs.

We compare their performances by F-score of k-modes
experiments on all datasets. The result is shown in Figure 5.
The figure orderly spreads out the box plot of F-score result
derived from HGS, BGS, and AGS enabled k-modes and
spectral clustering. In the box plot, the red line represents the
median scores of all the results for each measure. Obviously,
in k-modes clustering, the result from HGS is much better
than BGS and AGS with a higher place of the whole distribu-
tion. Besides, their average performances, which are 0.555,
0.500, and 0.497, respectively, also show that HGS is much
better than its two variants. With regard to spectral clustering,
the results don’t show an obvious difference. It is observed

FIGURE 5. The boxplot of the F-score result from HGS similarity measure
compared with its variants.

that BGS has a much higher median while both HGS and
AGS have higher distributions. Their average performances
are 0.324, 0.315, and 0.301, respectively. Thus, on average,
HGS can outperform its variants by iterate the scores across
the whole graph based on three rules. The subsequent is
VGS which iterates the scores on a bipartite graph. The
phenomenon also shows that iterating the scores between
object pairs and attribute-value pairs is an effective procedure
to obtain a better result.

3) COMPARISON OF VARIOUS SIMILARITY SCORE
INITIALIZATION
As stated in section IV-B.1, we initialize the scores of
attribute-value pairs by comparing their Jaccard occurrence
frequency (JOF in short) according to the rule provided in 2.
The less the frequency difference between two attribute val-
ues, the larger of their scores. An attribute value is most
similar to itself. The score of an attribute-value pair consisting
of different values is forever less than 1. In order to show the
effectiveness of the initialization procedure, we compare it
with Hamming andALGO initializedHGS. The setting is that
we only change the initialization of attribute-value pair scores
according to Hamming and ALGO, respectively. Hamming
simply attaches 1 to the attribute-value pair consisting of
the same values, vice versa, 0. The ALGO is much more
complex, which has captured the co-occurrence relation-
ship between attribute values. The detailed procedure can in
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FIGURE 6. The plot of the F-score result from HGS Similarity Measure
with different initialization methods. The x-axis represents the dataset
and y-axis is the F-score evaluations for each clustering experiment. The
dotted lines represent the results from HGS with OF, ALGO and Hamming
initialization methods enabled k-modes clustering while solid lines are
for spectral clustering, respectively.

reference to [20]. Then, three measures-disabled spectral and
k-modes clustering algorithms were conducted on 20 datasets
and their results will also be evaluated by F-score.

As shown in Fig. 6, in order to show the results more
clearly, the F-score is sorted out descendingly according to
the scores of HGS-OF enabled spectral clustering exper-
iment. Therefore, the dataset order is different from that
in Table 5. In the figure, by comparing the results of spectral
clusterings, we can see that the purple line that represents
our proposed HGS initialized with JOF is almost on top of
the green and blue lines which represent HGS initialized
with ALGO and Hamming methods. Thus, our measures
perform better than another two methods in spectral clus-
tering. Furthermore, the dotted lines represent the results
derived from the k-modes experiment based on these three
measures. We can see that three dotted lines have overlapped
for the most part. But the blue dotted line representing our
proposed method has gone beyond another two lines on the
whole, particularly in the last five datasets. By calculating
the average performance of all the results, our HGS mea-
sure has obtained the best values (0.324 for k-modes and
0.555 for spectral clustering), while HGS-ALGO is 0.318 and
0.440 andHGS-Hamming is 0.317 and 0.455 for k-modes and
spectral clustering, respectively. From the analysis above, our
initialization method has outperformed ALGO and Hamming
initialization methods.

4) PARAMETER SENSITIVITY ANALYSIS OF C1 AND C2
In Eq. 3 and 4, the coefficients C1 and C2 not only represent
the effect from its neighbours, but also a memory of its
previous states. In our experiment, both of them are simply set
as 0.8. In this discussion, we conducted k-modes clustering
experiments on the Zoo (small scale, Zo in short) and Breast
cancer (large scale, Br in short) datasets from UCI to analyze

FIGURE 7. The plot of the results from HGS Similarity Measure with
different C1 and C2. In both subplots, y-axis represents the evaluations
from the experiments, however in (a) the x-axis represents C1 changing
from 0.1 to 0.9 while in (b) it represents C2. The blue and red lines
represent the NMI and F-score result derived from k-modes experiment
on Zoo dataset, respectively, while the yellow and purple lines represent
the NMI and F-score result on Breast cancer dataset.

their effects on HGSmeasure. The experiment consists of two
sub-experiments. First, the parameter C2 was set as a fixed
value of 0.8, then C1 ranged from 0.1 to 0.9 with an interval
of 0.1. In the second part, the parameter C1 was set as a fixed
value of 0.8, then C2 was changed from 0.1 to 0.9 subse-
quently. In this scheme, only k-modes clustering experiment
was conducted on both datasets because, in spectral cluster-
ing, there is a part of k-means clustering which depends on
the initial cluster centers so that have some random change.
Thus, we choose k-modes clustering of which the results are
all dependent on the similarity measure.

As the result shown in Fig. 7, regardless of changing C1 or
C2, the experiment result is very stable. Relatively speaking,
the result on large-scaled datasets Br is more stable than the
small-scale one Zo. With the increase of C1 or C2, there is
only a slight drop ofNMI for Zo dataset while a slight increase
of F-score. The phenomenon shows that our proposed HGS
measure is not sensitive to both the parameters C1 and C2.
We think it’s reasonable because the coefficients C1 and C2
only change the absolute values of node pairs, but don’t
change the relative value difference between object pairs,
which are more important in distinguishing different objects
in our work.

5) APPLICATION TO IMBALANCED DATA
Imbalanced data widely exists in the real-world application,
which refers to the uneven distribution of the categories of the
dataset. Here we analyze the sensitivity of our proposed HGS
method to the imbalanced data. In Table 5, the imbalanced
ratio (IR) of each dataset is present, which evaluates the
ratio of the number of samples with the most samples to the
number of classes with the fewest samples [46]. The larger
the IR value, the more unbalanced the dataset. By review-
ing the IR values of 26 datasets, we select the Ly and Fl
datasets with the largest IR as the analysis basis, where the IR
value is 40.5 and 884, respectively. Specifically, FL dataset
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TABLE 11. The result comparison of the dataset with the largest IR value.

TABLE 12. The time cost comparison of HGS. versus other methods in
calculating similarity matrix. The method that has used the largest
amount of time has been bold.

is extremely unevenly distributed. There are 8 classes in Fl
dataset, however, the maximum class has 884 samples, while
the minimum class has only 1 sample. The F-measure and
NMI in spectral clustering and k-modes clustering experiment
of two datasets are summarized in the Table 11. As shown,
compared with other methods, HGS measure obtains the best
performance in Ly when applied in spectral clustering and
Fl when applied in both spectral clustering and k-modes
clustering. It’s noted that in the k-modes clustering of Ly
where the HGS is not the best, its performance is still quite
competitive as the second best. Contrastly, in other cases that
HGS obtains the best, other methods, such as HM, OF, etc.,
are far from HGS. These performances indicate the effective-
ness of our method HGS in application to the clustering based
on imbalanced data.

6) COMPARISON OF TIME COST OF HGS AND OTHER
METHODS
In performing practical data-driven tasks, with the increase
of the scale of data, the time cost also increases

dramatically. Here we mean to compare the time cost of
different methods in computing the similarity matrix. The
result is shown in Table 12. In the previous 20 datasets
that are low-dimensional, our method HGS has consumed
the largest amount of time in 10 datasets, while CMS,
ALGO, and Lin are the highest time consumption in 5, 3,
and 2 datasets. This phenomenon is reasonable as all the
above methods have captured more complex relationships
between attribute values. HGS has spent the most time in
building the neighborhoodmatrix between the object-pair and
attribute-value pair, attribute-value pair and attribute-value
pair for the iterative process. Thus, it has spent more time
in the low-dimensional dataset, however, still similar scale
with other methods. In the later 6 datasets that are high-
dimensional, ALGO has consumed the largest amount of
time for all 6 datasets, while the second is CMS and our
method HGS runs third. Specifically, in Ip dataset, ALGO has
spent 552.184 seconds and CMS has cost 317.567 seconds,
which are almost 20 and 11 times the cost of HGS, which
is only 27.880 seconds. The similar condition exists in the
other 5 datasets. This phenomenon shows that although HGS
also captures the relationships between attribute values like
ALGO and CMS, its increase speed is much slower than that
of ALGO and CMS with the increase of the dimension of the
data.

VII. CONCLUSION AND FUTURE WORKS
Measuring the similarity for categorical data in unsupervised
learning has been a challenging task in data mining due
to lacking the guidance from labeled results. The complex
relationship hidden between attribute values and objects can
provide a contribution to the measuring of similarity between
objects. In order to capture this valuable information, this
work creatively introduces a graph structure into the similar-
ity measure for the unsupervised learning of categorical data.

As themost natural tool to represent a relationship, we con-
struct a heterogeneous weighted graph to extract the informa-
tion in the categorical data. Both objects and attribute values
have been represented as nodes, and both the occurrence
relationships between objects and attribute values and the
co-occurrence relationships between attribute values have
been represented as edges. In this way, the possible com-
plex relationships can be captured into the graph structure.
Besides, a node pair graph is derived from the previous
constructed heterogeneous graph to formulate the calculation.
By iterating the scores of both object pairs and attribute-value
pairs across the node-pair graph, the complex relationships
are reflected in the final converged scores. We can directly
obtain both the object similarity and the attribute-value sim-
ilarity in a very fast speed, which is very convenient to
be applied in different domains. Finally, in experiments,
we compare the performances in the k-modes and spectral
clustering algorithms based on five state-of-the-art measures
and our HGS measure. Although it can’t outperform all other
measures in every dataset, it can obtain the best average
performance in 20 low-dimensional and 6 high-dimensional
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datasets. Through extensive experiments, we find HGS can
converge fast and is non-sensitive to the parameterC1 andC2.
Besides, its graph setting and initialization of scores are the
better choices compared with other schemes. Furthermore,
it can be effectively applied to the high-dimensional dataset
with the comparatively lower time cost.

This work first introduces a heterogeneous graph into the
similarity measure for categorical data. There is still much
work in the following. Due to the missing values in many
practical conditions, how to apply HGS on this condition is
what we need to focus on. Two different thoughts can be
considered. The first thought is to utilize some link prediction
techniques. By finding a similar object for the targeted object
with missing values, their values can be copied to replace the
missing values. Another thought is directly treating the miss-
ing values as a new attribute value, which is more convenient,
but some disturbing information may be added. Another main
direction is to apply our method in a mixed dataset that is
composed of both categorical data and numerical data. For
this condition, there are two solutions: 1) simply divide the
dataset into categorical and numerical datasets and calculate
the similarity for objects in each dataset, respectively. Then
the final similarity value can be obtained by the average or
weighted sum of both values; 2) discretize the numerical
attribute into the categorical attribute, and then the mixed
dataset has been transformed into a pure categorical dataset
that the HGS can be directly applied to. Apart from the
unsupervised learning, this work can also be extended to the
supervised learning.With the label information in the training
dataset, the object-pair within the same class can be set as a
larger value than those in a different class. Besides, we can
add class nodes in the graph and insert edges to connect the
class node to the object nodes that belong to it. In this way,
during the iterative process, the objects that are connected
to the same class will get larger similarity scores. Finally,
further improving the calculation efficiency is a necessary
step especially when faced with big data.

ACKNOWLEDGEMENT
Many thanks to the reviewers providing valuable advice that
is very helpful for improving our manuscript.

REFERENCES
[1] Y. Ye, J. Jiang, B. Ge, Y. Dou, and K. Yang, ‘‘Similarity measures for time

series data classification using grid representation and matrix distance,’’
Knowl. Inf. Syst., vol. 60, no. 2, pp. 1105–1134, 2019. doi: 10.1007/s10115-
018-1264-0.

[2] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques
(TheMorgan Kaufmann Series in DataManagement Systems), 3rd ed. San
Francisco, CA,USA:MorganKaufmann, 2011, ch. 10, sec. 2, pp. 451–454.

[3] Q. Zhao, C. Wang, P. Wang, M. Zhou, and C. Jiang, ‘‘A novel method
on information recommendation via hybrid similarity,’’ IEEE Trans. Syst.,
Man, Cybern. Syst., vol. 48, no. 3, pp. 448–459, Mar. 2018.

[4] G. C. Van, R.M. De, and K. Evangelos, ‘‘Neural vector spaces for unsuper-
vised information retrieval,’’ ACMTrans. Inf. Syst., vol. 36, no. 4, pp. 1–25,
2018.

[5] X. Bai, Y. Zhang, H. Liu, and Z. Chen, ‘‘Similarity measure-based possi-
bilistic FCM with label information for brain MRI segmentation,’’ IEEE
Trans. Cybern., vol. 49, no. 7, pp. 2618–2630, Jul. 2019.

[6] A. K. Jain, M. N.Murty, and P. J. Flynn, ‘‘Data clustering: A review,’’ ACM
Comput. Surv., vol. 31, no. 3, pp. 264–323, Sep. 1999.

[7] A. Agresti, An Introduction to Categorical Data Analysis (The Wiley
Series in Probability and Statistics), 3rd ed. Hoboken, NJ, USA: Wiley,
2018, ch. 1, sec. 1, pp. 1–5.

[8] H. Jia, Y.-M. Cheung, and J. Liu, ‘‘A new distance metric for unsupervised
learning of categorical data,’’ IEEE Trans. Neural Netw. Learn. Syst.,
vol. 27, no. 5, pp. 1065–1079, May 2016.

[9] B. McFee and G. Lanckriet, ‘‘Learning multi-modal similarity,’’ J. Mach.
Learn. Res., vol. 12, pp. 491–523, Feb. 2011.

[10] I. Alabdulmohsin, M. Cisse, X. Gao, and X. Zhang, ‘‘Large margin classi-
fication with indefinite similarities,’’Mach. Learn., vol. 103, pp. 215–237,
May 2016.

[11] M. K. Ng, M. J. Li, J. Z. Huang, and Z. He, ‘‘On the impact of dissimilarity
measure in K-modes clustering algorithm,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 29, no. 3, pp. 503–507, Mar. 2007.

[12] S. Boriah, V. Chandola, andV.Kumar, ‘‘Similaritymeasures for categorical
data: A comparative evaluation,’’ in Proc. SIAM Int. Conf. Data Mining,
2008, pp. 243–254.

[13] D. Lin, ‘‘An information-theoretic definition of similarity,’’ in Proc.
15th Int. Conf. Mach. Learn., Madison, WI, USA, Jul. 1998, pp. 296–304.

[14] D. Dua and E. K. Taniskidou, ‘‘UCI machine learning repository,’’ School
Inf. Comput. Sci., Univ. California, Irvine, CA, USA, 2017. [Online].
Available: http://archive.ics.uci.edu/ml

[15] Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu, ‘‘PathSim: Meta path-based
top-K similarity search in heterogeneous information networks,’’ in Proc.
VLDB Endowment, 2011, pp. 992–1003.

[16] C. Shi, Z. Zhang, P. Luo, P. S. Yu, Y. Yue, and B. Wu, ‘‘Seman-
tic path based personalized recommendation on weighted heterogeneous
information networks,’’ in Proc. 24th ACM Inf. Knowl. Manage., 2015,
pp. 453–462.

[17] G. Jeh and J. Widom, ‘‘SimRank: A measure of structural-context similar-
ity,’’ in Proc. 8th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
2002, pp. 538–543.

[18] M. Alamuri, B. R. Surampudi, and A. Negi, ‘‘A survey of dis-
tance/similarity measures for categorical data,’’ in Proc. Int. Joint Conf.
Neural Netw., 2014, pp. 1907–1914.

[19] J. Yuan and Y. Wu, ‘‘Context-aware clustering,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2008, pp. 1–8.

[20] A. Ahmad and L. Dey, ‘‘A K-mean clustering algorithm for mixed numeric
and categorical data,’’Data Knowl. Eng., vol. 63, no. 2, pp. 503–527, 2007.

[21] C. Wang, L. Cao, M. Wang, J. Li, W. Wei, and Y. Ou, ‘‘Coupled nominal
similarity in unsupervised learning,’’ in Proc. 20th ACM Int. Conf. Inf.
Knowl. Manage., 2011, pp. 973–978.

[22] S. Jian, L. Cao, K. Lu, and H. Gao, ‘‘Unsupervised coupled metric similar-
ity for non-IID categorical data,’’ IEEE Trans. Knowl. Data Eng., vol. 30,
no. 9, pp. 1810–1823, Sep. 2018.

[23] G.Das andH.Mannila, ‘‘Context-based similaritymeasures for categorical
databases,’’ in Proc. Eur. Conf. Princ. Data Mining Knowl. Discovery,
2000, pp. 201–210.

[24] C. Wang, X. Dong, F. Zhou, L. Cao, and C.-H. Chi, ‘‘Coupled attribute
similarity learning on categorical data,’’ IEEE Trans. Neural Netw. Learn.
Syst., vol. 26, no. 4, pp. 781–797, Apr. 2015.

[25] P. Zhao, J. Han, and Y. Sun, ‘‘P-Rank: A comprehensive structural simi-
larity measure over information networks,’’ in Proc. 18th ACM Conf. Inf.
Knowl. Manage., 2009, pp. 553–562. doi: 10.1145/1645953.1646025.

[26] S.-H. Yoon, S.-W. Kim, and S. Park, ‘‘C-Rank: A link-based similarity
measure for scientific literature databases,’’ Inf. Sci., vol. 326, pp. 25–40,
Jan. 2016. doi: 10.1016/j.ins.2015.07.036.

[27] M. Zhang, J. Wang, and W. Wang, ‘‘HeteRank: A general similarity
measure in heterogeneous information networks by integrating multi-
type relationships,’’ Inf. Sci., vol. 453, pp. 389–407, Jul. 2018. doi:
10.1016/j.ins.2018.04.022.

[28] X.Meng, C. Shi, Y. Li, L. Zhang, and B.Wu, ‘‘Relevance measure in large-
scale heterogeneous networks,’’ in Proc. Asia–Pacific Web Conf., 2014,
pp. 636–643.

[29] Y. Zhou, H. Cheng, and J. X. Yu, ‘‘Graph clustering based on struc-
tural/attribute similarities,’’ in Proc. VLDB Endowment, vol. 2, no. 1,
pp. 718–729, 2009. doi: 10.14778/1687627.1687709.

[30] M. R. Hamedani, S.-W. Kim, and D.-J. Kim, ‘‘SimCC: A novel method
to consider both content and citations for computing similarity of
scientific papers,’’ Inf. Sci., vol. 334, pp. 273–292, Mar. 2016. doi:
10.1016/j.ins.2015.12.001.

VOLUME 7, 2019 112679



Y. Ye et al.: Heterogeneous Graph-Based Similarity Measure for Categorical Data Unsupervised Learning

[31] M. Zhang, H. Hu, Z. He, andW.Wang, ‘‘Top-K similarity search in hetero-
geneous information networks with X-star network schema,’’ Expert Syst.
Appl., vol. 42, no. 2, pp. 699–712, 2015. doi: 10.1016/j.eswa.2014.08.039.

[32] S. Niwattanakul, J. Singthongchai, E. Naenudorn, and S. Wanapu, ‘‘Using
of Jaccard coefficient for keywords similarity,’’ in Proc. Int. Multiconf.
Eng. Comput. Sci., 2013, vol. 1, no. 6, pp. 380–384.

[33] U. von Luxburg, ‘‘A tutorial on spectral clustering,’’ Statist. Comput.,
vol. 17, no. 4, pp. 395–416, 2007.

[34] Z. Huang, ‘‘Extensions to the K-means algorithm for clustering large data
sets with categorical values,’’Data Mining Knowl. Discovery, vol. 2, no. 3,
pp. 283–304, 1998.

[35] M. K. Ng, M. J. Li, J. Z. Huang, and Z. He, ‘‘On the impact of dissimilarity
measure in K-modes clustering algorithm,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 29, no. 3, pp. 503–507, Mar. 2007.

[36] S. S. Khan and A. Ahmad, ‘‘Cluster center initialization algorithm for
K-modes clustering,’’ Expert Syst. Appl., vol. 40, no. 18, pp. 7444–7456,
2013.

[37] S. Kosub, ‘‘A note on the triangle inequality for the Jaccard
distance,’’ 2016, arXiv:1612.02696. [Online]. Available: https://arxiv.
org/abs/1612.02696

[38] D. Ienco, R. G. Pensa, and R. Meo, ‘‘From context to distance: Learning
dissimilarity for categorical data clustering,’’ ACM Trans. Knowl. Discov-
ery Data, vol. 6, no. 1, pp. 1–25, Mar. 2012.

[39] C. Zhu, L. Cao, Q. Liu, J. Yin, and V. Kumar, ‘‘Heterogeneous metric
learning of categorical data with hierarchical couplings,’’ IEEE Trans.
Knowl. Data Eng., vol. 30, no. 7, pp. 1254–1267, Jul. 2018.

[40] T. Wang, G. Cai, Y. Qiu, N. Fei, M. Zhang, X. Pang, W. Jia, S. Cai,
and L. Zhao, ‘‘Structural segregation of gut microbiota between col-
orectal cancer patients and healthy volunteers,’’ ISME J., vol. 6, no. 2,
pp. 320–329, 2012.

[41] X. C.Morgan, T. L. Tickle, H. Sokol, D. Gevers, K. L. Devaney, D. V.Ward,
J. A. Reyes, S. A. Shah, N. LeLeiko, S. B. Snapper, A. Bousvaros,
J. Korzenik, B. E. Sands, R. J. Xavier, and C. Huttenhower, ‘‘Dysfunction
of the intestinal microbiome in inflammatory bowel disease and treat-
ment,’’ Genome Biol., vol. 13, no. 9, 2012, Art. no. R79.

[42] E. Papa, M. Docktor, C. Smillie, S. Weber, S. P. Preheim, D. Gevers,
G. Giannoukos, D. Ciulla, D. Tabbaa, J. Ingram, D. B. Schauer, D. V.Ward,
J. R. Korzenik, R. J. Xavier, A. Bousvaros, and E. J. Alm, ‘‘Non-invasive
mapping of the gastrointestinal microbiota identifies children with inflam-
matory bowel disease,’’ PLoS ONE, vol. 7, no. 6, 2012, Art. no. e39242.

[43] M. C. Ross, D. M. Muzny, J. B. McCormick, R. A. Gibbs,
S. P. Fisher-Hoch, and J. F. Petrosino, ‘‘16S gut community of the
cameron county hispanic cohort,’’ Microbiome, vol. 3, no. 1, 2015,
Art. no. 7.

[44] C. Duvallet, S. M. Gibbons, T. Gurry, R. A. Irizarry, and E. J. Alm, ‘‘Meta-
analysis of gut microbiome studies identifies disease-specific and shared
responses,’’ Nature Commun., vol. 8, no. 1, 2017, Art. no. 1784.

[45] E. L. Clare, B. K. Lim, M. D. Engstrom, J. L. Eger, and P. D. N. Hebert,
‘‘DNA barcoding of Neotropical bats: Species identification and discov-
ery within Guyana,’’ Mol. Ecol. Notes, vol. 7, pp. 184–190, 2007. doi:
10.1111/j.1471-8286.2006.01657.x.

[46] C. Peng and Q. Cheng, ‘‘Discriminative regression machine: A classifier
for high-dimensional data or imbalanced data,’’ 2019, arXiv:1904.07496.
[Online]. Available: https://arxiv.org/abs/1904.07496

[47] C. Peng, Z. Kang, S. Cai, and Q. Cheng, ‘‘Integrate and conquer: Double-
sided two-dimensional k-means via integrating of projection and manifold
construction,’’ ACM Trans. on Intel. Sys. And Tech., vol. 9, no. 5, 2018,
Art. no. 57. doi: 10.1145/3200488.

YANQING YE received the B.E. degree in
management engineering and the M.E. degree
in management science and engineering from
the National University of Defense Technology,
Changsha, Hunan, China, in 2013 and 2015,
respectively, where she is currently pursuing
the Ph.D. degree in management science and
engineering.

From 2017 to 2019, she has been co-cultivated
with the Physics Department, Boston University,

Boston, MA, USA. Her research interests include data mining, artificial
intelligence, and complex networks.

JIANG JIANG received the B.E. degree in sys-
tems engineering and the M.E. and Ph.D. degrees
in management science and engineering from
the National University of Defense Technology,
Changsha, Hunan, China, in 2004, 2006, and 2011,
respectively.

He was a Visiting Scholar with the Channing
Division of Network Medicine, Harvard Medi-
cal School, Boston, MA, USA. He is currently
an Associate Professor of management science

and engineering with the National University of Defense Technology. His
research interests include evidential reasoning, uncertainty decision-making,
and risk analysis.

BINGFENG GE (S’11–M’14) received the
B.E. degree in systems engineering and the
M.E. and Ph.D. degrees in management science
and engineering from the National University of
Defense Technology, Changsha, Hunan, China,
in 2006, 2008, and 2014, respectively.

He was a Visiting Scholar with the Conflict
Analysis Group, Department of Systems Design
Engineering, University of Waterloo, Waterloo,
ON, Canada. He is currently an Associate Profes-

sor of management science and engineering with the National University
of Defense Technology. His research interests include system-of-systems
architecting and engineering management, portfolio decision analysis, and
conflict resolution.

Dr. Ge is a Technical Committee Member of Conflict Resolution of the
IEEE Systems, Man, and Cybernetics Society, and a member of the IEEE
Internet of Things Technical Community and the International Council on
Systems Engineering.

KEWEI YANG received the B.E. degree in systems
engineering and the Ph.D. degree in management
science and engineering from the National Uni-
versity of Defense Technology, Changsha, Hunan,
China, in 1999 and 2004, respectively.

He was a Visiting Scholar with the Department
of Computer Science, University of York, U.K.,
and with the Science and Technology on Complex
Systems Simulation Laboratory, Beijing, China.
He is currently a Professor of management science

and engineering and the Director of the Department of Management, College
of Systems Engineering, National University of Defense Technology. His
research interests include intelligent agent simulation, defense acquisition,
and system-of-systems requirement modeling. He has been a member of
Youth Working Committee in the Systems Engineering Society of China,
since 2009.

H. EUGENE STANLEY received the Ph.D. degree
in physics from Harvard University, in 1967. He is
currently an American Physicist and a University
Professor with Boston University, USA. He has
made fundamental contributions to complex sys-
tems and is one of the founding fathers of econo-
physics. His current research interests include
complexity science and econometrics. He was
elected to the U.S. National Academy of Sciences,
in 2004.

112680 VOLUME 7, 2019


