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a b s t r a c t 

Enhancing the accuracy of freight rate forecasting is crucial when agents in the shipping 

industry make their business decisions and strive to avoid or reduce possible risks. Al- 

though there has been a lot of freight rate trend analysis in the literature, the time-varying 

and volatile nature of the shipping market makes the accurate prediction of it extremely 

difficult, if not impossible. In this research, we first propose the use of a dynamic fluctua- 

tion network (DFN) to transform a time series data set into an evolving directed network, 

which removes the noise in the data and allows us to extract time-varying features in it. 

We then develop a hybrid approach that combines the DFN and artificial intelligence (AI) 

techniques to forecast the Baltic Dry Index (BDI), which is new to the literature. The uti- 

lization of DFN with AI enables the non-linear, cyclical and dynamic features of the BDI 

to be extracted effectively and the prediction accuracy is not impacted by the length and 

time-scale of sample selection either in long-term or short-term forecasting. These ad- 

vantages of DFN offset the well-known limitations of traditional AI-based algorithms and 

econometric models in BDI forecasting. The empirical results from applying the resultant 

model to multi-time-scale datasets in a random sampling case show that the model is 

more accurate than the model based on the AI technique only. We test the accuracy of 

the DFN-AI model in three challenging cases which respectively contain a sudden rise, 

a decline, or frequent fluctuations of the BDI. The DFN-AI model has fewer errors and a 

higher trend matching rate than the corresponding AI-based model. Our hybrid approach 

also shows its superiority in working with data containing an extreme market downturn, 

which shed light on the predictability of BDI. This study has important implications for 

overall business, commercial, and hedging strategies in the shipping industry. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

1. Introduction 

International maritime transportation takes up between 80% and 90% of the volume of global commodity trade and

contributes significantly to the welfare and development of many nations. Freight rates alone add approximately $380 billion
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a year to the global economy. Because shipping freight rates are a considerable proportion of the price of finished goods,

there is a strong relationship between shipping freight rates and wholesale prices that must be understood and predicted.

[1,2] . 

The Baltic Dry Index (BDI) published by the Baltic Exchange is a “barometer” of shipping freights and is widely used as

a major indicator in the shipping industry, world international trade, and global economy [3–7] . The BDI tracks the cost of

such world-wide shipping commodities as coal, iron ore, steel, cement, and grain. Changes in the BDI are linked to changes

in the prices of commodities, and thus the BDI is sensitive to the demand for raw materials and global trade as the behavior

of commodity prices vary over the business cycle. The BDI can also reflect speculative movements, since there are futures

contracts on BDI, and the underlying freight market can also reveal the speculative actions of market participants. 

Thus forecasting BDI trends allows operators and investors to manage market trends and avoid risk in the shipping

industry, and is also useful to industries and manufacturers in the world economic system [3,8] . Because such factors as

market supply and demand [9] , bunker price [10] , and speculative trading [11] create high noise levels, the BDI exhibits

such complex volatility characteristics as nonlinearity, cyclicality, and uncertainty [12–15] . Although predicting BDI trends is

difficult, prediction accuracy is essential in large-scale organizations and firms because managerial decisions are based on

perceived future prospects. 

The variety of econometric time series forecasting models proposed in the literature exhibit such drawbacks in the BDI

datasets as non-stationarity and non-linearity. In addition to the classic econometric approaches, artificial intelligence (AI)

methods have been used in recent years to explore the inner complexity of BDI. Although AI methods can model such

complex characteristics as nonlinearity and volatility so that are more accurate than econometric models, they also have

disadvantages, e.g., they suffer from the local minimum point and over-fitting, and also are sensitive to parameter selection.

Because single predictive approach–including both econometric models and AI methods–are limited, many studies now 

use hybrid methods to forecast the BDI. Empirical analysis results consistently demonstrate that hybrid forecast methods are

more accurate than single methods because hybrid methods combine single models and allow the merits of each to offset

the defects of the others. 

In recent years complex network theory has been widely used to analyze nonlinear time series. Complex network theory

uses algorithms to transform a nonlinear time series into corresponding complex networks and uses a complex network

typology to reveal regular fluctuation patterns. The application of complex network theory has been widely effective in

determining the essential characteristics of a time series. Recently a large number of researchers have successfully applied

complex network theory to the study of such time series as stock prices, crude oil prices, and trade volumes, which have

produced valuable results [16–18] . 

The rapid development of complex network time series analysis thus provides a new perspective on how to eliminate

noise in the original data, but there are fewer studies that apply complex network-based time series analysis to forecast

BDI trends. We here combine complex network analysis and AI predictive methods to formulate a novel hybrid model for

BDI forecasting. Empirical results demonstrate that the proposed dynamic fluctuation network (DFN) AI models (i.e., DFN-

BP, DFN-RBF, and DFN-ELM) perform significantly better than their corresponding single AI models. Our proposed DFN-AI

methods are also robust and can be flexibly applied to a broader prediction of freight rates, such as the freight rate of a

specific route or of a certain vessel type. 

The paper is organized as follows. The next section reviews previous research on the methodologies of BDI and other

shipping freight rates forecasting. Section 3 introduces the dynamic fluctuation network and presents the forecasting pro-

cedure of DFN-AI model. Section 4 describes the original BDI data we use in our experimental prediction comparisons.

Section 5 applies the proposed method to random sampling and challenging situation cases to demonstrate the improve-

ment in accuracy of the DFN-AI models over the benchmark methods of the corresponding single AI models. The last section

lists our conclusions and proposes possible directions for future research. 

2. Literature review 

Because of their uncertainty and volatility, freight rates and ways of qualitatively analyzing them have long been topics

of interest in the shipping industry. There is a large and ever-growing body of literature proposing models that forecast

shipping freight rates, many of which use the Baltic Dry Index [19,20] . The methodologies that use the Baltic Dry Index,

among others, fall into three rough categories. 

2.1 Univariant and multivariant econometric methods 

The first includes univariant and multivariant econometric methods, such as the auto-regressive integrated moving av-

erage (ARIMA), vector auto-regression (VAR), generalized autoregressive conditional heteroskedasticity (GARCH), and vector 

error correction (VECM) models used to analyze and forecast shipping freight rates. Veenstra and Franses [21] use a coin-

tegrated process of the time series and a unit root test to develop a VAR model for forecasting the BDI. Cullinane et al.

[22] pioneered the use of the ARIMA model to test the effect of the new composition rule of BFI. Kavussanos and Alizadeh

[23] use a seasonal single-variable autoregressive integral moving average model and a VAR model to study the seasonal

characteristics of the dry bulk shipping market. Batchelor et al. [24] compare ARIMA, VAR, and VECM results when pre-

dicting spot and forward freight rates. Luo et al. [25] develop dynamic-economic models to predict the fluctuations in the
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container freight rate based on the supply and demand factors in the container transportation service. Chen et al. [26] use

ARIMA and VAR to predict the freight rates of several dry bulk routes and find that VAR performs better on the out-of-

sample forecast than ARIMA. To improve the forecasting accuracy of the BDI, Tsioumas et al. [27] propose a multivariate

VAR model with exogenous variables (VARX) that incorporates Chinese steel production, dry bulk fleet development, a new

composite indicator, and the dry bulk economic climate index (DBECI), and they find that the VARX model outperforms the

ARIMA approach. Chen et al. [28] focus on the correlation between pre-announcement of price increase and liner shipping

spot rates by using an ordered logit model to analyze the impact of the external events in spot rate trend. Adland et al.

[29] establish a cointegrated time series models in continuous and discrete time to analyze the dynamics of regional ocean

freight rates. 

2.2 Nonlinear and artificial intelligence (AI) methods 

Stopford [30] reminds us that maritime forecasting has a poor reputation because it is difficult for traditional econometric

and statistical methods to capture the nonlinear characteristics hidden in freight rates [31] . Thus in recent years a number

of nonlinear and artificial intelligence (AI) methods, including artificial neural networks (ANN), support vector machines

(SVM), and non-linear regression have been used. Li et al. [32] investigate the use of neural networks for the short and

long-term prediction of monthly tanker freight rates and find that neural networks significantly outperform time series

models, especially in longer-term forecasting. Yang et al. [33] use a support vector machine (SVM) to forecast the extreme

fluctuations of CCBFI, CCFI, and BFI. Goulielmos and Psifia [34] develop a nonlinear method for testing the nonlinear dynamic

and chaotic deterministic modeling theory. Thalassinos et al. [19] use chaos methodology to predict a BDI time series with

invariant parameters of the reconstructed strange attractor that governs the evolution of the system. Guan et al. [35] propose

an SVM-based forecasting model combining direct and iterative prediction and use a support vector machine (SVM), hybrid

multistep prediction, and weekly BSI data to test the model’s performance. Ş ahi ̇n et al. [36] compare the BDI forecasting

accuracy of three different ANN models and find that their performances are similar, but that the most consistent is ANN

using BDI input data from the two most-recent weekly observations. 

These studies indicate that AI-based methods produce significantly better results than traditional econometric and statis-

tical models. Although ANNs can better handle non-linear relationships that involve arbitrary complexity, strong robustness,

and fault tolerance, the model structure of the AI algorithm is difficult to determine. It is also prone to excessive or insuffi-

cient training, and this induces shortages, such as trapping in the local minimum caused by a sensitivity to initial values. 

2.3 Hybrid models 

Hybrid models that combine interdisciplinary methods allow strengths to overcome limitations. The usual way of estab-

lishing a hybrid model is to integrate a noise reduction technique with an AI-based algorithm. Leonov and Nikolov [37] pro-

pose a model based on wavelets and neural networks to predict dry bulk freight rates. Bulut et al. [38] develop a vector

autoregressive fuzzy integrated logical forecasting model for time charter rates. Duru et al. [39] propose a fuzzy-Delphi ad-

justment method to improve the accuracy of statistical forecasts of the dry bulk shipping index. Han et al. [40] use wavelet

transform to denoise the BDI data series and combine wavelet transform and a support vector machine to forecast BDI. Zeng

et al. [41] develop a method based on empirical mode decomposition (EMD) and artificial neural networks (ANN). Uyar et al.

[42] develop a genetic-algorithm-based trained recurrent neural network to improve the accuracy of long-term freight rate

index forecasting. Eslami et al. [43] develop a hybrid model based on an artificial neural network (ANN) and an adaptive ge-

netic algorithm (AGA) for short-term prediction of tanker freight rates. They find that hybrid model is not only significantly

superior to the regression approach and the moving average approach, but also slightly superior to existing ANN studies. 

Empirical results show that the hybrid model has superiorities than single AI model in time series forecasting. Therefore,

in future hybrid forecasting models will become the hot interests focus on the shipping freight market analysis. However, at

the same time, the calculation process required in hybrid methods is complicated. The critical question is how to effectively

reduce the high level of noise corrupting the freight rate data in the shipping market and thus largely weakening the

prediction capability of AI-models. 

3. Methodology 

In this section, we first describe the DFN technique and then form a hybrid DFN-AI approach to forecast the BDI series.

At last, three prediction accuracy measurements are proposed. 

3.1. Dynamic fluctuation network (DFN) 

Complex network theory has recently been used to analyze time series because it can characterize hidden time series

features that are difficult for conservative econometric and statistical methods to capture. The approach encodes the dynam-

ics of the time series into the topology of the corresponding network. Zhang and Small [44] first introduced this method by

transforming a pseudo-periodic time series into a complex network. Bridging time series analysis and complex networks has

yielded high-quality results in both theoretical and practical studies [45] . There are now a variety of algorithms for mapping
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time series into complex networks, including the visibility graph (VG) [46,47] , a pseudo-periodic time series transformation

algorithm [48] , a phase space reconstruction method [49] , and a coarse-graining phase space method [50] . 

The dynamic fluctuation network (DFN) is a complex network-based time series transformation technique that can reveal

the hidden characteristics and dynamics of time series. It thus can be used as a highly effective forecasting tool. A DFN maps

the evolution of fluctuation modes in the original time series to a corresponding network and uses its topology to extract

fluctuation features [16] . The DFN approach to reconstructing the original BDI includes the following steps: 

(1) Calculate the fluctuation state series 

From the original BDI time series X = X(t) with t = 0 , 1 , 2 , . . . , N we obtain the return series R = R (t) with t = 1 , 2 , . . . , N,

R (t) = 

X (t) − X (t − 1) 

X ( t − 1) 
, (1) 

where X(0) = X(1) and thus R (1) = 0 . 

We next define s ( t ) to be the fluctuation state of BDI at time t , according to return series R ( t ) using indicator function

I ( R ), 

s (t) = 

{ 

s 1 R (t) > r 
s 2 −r ≤ R (t) ≤ r 
s 3 R (t) < −r 

, r = 

1 

N 

∑ | R (t) | . (2) 

The continuous return series R ( t ) is thus transformed into discrete fluctuation state sequence s ( t ) and s ( t ) ∈ { s 1 , s 2 , . . . , s k }
with k = 3 symbol in our case. Here s 1 = 1 , s 2 = 0 , and s 3 = −1 . 

(2) Obtain the fluctuation mode 

We use the sliding window method with a window length L = 5 and sliding step l = 1 and divide the fluctuation state

sequence s ( t ) into several overlapping sequences with a fixed length L . Each sequence is a fluctuation mode denoted S m ,

m = 1 , 2 , . . . , ̂  M . There are thus a total of ̂ M = [ N − L + l] fluctuation modes, and the original state sequence can be rewritten

to fluctuation mode matrix S , 

S = 

⎡ ⎢ ⎣ 

s (1) s (2) · · · s ( ̂  M ) 
· · · · · ·
· · · · · ·

s (L ) s (L + 1) · · · s (L + 

̂ M + 1) 

⎤ ⎥ ⎦ 

= [ S 1 , S 2 , · · ·S ̂  M ] . (3) 

Using the fluctuation state sequence shown in Fig. 1 as an example, the fluctuation state sequence is given as s (t) =
{ s 1 , s 2 , s 1 , s 3 , s 1 , s 2 , s 1 , s 3 , s 1 } . After sliding the window with L = 5 and l = 1 the s ( t ) is transferred to the fluctuation mode

matrix S as follows, 

S = 

⎡ ⎢ ⎢ ⎣ 

s 1 s 2 s 1 s 3 s 1 
s 2 s 1 s 3 s 1 s 2 
s 1 s 3 s 1 s 2 s 1 
s 3 s 1 s 2 s 1 s 3 
s 1 s 2 s 1 s 3 s 1 

⎤ ⎥ ⎥ ⎦ 

= [ S 1 , S 2 , S 3 , S 4 , S 5 ] . (4)

(3) Construct dynamic fluctuation network 

To map the fluctuation mode matrix S to a dynamic fluctuation network, we denote the different fluctuation modes to

be DFN nodes notated V i , where i = 1 , 2 , . . . , n, and n ≤ ̂ M . Transformations among different fluctuation modes are edges

between nodes. For example, when fluctuation mode i transforms to j there is a directed link from node V i to node V j .

Thus while the fluctuating modes are evolving into each other in time, the directed fluctuation network DFN ( r , k , L , l ) is

being constructed. Fig. 1 shows a fluctuation mode matrix presented as a directed network with four nodes and four edges

N = { V 1 → V 2 → V 3 → V 4 → V 1 } . 

(4) Extract the fluctuation features 

Because the DFN is a directed network, all nodes except the first and last one all nodes have an in-neighbor and out-

neighbor set. 

In order to make a prediction, we aim the last fluctuation mode S n in the data, which is the last column in fluctuation

mode matrix S . We define the target node V T 
i 

to be the node that is mapped by the last fluctuation mode S n . Fig. 1 shows

that the last fluctuation mode S 5 is mapped to node V 1 . Thus the target node is V 1 and the set of its out-neighbors E V T is

identified and is V 2 in Fig. 1 . For arbitrary node V i belong to the E T , we can obtain one or more fluctuation modes mapped
V 
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Fig. 1. The paradigm for the process of transforming original BDI data to dynamic fluctuation network (DFN) and to extract fluctuation features according 

to the topology of DFN. 

 

 

 

 

 

 

 

 

 

to it. We thus can extract the fluctuation feature set ES containing all possible fluctuation modes that can evolve from the

last fluctuation mode S n at next time stamp, 

E S = 

⎡ ⎢ ⎣ 

E S(1) E S(2) · · · E S(D ) 
· · · · · ·
· · · · · ·

E S(L ) E S(L + 1) · · · E S(L + D + 1) 

⎤ ⎥ ⎦ 

. (5)

Fig. 1 shows that the out-neighbor set contains only node V 2 , and that fluctuation mode S 2 is mapped to V 2 . This thus

generates the fluctuation features set ES = { S 2 } = { s 2 , s 1 , s 3 , s 1 , s 2 } . 
3.2. DFN-AI approach for BDI forecasting 

After using the dynamic fluctuation network to extract the fluctuation features we can formulate a novel hybrid DFN-AI

forecasting approach for the BDI index. There are three steps in the proposed DFN-AI forecasting approach, (i) constructing

the training dataset of the AI learning algorithm, (ii) normalizing and denormalizing data, and (iii) forecasting using AI

algorithms. 

STEP 1: Construct the training dataset of the AI learning algorithm 

After determining the training and testing stages, we map the original BDI data of a given training stage on a directed

DFN using the method described in Section 3.1 . We then use the topological structure of the DFN to extract the fluctuation

feature set ES of the BDI. We can either use this ES to directly identify the corresponding original BDI data ED to be the
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input training dataset for the AI-learning algorithm. Or we can combine a subset SD of BDI data with ED identified by

fluctuation feature set ES . Here the input data should be [ ED ; SD ]. The way to extract SD could be varied according to

different prediction requirements. Here we use a subset of original BDI data before the beginning of the testing stage with

a length twice that of testing dataset SD and combine it with ED to construct the training dataset for the AI algorithm. 

STEP 2:Data normalization and denormalization 

AI-learning algorithm requires the preparation in data processing to minimize the difference between the threshold and

actual data. Training data are usually normalized before being input, 

x ′ t = 

x t − x min 

x max − x min 

, (6) 

where x ′ t is the data after normalization at time t , and x min and x max are the minimum and maximum of input x t . After

processing we need to anti-normalize the output, ̂ y t = y ′ t (y max + y min ) + y min (7) 

where ̂ y t is the predictive data after anti-normalization at time t , and y min and y max are the minimum and maximum of

output y ′ t . 

STEP 3: Forecasting using AI algorithms 

After normalizing the training data, we use an AI learning algorithm to model the input training data and simulate the

prediction results. A series of recently-developed AI learning algorithms for time series forecasting are clearly superior to

traditional forecasting models [16,51] . Here we focus on three prevailing models, (i) the back propagation neural network

(BP), (ii) the radial basis function neural network (RBF), (iii) and the extreme learning machine (ELM). For detailed descrip-

tions of these three AI-based models see Appendix A. 

We set BP, RBF, and ELM to be standard two-layer artificial neural network models with a hidden layer and an output

layer. Note that a small number of hidden neurons causes inaccuracies in the correlation between inputs and outputs and

that a large number produces local optimums. Hastie et al. [52] find that, because the typical number of nodes is in the 5

to 100 range, using cross-validation is unnecessary. We thus set the parameters as follows. 

For BP we set the number of nodes in the hidden layer to the default value of the ‘newff’ command in MATLAB, and we

set the other training parameters net.trainParam.epochs = 10 0 0, net.trainParam.goal = 1e-6, and net.trainParam.lr = 0.01.

For RBF we set the number of nodes in the hidden layer to 90 and the radial basis function to the Gaussian function. For

ELM we set the number of nodes in the hidden layer to be 8. 

3.3. Accuracy measurements 

To measure the forecasting accuracy of these proposed methods, we apply the widely-used error measurements of mean

absolute percentage error (MAPE) and root mean square error (RMSE) methods [53,54] , defined 

MAP E = 

1 

N 

N ∑ 

t=1 

∣∣∣∣X (t) − ˆ X (t) 

X (t) 

∣∣∣∣ (8) 

and 

RMSE = 

√ ∑ N 
t=1 ( ̂  X (t) − X (t)) 2 

N 

, (9) 

where ˆ X (t) and X ( t ) are the predicted and real values at time t , respectively, and N is the size of the dataset being tested.

The MAPE measures the mean absolute relative error of the prediction models, and the RMSE measures their standard

deviation. The smaller the MAPE and RMSE values the greater the level of model accuracy. 

For a given prediction, actual outcomes above and below the prediction are treated asymmetrically in MAPE and RMSE

[55] . Thus we must know the directional tendency of the data fluctuations–whether they are upward, stable, or downward—

and we measure them using the direction matching rate Dsta, defined 

Dsta = 

1 

N 

N ∑ 

t=1 

a (t) , (10) 

and 

a (t) = 

{
1 , (X (t + 1) − X (t)) ∗ ( ̂  X (t + 1) − X (t)) ≥ 0 

0 , otherwise 
. (11) 

The closer the Dstat value is to 1, the higher the accuracy of the directional prediction of the models, and the closer the

Dstat value is to 0, the lower the accuracy of their directional predictions. 
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Fig. 2. Trend of daily BDI dataset used to make prediction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Data 

To meet the requirements of participants of the dry bulk shipping market, the Baltic Freight Index (BFI) began to be pub-

lished in 1985 by the London Baltic Exchange. On 1 November 1999 the BDI replaced the BFI, and it is now widely used by

industry practitioners and regarded an important economic indicator. The BDI is a daily index that takes into consideration

26 shipping routes measured on a time-charter and voyage basis, which is a composite of three sub-indices that measure

different sized dry bulk carriers and merchant ships: Capesize, Panamax, and Supramax. We here use the daily, weekly, and

monthly BDI data from 1 November 1999 to 30 February 2018 as our experimental datasets when comparing forecasting

accuracy. All datasets are from the world’s leading shipping database Clarkson Sin ( https://sin.clarksons.net/ ). 

Fig. 2 shows that the BDI fluctuations are large in amplitude, high in frequency, and irregular. From November 1999 to

early in 2003 the BDI value fluctuated gently, and market volatility began to increase in 2003. On 20 May 2008 the BDI had

reached 11,793 but in the following six months it dropped sharply to approximately 700 points. 

Note that for BDI stable periods are surrounded by periods of extreme volatility. Periods with sustained large rate in-

creases are followed by stable periods lasting a few months. A cluster of downward moves brings the process back to an

average upward drift. Shipping decisions made by ship owners and charter firms are strongly affected by expected trend

of the BDI, which are associated with the time of entering charter contracts, their duration, switching between spot and

time charter operations, improving hedging performance using derivative contracts, and also when to invest in newly-built

or second-hand vessels. 

5. Empirical results 

5.1. Forecasting results in random sampling cases 

To analyze the robustness of our hybrid DFN-AI model, we use daily, weekly and monthly datasets. For the sake of

analysis and comparison, in each dataset we randomly select 100 sample data from five different time periods for training

and testing. Utilizing previous research, we set the size ratio between training and testing sets to be 8: 2. In our predicting

we apply DFN-BP, DFN-RBF, and DFN-ELM and their corresponding single models. We then measure the prediction accuracy

of each forecasting model by calculating the MAPE, RMSE, and Dsta. Finally we evaluate the improvement in accuracy to be

the difference between the accuracy of the DFN-AI model and the corresponding single AI model divided by the value of

accuracy measurement of a single AI model. 

https://sin.clarksons.net/
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Table 1 

Performance improvement percentage of DFN-AI models compared to corresponding AI models for daily BDI 

prediction. 

Stage Method Performance improvement percentage 

MAPE RMSE Dsta 

DFN-BP 27.6% 22.6% 20.0% 

Training: 1999/11/12-20 0 0/4/10 DFN-RBF 52.3% 46.3% 5.9% 

Testing: 20 0 0/4/11-20 0 0/5/11 DFN-ELM 82.2% 77.8% 70.0% 

DFN-BP 10.3% 4.7% 30.0% 

Training: 20 0 0/8/18-20 01/1/11 DFN-RBF 40.5% 38.0% 33.3% 

Testing: 20 01/1/12-20 01/2/8 DFN-ELM 78.6% 100.0% 14.3% 

DFN-BP 36.6% 24.2% 6.7% 

Training: 20 05/6/7-20 05/10/26 DFN-RBF 22.0% 20.6% 5.6% 

Testing: 20 05/10/27-20 05/11/23 DFN-ELM 46.8% 35.6% 0.0% 

DFN-BP 25.0% 20.2% 28.6% 

Training: 20 08/8/15-20 09/1/13 DFN-RBF 6.8% 8.5% 5.3% 

Testing: 20 09/1/14-20 09/2/10 DFN-ELM 23.8% 25.5% 12.5% 

DFM-BP 50.4% 42.4% 26.7% 

Training: 2012/3/29-2012/8/23 DFN-RBF 41.9% 32.6% 18.8% 

Testing: 2012/8/24-2012/9/21 DFN-ELM 85.6% 82.1% 111.1% 

Table 2 

Performance improvement percentage of DFN-AI models compared to corresponding AI models for weekly BDI 

prediction. 

Stage Method Performance improvement percentage 

MAPE RMSE Dsta 

DFN-BP 38.2% 33.2% 9.1% 

Training: 1999/12/3-2001/11/16 DFN-RBF 72.7% 68.9% 87.5% 

Testing: 20 01/11/17-20 02/4/5 DFN-ELM 90.3% 100.0% 57.1% 

DFN-BP 12.5% 8.1% 7.1% 

Training: 20 02/4/5-20 04/3/5 DFN-RBF 61.1% 59.0% 20.0% 

Testing: 20 04/3/6-20 04/7/23 DFN-ELM 53.3% 50.2% 133.3% 

DFN-BP 44.5% 34.2% 100.0% 

Training: 20 03/9/12-20 05/8/19 DFN-RBF 20.0% 11.6% 0.0% 

Testing: 20 05/8/20-20 06/1/13 DFN-ELM 68.3% 61.8% 33.3% 

DFN-BP 40.6% 33.3% 116.7% 

Training: 2009/2/13-2011/1/28 DFN-RBF 4.3% 4.2% 18.2% 

Testing: 2011/1/29-2011/6/17 DFN-ELM 34.8% 29.1% 50.0% 

DFN-BP 69.1% 60.1% 36.4% 

Training: 2013/5/31-2015/5/1 DFN-RBF 26.1% 15.4% 30.0% 

Testing: 2015/5/2-2015/9/11 DFN-ELM 80.5% 73.1% 27.3% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1.1. Daily BDI forecasting 

We use as sample data the daily Baltic dry bulk index from 1 November 1999 to 18 May 2018. To verify the extent

to which the DFN-AI models can be generalized, we randomly select 100 sample data, use the previous 80 sample data

(80%) as training samples, and use the remaining 20 sample data (20%) as testing samples. The original training samples are

selected in five different periods. 

Table 1 compares the percentage of performance improvement of three DFN-AI models with their corresponding single

AI algorithms as the baseline models. When the improvement percentage is positive, the DFN-AI model outperforms the

corresponding single AI model, and the higher the value the more significant the improvement. 

Note that in all five random sampling stages, the predictive performance both in errors and direction matching are im-

proved by introducing DFN. The predictions of the DFN-AI models are more accurate than those of traditional single AI

models. The average improvement percentage in the MAPE of DFN-BP, DFN-RBF, and DFN-ELM are 29.98%, 32.64%, and

64.3%, respectively, and of Dsta are 20.04%, 13.78%, and 41.58%, respectively. Thus DFN-ELM exhibits the most significant

improvement levels. We compare the predictive performances in detail in Table B.1 of Appendix B. 

5.1.2. Weekly BDI forecasting 

Because previous studies indicate that data frequency strongly affects BDI forecasting accuracy, we use weekly data from

5 November 1999 to 18 May 2018 to measure the improvement in forecasting accuracy of the DFN-AI models. Table 2

compares the performance improvement percentage of DFN-AI models with their baseline single AI model. Similar to daily

BDI predictions, performance improvement percentages are positive in all sampling stages and in all three model types com-

pared. Thus using DFN to extract fluctuation features of the original time series in an AI-based prediction enhances accuracy.

The average improvement percentage in MAPE of DFN-BP, DFN-RBF, and DFN-ELM are 40.98%, 28.84%, and 65.44%, respec-

tively, and of Dsta are 53.86%, 31.14%, and 60.14%, respectively. Compared to daily data, DFN exhibits the same improvement
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Table 3 

Performance improvement percentage of DFN-AI models compared to corresponding AI models for monthly BDI 

prediction. 

Stage Method Performance improvement percentage 

MAPE RMSE Dsta 

DFN-BP 37.8% 26.4% 30.0% 

Training: 2003/12-2010/8 DFN-RBF 27.6% 3.4% 30.0% 

Testing: 2010/9-2012/4 DFN-ELM 27.3% 11.5% 0.0% 

DFN-BP 42.8% 23.5% 18.2% 

Training: 2005/3-2011/11 DFN-RBF 16.1% 11.5% 9.1% 

Testing: 2011/12-2013/7 DFN-ELM 28.8% 9.3% 30.0% 

DFN-BP 34.2% 12.4% 62.5% 

Training: 2006/1-2012/9 DFN-RBF 24.3% 5.9% 40.0% 

Testing: 2012/10-2014/5 DFN-ELM 28.5% 4.0% 33.3% 

DFN-BP 55.5% 41.7% 20.0% 

Training: 2008/2-2014/10 DFN-RBF 34.2% 20.7% 50.0% 

Testing: 2014/11-2016/6 DFN-ELM 44.2% 30.1% 36.4% 

DFN-BP 9.6% 3.6% 7.1% 

Training: 2008/12-2015/8 DFN-RBF 16.7% 19.1% 9.1% 

Testing: 2015/9-2017/4 DFN-ELM 24.6% 3.4% 11.1% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

level for the weekly BDI prediction. Moreover, the improvement in directional matching rate for all three DFN-AI models is

more significant in the weekly BDI predictions than in the daily data forecasting. For a predictive performance comparison

of weekly BDI in detail, see Table B.2 of Appendix B. 

5.1.3. Monthly BDI forecasting 

Because using low-frequency time scale data to make long-term BDI predictions is challenging, we examine how DFN

can increase the accuracy of monthly data forecasting. We use the same predictive approach as for daily and weekly data.

We randomly choose 100 observations to be our sample and divide it into training data and testing data according to the

ratio 8: 2. Table 3 lists the percentages of predictive performance improvement of DFN-AI models to single AI models in

five stages. Note that the DFN approach enhances the accuracy significantly, and that the average improvements of MAPE

for BP, RBF, and ELM are 35.98%, 23.78%, 30.68%, respectively. In addition, the MAPE values of the monthly data of all single

AI forecasting models are over 0.2 (see Table B.3 in Appendix B), indicating that they fail to predict monthly BDI. After

applying DFN, the MAPE of all three AI forecasting models are equal to or less than 0.2, indicating that they are good

prediction models (See Table B.3 of Appendix B). 

5.2. Forecasting results in challenging situations 

We examine the improvement in predictive performance of the DFN-AI in a random sampling case, and we determine

whether the DFN approach yields the same increase in accuracy under challenging and abnormal situations. We thus here

select three typical challenging conditions and compare the predictive performance of our DFN-AI models with that of non-

hybrid AI models for both daily and weekly BDI datasets. Fig. 3 show the training and testing periods of three challenging

situations. 

Situation I: forecasting a sudden price surge 

From 1999 to the second quarter of 2003, the BDI fluctuated between 10 0 0 and 20 0 0 points, but it then increased by

52% from 2900 to 4500 points in October 2003. That began a boom period in the world dry bulk shipping market that

lasted until the 2008 worldwide financial crisis. We choose training data from 15 August 2002 to 15 September 2003 with

270 daily data observations and 54 weekly data observations. We select testing data from 16 September 2003 to 27 October

2003 with 30 daily data observations and 6 for weekly data observations. 

Situation II: predict the sudden decline of BDI. 

Following the rapid growth period from 2004 to 2007, the shipping market plummeted in the 2008 worldwide financial

crisis. Over a six-month period, the BDI dropped from approximately 10,0 0 0 points to a historic low of roughly 10 0 0 points.

Since that time the world shipping market has remained weak, despite a global recovery in trade and the economy. For the

training dataset in this situation, we use the BDI from 13 September 2005 to 22 May 2008 in which the daily predictions

include 420 observations and the weekly 84 observations. For the testing dataset, we use the BDI from 23 May 2008 to 24

November 2008 in which the daily predictions include 130 observations and the weekly 26 observations. 
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Fig. 3. Training and testing dataset of BDI for challenging situation I (top), situation II (central) and situation III (bottom). 

 

 

 

 

 

 

 

 

 

Situation III: predict the turning points of frequent fluctuations 

In addition to sharp increases and decreases, the BDI also exhibits extreme high-frequency fluctuations. For example,

following 2008 plunge, BDI fluctuated between 10 0 0 and 20 0 0 points during the first and second quarters of 2009. For the

training data, we thus use the BDI from 12 January 2007 to 12 January 2009 in which the daily predictions include 500

observations and the weekly 100 observations. For the testing dataset, we use the BDI from 24 March 2007 to 26 March

2008 in which the daily predictions include 200 observations and the weekly 40 observations. 

We first examine the daily BDI dataset. Fig. 4 compares the actual BDI values with the predicted values generated by

three DFN-AI models and their corresponding single AI models in the three testing situations. The inset in each figure

shows the zoomed in detail of a particular period marked by the red circle. 

We find that both the DFN-AI models and the single AI models predict the trend in three situations, but the predicted

values generated by the DFN-AI models deviate less from the actual BDI. For example, in situation I beginning in October

2003 the ELM and RBF predictions deviate, but the DFN-RBF and DFN-ELM predictions are still very close to the actual BDI
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Fig. 4. Actual BDI and forecasting results through three DFN-AI models and their corresponding AI models for daily data in situation I (Top), situation II 

(Central) and situation III (Bottom). 
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Table 4 

Performance improvement percentage of DFN-AI models compared to corresponding AI 

models for daily BDI prediction in three challenging situations 

Stage Method Performance improvement percentage 

MAPE RMSE Dsta 

DFN-BP 0.3% 2.0% 0.0% 

Training: 20 02/8/15-20 03/9/15 DFN-RBF 8.6% 12.8% 2.3% 

Testing: 20 03/9/16-20 03/10/27 DFN-ELM 84.1% 89.5% 13% 

DFN-BP 63.2% 4.8% 22.9% 

Training: 20 05/9/13-20 08/5/22 DFN-RBF 95.9% 76.3% 41.6% 

Testing: 20 08/5/23-20 08/11/24 DFN-ELM 98.2% 90.8% 42.3% 

DFN-BP 37.7% 7.9% 18.1% 

Training: 20 07/1/12-20 09/1/12 DFN-RBF 22.9% 2.0% 10.6% 

Testing: 20 09/1/13-20 09/3/24 DFN-ELM 96.9% 90.8% 93.7% 

Table 5 

Performance improvement percentage of DFN-AI models compared to corresponding AI 

models for weekly BDI prediction in three challenging situations. 

Stage Method Performance improvement percentage 

MAPE RMSE Dsta 

DFN-BP 38.71% 35.37% 33.33% 

Training: 20 02/8/15-20 03/9/15 DFN-RBF 54.28% 61.29% 10 0.0 0% 

Testing: 20 03/9/16-20 03/10/27 DFN-ELM 72.45% 75.98% 252.00% 

DFN-BP 11.81% 8.14% 24.62% 

Training: 20 05/9/13-20 08/5/22 DFN-RBF 17.19% 4.34% 6.90% 

Testing: 20 08/5/23-20 08/11/24 DFN-ELM 61.20% 25.90% 7.41% 

DFN-BP 64.89% 28.75% -2.82% 

Training: 20 07/1/12-20 09/1/12 DFN-RBF 48.21% 5.46% 0.00% 

Testing: 20 09/1/13-20 09/3/24 DFN-ELM 85.73% 66.47% 7.81% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

values. We see similar behavior in situation II at the end of September 2008. Table 4 compares the improvements in the

accuracy of the DFN-AI models with those of their corresponding single AI models. 

Table 4 shows a positive performance improvement percentage in all three challenging cases, which indicates that that

DFN increases forecasting accuracy under extreme circumstances. DFN-AI models outperform single AI models the most

when predicting sudden drops. Using DFN narrows the predictive errors of all three AI models by more than 50% and

increases the direction matching rates by more than 20%. For a detailed accuracy performance listing of the DFN-AI and

single AI models, see Table B.4 of Appendix B. 

We next examine the weekly BDI dataset and determine how much the DFN-AI models improve prediction accuracy.

Fig. 5 compares the actual BDI value with the predicted value generated by DFN-AI models and their corresponding single

AI models. The single AI model predictions of weekly data exhibit large errors, and the trends they predict are wrong. In

contrast, the DFN-AI forecasting model reproduces BDI trends and displays relatively few errors. For example, in situation

III the predicted values of single AI models deviate widely from BDI values, but the predicted values of DFN-AI models are

very close to the BDI values. 

Table 5 shows that in most circumstances DFN-AI decreases errors, increases the direction matching rate, and thus pro-

duces more accurate prediction results than single AI model. The only exception is in situation III when by using DFN the

Dsta decreases by 2.82%. But compared to the improvement level in MAPE and RMSE, the decrease is very slight. 

6. Concluding remarks 

This paper aims to enhance the forecasting accuracy of the BDI by formulating a DFN-AI forecasting approach, which is a

novel hybrid that can remove the noise in the data by combining dynamic fluctuation network (DFN) technique with artifi-

cial intelligence (AI) algorithms. Random sampling cases and challenging situations are designed to evaluate the forecasting

accuracy improvement of DFN-AI compared to its corresponding single AI model. In this setting, the hybrid AI algorithms

and single AI models are both used to generate forecasts for the same sample size and over the same horizon. In addition,

we conduct daily, weekly, and monthly BDI predictions to test the performance robustness of DFN-AI models for different

time scales. 

The main intellectual merits of this work include the novel approach based on BDN and AI techniques and as an effective

method for capturing non-linear and non-stationary characteristics of shipping freight market. The empirical results demon-

strate that DFN-AI models yield lower forecasting errors and higher directional matching rates compared to corresponding

single AI models. In addition, we validate the robustness of the accuracy improvement provided by DFN-AI models in both

random sampling and challenging situations and for different BDI time-scale datasets. We find that the DFN-AI technique is
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a promising tool for the accurate prediction of the BDI index, that its forecasting power is unaffected by training and testing

sample selection, and that it is robust with respect to data frequency and extreme market switch. 

This newly-proposed approach can serve as a useful tool for chartering and ship-building decisions under uncertainty.

Shipping market practitioners can benefit from the satisfactory performance of this proposed forecasting approach and inte-

grate it into their managerial toolkit. Our proposed approach and findings also extend freight rates forecasting research and

suggest possible future roads of research in related fields. 

Acknowledgments 

This work was supported by the National Science Foundation of China (Grant no.: 71601112 ), and the Shanghai Pujiang

Program (Grant no.: 15PJC061). The Boston University Center for Polymer Studies is supported by NSF Grants PHY-15050 0 0,

CMMI-1125290, and CHE-1213217, by DTRA Grant DTRAHDTRA1-14-1-0017, and by DOE Contract DE-AC07-05Id14517. M.G. 

Wang thanks the support from the National Science Foundation of China (Grant no.: 71503132 and 71811520710 ). 

Appendix A 

A series of artificial intelligence algorithms for time series forecasting were recently developed, and they have proven

to be superior to traditional forecasting models. Here we focus on three prevailing models, (i) the back propagation neural

network (BP), (ii) the radial basis function neural network (RBF), (iii) and the extreme learning machine (ELM). 

1. Back propagation neural network (BP) 

The back propagation neural network (BP) model is one of the most widely used artificial neural network algorithms for

classification and prediction. This technique is an advanced multiple regression analysis that deals with responses that are

more complex and non-linear than those of standard regression analysis. The basic formula of the BP algorithm is 

W (n ) = W (n − 1) − �W (n ) , (A.1) 

where 

�W (n ) = η
∂E 

∂W 

(n − 1) + γ�W (n − 1) , (A.2) 

where W is the weight, η is the learning rate, E is the gradient of error function, and γ�W (n − 1) is the incremental

weight. Because the BPNN uses the gradient method the learning convergent velocity is slow, and a convergence to the

local minimum always occurs. In addition, the selection of the learning and inertial factors affects the convergence of the

BP, which is determined by the level of experience. Thus the usefulness of the BP is limited. 

2. Radial basis function neural network (RBF) 

The radial basis function network (RBF) is an artificial neural network using radial basis functions for activation. RBF

networks typically have three layers: an input layer, a hidden layer with a non-linear RBF activation function, and a linear

output layer. The input can be modeled as a vector of real numbers x ∈ R 

r , and the prototype of the input vectors B i ∈ R 

r .

The output of each RBF unit is 

R i (X ) = R i (‖ X − B i ‖ ) , i = 1 , 2 , ..., u, (A.3)

where ‖‖ is the Euclidean norm on the input space. Because it can be factored, the Gaussian function is the preferred radial

basis function. Thus 

R i (X ) = exp[ −‖ X − B i ‖ 

2 

σ 2 
i 

] , (A.4) 

where σ i is the width of RBF unit i . The output Y j ( X ) of unit j of an RBF is 

Y j (X ) = 

u ∑ 

i =1 

R i (X ) ∗ W ( j, i ) , (A.5)

where R 0 = 1 , W ( j , i ) is the weight or strength of receptive field i to output j , and W ( j , 0) is the bias of output j . Geomet-

rically, an RBF partitions the input space into several hypersphere subspaces. The parameters of the RBF networks are the

center, the influence field of the radial function, and the output weight between the neurons of the intermediate layer and

those of the output layer. The training process produces these parameters. 

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/100000001
https://doi.org/10.13039/100000774
https://doi.org/10.13039/100000015
https://doi.org/10.13039/501100001809
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3. The extreme learning machine 

The extreme learning machine (ELM) was originally applied to single hidden-layer feed-forward neural networks and

then extended to generalized feed-forward networks. For a set of training samples (X j , C j ) 
N 
j=1 

with N samples and C classes,

the single hidden layer feed-forward neural network with h hidden nodes and activation function f ( x ) is 

h ∑ 

i =1 

βi f i (X j ) = 

h ∑ 

i =1 

βi f (W i ∗ X j + b i ) = Y j , j = 1 , 2 , ...N, (A.6)

where X j = [ x j1 , x j2 , · · · , x jm 

] T ,C j = [ c j1 , c j2 , · · · , c jm 

] T , W j = [ w j1 , w j2 , · · · , w jm 

] T , and b i are the input, its corresponding

output, the connecting weights of hidden neuron i to input neurons, and the bias of hidden node i , respectively, and β j =
[ β j1 , β j2 , · · · , β jm 

] T are the connecting weights of hidden neuron i to output neurons, and Y j the actual network output with

respect to input X j . Because the hidden parameters W i , b i can be randomly generated during the training period without

tuning, ELM solves a compact model that minimizes the error between C j and Y j , i.e., min ‖ Hβ − C ‖ F . 
Here H is the hidden layer output matrix and β the output weight matrix. The merit of ELM is that only the output

weights are needed when randomly selecting the hidden node parameters (input weights and bias). 

Appendix B 

1. Predictive performance comparision in random sampling case 

In the random sampling case, we randomly select 100 sample data and use the previous 80 sample data (80%) as training

samples and the remaining 20 sample data (20%) as testing samples. The original training samples are selected in five dif-

ferent periods. To predict we apply DFN-BP, DFN-RBF, and DFN-ELM and their corresponding single models for daily, weekly

and monthly BDI datasets. Then for each forecasting model we calculate MAPE, RMSE, and Dsta to measure the predictive

accuracy. Tables B.1 to B.3 compare the predictive performance of the proposed DFN-AI models and their corresponding

single AI models for daily, weekly, and monthly BDI data. 
Table B.1 

Predictive performance of daily BDI in random sampling case. 

Stage Method MAPE RMSE Dsta 

BP 0.00192 3.90198 0.75 

DFN-BP 0.00139 3.02902 0.90 

Training: 1999/11/12-20 0 0/4/10 RBF 0.00281 5.38122 0.85 

Testing: 20 0 0/4/11-20 0 0/5/11 DFN-RBF 0.00134 2.89125 0.90 

ELM 0.00767 13.75021 0.50 

DFN-ELM 0.00137 3.05009 0.78 

BP 0.00199 4.08437 0.50 

DFN-BP 0.00179 3.89923 0.65 

Training: 20 0 0/8/18-20 01/1/11 RBF 0.00276 5.88549 0.45 

Testing: 20 01/1/12-20 01/2/8 DFN-RBF 0.00164 3.65093 0.60 

ELM 0.00802 13.46265 0.70 

DFN-ELM 0.00171 11.61286 0.60 

BP 0.01025 35.54588 0.75 

DFN-BP 0.00650 26.93127 0.80 

Training: 20 05/6/7-20 05/10/26 RBF 0.00857 33.46903 0.90 

Testing: 20 05/10/27-20 05/11/23 DFN-RBF 0.00668 26.58556 0.85 

ELM 0.01196 40.94235 0.80 

DFN-ELM 0.00636 26.36093 0.80 

BP 0.01934 19.19007 0.70 

DFN-BP 0.01451 15.30635 0.90 

Training: 20 08/8/15-20 09/1/13 RBF 0.01394 15.08657 0.95 

Testing: 20 05/10/27-20 05/11/23 DFN-RBF 0.01489 16.36838 0.90 

ELM 0.01946 21.22951 0.80 

DFN-ELM 0.01483 15.81096 0.90 

BP 0.01081 10.34134 0.75 

DFN-BP 0.00536 5.95278 0.95 

Training: 2012/3/29-2012/8/23 RBF 0.00899 9.00304 0.80 

Testing: 20 05/10/27-20 05/11/23 DFN-RBF 0.00522 6.07135 0.95 

ELM 0.03614 32.97336 0.45 

DFN-ELM 0.00520 5.89394 0.95 
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Table B.2 

Predictive performance of weekly BDI in random sampling case. 

Stage Method MAPE RMSE Dsta 

BP 0.04236 46.57877 0.55 

DFN-BP 0.02616 31.11013 0.60 

Training: 1999/12/3-2001/11/16 RBF 0.10225 110.05158 0.40 

Testing: 20 01/11/17-20 02/4/5 DFN-RBF 0.02787 34.22540 0.75 

ELM 0.32349 327.43545 0.35 

DFN-ELM 0.03151 0.03151 0.55 

BP 0.04269 282.54217 0.70 

DFN-BP 0.03736 260.14876 0.75 

Training: 20 02/4/5-20 04/3/5 RBF 0.17308 1114.48357 0.50 

Testing: 20 04/3/6-20 04/7/23 DFN-RBF 0.06726 454.52055 0.60 

ELM 0.09507 594.28247 0.30 

DFN-ELM 0.04 4 4 4 295.80142 0.70 

BP 0.09122 280.93011 0.35 

DFN-BP 0.05065 185.02082 0.70 

Training: 20 03/9/12-20 05/8/19 RBF 0.05922 206.93379 0.70 

Testing: 20 05/8/20-20 06/1/13 DFN-RBF 0.04736 182.84187 0.70 

ELM 0.15724 476.81562 0.60 

DFN-ELM 0.04978 181.88049 0.80 

BP 0.08755 198.13938 0.30 

DFN-BP 0.05198 132.37173 0.65 

Training: 2009/2/13-2011/1/28 RBF 0.06262 168.21386 0.55 

Testing: 2011/1/29-2011/6/17 DFN-RBF 0.05995 161.42761 0.65 

ELM 0.07555 182.05714 0.40 

DFN-ELM 0.04929 129.28527 0.60 

BP 0.09577 64.04353 0.55 

DFN-BP 0.02959 25.55870 0.75 

Training: 2013/5/31-2015/5/1 RBF 0.04377 33.46092 0.50 

Testing: 2015/5/2-2015/9/11 DFN-RBF 0.03234 28.30832 0.65 

ELM 0.14746 95.93572 0.55 

DFN-ELM 0.02872 25.78082 0.70 

Table B.3 

Predictive performance of monthly BDI in random sampling case. 

Stage Method MAPE RMSE Dsta 

BP 0.25313 428.58006 0.50 

DFN-BP 0.15737 315.25122 0.65 

Training: 2003/12-2010/8 RBF 0.26440 436.87125 0.50 

Testing: 2010/9-2012/4 DFN-RBF 0.19149 452.47002 0.65 

ELM 0.24232 398.77113 0.60 

DFN-ELM 0.17625 352.73889 0.60 

BP 0.27635 323.12399 0.55 

DFN-BP 0.15803 247.31021 0.65 

Training: 2005/3-2011/11 RBF 0.22948 280.68354 0.55 

Testing: 2011/12-2013/7 DFN-RBF 0.19242 248.52451 0.60 

ELM 0.22907 283.26009 0.50 

DFN-ELM 0.16308 257.05023 0.65 

BP 0.23708 397.38009 0.40 

DFN-BP 0.15601 348.20023 0.65 

Training: 2006/1-2012/9 RBF 0.26273 428.13229 0.50 

Testing: 2012/10-2014/5 DFN-RBF 0.19884 403.03931 0.70 

ELM 0.22360 362.29357 0.45 

DFN-ELM 0.15977 347.64344 0.60 

BP 0.42771 282.77128 0.50 

DFN-BP 0.19035 164.92001 0.60 

Training: 2008/2-2014/10 RBF 0.31660 221.60356 0.50 

Testing: 2014/11-2016/6 DFN-RBF 0.20829 175.66878 0.75 

ELM 0.33990 232.80922 0.55 

DFN-ELM 0.18965 162.78034 0.75 

BP 0.19010 147.76996 0.70 

DFN-BP 0.17179 153.30 0 01 0.75 

Training: 2008/12-2015/8 RBF 0.24456 206.79023 0.55 

Testing: 2015/9-2017/4 DFN-RBF 0.20368 167.32334 0.60 

ELM 0.23445 167.09054 0.45 

DFN-ELM 0.17677 161.49934 0.50 
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Table B.4 

Predictive performance of daily BDI in challenging situations. 

Stage Method MAPE RMSE Dsta 

BP 0.00341 19.18578 0.89 

DFN-BP 0.00340 18.80553 0.89 

Training: 20 02/8/15-20 03/9/15 RBF 0.00381 23.12751 0.87 

Testing: 20 03/9/16-20 03/10/27 DFN-RBF 0.00348 20.17087 0.89 

ELM 0.02685 267.91125 0.77 

DFN-ELM 0.00426 28.03865 0.87 

BP 0.03423 103.15406 0.72 

DFN-BP 0.01259 98.25412 0.89 

Training: 20 07/1/12-20 08/5/22 RBF 0.26696 409.52739 0.63 

Testing: 20 08/5/23-20 08/11/24 DFN-RBF 0.01201 96.91043 0.89 

ELM 0.64715 977.38720 0.62 

DFN-ELM 0.01181 90.28075 0.88 

BP 0.02347 61.81627 0.75 

DFN-BP 0.01461 56.92212 0.88 

Training: 20 04/3/23-20 07/3/23 RBF 0.01946 59.04360 0.80 

Testing: 20 07/3/24-20 08/3/26 DFN-RBF 0.01501 57.87757 0.89 

ELM 0.50432 639.40416 0.58 

DFN-ELM 0.01545 59.09879 0.88 

Table B.5 

Predictive performance of weekly BDI in challenging situations. 

Stage Method MAPE RMSE Dsta 

BP 0.07601 334.28185 0.75 

DFN-BP 0.04659 216.06056 1.00 

Training: 20 02/8/15-20 03/9/15 RBF 0.14468 724.74624 0.50 

Testing: 20 03/9/16-20 03/10/27 DFN-RBF 0.06615 280.55880 1.00 

ELM 0.19474 1006.86782 0.25 

DFN-ELM 0.05366 241.80484 0.88 

BP 0.09962 499.61321 0.81 

DFN-BP 0.08785 543.87804 0.65 

Training: 20 05/9/13-20 08/5/22 RBF 0.21657 722.42213 0.58 

Testing: 20 08/5/23-20 08/11/24 DFN-RBF 0.17934 691.08259 0.62 

ELM 0.32401 794.64852 0.54 

DFN-ELM 0.12570 588.84270 0.58 

BP 0.29589 479.91840 0.71 

DFN-BP 0.10390 341.96185 0.69 

Training: 20 07/1/12-20 09/1/12 RBF 0.32643 503.77855 0.67 

Testing: 20 09/1/13-20 09/3/24 DFN-RBF 0.16906 476.26261 0.67 

ELM 0.84728 1084.39283 0.64 

DFN-ELM 0.12090 363.58595 0.69 

 

 

 

 

 

 

 

 

2. Predictive performance comparision in challenging situation 

We choose three typical challenging situations, a sudden rise, a fall, and frequent fluctuations of BDI and compare the

predictive performance of our DFN-AI models with that of non-hybrid AI models for both daily and weekly BDI forecasts.

Tables B.4 and B.5 list the predictive performances of DFN-AI and single AI models for daily and weekly BDI forecasting,

respectively. 
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