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Abstract
This paper proposes aHankelmatrix-based statistical study to calculate the final synchronization state
of the entire network via local observation of just a single node for a time period significantly shorter
than the synchronization process. It surfaces that synchronization can be achievedmore quickly than
the routine rhythm for networks nomatter with linear or nonlinear dynamics. Thisfinding refines our
understanding of the abundant ultrafast synchronization phenomena observed in nature, which
enables the efficient design of self-aligned robots as well.

1. Introduction

Synchronization is ubiquitous in nature [1, 2], man-made systems [3] and human behaviors [4]. Understanding
synchronizing processes and regulating synchronizability have already benefited both biological and
engineering systems [5], including foraging [6], predator avoidance [7], migration [8], collective control of
unmanned air vehicles [9], and the self-organized formation ofmulti-robot systems [10]. Synchronization
phenomena and such closely related concepts as collectivemotion and consensus have already attractedmore
andmore attentions inmany branches of science [11, 12].

Manymechanisms have been proposed to explain synchronization phenomena [12]. The best known is the
neighborhood coordinationmechanism [13] inwhich the activity of each individual is affected by their nearest
neighbors. The neighbors of an individual are defined to be (i) those inside a ball-shaped vision range of afixed
radius [13, 14], (ii) those directly connected in a network [15, 16], or (iii) those, limited in number, that are
closest [17]. A ‘hierarchical leadershipmodel’was proposed [18] to explain theflock of pigeons, where each
pigeon follows its leader and is in turn followed by other pigeons, resulting in a hierarchical leader-follower
network.

Empirical studies have found that synchronization emerges quickly in real-world ecological and biological
systems [19–21]. In contrast, the synchronization produced by the neighborhood coordinationmechanism is
gradual. Althoughmanymethods have been proposed to speed up the synchronizing process [22–24], the
neighborhood coordinationmechanism cannot achieve extremely rapid synchronization or coordination as
observed in real-world systems. The hierarchical leadershipmodel has not been validated in large-scale systems
[25]. Two candidatemechanisms, information propagation [21, 26] and predictive protocol [27–30], have been
proposed to explain ultrafast synchronization. The former argues that direction change information can quickly
propagate throughout theflockwithout attenuation, and the latter shows that an individual, such as a bird or a
fish, is able to predict the near-futuremoving trajectories of neighbors, and thus ismore able to anticipate
collectivemotion. Understanding ultrafast synchronization is still an open challenge, because these two
proposedmechanisms need further experimental validation. In addition, it is probable that the observed
phenomena are the result of the integrated effects ofmultiplemechanisms.
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Wehere implement a statistical analysis usingHankelmatrix-based predictionmethod [30], for reaching
ultrafast network synchronization, where theHankelmatrix is constructed only from the finite-time and local
history of the networked system. In connected networks, wefind that the record of the past states of the observed
node can be used to achieve ultrafast synchronization.Monitoring additional nodes in the neighborhood of the
initial node further accelerates the synchronization.We demonstrate the ultrafast synchronizing speed of this
mechanismusing simulations of representative networkmodels and of a variety of real networks, nomatter with
linear or nonlinear dynamics.

2.Methods and results

For simplicity, we take anN-node general directed networkwith linear dynamics for example.When there is an
edge fromnodej to nodei, aij=1 in the adjacencymatrix�. Otherwise, aij=0. The state xi of an arbitrary
nodei follows a discrete-time linear dynamics
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where ò is the sampling period, which is small enough ( d1 max� - and dmax is themaximal out-degree) to
guarantee convergence [31]. Then the dynamics of the entire network is
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N-dimensional all-1 vector. As a simple fact, the state x(t) asymptotically converges to thefinal value
x x 0 1m¥ =( ) ( ) if the spectral radius ofP is no greater than 1.Hereμ is the left eigenvector ofP corresponding
to eigenvalue 1, which also satisfies the normalization conditionμ1=1. Specifically, for undirected networks or
balanced directed networks (i.e. a aj ij j jiå = å for every node i), x x 0 1
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naturally emerges: how to predict the future dynamics of the entire networkwithout the global knowledge ofP
or x(0), but just by observing the state of a single node?

To this end, we designate node i to be the one fromwhichwe gather time-sequential information about itself
and itsℓneighboring nodes i1,L, iℓ (‘monitored nodes’) as y x x x, , ,i i i i1

T= "( )ℓ .We define an outputmatrix
Ci

N1�Î + ´ℓ( ) inwhich column i in thefirst row and columns ij in ( j+1)th rows are 1 ( j=1, 2,L, l). All
other elements are 0. Thus
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Noting theZ-transform Y z y ti i2=( ) ( ( )), from equation (4) and the time-shift property of theZ-transform
wehave
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According to the definition ofP in (2), the only unstable root of qi(z) is the one at 1.We then define
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which immediately leads to that
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Using thefinal value theorem in (6) and some simple algebrawefind the consensus valuef1
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T = ¼[ ( ) ( ) ( )]and D 1 1ib + ´( ) is the vector of coefficients of pi(z).
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Wedenote theHankelmatrix [32, 30]
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Nodei then stores yi(t) (t=0, 1,K) in its ownmemory and recursively builds up theHankelmatrix Hi
k
,ℓ, as
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where x⌈ ⌉is the nearest integer not less than x, and Hi
k
,ℓ always hasmore rows than columns.Node i then

calculates the rank of Hi
k
,ℓ and increases the dimension k until Hi

k
,ℓ loses column rank and stores the first

defectiveHankelmatrix Hi
K
,ℓ. HereK is a good estimation ofDi. Node i then calculates the normalized kernel

, , , 1K0 1
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, b =ℓ according to equation (7). Onceβ is obtained and combinedwith

the previouslymemorized y y y K0 1i i i¼[ ( ) ( ) ( )], node i can use thefinal value theorem in equation (8) and
calculate the final global synchronized value

y y y K
1

1

0 1
, 10i i i

T
f

b
b=

¼[ ( ) ( ) ( )] ( )

within N Ki
K

,
1

1
= ++

+
⎡⎢ ⎤⎥ℓ ℓ iteration steps, which is defined as theminimalmemory length (MML). Here,

f=μx(0). All nodes then propel themselves toward the calculated destinationf. Given the observed node i and
itsℓmonitored nodes, the synchronizing time of themethod can thus be quantified usingNi,ℓ. In fact, this
synchronizing timeNi,ℓ denotes theminimal necessary recording length of the historical trajectory of the
observed node i and theℓmonitored nodes. To quantify the synchronization speed of the routine process, we
directly simulate the dynamics (1) and define theminimal convergence steps (MCS)M as when the state
difference of all node pairs, e.g. x xi j i jå -> ∣ ∣, drops below a small threshold δ (herewe set δ=10−3). The
smaller the value ofM, themore rapid the synchronization. The convergence ofHankelmatrix-based iterations
can be refereed to [30]. Once one node has achieved the final consensus value, it will simultaneously send the
final synchronization value to all the other nodes of the network.

Wefirst consider the Erdös–Rényi (ER) [33], the Barabási–Albert (BA) [34], and theWatts–Strogatz (WS)
[35]models. In an ERnetwork, node pairs are connectedwith a probability ρ. Initially a BAnetwork is a small
clique ofm nodes, and at each time step a single node is addedwithm edges connecting to existing nodes. The
probability of selecting an existing node is proportional to its degree.WSnetwork is an one-dimensional lattice
inwhich each node connects to zneighbors, and each edge has a constant probability p of being rewired. The
average degree of an BAnetwork is approximately 2m, and the average degree of anWSnetwork is z.We
generate S=100 networks of sizeN=100 for each networkmodel. In each network, we independently pick up
an observed node i and itsℓneighbors forR=100 times. To compare the local observation scheme and the
existing synchronizationmethod(1), we define the averageminimalmemory length (AMML) and the average
minimal convergence steps (AMCS) for these Snetworks as N N

R S i
R

j
S

i
j1

1 1 ,= å å´ = =ℓ ℓ and M M
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S
j
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respectively. Here, Ni
j
,ℓ andMj are theMML andMCSof the jth network ( j=1, 2,L, S)with associate output

matrixCi (i=1, 2,K,R), respectively. As shown in table 1, evenwhenℓ=0, namelywe knowonly the record
of the observed node, the synchronization speed of thismethod ismuch faster than the routine process, as
indicated by howmuch smaller the value of N0 is than M . In addition, Nℓ decreases whenℓ increases,
suggesting that the synchronization can be further accelerated by including themonitored nodes.

Significantly, the state of a node is directly affected by its neighbors, the state of the neighbors are in turn
affected by their neighbors, and so on. Accordingly, the average number of steps required for the influence from
a randomly selected node to reach another randomly selected node is equal to the average distance dá ñ. Thus the
synchronization time is strongly dependent on dá ñ. Figure 1 shows the relationship between the synchronization
time and dá ñ in both ourmethod and the routine process. The synchronization time M required by routine
method ismuch longer than Nℓ evenwhenℓ=0, and relationships M d, á ñ( ) and N d,0 á ñ( ) both
approximately fit a linear function, but the increasing rate of M ismuch larger than that of N0.We thus expect
that in networks with a larger dá ñ the advantage enjoyed by N0 will become evenmore significant.

We next consider a significant extension towards nonlinear dynamics. Take the prestigious Kuramoto
model [36] as example, for any node i (i=1, 2,L,N)
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where j runs over all iʼs neighbors. The system is composed ofN oscillators, with phases θi, natural frequencies
ωi, couplingK, sampling period ò=1/N, and edge betweenness bij [37]. It is observed that the errors of the
proposedHankelmatrix-based predictionmethod keep less than 0.015 (seefigure 2) and quickly settles down to
almost zero. TheAMML N0 are also approximately proportional to the average distances (seefigure 3). This
result is consistent to the linear case (seefigure 1), suggesting the generality of the proposed predictionmethod.

We further test the validity of our algorithm for ten disparate real-world networks (using equation (1) as
example dynamics), with the last two are directed. (i)Karate—a friendship network consisting of 34members of
a karate club [38]. (ii)Power—aUS electric power grid built in the early 1960s [39]. (iii)Dolphin—a social
contact network among 62 bottlenose dolphins in a community atDoubtful Sound,NewZealand [40]. (iv)
Lesmis—the network offictional characters inVictorHugo’s novel LesMiserables, where each edge denotes the
co-appearance of the two corresponding characters [41]. (v)Polbooks—the network of books about recentUS
politics in Amazon.com, where edges represent co-purchasing relations [42]. (vi) Football—the network of
American football games betweenDivision IA colleges during the regular season in Fall 2000, where each node
represents a team and two teams are connected if they have regular seasonal games [43]. (vii) FFHI—the face-to-
face human interaction network in a school [44]. (viii)Corporate—an European corporate community inwhich
nodes represent firms and twofirms are connected if they share at least onemanager or director [45]. (ix)Bison
—the dominance relationships amongAmerican bisosn in 1972 on theNational BisonRange inMoiese,

Table 1.AMMLandAMCSof S=100 ER, BA andWSnetworks with size
N=100. The initial state of each node is randomly selected in the range [−2, 2].
The rewiring probability ofWSnetworks is set as p=0.1.

AMML AMML AMML AMML AMCS
(ℓ=0) (ℓ=1) (ℓ=2) (ℓ=4)

ER(ρ=0.1) 52.34 44.63 35.80 33.85 281.51
ER(ρ=0.2) 18.92 11.14 10.21 9.29 74.61
BA(m=3) 77.17 67.22 62.86 63.92 507.39
BA(m=5) 44.49 26.18 23.73 22.79 233.22
WS(z=6) 78.22 69.34 62.93 46.78 582.31
WS(z=10) 37.83 19.86 16.54 13.98 233.20

Figure 1.The synchronization time, M and N0, versus the average distance dá ñ for ER (a), BA (b) andWS (c)networks. The initial
state of each node in these S=100 ER, BA andWSnetworks is randomly selected in the range [−2, 2] and set as fixed. The average
distance of a directed networkwithN nodes is defined as d d i j,

N N i j
1

1
á ñ = å- ¹ ( )( ) , where d(i, j) is the distance fromnode i to node j.

If the network is not strongly connected, dá ñ = ¥. The black lines represent the linear fitting by the least squares estimation. The
network size is set asN=100, and the rewiring probability is set as p=0.1 forWSnetworks.
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Montana, where each node denotes a bison and each directed edge represents the dominance relationship [46].
(x)Highschool—the network of friendships among boys in a high school in Illinois, where a directed link from i
to jmeans i identifies j as his friend [46]. Table 2 provides the structural statistics and synchronization time of the
ten real-world networks.Whenwe compare the last two columns, it is observed that the presentmethod
producesmuch faster synchronization. Inmost cases ourmethod is ten times faster than the routine procedure
evenwithoutmonitored nodes. Figure 4 shows that despite some oscillations, the synchronization time Nℓ
further decreases asℓ increases, indicating additional benefit whenmonitored nodes are introduced. The
oscillations infigure 4 lie in the specific topology of each real network. Similar to artificial networkmodels, as
shown infigure 5, both N0 andM increase with dá ñ for real-world networks. Figure 5 further shows linear
fittings for visual guidance, where it is clear that the increasing rate ofM ismuch larger than N0. Thus extensive
experimental analyses of disparate real-world networks once again demonstrate the results obtained from
networkmodels, i.e. (i) ourmethod speeds up synchronization, (ii)monitoringmore neighbors further
accelerates synchronization, and (iii) the synchronization time is positively correlatedwith dá ñ, while the present
method growsmuchmore slowly.Note that we doNOTneed aCPU for each node, but a programmable chip
with limited functions like information storage, and neighboring communication. Besides, a usefulmonitored

Figure 2.Temporal evolution of (a) θi(t) and (b) prediction errors e t t ti iq q= - �( ) ( ) ( ) for ERnetworks with link probability

ρ=0.15. The parameters areN=100,K=50, ò=1/N, i
1

50
w = and θi(0) randomly selected from ,

50 50
- p p⎡⎣ ⎤⎦.

Figure 3. N0 versus dá ñ for (a)ER, (b)BA and (c)WSnetworks for dynamics in equation (11). Here, the initial state values θi(0), i=1,
2,K, S, are the same as in the simulation for figure 2, and N N

R S i
R

j
S

i
j

0
1

1 1 ,0= å å´ = = . The black lines represent the linearfitting by the
least squares estimation. The rewiring probability forWSnetworks is p=0.1 and other parameters are the same as figure 2.
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node selection technique is picking out the oneswith short average distances to all the other nodes, like the
central node of a star-shaped graph. This will reduce the broadcasting time from them to themonitored nodes.

Table 2.Topological features and synchronization time for the 10 real networks
under consideration. N E k, , á ñand dá ñ represent the number of nodes, the number
of edges, the average degree and the average distance, respectively. The former 8
networks are undirectedwhile the last two are directed. As clearly observed from this
table, AMML N0 ismuch smaller thanM (theMCSof the real network), indicating
the advantage of the presentHankelmatrix-based predictionmethod.

N E ká ñ dá ñ N0̄ M

Karate 34 78 4.588 2.408 55.93 501
Power 57 78 2.737 4.954 214.04 4247
Dolphin 62 159 5.129 3.357 133.61 1595
Lesmis 77 254 6.597 2.641 103.33 2328
Polbooks 105 441 8.4 3.079 130.94 2285
Football 115 613 10.661 2.508 57.04 527
FFHI 180 2239 24.667 2.148 49.68 621
Corporate 197 801 8.132 2.106 160.36 3712
Bison 26 314 12.0769 1.571 18.92 161
Highschool 70 366 5.229 ¥ 157 768

Figure 4.AMMLversus the number ofmonitored neighborsℓ for the 10 real networks. Here, AMML is defined as N N
R i

R
i

1
1 ,= å =ℓ ℓ,

where Ni,ℓ is theMMLof the real networkwith associate outputmatrixCi (i=1, 2,K,R). Givenℓ, we only select those nodeswith
degree no less thanℓ as observed nodes to implement the simulation and then get averageMMLover these nodes. Since themaximal
degree of power is 7, the correspondingmaximalℓ in thefirst plot is 7 as well.

7
The y-axis units offigures 1 and 3 are the same, which are set as one step (or one epoch). Hence, synchronization

time=epochs× sampling period, and the synchronization times of the present and previousmethods are comparable by assuming
identical sampling period.
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3. Conclusions

In summary, we have found amechanism that leads to the ultrafast synchronizationwhile only requires the
historical dynamical trajectory of the observed node. In a networked dynamical system, the state of a node is
directly affected by its neighbors, who are directly affected by their neighbors, and so on. Thus the state of a node
will affect and be affected by all other nodes after a sufficiently long period of time.Ourmajor contribution here
is successfully realizing this theoretical possibility by applyingHankelmatrix analysis. The different choices of
the observed andmonitored nodeswill affect the synchronization speed. An intuitive idea is to select the node
with the largest centrality as the observed node since it usually locates in the central positionwith shorter average
distance to others [47]. The design of efficient algorithms to accurately locate the optimal observed nodewill be
our futurework.

Compared to the information propagation [21, 26] and predictive protocol [27–29], the presentmechanism
requires little intelligence frommost individuals but a higher level of intelligence from the observed node. This
includes both thememory to store the historical dynamical trajectory and the ability to analyze this trajectory. In
a biological system, it is unlikely that a leader would use aHankelmatrix-basedmethod tofigure out the future
travel direction to lead the flock. Instead, we believe that thismechanismwill have significant applications in
engineering systems. A groupwith one super leader is unlikely in the biological world but easy to be designed and
implemented in artificial systems. A distributed sensor network inwhich each sensor communicates and
interacts with its neighborsmust be able to align andmove together in such scenarios as field investigation or
battleground detection. Our proposedmechanismdoes not require a large number of low-intelligence sensors
but only one sensor withmoderatememory and computational capacity.Modern information technology (in
particular, the rapid development of intelligent hardware) allows us to produce a smart sensor with a sufficiently
longmemory and the ability to analyze theHankelmatrix. Thus this smart sensor could predict the future global
state of networked dynamics and shape the consensus of the entire sensor group.
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