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• We study the temporal correlation networks of the world shipping market over time.
• Wemodel the systemic risk level of the shipping market based on the Dynamic Causality Index.
• We explore directional connections between the shipping market and the financial market.
• Different market sectors tend to link and comove closely during financial crisis.
• The Dynamic Causality Index can provide efficient warning before market downturn.

a r t i c l e i n f o

Article history:

Received 10 July 2014
Received in revised form 22 July 2014
Available online 2 August 2014

Keywords:

Complex networks
Systemic risk
Correlation networks
Brownian distance
Granger causality test

a b s t r a c t

Various studies have reported that many economic systems have been exhibiting an
increase in the correlation between different market sectors, a factor that exacerbates
the level of systemic risk. We measure this systemic risk of three major world shipping
markets, (i) the new ship market, (ii) the second-hand ship market, and (iii) the freight
market, as well as the shipping stock market. Based on correlation networks during three
time periods, that prior to the financial crisis, during the crisis, and after the crisis, minimal
spanning trees (MSTs) and hierarchical trees (HTs) both exhibit complex dynamics, i.e.,
different market sectors tend to be more closely linked during financial crisis. Brownian
distance correlation and Granger causality test both can be used to explore the directional
interconnectedness of market sectors, while Brownian distance correlation captures more
dependent relationships, which are not observed in the Granger causality test. These two
measures can also identify and quantify market regression periods, implying that they
contain predictive power for the current crisis.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

It iswidely acknowledged that economic systems are highly complex. In recent years they have become a subject ofmuch
interest among both economists and physicists [1–12]. Because the international shipping industry facilitates 90% of world
trade and is a key factor in global economic development [13] it is a major topic for economic theory. The shipping industry
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is tightly linked to theworld economy and to the international trade business cycle; thus it enjoyed a long prosperous period
with growing trade at the international level until the financial crisis in 2008. Since then the shipping industry has faced
idle capacity, huge losses, and risk of bankruptcy [14]. The shipping industry is also dynamic and volatile. The Baltic capsize
index (BCI), which measures the volatility in shipping markets, is significantly higher (⇡79%) than the average volatility
in commodity markets (⇡50%) and equity markets (e.g., S&P500 ⇡ 20%) [15]. This extremely high risk is not only due
to volatility in global economic cycles, but also is highly influenced by intrinsic characteristics of the shipping industry
itself. The shipping industry comprises several separate but closely connected markets including the new ship, the second-
hand ship, and the freight markets. Each of these markets comprises several tightly integrated sub-sectors according to
ship type: oil tanker, dry bulk carrier, and container carrier. Oil tanker is designed for the bulk transport of oil and tankers
are generally categorized by size from smallest to largest, e.g., Panamax, Aframax, Suezmax, VLCC and UVLCC. Dry bulk
carrier is mainly used to transport dry bulk cargo, such as iron ore, grain and coal. Similar to oil tanker dry bulk ship also
can be classified by size into Handysize, Handymax, Panamax, Super-Panamax and VLOC. Dry bulk shipping provides an
economical and convenient way to transport three major raw materials to support the world industry. Container shipping
provide transportation of containerized goods over sea via regular linear services. According to ship size, container vessel
from smallest size to largest one also includes Handymax, Panamax, Post-Panamax and Large Container Vessel.

Despite the economic importance of the shipping industry, there are surprisingly few studies about shipping industry
risk. Studies of systemic risk in the shipping industry tend to fall into three categories. The first category uses a linear
or non-linear stochastic model and focuses on freight rate returns and the volatility of some specific submarkets in the
shipping industry [16–18]. The second category focuses on asset bubbles caused by the supercycle of the shipping industry
and determines howmuch asset values in the second-handmarket deviate from underlying fundamentals [19,20]. The third
category identifies factors affecting the performance of shipping industry stocks in order to understand the linkage between
the real shipping market and financial markets [21,22]. Most previous studies focus on individual segments of the shipping
industry and not the industry as a whole. Thus these studies ignore the interactions among different market sectors that are
likely to compound systemic risk.

In this paper we use the correlation-based network and the causality measures to examine the structure and dynamics
of the shipping industry. We begin our analysis by using the minimal spanning tree (MST) and the hierarchical tree (HT) to
examine the topology of correlation networks among different submarkets and ship types of the shipping industry during
the pre-crisis, crisis, and post-crisis periods. Then we use a causality analysis based on Granger-causality and Brownian
distance correlation to explore the directional connections between the physical market and the financial market of the
shipping industry before, during, and after the financial crisis.

2. Methods

2.1. Network topology

Using the minimal spanning tree (MST) and hierarchical tree (HT), we study the structure and dynamics of the shipping
industry and explore the hierarchical structure of various time series. Hierarchical structure methods have been introduced
in finance to ascertain the structure of asset price influences within a market [23–28], but application of this method is not
limited to financial markets, and we extend the method to time series in other economic systems [29–32].

The minimal spanning tree (MST) is a graph of a set of elements in the node arrangement in a given metric space,
e.g., an ultrametric space [23]. In the MST the taxonomy displays meaningful clusters, and it reduces the noise in a historical
correlation matrix [33].

A hierarchical tree is an important tool for data clustering. It partitions a dataset into subsets (clusters) such that the
data in each subset share some common traits—often similarity or proximity at some defined distance. In our case, the
construction of an ultrametric hierarchical tree structure allows us to determine the hierarchical structure of a network [34].

Both MST and HT require that a metric distance be defined. Because the definition of correlation does not fulfill the three
axioms that define a metric, Mantegna [23] introduced a definition of distance,
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We then use the distance matrix d

ij

to determine the minimal spanning tree (MST). An MST is defined as the set of n � 1
links that connects a set of elements across the smallest possible total distance. The determination of the hierarchical tree
of a subdominant ultrametric is thus completely controlled by the ultrametric distance matrix.
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2.2. Granger causality analysis

To investigate the dynamic systemic risk, we must measure both the degree of interconnectedness between the
subsectors of the shipping industry and the direction of these relationships [35–37]. To this end, using Granger causality
analysis we propose a statistical definition of causality based on the relative forecasting power of two series. Specifically,
let Ri

t

and R

j

t

be two stationary time series, and for simplicity we assume they both have zero mean. We can represent their
linear inter-relationships using the model [38,39]
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causality is based on the F-test where the null hypothesis is defined such that coefficients ai and a

j are equal to zero.
We analyze the pairwise Granger causality between the t and t + 1monthly returns of the shipping physical market and

the shipping stock market. We follow the definition of the dynamic causality index (DCI) [40] series,

L
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. (5)

2.3. Brownian distance

Distance correlation is a new approach proposed by Székely and Rizzo to measure statistical interdependence between
two randomvectors of arbitrary, not necessarily equal dimension [41]. Browniandistance covariance captures the non-linear
dependence, which make up deficiency of the classical measure of dependence, such as the Pearson correlation coefficient,
that is mainly sensitive to a linear relationship between two variables [41].
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covariance is based on Brownian motion or Wiener process with an important property that v(X, Y ) = 0 if and only if X
and Y are independent [42]. The Brownian covariance is equal to the distance covariance. The distance correlation R(X, Y )
can be defined from the following expression:
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3. Data

We investigate two datasets. Dataset I comprises the prices of the real shipping market. Dataset II comprises the stock
prices of publicly-listed shipping companies. For the shippingmarketwe select 45monthly price indicator series for the time
period from January 2003 to June 2013, provided by world leading shipping database Clarksons. The dataset includes three
shipping markets, the new ship market, the second-hand ship sale and purchase market, and the world-wide chartering
market. For eachmarket we use price indicators according to ship type, oil tankers, container carriers, and bulk carriers. The
New-building ship market price indicators investigated are shown in Table 1. The Secondhand ship market price indicators
are shown in Table 2. The freight rates are shown in Table 3.

We also select 40 publicly-listed shipping companies to represent the shipping financial market. The sample includes
the oil tanker, container carrier, and bulk carrier industry as well as the ship-building industry. The monthly closing price
of each stock is recorded from January 2003 to June 2013, provided by Yahoo Finance.

4. Real shipping market hierarchical structure

In this section, using 45 physical shipping market price indicators, we present the MSTs and the HTs, and investigate
the topology and structure of the correlation networks in the shipping market. We find that MSTs and HTs both show
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Fig. 1. Minimal spanning tree of the shippingmarket. Red indicates the new-building shipmarket, green indicates the second-hand ship sale and purchase
market, blue indicates the freight market. Solid cycle represents oil tanker, solid square represents dry bulk ship and solid diamond represents container
ship. (a) Pre-Crisis period (January 2003–December 2006). (b) Crisis period (January 2007–December 2010). (c) Post-Crisis period (January 2011–June
2013). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

significantly different structures in three periods: prior to the financial crisis, during the crisis, and after the crisis. Notice
that prior to the financial crisis (see Fig. 1(a)), the three groups are easily identified, the container ship market (red dash line
circle), dry bulk ship market (blue dash line circle), and oil tanker market (green dash line circle). Inside each group, we find
that newly-built prices (red color nodes) are linked only to second-hand prices (green color nodes). Freight rates (blue color
nodes) are also linked only to second-hand ship prices. Thus the second-hand ship market acts as a bridge between the new
ship market and the freight market. Changes in the freight rates of a ship influence the prices of second-hand ships of the
same type but not ships of other types, implying that there are clear boundaries existing between the container, dry bulk,
and oil tanker markets.

Using HTs we also find little distance between the second-hand prices and the freight rate of dry bulk carriers during
the pre-crisis period, indicating a strong relationship between these twomarkets in dry bulk transport (the first cluster, the
red block in Fig. 2(a)). The second cluster is the second-hand purchase-and-sale market of container ships. This submarket
contains all five price indicators and is thus different fromother submarkets, the green block in Fig. 2(a). The third cluster, the
blue block in Fig. 2(a), is the new shipmarket of the threemajor crude oil tanker sizes: VLCC (large), Suezmax (middle-sized),
and Aframax (small).

During the crisis period the new shipmarket tends to link to freight rates, whichmeans that new ship prices are seriously
affected by freight rate fluctuations. We also see that the boundaries separating the submarkets based on ship type in the
pre-crisis disappear, indicating a high systemic risk throughout the shipping market system. Notice that only freight rate
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Fig. 2. Hierarchical tree of subdominant ultrametric space. Each text label presents one price indicator. Text label with red bottom color means price
indicators belong to the new ship market, green bottom color one means the second-hand ship market, and blue bottom color means the freight market.
(a) Pre-Crisis period (January 2003–December 2006). (b) Crisis period (January 2007–December 2010). (c) Post-Crisis period (January 2011–June 2013).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

and second-hand ship price indicators of the oil tanker market tend to link to each other (green dash line circle in Fig. 1(b)).
Moreover two groups can be easily identified: the new ship market (red solid line circle Fig. 1(b)) and the second-hand
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ship market (blue solid line circle Fig. 1(b)). Fig. 2(b) shows a structure that differs greatly from that in Fig. 2(a). We see
that (i) freight rates for several dry bulk carriers, container ships, and oil tankers are closely correlated and form a tight
cluster with shorter distances, indicating that during the crisis period the second-hand ship prices of a certain ship type
are determined both by its own supply-and-demand and by freight rates of other ship types (the red block in Fig. 2(b)); (ii)
prices of new container carriers, dry bulk carriers, and tankers cross the boundaries previously separating them and move
together, which can be found in the green block in Fig. 2(b); and (iii) a third cluster, made up of second-hand container ship
prices and second-hand Panamax oil tanker prices, that indicates a close business connection between oil transport and
container transport (the blue block in Fig. 2(b)).

In the post-crisis period the shipping market is no longer fragments. Fig. 1(c) shows that the new ship markets form
one independent group (red solid line circle), while the freight rate and second-hand ship price indicators tend to split into
groups based on the three major ship types, that are oil tanker ship (green dash line circle), dry bulk ship (blue dash line
circle) and container ship (red dash line circle). Fig. 2(c) shows that second-hand container ship prices link to form the first
cluster (the red block), freight rates of container transport vessels form a second cluster (the green block), and the prices of
new crude oil tankers form a third (the blue block). Fig. 1(c) also shows that the boundaries separating submarkets reappear
in the post-crisis period.

5. Causality analysis of the shipping industry

5.1. Granger causality analysis

To shed additional light on the structure and dynamics of the shipping industry, we implement Granger causality using
the monthly returns of indices of the new ship market, the second-hand ship market, the freight market, and the shipping
stock market prices for the pre-crisis, crisis, and post-crisis periods. Fig. 3 shows the linear Granger causality relationships
between months t and t + 1 among the monthly indexes return of (i) the new ship market, (ii) the second-hand ship
market, (iii) the freight shippingmarket, and (iv) shipping stockmarket prices for three periods, 2003–2006, 2007–2010, and
2011–2013. There are no significant bi-directional causal relationships among the four markets during the pre-crisis period.
During the crisis period, however, all four markets become highly linked. During that period bi-directional relationships
between the new ship market and the second-hand ship market, as well as between the second-hand ship market and the
freightmarket emerge. All three shippingmarkets affect the shippingmarket stock price, and the new shipmarket influences
the freight market. Thus shocks to real shipping markets easily propagate to stock market prices. During the earlier period,
2003–2006, only freight rate fluctuations affect stock market prices. During the post-crisis period, all four markets tend to
become distant and there is only one significant bi-directional causal relationship remaining, the one between the second-
hand ship market and the freight market. Stock market prices in the post-crisis period are much more independent than
during the crisis period, and are influenced only by freight rate fluctuations.

5.2. Brownian distance correlation analysis

Granger causality previously applied showsonly linear directional interdependence, andnextwe further utilize Brownian
distance correlation to explore non-linear directional interconnectedness among market sectors. Fig. 4 shows Brownian
distance correlation between months t and t + l (l = 1, 2, and 3) among the monthly return indexes of (i) the new ship
market, (ii) the second-hand ship market, (iii) the freight shipping market, and (iv) shipping stock market prices for three
periods, 2003–2006, 2007–2010, and 2011–2013. For the pre-crisis period, the Brownian distance correlation recognizes
bi-directional causal relationships between the new ship market and the second-hand ship market. In contrast, Granger
causality only shows that the second-hand ship market causes the changes of the new ship market in the same period
(see Fig. 4(a)). During the crisis period, the Brownian distance also captures more bi-directional dependent relationships,
which are not significant in the Granger causality test. A feedback interdependence relationship can be observed among all
four markets. Moreover bi-directional interdependence between the new-building ship market and the second-hand ship
market as well as the new-building ship market and the freight market are both significant at time lag l = 1, 2 and 3,
indicating the strong interaction effect among these markets. Additionally, feedback interdependence between the new-
building ship market and the shipping stock market lasts for two time lags (l = 1 and 2), but is not significant when
l = 3. During the post-crisis period, all causality relationships are significant only when the time lag is the one when
Brownian distance explores bi-directional causal relationships between the new ship market and the second-hand ship
market, which are also not recognized by the Granger causality analysis (see Fig. 4(c)). Brownian distance correlation is
a natural extension and generalization of classical Person correlation to measure non-linear association to multivariate
dependence. Through preview tests, researchers find that in most cases Brownian distance correlation results show strong
significant correlation than Granger causality and Person correlation [43]. So this phenomenon is not unique in the shipping
market, but the difference between Brownian distance and classical correlation measurements mainly depends on the
market characteristics.
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Fig. 3. Granger causality relationships (at the 10% level of statistical significance) among the monthly log returns of the new-building ship market, second
ship sale & purchase market, freight market and shipping stock market over three sample periods: (a) prior to crisis (January 2003–December 2006), (b)
during crisis (January 2007–December 2010) and (c) post-crisis (January 2011–June 2013) and marks with arrows the relationships that are significant at
the 10% level. Single-headed arrows indicate uni-directional causal relationships, and double-headed arrows indicate bi-directional causal relationships.

Fig. 4. Brownian distance correlation relationships (at the 10% level of statistical significance) among the monthly log returns of the new-building
ship market, second ship sale & purchase market, freight market and shipping stock market over three sample periods: (a) prior to crisis (January
2003–December 2006), (b) during crisis (January 2007–December 2010) and (c) post-crisis (January 2011–June 2013). Single-headed arrows indicate uni-
directional causal relationships, and double-headed arrows indicate bi-directional causal relationships. Red arrows indicate that feedback relationships
are all significant when time lag l = 1, 2 and 3; green arrows indicate that feedback relationships are significant when time lag l = 1 and 2; black arrows
indicate that feedback relationships are significant when time lag l = 1. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

5.3. Dynamic causality index

To fully appreciate the impact of causal relationships in the shipping industry, finally we apply the dynamic causality
index (DCI) defined such that an increase in the DCI indicates a higher level of system interconnectedness. We first apply
a Granger causality test based on the new ship market containing a total of 12 time series to explore its interdependence
with the second-hand ship market, the freight market, and shipping stock market prices. Based on this DCI definition, we
use moving 24-month windows of monthly return prices from January 2003 to December 2012. Fig. 5 (a) shows the DCI of
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(b)

a b

c d

Fig. 5. Contrast of the Dynamic Granger causality index with 24-month moving window and Monthly weighted index of market price according to the
capacity ratio of each ship type from December 2004 to December 2012. (a) New-building ship market, (b) second-hand ship market, (c) freight market,
(d) shipping stock market.

the new ship monthly market price return versus time and the trend of the new ship weighted index price made up of 12
representative time series according to the capacity market ratio of each ship type during the same time period. The DCI
shows a rich dynamic behavior over the entire period from January 2003 to December 2012. During the pre-crisis period, the
DCI tends to be stable and only fluctuates from about 0.1 to 0.15. Beginning in June 2008, just prior to the October 2008 crash
in new ship prices, the DCI begins to exhibit a sharp increase in the number of causality links. This indicates that the entire
system including the real shippingmarket and the shipping financial market prices has becomemuchmore interconnected,
a significant systemic risk indicator, especially during the financial crisis of 2008. We further confirm our results by studying
theDCI of another threemarkets, that are second-hand ship prices, freightmarket and shipping stockmarket, also comparing
the trend of DCI to real price weighted index within the same time period. Fig. 5(b)–(d) all show the largest DCI peak in
October 2008 when there is a rapid drop in the real price index. The DCI shows itself to be an efficient measure of systemic
risk in the shipping industry and can provide a useful early-warning signal that serious market regression will soon occur.
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6. Conclusions

We have shown that correlation network and causality analysis can be used to analyze real market price and stock price
influences in the shipping industry. We have examined the topology and hierarchical structures of the real shipping market
based on correlations in monthly returns. We have also explored the directional relationships between the physical market
and the stock market of the shipping industry. In both cases we have compared the results of the pre-crisis, crisis, and
post-crisis periods, and we have presented three main conclusions. (I) There are clear boundaries separating container, dry
bulk, and oil tanker sectors, and in each sector the new ship market is relatively distant from the second-hand ship and
freight markets before and after the financial crisis. During the crisis period, the boundaries separating these three major
markets of the shipping industry tend to disappear and the three markets become more closely related to each other. (II)
During the crisis period, both Granger-causality connectivity and Brownian distance correlation show that the impact of
all three physical shipping markets on other physical shipping markets and on shipping stock market prices become much
more substantial. Brownian distance correlation is more powerful to recognize the non-linear causality relationship than
Granger-causality analysis. (III) Dynamic Causality Index can be regarded as a useful indicator tomeasure the dynamic trend
of systemic risk level of the market, which provides efficient warning before market downturn.
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Appendix

See Tables 1–3.

Table 1

New-building ship market price indicators.

Price indicator Code

VLCC Tanker Newbuilding Price NBVLCC
Suezmax Tanker Newbuilding Price NBSUEZ
Aframax Tanker Newbuilding Price NBAFRA
Panamax Tanker Newbuilding Price NBTANKPANA
Products Tanker Newbuilding Price NBPROD
Panamax Bulkcarrier Newbuilding Price NBPANA
Handysize Bulkcarrier Newbuilding Price NBHAND
Handymax Bulkcarrier Newbuilding Price NBHANDMAX
Capesize Bulkcarrier Newbuilding Price NBCAPE
Panamax Containership Newbuilding Price NBCONPANA
Super Panamax Containership Newbuilding Price NBCONSURPANA
Large Containership Newbuilding Price NBCONLARGE

Table 2

Second-hand ship market price indicators.

Price indicator Code

VlCC Tanker Secondhand ship price SPVLCC
Suezmax Tanker Secondhand ship price SPSUEZ
Aframax Tanker Secondhand ship price SPAFRA
Panamax Tanker Secondhand ship price SPTANKPANA
Products Tanker Secondhand ship price SPPROD
Capesize Bulkcarrier Secondhand ship price SPCAPE
Panamax Bulkcarrier Secondhand ship price SPPANA
Handymax Bulkcarrier Secondhand ship price SPHANDMAX
Handysize Bulkcarrier Secondhand ship price SPHAND
Panamax Containership Secondhand ship Price SPCONPANA
Super Panamax Containership Secondhand ship Price SPSURPANA
Large Containership Secondhand ship Price SPCONLARGE
Handymax Containership Secondhand ship price SPCONHANDMAX
Handysize Containership Secondhand ship price SPCONHAND
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Table 3

Freight market time charter rate.

Price indicator Code

VLCC Tanker 1 Year time charter rate TC1YVLCC
Suezmax Tanker 1 Year time charter rate TC1YSUEZ
Aframax Tanker 1 Year time charter rate TC1YAFRA
Panamax Tanker 1 Year time charter rate TC1YTANKPANA
Products Tanker 1 Year time charter rate TC1YPROD
Panamax Bulkcarrier 1 Year time charter rate TC1YPANA
Handysize Bulkcarrier 1 Year time charter rate TC1YHAND
Capesize Bulkcarrier 1 Year time charter rate TC1YCAPE
Panamax Containership 1 Year time charter rate TC1YCONPANA
Super Panamax Containership 1 Year time charter rate TC1YCONSURPANA
Handysize Containership 1 Year time charter rate TC1YCONHAND
VLCC Tanker 3 Year time charter rate TC3YVLCC
Suezmax Tanker 3 Year time charter rate TC3YSUEZ
Aframax Tanker 3 Year time charter rate TC3YAFRA
Products Tanker 3 Year time charter rate TC3YPROD
Panamax Bulkcarrier 3 Year time charter rate TC3YPANA
Handysize Bulkcarrier 3 Year time charter rate TC3YHAND
Capesize Bulkcarrier 3 Year time charter rate TC3YCAPE
Panamax Containership 3 Year time charter rate TC3YCONPANA
Handysize Containership 3 Year time charter rate TC3YCONHAND
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