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Venture capital plays a critical role in spurring innovation, encouraging entrepreneurship, and generating wealth. As a part of the 
�nancial market, venture capital is a�ected by market downturns and economic cycles, but it also creates bubbles that negatively 
impact the economy and social stability. Although the venture capital market is a potential source of systemic risk, there has been 
little study of its contagion risk mechanism, or how the failure of a single market participant can threaten systemic stability. We use 
a multilayer network analysis to model the risk contagion in a venture capital market when an external shock impacts a venture 
capital �rm or start-up company in order to understand how risk can spread through connections between market participants and 
harm total market robustness. We use our model to describe both the direct and indirect channels in the venture capital market that 
propagates risk and loss. Using real data from the worldwide venture capital market, we �nd that the venture capital market exhibits 
the same “robust-yet-fragile” feature as other �nancial systems. �e coupling e�ect of direct and indirect risk contagions can cause 
abrupt transitions and large-scale damage even when the turbulence is minor. We also �nd that the network structure, connectivity, 
and cash position distribution of market participants impact market robustness. Our study complements other emerging research 
on measuring systemic risk through multiple connections among market players and on the feedback risk contagion between the 
�nancial industry and the real economy.

1. Introduction

Start-ups positively impact economic growth and develop-
ment and are essential drivers of aggregate innovation and 
productivity. Innovative start-ups develop products and ser-
vices that o�en require a high initial investment in research 
and development [1]. Because new �rms generate only limited 
cash �ows, and their initial capital is also o�en limited, many 
start-ups must rely on funds from such external sources as 
venture capital agencies to survive [2]. Venture capitalists 
(VCs) invest in small private growth companies that have a 
cash �ow insu�cient to pay interest on debt or dividends on 
equity. Typically VCs invest in private companies for a period 
of 2–7  years prior to exit and derive their return from the 
capital gains in the exit transactions [3]. Many studies have 
found that venture capital investment is a major factor in fos-
tering these start-ups [4–6].

At the same time, venture capital is a part of the private 
equity market and is thus vulnerable to broad market turbu-
lence and economic recessions. �e venture capital market is 
fragile to external shocks. Downturns in the �nancial market 
make it di�cult for venture capital �rms to raise su�cient 
funds or to exit start-up companies with adequate returns. 
Because most start-ups have negative earnings and few tangi-
ble assets, they are particularly susceptible to failure. �e ven-
ture capital market also interacts with the stock market. Since 
1999, venture capital has backed 60 percent of the IPOs (initial 
public o�ering) o�ered in the U.S. stock market [7]. �us 
instability in the venture capital market can induce damage to 
the overall �nancial market and to the entire economic 
system.

�e 2008 �nancial crisis elicited much research and pro-
duced a huge body of literature on the systemic risk mecha-
nism in play when interconnected economic agents are 
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simultaneously a�ected by severe losses that then spread 
throughout the economic system. Systemic risk can produce 
a �nancial domino e�ect or failure avalanche in which even 
small correlated events can cause system breakdown. One of 
the crucial elements in the rise of so-called cascades of failures 
are connections between di�erent elements of the system 
[8–10]. �ese connections may transmit negative e�ects from 
one institution to another causing great damage to the whole 
economy. Risk contagions among di�erent economic agents 
such as banks, insurance companies, hedge funds are investi-
gated, and the structure of �nancial networks is regarded as a 
critical component that can either attenuate or amplify sys-
temic risk [11].

Because network science describes both the behavior of eco-
nomic system participants and the relationships among them 
when modeling contagion mechanisms [12–15], researchers are 
using it to study risk propagation in such economic systems as 
banking networks, buyer and seller credit systems, international 
trade, capital markets, and stock markets [16–19]. In a net-
work-based risk contagion analysis, vertices represent agents in 
economic systems and links represent interconnections among 
them. A basic measure that characterizes network topology is 
the degree distribution �(�), which is the fraction of nodes con-
nected to � nodes or neighbors. �is function can be used to 
calculate the �rst, ⟨�⟩, and second, ⟨�2⟩, distribution moments 
that measure mean degree connectivity and degree heterogene-
ity, respectively. Two typical network topologies are widely used: 
(i) Erdös Rényi (ER) networks in which �(�) follows a Poisson 
distribution, and (ii) scale-free (SF) networks with �(�) ∼ �−�
with �min ≤ � ≤ �max, in which � is a measure of heterogeneity, 
and �min and �max are the minimum and maximum connectivi-
ties, respectively.

�ere are two commonly used approaches to the modeling 
of risk contagion mechanism in economic systems. �e �rst 
approach is epidemiological and assumes that losses propagate 
through a market following an epidemic disease pattern. �e 
asset loss or liquidity shortage experienced by a �nancial insti-
tution or economic agent is treated as an infected state in a 
classical SIR (Susceptible-Infected-Recovered) model [20–24] 
that assumes the infection spreads with a given probability to 
susceptible or healthy institutions and agents. �e second 
approach uses the overload model in which each node (each 
economic agent) is assigned an asset state based on its simpli-
�ed balance sheet. When the asset value of the node is lower 
than a given critical level, it fails and transmits losses to its 
neighbor nodes [25–29].

In addition to the propagation mechanism, there are risk 
contagion channels that de�ne which interactions and linkages 
among economic agents can transmit loss or risk. We classify 
the risk contagion channels in the current literature as either 
direct or indirect connections. Direct interactions occur when 
there are concrete economic activities among such economic 
agents as credit relations between banks who loan to �rms and 
�rms who borrow from banks, supply chain contracts between 
buyers and sellers, credit relationships in the inter-bank mar-
ket, and equity holding relationships between investors and 
investees [10, 30–33]. Indirect interconnections occur when 
there are interactions among economic agents through direct 
relations with such common third parties as common assets, 

suppliers, customers, board members, investors, and indus-
tries [34–37].

In recent years, an increasing number of researchers have 
discovered that they cannot su�ciently model risk contagion 
if they only examine single channels, an approach that pro-
duces results that are unrealistic in the �nancial market and 
economic system. �ey are discovering that a multilayer net-
work is a powerful tool for analyzing how risk spreads via 
multiple channels. Various studies using multilayer networks 
to analyze systemic risk in �nancial markets have found that 
the dynamics of risk contagion in multilayer �nancial net-
works di�er greatly from those in a single layer network 
[38–42].

Although venture capital is a strong factor in the �nancing 
and fostering of innovative �rms and re-allocating capital to 
more productive economic sectors, little is known about the 
risk transmission mechanism in the venture capital market. 
Our goal is thus to develop a framework for modeling this risk 
propagation mechanism. We want to know how risk spreads 
through interconnected market agents and endangers total 
market stability when an external shock impacts a venture 
capital �rm or a start-up company. Most prior research has 
focused on risk contagion within a �nancial market, e.g., the 
inter-bank market or the stock market, and has ignored feed-
back e�ects between �nancial markets and the real-world 
economy [33, 43, 44]. �is approach is inadequate because 
systemic risk is generated in both �nancial markets and in the 
coupling e�ect between �nancial markets and the real-world 
economy. �us our study complements the emerging literature 
on feedback risk contagions between the �nancial market and 
the real economy for the measurement of systemic risk.

We use this model to analyze how risk and loss propagates 
from a single failed VC or start-up company to the entire ven-
ture capital market and to start-up �rms. We ask four 
questions.

(i)  What are the factors that cause total market robustness 
to be harmed when a single VC fails?

(ii)  How does the coupling e�ect of direct equity connec-
tions and their indirect counterparts in�uence a�ect 
risk contagion?

(iii)  How does the network connection structure a�ect 
risk propagation and market robustness?

(iv)  How do the cash positions of market participants 
a�ect market robustness?

2. Risk Contagion Mechanisms in the Venture 
Capital Market

Risk can take di�erent forms in di�erent settings, e.g., corpo-
rate risk, �nancial risk, technological risk, but we focus on 
liquidity risk, an essential concern of investors in the venture 
capital market and of founders of start-up companies. Prior 
studies claim that venture capital investment su�ers from the 
same signi�cant exposure to liquidity risk as public equity and 
other alternative asset classes [45]. Start-up businesses are 
o�en short of cash, and 29% of all start-ups fail because of that 
shortage.
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VC liquidity risk has two origins. �e �rst is initial public 
o�ering (IPO) exit risk—being unable to e�ectively exit—
which necessitates remaining much longer in the venture or 
selling the shares at a punishing discount [46, 47]. �e second 
is related to the ability to raise funds. A VC must periodically 
raise funds—typically every 3 to 5 years—if it is to survive 
and continue to make new investments [48, 49]. �e capital 
in the VC ecosystem is supplied by limit partners, including 
such large institutions as investment banks, pension funds, 
university and hospital endowments, charitable foundations, 
insurance companies, wealthy families, and corporations.

Economic downturns alter the conditions that underpin 
the capital supply of VC limit partners. For example, following 
the 2008 �nancial crisis, the capital commitments to U.S. ven-
ture funds fell by almost half, from 28.6 billion USD in 2008 
to 15.2 billion USD in 2009 [50]. When the capital supply from 
the limit partner is �xed [51], the failure of one VC can cause 
losses to its limit partner, which in turn can transmit the 
decreased capital supply to unrelated VCs who share the same 
limit partner with the failed VC. Shocks to a liquidity supply 
curtail the ability of a VC to raise new funds, invest in new 
start-up companies, and exit successfully from prior 
investments.

�e liquidity risk to a start-up �rm increases when its cash 
is tied up elsewhere or when it has insu�cient cash to meet 
working capital and expansion needs. It also has two origins. 
�e �rst is that innovative start-ups o�en face unusually high 
costs of production, marketing, and branding. Just as venture 
capital �rms must periodically raise new funds from limited 
partners, start-ups must periodically raise new �nancing from 
their VCs. When VCs have a shortage of capital resources it 
causes liquidity stress to start-ups that face rigorous competition 
and that must strongly �nance research and development, and 
marketing [51]. �e second origin of liquidity risk comes from 
the start-up ecosystem in which start-ups invest in each other. 
�ese mutual interactions create user-friendly, a�ordable, and 
innovative solutions that strengthen the market, but they also 
increase the risk of spillover e�ects. When one start-up ceases 
operation, other interdependent start-ups are a�ected.

�ere are thus two spread mechanisms for risk in the ven-
ture capital market—(i) direct risk that spreads through equity 
connections between VCs and start-ups, and (ii) indirect risk 
that spreads via counterpart in�uence relations within VCs as 
well as start-ups.

�e contagion of direct risk via equity connections is 
behind the feedback damage transmitted between VCs and 
start-ups. For example, when an external shock hitting a VC 
increases the stress on its cash �ow, it either quickly exits or 
shrinks its capital supply, which in turn damages the start-ups 
in its portfolio. Similarly, if a start-up fails, its venture capital 
investor loses the equity.

On the other hand, indirect risk propagation is the inter-
dependency among venture capital investors and start-ups. 
VCs can have a co-�nancier relationship when two VCs have 
at least one common capital provider. Another indirect risk 
contagion channel emerges when there is an operational reli-
ance between di�erent start-ups.

3. Model

3.1. Construct the Multilayer Network. When quantifying 
the multi-dimension connections among players in the 
venture capital market, we �rst build a multilayer network 
� = {�, �, �, ��, ��} that represents equity connections between 
VCs and start-ups as well as the counterpart dependency 
within the venture capital industry and start-ups. Figure 1 
shows the two classes of nodes, where � is the VC node set, 
and � is the start-up node set. Each node has a weight �� that 
indicates its cash position, i.e., the amount of cash that a VC 
or start-up has on its books at any given time. We denote �(�)
the distribution of ��.

�e external link set � is the equity connections between 
venture capital investors and start-ups. When venture capital 
investor �� invests in start-up company ��, a link �ij connects 
node �� and ��. Here �� and �� both are internal link sets, where 
�� is the co-funding relationship between venture capital inves-
tors, i.e., when two VCs have a common capital provider—
usually limited partners—they are internally linked. Similarly, 
�� is the business reliance between start-ups. �e external and 
internal links are undirected and unweighted. Here ��

in
 and ��

in

are the degree of internal links of VC and start-up nodes, 
respectively. Note that when ��

in
= ��

in
= 0 for all nodes, the 

network is bipartite. Similarly, ��
ex

 and ��
ex

 are the degree of 
external links for VCs and start-ups, respectively.

3.2. Risk Contagion Process. �e risk contagion in our model 
has two channels. One is direct liquidity shocks via externally 
linked equity connections. In our model, we select an initial 

VC Layer

Start–up layer

Internal link
External link

S1 S2 S3 S4 Sj

ViV4V3V2V1

Figure 1: Schematic of a multilayer network to represent the risk contagion channels.
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Initially, an exogenous shock hits a targeted node in either 
the VC or start-up layer, and the node fails. �e risk contagion 
dynamics then proceeds in discrete time steps �, in each of 
which the failure node transmits liquidity damage � to healthy 
neighbors via external links, and the current cash position of 
each healthy node is

where �ℎex(�) is the number of external links between a healthy 
node and its neighbor that still survive at time �. At each time 
step �, we test each healthy node �. If its current cash value is 
�� < C , the node fails. Take VC node as an example. �e pos-
siblity that a VC will fail is in�uenced by both the number of 
failed start-up projects it has invested in and the initial cash value 
it holds. �e greater the number of failed start-up companies a 
VC holds, the greater the probability it will fail. On the other 
hand, the higher the cash value it holds, the lower the probability 
it will fail. For the risk spread via internal links, if the fraction of 
its failed neighbors connected by internal links is higher than 
the threshold �, it also fails. �e simulation stops when there are 
no more venture capital investors and start-up failures.

Here we quantify market robustness � to be the ratio of 
surviving market participants, including both venture capital 
investors and start-up companies [52],

where ��� and ��� are the number of surviving VC and start-up 
nodes at the end of the risk contagion simulation, respectively. 
Here �� and �� are the sizes of VC and start-up node sets, 
respectively. Note that there are alternative approaches to 
measure system robustness and �nancial market systemic risk. 
A series of monetary measurements, including total loss level 
due to default, �nancial distress level, and total recovery cost, 
have also been widely used to quantify systemic risk [10, 30, 
53–55].

4. Data

We obtain venture capital investment data from Bureau van 
Dijk (BVd), a leading global publisher of business information. 
Zephyr is the most comprehensive BVd database and contains 
information of over 80% of global venture investments [56]. 
We use a dataset from 1 January to 31 December 2017 that 
covers �� = 7000 venture capital �rms, �� = 7475 portfolio 
projects, and 21116 investment events. Each investment data-
set includes the name of the start-up company, the venture 
capital �rm investing in it, and the starting date of the invest-
ment agreement. We use investment data to generate equity 
connections between venture capital investors and start-up 
companies represented by external links in the multilayer net-
work. Figure 2 shows the degree distribution of VC nodes and 
start-up nodes. �e degree distribution of VC nodes follows 
a power law decay. �us, within 1 year, most VCs invest in a 
limited number of start-ups, and only a few invest in many. 
However, the degree distribution of the start-ups is almost 
unimodal, indicating that it is di�cult for start-ups companies 

(1)��(�) = ��(� − 1) −� × (�ℎex(� − 1) − �ℎex(�)),

(2)� = ��� + ����� + ��
,

failure node from the VC or start-up layer. A failed VC node 
�� transmits a shock through external links to its portfolio 
company ��. �is means a failed VC will reduce or withdraw 
the commitment of the capital supply, which in turn will 
increase the �nancial cost for a start-up company to raise 
capital to maintain its liquidity. At the same time, when a start-
up node fails its venture capital investors still hold the start-up 
equity as an asset, but the equity value decreases and becomes 
di�cult to liquidate due to a lack of buyers. To thus maintain 
a su�cient level of liquidity, the VC either borrows money at 
a very high interest or �re-sales the asset at a signi�cant loss. 
Similarly, a failed start-up node �� shocks the liquidity of its 
venture capital investor ��.

Here the parameter � quanti�es the level of transmitted 
damage caused by failed VCs or start-ups through external 
connection. So �nancially � represents the extra �nancial cost 
to VCs and start-ups needed to maintain liquidity, and this 
decreases its cash position. When a node receives damage 
through an external link, its cash position decreases �.  
We assume every node has an equal cash tolerance threshold 
C = 0, i.e., for every node when �� < C , node � fails. When 
� < min{��} a node fails when one external link fails because 
its updated cash position �� − � remains positive, but when 
� > max{��} a node fails when one external neighbor fails 
because its updated cash position �� − � is now negative.

In addition to liquidity damage spreading via external 
links, internal links constitute another indirect risk contagion 
channel in the form of co-funding relationships or business 
reliances. Venture capital investors get their capital supply 
from limited partners. Limited partners usually rebalance their 
portfolios to stabilize their investment return. When the 
return of the venture capital market is lower than the limited 
partners expect—due to the failure of venture capital �rms in 
their portfolio—they shrink its capital supply, which in turn 
causes still surviving venture capital �rms in the portfolio to 
lose liquidity and possibly fail. So the capital supply of a VC 
is a�ected by the state of other VCs who share common limited 
partners. Meanwhile, small-scale start-up companies must 
collaborate with other start-ups who serve as suppliers and 
distributors, and thus their health is strongly tied to the health 
of their connected business partners.

Here � quanti�es the two types of counterpart reliance 
that can spread risk. When the fraction of its failed neighbors 
exceeds a given threshold � in the range [0, 1], it also fails. �e 
lower the value of �, the more sensitive are VCs and start-ups 
to the state of their counterparts. We assume � to be identical 
for all nodes. �us a node fails either because its current cash 
position �� is lower than tolerance C  or the fraction of its 
internally linked neighbors is lower than �.

In our simulations, all VC and start-up nodes are initially 
assigned a cash position value �1, �2, ⋅ ⋅ ⋅, ��, where � is the 
system size, with a distribution �(�). We examine three dis-
tribution functions: truncated normal, exponential, and uni-
form distribution. To conduct a comparison, we set the three 
distributions at the same mean value � = 1/� × ∑��=1�� and 
the low and high boundaries in the range [0, 10]. We denote 
these distributions �(�, �), Exp[�], and � [0, 10].
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We �nd that when only external links provide the channel 
that propagates the losses, the venture capital market is robust. 
When � ≲ 1 the liquidity shock spreads very little. When the 
damage level is extremely high, e.g., � = 10, approximately 
10% players can still survive. When � increases, market 
robustness deteriorates linearly and gradually.

When both external and internal links a�ect the risk con-
tagions, the entire market exhibits an abrupt transition. When 
� ≳ 1, the market discontinuously transitions from a stable 
state in which more than 80% of the market players survive to 
an unstable state in which more than 90% of the market players 
fail. �is explains why when direct and indirect risk spillover 
e�ects are present, the market becomes fragile such that the 
failure of a single market player at even a minor damage level 
can trigger the collapse of the entire market. �erefore, venture 
capital market exhibits the similar “robust-yet-fragile” feature 
as other �nancial systems because when only considering direct 
risk contagion channels, the market is robust while for direct 
and indirect contagion channels coupling with each other, the 
system is fragile. Note in the insets of Figure 3 that for the cases 
with internal links, the fraction of active nodes decreases 
abruptly at di�erent values of � in all realizations. Heuristically, 
because only one node is removed at the initial condition, the 
point of collapse of the system is more sensitive to this initial 
condition since the cash position and the internal structure are 
random. Because the � behaviors are similar, irrespective of 
whether the initial shock is from the VC or start-up layer, we 
only examine simulation results when the initial shock hits the 
VC layer in following parts of our study. In  Appendix B, we 
show the simulation results when shock hits the start-up layer.

To explore how the topology of internal links impacts on 
market robustness, we generate ER random and scale-free (SF) 
networks with the same average degree ⟨�

in
⟩ = 4 for VC and 

start-up nodes, respectively. In addition to the topology of inter-
nal links, the initial weight distribution �(�) a�ects the cash �ow 
of market players when an external shock occurs. �us di�erent 
distributions cause di�erent levels of risk propagation.

Examining the initial cash distribution, we consider three 
functions, (i) truncated normal (in the range [0, 10]), (ii) expo-
nential, and (iii) uniform distributions, all with mean value 
� = 5. At the beginning of the simulation, we fail the highest 
degree VC node, and the risk propagates through both internal 
and external links.

to launch a large number of �nancing activities within one 
year. �e average degrees of the VC and start-up layers are 3 
and 2.8, respectively.

5. Simulation Results

We investigate how risk propagates when a liquidity shock hits 
a market player, VC investor, or start-up. We select the VC and 
start-up nodes with the highest number of external links and 
examine market robustness � as a function of transmitting 
damage �, taking into account two risk contagion mecha-
nisms. One only considers external links as channels for risk 
contagion. �e other considers both external and internal links 
as channels for risk contagion.

Figures 3(a) and 3(b) show how market robustness �
changes with an increase in � when the initially failing node 
is from the VC and start-up layers, respectively.

In setting up the simulation, we designate the initially 
failed node to be the VC or start-up node with the highest 
degree of external links. We select the most highly connected 
node to initially fail because the venture capital market func-
tions like a nature ecosystem in which new companies com-
pete with each other like species following the law of survival 
of the �ttest. �us the death of one start-up company or VC 
is normal and has no serious e�ect on system robustness. 
Market participants in venture capital markets and regulatory 
authorities are most concerned when the most highly con-
nected companies or companies holding the largest asset fail 
because they want to understand how markets react when this 
happens and how it a�ects the robustness of the entire system. 
We currently do not have information about the asset scale of 
venture capital �rms and start-up companies because most 
are private corporations with no obligation to make their 
�nancial condition public. We thus focus our attention on risk 
contagion when the most highly connected companies fail, 
which is similar to a worst-case scenario stress test conducted 
on the banking system.

In Figures 3(a) and 3(b), �(�) is an uniform distribution 
with �� ranging from [0, 10]. �e internal links within the VC 
and start-up layers both form an ER random network with an 
average degree ⟨�

in
⟩ = 4 and a tolerance � = 0.5. We construct 

the internal networks using the con�gurational model [57, 58].
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Figure 2: (a) External degree distribution of VC nodes (�� = 7000). (b) External degree distribution of start-up nodes (�� = 7475).
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participants have a low cash position, and that a few have a 
very high cash position. �is skewness and imbalance increases 
market fragility such that even a minor shock to one player 
can trigger a collapse of the entire market.

To analyze how ⟨�in⟩ in�uences risk propagation, we use an 
ER network to generate internal links for both VC and start-up 
nodes with an average degree ⟨�in⟩ varying from 0 to 20.

Figure 5 compares the phase diagram of market robustness 
� with di�erent � values and the average degree ⟨�

in
⟩ when 

� follows (a) uniform, (b) exponential, and (c)–(e) truncated 
normal distributions. In all cases the value of the mean weight 
is � = 5. Figures 5(c)–5(e) correspond to a truncated distri-
bution with dispersion � = 3, � = 1, and � = 0. Note that � = 0
corresponds to a delta distribution.

Figure 5 shows that � exhibits similar dynamics patterns 
for uniform, exponential, and truncated normal distributions 
when � = 1 and � = 3. When the connectivity of internal links 
is very small, e.g., when ⟨�

in
⟩ < 1, � decreases slowly as �

Figure 4 compares the relationship between market resil-
ience and the level of transmitting damage � for ER and SF 
internal links with di�erent distributions �(�). We �nd that 
the market robustness in both ER and SF internal links exhibits 
an abrupt transition from a phase in which almost all nodes 
are active to a phase in which an insigni�cant number of nodes 
are active. However, when the internal links are SF, the market 
collapses at lower damage level, which means that at the same 
level damage transmission the market is more fragile with SF 
internal links than with ER. Note that the point � at which �
abruptly transitions depends on the weight distribution �(�).

We use �� to quantify the level of liquidity shock when 
more than 50% market players survive the risk propagation. 
Note that the value of �� depends on the weight distribution. 
A truncated normal distribution has a higher �� value than 
the uniform and exponential distributions, and the �� value 
for the exponential distribution is lowest. �e exponential 
distribution of � indicates that the majority of market 
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Figure 3: Market robustness � as the function of transmitting shock level � considering that the initial failure occurs in the VC layer (a) 
and in the start-up layer (b). �e black curve represents the scenario only considering risk contagion via external links while the red line 
represents the risk propagation with internal and external link coupling e�ect. In each layer we use � = 0.5 and internal structure topology 
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(�� = � = min{��} = max{��} for � = 1, ⋅ ⋅ ⋅ , �), the critical 
value of � is the same as � because:

(i)  when � < 5 = min{��}, the failure of an initial node 
in one layer does not damage neighbors in the other 
layer—they do not fail because their cash position 
�� −� is positive (see Section 3.2), and

(ii)  when � > 5 = max{��}, the failure of an initial node 
can destroy the entire network because all of its nodes 
are fragile—if even one neighbor fails, they all fail in 
a domino e�ect (see Section 3.2).

�us, for � < �, since external links cannot transmit the dam-
age (when the initial shock does not transmit the damage 
through internal links), the internal structure does not a�ect 

increases, because the risk contagion e�ect of internal links is 
limited and is similar to risk spreading through external links. 
When connectivity is increased, the market crashes when �
reaches a certain level, e.g., when ⟨�in⟩ = 2, � exhibits an 
abrupt transition as � increases. In addition, for higher values 
of ⟨�in⟩, market robustness still experiences an abrupt transi-
tion, but the critical � value that causes market to transition 
from a stable to an unstable state becomes higher. �us when 
the average degree of the internal links is higher than 2, the 
internal links become increasingly dense, and the market can 
tolerate a higher level of transmitted damage.

On the other hand, for a delta distribution, i.e., when all 
the nodes have the same weight, the point of the abrupt tran-
sition is independent of the value of ⟨�in⟩, and its position is 
at �� = � = 5. When the weight is homogeneous 
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shock is in the VC layer. �e results were averaged over 100 realizations.
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(i) direct propagation via equity connections between VCs and 
start-ups, and (ii) coupling contagions of both direct and indi-
rect spread. We also investigate the impact of various parame-
ters, including damage transmission level, network structure, 
connectivity, and the impact of the cash position distribution 
of market participants on market robustness.

We �nd that when losses propagate only via direct 
dependencies between VCs and start-ups, there is little damage 
to the venture capital market, and the system remains robust 
to minor turbulence. When there are both direct and indirect 
risk contagion channels, e.g., co-�nancier relationship among 
VCs and mutual business dependency within start-ups, the 
whole market becomes fragile and there is an abrupt transition 
from the stable to an unstable state. We also �nd that an SF 
network of internal links collapses at a lower transmitting 
damage level than an ER random network. �e simulation 
results also show that increasing the connectivity increases 

the value of �. �is behavior is in contrast to the nonhomo-
geneous weight in which the propagation of the failure through 
external links is boosted by the internal links, and hence �
depends on ⟨�in⟩.

Comparing the robustness of di�erent weight distribu-
tions, Figure 6 shows a plot of �� as a function of ⟨�in⟩. We 
�nd that for all distributions of � (except the delta distribu-
tion), �� decreases sharply when ⟨�in⟩ varies in the range 0–2. 
A�er ⟨�in⟩ surpasses 2, �� tends to rise and causes more highly 
connected internal links within the VCs and the start-ups to 
absorb risk and increase market robustness. Note however that 
when the network connectivity exceeds a critical value, the 
risk dispersion e�ect caused by incrementing connectivity will 
be decremented. Figure 6 shows that �� increases very slightly 
or remains stable for large values of ⟨�in⟩. On the other hand, 
for the delta distribution, we �nd that �� is independent of 
⟨�in⟩ as shown in Figure 5 and the value of �� is the highest 
compared to the other distributions. In addition, we observe 
for the other distributions that the higher the probability that 
a node has a low weight, the lower the value of ��. �us when 
many players or nodes have a similar cash position, the market 
is more robust, and the weight heterogeneity increases market 
susceptibility to failure cascades.

6. Summary and Conclusions

We have proposed a network-based risk contagion model to 
investigate whether the failure of one market player can neg-
atively a�ect system stability. In our model, a multi-layer net-
work is established to describe the multiple risk contagion 
channels in venture capital market, in which we use external 
links to represent the direct equity connections between ven-
ture capital industry and start-up businesses as well as internal 
links to represent the indirect counterpart relations within 
VCs and start-ups.

Using real data from worldwide venture capital markets, we 
simulate shocks to a venture capital �rm. We evaluate how the 
venture capital industry and start-up business react, and how 
the losses are transmitted from a single element to the whole 
system taking into consideration two contagion mechanisms: 
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Figure 7:  Market resilience � as the function of transmitting 
shock level � in external and internal link coupling scenario with 
ER random network (solid lines) and Scale-Free network (dashed 
lines) for internal links, with di�erent weight distributions: uniform 
� ∼ � [0, 10] (black), exponential � ∼ ���[5] (red) and truncated 
normal � : � (� = 5, � = 1) (green). �e initial shock is in the start-
up layer. Both layers have ⟨�

in
⟩ = 4 and � = 0.5. For the SF network, 

the minimum connectivity is �
min
= 2, the maximum connectivity 

�
max

 is the size of each layer, and � = 2.65. �e results were averaged 
over 100 realizations.
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when the initial shock is in the start-up layer, for di�erent weight 
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with � = 0 (magenta), � = 1 (green), and � = 3 (blue).
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� = 1 (green), and � = 3 (blue).
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current approach solely considering single risk contagion chan-
nels systematically underestimate expected systemic losses. 
When the direct and indirect risk contagion couple together, 
even a mild level liquidity shortage and bankruptcy of one �rm 
could trigger the catastrophic collapse of the venture market. 
�is will harm the fundamentals of industrial innovation. For 
policy regulators, only focusing on the direct shock transmission 
could lead to serious bias. Currently, it lacks detailed information 
about the co-fund raising interconnection among venture capital 
�rms and business reliance of start-up companies. In the future, 
if the government could collect and publish these data, it will be 
helpful to propose metrics combining direct and indirect con-
nections to e�ectively measure the stability of the venture capital 
market.

Appendix

A. Shock from Start-Up Layer

In Figures 7 and 8, we show the fraction of active nodes as a function 
of � and the value of �� as a function of ⟨�

in
⟩when the initial shock 

market robustness, but that when market connectivity reaches 
a certain value, the risk-absorbing e�ect becomes limited. �e 
distribution of players’ cash positions also a�ects the risk 
contagion. When the player cash positions are more 
homogeneous, the damage tolerance is higher, but when they 
are more heterogeneous—with many nodes experiencing a 
low cash position—the market collapses at a lower damage 
level. �us heterogeneity in either the internal degree 
distribution or the cash position distribution increases system 
fragility.

Our �ndings increase the understanding of �nancial sys-
tem robustness when participants interact through multiple 
connections. Our results indicate that only taking into con-
sideration direct risk spillovers, the venture capital market 
exhibits robust stability. However, when indirect and direct 
risk contagion mechanisms couple together, it can be very 
fragile and very sensitive to a small initial failure.

�is paper indicates that venture capital �rm as a �nancial 
intermedia has its positive role to foster innovation by providing 
capital. While it also has downside e�ects to transmit turbulence 
from the �nancial market to the start-up economy. We show the 

Figure 9: Market robustness � as the function of transmitting shock level � in external and internal link coupling scenario with ER random 
network (solid lines) and scale-free network (dashed lines) for internal links. Both layers have ⟨�

in
⟩ = 4 and � = 0.30 (a) and � = 0.70

(b). We simulate di�erent weight distributions: uniform � ∼ �[0, 10] (black), exponential � ∼ ���[5] (red), and truncated normal 
� ∼ �(� = 5, � = 1) in the range [0, 10] (green). For the SF network, the minimum connectivity is �

min
= 2, the maximum connectivity 

�
max

 is the size of each layer and � = 2.65. �e initial shock is on the venture capital market. �e results were averaged over 100 realizations.
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Figure 10: �� as the function of average degree of internal links ⟨�
in
⟩ for � = 0.30 (a) and � = 0.70 (b) and for di�erent weight distributions: 

uniform (black), exponential (red), truncated normal with � = 0 (magenta), � = 1 (green) and � = 3 (blue). �e internal degree distribution 
corresponds to an ER network. �e initial shock is on the venture capital market.
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begins in the start-up layer and for di�erent weight distributions. 
Figures 7 and 8 have the same qualitative behavior as Figures 4(a) 
and 6, respectively.

B.  Simulation Results with respect to Different 
Values of T 

In Figures 9(a) and 9(b) we show the market robustness � as a func-
tion of transmitting damage � for � = 0.30 and � = 0.70, and for 
ER and SF networks. We obtain that these �gures are qualitatively 
similar to Figure 4. However, for � = 0.7, the market robustness for 
ER is similar to the case of SF which is expected because the failure 
probability due to the risk spread via internal links decreases as �
increases, and hence the e�ect of internal topology becomes less rel-
evant for the risk propagation.

Figures 10(a) and 10(b) show �� as a function of ⟨�
in
⟩ for 

� = 0.30 (a) and � = 0.70 (b). We observe that the results shown 
in these �gures are similar to those in Figure 6.
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