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Abstract
Epidemic spreading processes onmultiplex networks have richer dynamical properties than those on
single layered networks. To describe the intertwined processes on such networks, heterogeneousmean
field (HMF) approach for continuous-time processes andmicroscopicMarkov chain approach for
discrete-time processes have been proposed.However, it has been shown that the time evolution of
infected individuals and the final epidemic size obtained from these approaches have noticeable
discrepancy comparing to those fromMonte Carlo simulations. In this paper, we extend the approach
of effective degree theory (EDT) onmultiplex networks.Wewill show that predictions obtained from
the EDThave excellent agreement withMonteCarlo simulations.Moreover, since the dynamics on
multiplex networks involvemore dynamical variables, whichmay invokemore computations, to
reduce the computational burden, we further develop an approach based on partial effective degree
theory (PEDT) for analyzing the dynamics onmultiplex networks, where one layer adopts EDT and
the other layer adopts theHMF.Our results show that PEDThas a good performance in predicting the
target dynamical process.

1. Introduction

Epidemic spreading is an extensively studied topic in thefield of complex networks [1, 2]. On the practical side,
the study of this topic contributes to the understanding of behaviors of epidemics, while on the theoretical side, it
provides a simple dynamical framework to demonstrate rich phase diagrams for analysis. Severalmathematical
models have been proposed to describe common infectious diseases, including two-state SISmodel and three-
state SIRmodel with S standing for susceptible, I for infected, andR for recovery in the epidemiological
terminology [3, 4]. A variety ofmethods have been developed to analyze the epidemic spreading processes,
including generating function [5, 6], pair-approximation [7], heterogeneousmeanfield theory [8–10],
probability generating function [11, 12], and branching process approximation [13, 14].

Beyond the studies on single layered networks, growing attention has been focused on epidemic spreading
onmultiplex networks [15–17]. Recently, the intertwined effect of epidemic spreading and information
diffusion onmultiplex networks [18], where themicroscopicMarkov chain approach (MMCA) is taken to
understand the interplay between an epidemic spreading process and an awareness spreading process. Further,
other effects are studied under this framework, such as the effect ofmassmedia [19], awareness cascade [20], and
heterogeneous responses [21]. The relevant analysis aremostly based onMMCA.

TheMMCAhas been previously proposed on single layered quenched networks for discrete-time epidemic
processes [22, 23]. However, it has been shown that the predictions of the time evolution of epidemics and the
final epidemic sizes have noticeable discrepancy comparing to theMonte Carlo simulations, especially when the
infection is slightly above the epidemic threshold [24]. This defect comes fromneglecting the correlation of the
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underlying dynamics. Since accurate prediction of epidemic processes is important and valuable in both
theoretical and practical considerations, an effective degree theory (EDT), which considers the dynamical
correlations, is proposed for gainingmore accurate predictions in [24]. An approach, similar to the EDT,while
on a node-based and link-based perspective is also proposed for this purpose [25]. In single layered networks, the
EDThas been developed for SIS and SIR epidemicsmodels [26, 27], a wide class of binary-state dynamics
[28, 29], and correlated networks [30]. However, despite the rapid advance in the studies about spreading
dynamics onmultiplex networks, an approach to accurately predict relevant behavior is still in demand, which
deserves in-depth investigations.

In this paper, we develop an EDTonmultiplex networks based on theUAU-SISmodel [18], where the
epidemics and the awareness dynamics co-evolve. Our results show that the new approach could predict the
dynamics in high accuracy, outperforming bothHMF andMMCA.Moreover, to enhance the efficiency of the
approach, we further develop a partial effective degree theory (PEDT), inwhich the dynamics one layer adopts
EDT and the dynamics in the other layer adoptsHMF.We show that the PEDTprovides satisfactory accuracy for
the dynamics in the layer adopted EDTmeanwhile systematically reducing the dimensions of the governing
equations in computations.

The paper is organized as follows. In section 2, we introduce the two-layered networks based on theUAU-
SISmodel. In section 3, we provide the EDT for themodel, and in section 4we show the numerical results. In
section 5, we propose the partial EDT for themodel. Finally, we conclude the paper by section 6.

2.Model

To start, recall theUAU-SISmodel [18, 19]. Specifically, consider amultiplex network composing of two layers,
each layer has the same numberN of individuals with different connectivity configurations. In one layer (the
upper layer infigure 1), an individual could be in two states: aware (A) and unaware (U), denotingwhether it is
aware of certain news, i.e. the spreading of an epidemic. The state of an individual could evolve betweenU andA,
thus forming aUAU process. For simplicity, this layer is referred to as awareness layer. In the other layer (the
lower layer infigure 1), epidemic spreads and an individual could be either infected (I) or susceptible (S),
forming an SIS process. For simplicity, this layer is referred as epidemic layer. Combining the two layers, at any
time each individual in thismultiplex network can be in one of the four types of states: unaware and susceptible
(US), unaware and infected (UI), aware and susceptible (AS), aware and infected (AI).

Details of the dynamics on themultiplex network are as follows: for theUAU process, the dynamics are
composed of two parts. On one hand, an unaware individual (node)may become aware due to two reasons: first,
itmay be informed by its aware neighbours, and each aware neighbour could send the news to it at a rateα.
Second, if an unaware individual has been infected, itmay be aware of the epidemic at a rate τ due to self-
awareness, which reflects a direct impact from the epidemic layer. On the other hand, an aware individualmay
return to be unaware because of forgetting the news at a rate f. For the SIS process, a susceptible individual can be
infected by an infectious neighbour. If this susceptible individual is unaware (aware) of the epidemic, i.e. anUS
(AS), the infection rate by an infected neighbourwill be Ub ( Ab ), where A U-b b as an effect of preventive
measures taken by aware ones. For simplicity, assume A Ub qb= with a reduction coefficient 0, 1q Î [ ], where

Ub will be abbreviated asβ in the rest of the paper. This reduction coefficient θ reflects the direct impact from the
awareness layer. In addition, an infected individual can be recovered to become susceptible at a rate r.

Figure 1.Model of spreading dynamics on amultiplex network. The upper layer represents the networkwhere the awareness of the
epidemic diffuses. Nodes in this layer can be in two types of states: unaware (U) and aware (A). The lower layer represents the network
where the epidemic spreads. Nodes in this layer can be in two types of states: susceptible (S) and infected (I). Therefore, a node could be
in four types of states: unaware and susceptible (US), unaware and infected (UI), aware and susceptible (AS), and aware and infected
(AI).
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3. Effective degree theory

The EDT is now extended to be onmultiplex networks. A feature of EDT is that the states of the individuals, the
number of their neighbours and related dynamical states are also taken into account, based onwhich the
dynamical correlation is considered. To realize this feature, individuals are grouped into classes of X Yua si, where
X U A,Î { }and Y S I,Î { }, and the subscripts u, a, s, i denote the numbers of unaware, aware, susceptible,
infected neighbours they have, respectively.

If not causing confusion, X Yua si are used also to denote the fraction of individuals in respective classes. Thus,
onemay immediately obtain the conservation law as U S U I A S A I 1u a s i ua si ua si ua si ua si, , ,å + + + =( ) . Then
suppose that initially a fraction a0 of individuals are aware of the epidemics and a fraction i0 of individuals are
infected, which are randomly distributed in the respective layers with no correlations. Then,
X Y X Y0 0 0ua si ua si=( ) ( ) · ( ), where X Yua si( ) denotes the fraction of individuals in the stateX(Y)with a number of
uunaware (s susceptible) and a aware (i infected)neighbours. Suppose that the degree distributions of the
awareness layer and epidemic layer are pi and qk, which denote the fraction of individuals who have i and k
neighbours in the respective layer. Then, one obtains
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In this paper, the dynamics are in continuous-time processes and the EDT approach to be developedwill be
presented by a set of ordinary differential equations (ODEs). To simplify the analysis, thewhole process is
separated into four sub-processes, named the infection process, recovery process, awareness process, and
forgetting process, respectively. In the continuous-time process, the time interval of each update is very small.
Thus, the nonlinear impacts among different sub-processes in a short time interval could be ignored, and the
update of thewhole process is equivalent to the summation of those on the four sub-processes. Therefore, for
each class of individuals, onefirst calculates their variations in the four sub-processes, respectively, and then
sums themup to obtain the variation of thewhole process. Denoting the differential operators of theODEs of
the four sub-processes and thewhole process as td dI , td dR , td dA , td dF , and d/dt, respectively, one has

t t t t td d • d d • d d • d d • d d •I R A F= + + +( ) ( ) ( ) ( ) ( ). All possible state transitions for individuals in a
certain class of X Yua si is presented infigure 2, and in the followingwewill derive the governing equations of these
sub-processes accordingly.

Now, the EDTof the four sub-processes is shown in sequence. Start from the infection process. Since, in the
continuous-time description, the possibility of two events happen in one time interval can be ignored, the
change in the states of an individual’s neighbours due to the infection process could only be the case of
X Y X Yua si ua s i1, 1l - + , i.e. an susceptible neighbour changes to be infected through the infection.However,
since this susceptible neighbour could be eitherUS orAS, the estimation of its changing rate should account for
the different infection rateβ or θβ due to the two kinds of states. Here,meanfield approximation is used to
estimate its changing rate. This susceptible neighbour could be either an A Su a s i¢ ¢ ¢ ¢ or aU Su a s i¢ ¢ ¢ ¢ one. Suppose that
it is A Su a s i¢ ¢ ¢ ¢. Note that the possibilities of aU Sua si individual reached by this neighbour through a certain link
equals A S s U S A S su a s i u a s i u a s i u a s i¢ å + ¢¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢( ) . Thus, for aU Sua si individual, the rate that it has an A Su a s i¢ ¢ ¢ ¢
neighbourmeanwhile this neighbour is infected equals i A S s U S A S su a s i u a s i u a s i u a s iqb ¢ ¢ å + ¢¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢( ) .

Figure 2.Possible states transitions for individuals in the class of X Yua si where X U A,Î { } and Y S I,Î { }. (a)The possible state
transitions on individuals in the class of X Yua si . (b)The possible state transitions on a neighbor of individuals in the class of X Yua si .
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Similarly, when this neighbour isU Su a s i¢ ¢ ¢ ¢ the corresponding rate equals
i U S s U S A S su a s i u a s i u a s i u a s ib ¢ ¢ å + ¢¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢( ) . Summing all the possible classes of the neighbours gives the

effective infection rate of a susceptible neighbour of aU Sua si individual, defined as Sb , as follows:
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It is not difficult tofind that a susceptible neighbour of an A Sua si individual has the same effective infection rate
Sb .With a similar reason, the effective infection rate of a susceptible neighbour of aU Iua si or A Iua si one is defined

as
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Thus, one obtains the evolution equations of the infection process as follows:

U S

t
iU S U S s

U S s a

d

d
1 , 4

ua si
ua si ua si

ua s i

I

S

S 1, 1

b b

b

=- -

+ ++ -

( )

( ) ( )

U I

t
iU I U I s

U I s b

d

d
1 , 4

ua si
ua si ua si

ua s i

I

I

I 1, 1

b b

b

=+ -

+ ++ -

( )

( ) ( )

d A S

dt
iA S A S s

A S s c1 , 4

ua si
ua si ua si

ua s i

I

S

S 1, 1

qb b

b

=- -

+ ++ -

( )

( ) ( )

A I

t
iA I A I s

A I s d

d

d
1 . 4

ua si
ua si ua si

ua s i

I

I

I 1, 1

qb b

b

=+ -

+ ++ -

( )

( ) ( )
Here, the second termon the right-hand side of equation (4a) describes the event that one of the susceptible
neighbours of aU Sua si individual becomes infected at a rate sSb · and henceU Sua si changes toU Sua s i1, 1- + ,
leading to a subtraction from the value ofU Sua si.

The recovery process is relatively simple and its evolution equations are given as follows:
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Similarly to the infection process, in the awareness process one can define the effective awareness rate of an
unaware neighbour reached by an unaware and an aware individual as Ua and Aa , respectively, as follows:
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Moreover, as aUI individualmay change toAI at a rate τ due to self-awareness, this effect could also cause a
change in the states of an unaware neighbour. Define the effective changing rate of an unaware neighbour
reached by an unaware and an aware individual due to this event as Ut and At , respectively, as follows:

4

New J. Phys. 21 (2019) 035002 YZhou et al



U I u

U S u U I u
a, 7u a s i ua si

u a s i ua si ua si
U

, , ,

, , ,

å
å

t
t

=
+[ ]

( )

U I a

U S a U I a
b. 7u a s i ua si

u a s i ua si ua si
A

, , ,

, , ,

å
å

t
t

=
+[ ]

( )

Thus, the evolution equations of the awareness processes are
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Finally, the evolution equations of the forgetting processes are given as follows
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4.Numerical results

The performance of the EDTon amultiplex network is examined inwhich each layer is generatedwith (i)
Erdös–Rényimodel whose degree distribution is p q k kek k

k k= = á ñ -á ñ ! in the limit of N l ¥, and (ii)
Configurationmodel with the truncated power-law degree distribution, where p q kk k= ~ g- when

k k0 T-< and p q 0k k= = otherwise. For the convenience of discussion, the two kinds of networks are
denoted as ERnetwork and PL network, respectively.

Since the developedmethod is for continuous-time processes, in order to fulfill this condition small
dynamical parameters are used to realize the process, so that in each time step the increments of the variables are
small and higher-order terms can be neglected. Thus, in the simulation, the values of the parameters a, f, b, r, and
τ are set in an order of 10−3.

Figure 3 shows the results of time evolutions of the fraction of aware individuals tAr ( ) and the fraction of
infected individuals ρI(t) for the two kinds of networks. For easy comparison, besides the results of the
simulation and the EDT, the results of heterogeneousmean fieldmethod (HMF) andMMCAare also presented.
The governing equations ofHMF andMMCA can be found in appendices A andB, respectively. One can see that
the EDThas an excellent agreementwith the simulations, while bothHMF andMMCAoverestimate the
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dynamics. It is noted thatMMCA is developed for the discrete-time process which contains non-perturbative
formulations. In the continuous-time limit, the impact of non-perturbative formulationwill fade away,
reflected by the similar behaviors of the two curves ofHMF andMMCA in figure 3.

Thefinal sizes of aware individuals Ar ¥( ) and infected individuals Ir ¥( ) in the steady states of two kinds of
networks are shown infigure 4. One can alsofind an excellent agreement between theMonte Carlo simulations
and the EDT. The results ofHMF andMMCAalso overestimate the dynamics and overlapped to each other.

5. Partial EDT

In the above proposed EDT, there are four variables, u, a, s, and i, corresponding to the numbers of four types of
neighbours in concern. Thus, the computational cost will scale as kmax

4 with kmax being themaximumdegree.
Therefore, when kmax is large, for example in the extreme casewhere kmax reaches the upper bound of the degree
range for uncorrelated networks in the configurationmodel [1], i.e. k Nmax

1 2~ , the computational efficiency
will not have prominent advantage compared to simulations. In order to increase the computational efficiency,
consider a PEDT formultiplex networks. In thismethod, EDT is adopted for one layer andHMF is for the other
layer. Since in theUAU–SISmodel, the epidemic dynamics is the target process to be understood and the
awareness dynamics is the auxiliary process to better understand the epidemic dynamics, we here adopt EDT for
the epidemic layer andHMF for the awareness layer. Specifically, the individuals are grouped into in the classes
X Yk si, where k denotes the number of neighbours in the awareness layer and themeaning of other symbols are
the same as those in the previous sections. Similarly, one can obtain the initial condition and the evolution
equation for PEDT,which are provided in appendix C.

Figure 5 shows the results of theMonte Carlo simulation, EDT, and PEDT for comparison. One can observe
that the results of tAr ( ) and Ar ¥( ) for EDT and PEDThave prominent discrepancies.While the results of tIr ( )
and Ir ¥( ) for EDT and PEDT arewellmatched.Other parameters have been examined and similar results are
obtained. These results show that, although the accuracy in predicting the dynamics of awareness is damaged

Figure 3.Time evolutions of the fractions of aware nodes Ar and infected nodes Ir for ERnetworks (a) and (b) and PLnetworks (c)
and (d), respectively. Results are obtained fromnumerical simulations (blue circles), EDT (magenta curves),MMCA (black curves),
andHMF (red curves). The ERnetwork is constructed using the Erdös–Rényimodel with average degree 4, and the PL network is
constructed using the uncorrelated configurationmodel with power-law degree distribution p k k~ g-( ) , where 2.2g = and
k 20T = . The network size isN=10 000. Results are obtainedwith averaging on 100 different realizations.Other parameter values
are b r a f 10 3= = = = - , 0.5q = , and 10 3t = - .
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because of the simpleHMF approach, the accuracy in predicting the epidemic dynamics is still preserved.
According to the performance of PEDT, this approachmay serve as a compromise scheme, where the accuracy is
kept in the epidemic layer while the efficiency of the prediction is significantly increased by sacrificing the
accuracy of the prediction in the other layer.

6. Conclusion

In summary, in this paper we have developed an effective degree theory (EDT) for studying epidemic spreading
dynamics onmultiplex networks.We present the new approach on the basis ofUAU–SISmodel [18]. In this
model, amultiplex network is composed of two layers. One is the epidemic layer where an epidemic spreads,
while the other is the awareness layer where the awareness of the epidemic diffuses. The dynamics of the
epidemic are described by the susceptible-infected-susceptible (SIS)model, and the dynamics of the awareness is
described by the unawareness-awareness-unawarenessmodel (UAU). These two layers interact with each other
through the reduction of infection rate in the epidemic layer and the self-awareness process in the awareness
layer. In presenting the EDTwe separate thewhole dynamical process into four sub-processes, which are
infection process, recovery process, awareness process, and forgetting process. The key step of EDT is to consider
the dynamical states of the neighbours of an individual so as to take into account the dynamical correlation of the
dynamics. To grasp this property, we classify the individuals according to their dynamical states and the
dynamical states of their neighbours in the two layers, respectively, which correspondingly raises four
dimensional quantities to account for the sizes of these classes. The developed EDT gives the evolution equations
of these quantities.

In themodel for a susceptible individual, whether or not it is aware or unaware of the epidemicmay result in
different infection rates. To account for this effect of different infection rates on a susceptible neighbour, in our
approachwe usemean-field approximation and propose an effective infection rate tomeasure the related
changing rates. In a similarmanner, we further propose an effective awareness rate and an self-awareness rate to
describe the relevant changing rates of the neighbours. Our results show that the proposed EDTonmultiplex
networks successfully predicts the dynamical behavior in a high accuracy. Since the prediction of spreading

Figure 4.The steady fractions of Ar and Ir after the transient process as a function of infection rate b, where (a) and (b) for ER
networks, (c) and (d) for PL networks. Themultiplex networks and other parameters are the same as those infigure 3.
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dynamics onmultiplex networks is amore challenging task compared to that on single layered networks, our
approach provides a useful tool for future studies on this topic.

We alsomanifest the performances of the heterogeneousmean field theory (HMF) andMMCA for
comparison.We show that these twomethods systematically overestimate the epidemics. Since the twomethods
neglect the dynamical correlation of the dynamics, where an infected individual ismore likely to connect with an
infected neighbour because itmay be infected by the neighbour previously, the number of susceptible
neighbours will be overestimated, and consequently it overestimates thewhole extent of the epidemics. Besides,
as theMMCA is a non-perturbative approach for discrete-time processes, it is expected to return toHMF in the
continuous-time limit, which has also been verified in this work.

Since EDTofmultiplex networks needs to considermore variables than single layered networks, the
computational efficiency of the approach could be an important concern especially when themaximumdegree
of the individuals is large. Thus, it could be useful tofind amethod to further improve the efficiency of the
theory. For this purpose, we propose a PEDT. In this approach, the epidemic dynamics in the epidemic layer is
analyzed by EDT and the awareness dynamics in the awareness layer is analyzed byHMF. The results show that
the prediction of the epidemic dynamics remains in high accuracy,meanwhile the computational efficiency of
the approach is significantly improved by sacrificing the accuracy in the other layer where theHMF is adopted.
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Figure 5.The steady fractions of Ar and Ir after the transient process as a function of self-awareness rate τ for different θ, where (a) a
for ERnetworks, (b) i for ER networks, (c) a for PL networks, and (d) i for scale-free networks. Themultiplex networks and other
parameters are the same as those infigure 3.
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AppendixA.Heterogeneousmeanfield theory

In this approach, nodes are classified according to their degrees in different layers. X Yi k denotes the fraction of
nodes in stateX (eitherU orA) and stateY (either S or I)with ineighbors in the awareness layer and kneighbors
in the epidemic layer. Thus, the governing equations are given by
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where I U I A Ik j k j k= +¢ ¢ ¢ and A A S A Ij j k j k= +¢ ¢ ¢ , and k Aá ñ k Eá ñ( ) is the average degree of the awareness
(epidemic) layer. The parameters have the same definitions as those in themain text.

Appendix B.Microcopicmarkov chain approach

In this approach, the possibility of an individual i lingered on the four statesUS AS UI AI, , , at time t are
denoted as p ti

US ( ), p ti
AS ( ), p ti

UI ( ) and p ti
AI ( ), respectively.Moreover, the probabilities for individual inot being

informed by any of its neighbours, defined as ri(t), not being infected by any of its neighbours if i is aware of the
epidemics, defined as q ti

A( ), and not being infected by any of its neighbours if iwas unaware of the epidemics,

defined as q ti
U ( ), are given by
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where p p pj
A

j
AI

j
AS= + , p p pj

I
j
AI

j
US= + , and aji and bji are the binary elements of the adjacencymatrixes of the

awareness layer and the epidemic layer, respectively. The correspondingMarkov chain equations are as follows:
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AppendixC. Partial EDT

In this approach, individuals are classified as X Yk si with X U A,Î { }and Y S I,Î { }. Thewhole dynamical
process is separated into three sub-processes, which are infection process, recovery process, and awareness and
forgetting process. The differential operators of the three sub-processes are denoted as td dI , td dR , and

td dAF , respectively.
The evolution equations of infection process are as follows:
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The evolution equations of the recovery process are as follows:
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The evolution equations of the awareness-and-forgetting process are as follows:
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where ā denotes the possibility of a randomly chosen link in the awareness layer connecting to an aware
individual, which is expressed as
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