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SECTION 10.1

On the night of February 21, 2003 a physician from Guangdong Prov-

ince in southern China checked into the Metropole Hotel in Hong Kong. He 

previously treated patients suffering from a disease that, lacking a clear 

diagnosis, was called atypical pneumonia. Next day, after leaving the hotel, 

he went to the local hospital, this time as a patient. He died there several 

days later of atypical pneumonia [1]. 

The physician did not leave the hotel without a trace: That night sixteen 

other guests of the Metropole Hotel and one visitor also contracted the dis-

ease that was eventually renamed Severe Acute Respiratory Syndrome, or 

SARS. These guests carried the SARS virus with them to Hanoi, Singapore, 

and Toronto, sparking outbreaks in each of those cities. Epidemiologists 

later traced close to half of the 8,100 documented cases of SARS back to the 

Metropole Hotel.  With that the physician who brought the virus to Hong 

Kong become an example of a super-spreader, an individual who is respon-

sible for a disproportionate number of infections during an epidemic. 

A network theorist will recognize super-spreaders as hubs, nodes with 

an exceptional number of links in the contact network on which a disease 

spreads. As hubs appear in many networks, super-spreaders have been 

documented in many infectious diseases, from smallpox to AIDS [2]. In this 

chapter we introduce a network based approach to epidemic phenomena 

that allows us to understand and predict the true impact of these hubs. The 

resulting framework, that we call network epidemics, offers an analytical 

and numerical platform to quantify and forecast the spread of infectious 

diseases.

Infectious diseases account for 43% of the global burden of disease, as 

captured by the number of years of lost healthy life. They are called con-
tagious, as they are transmitted by contact with an ill person or with their 

secretions.  Cures and vaccines are rarely sufficient to stop an infectious 

disease - it is equally important to understand how the pathogen responsi-

ble for the disease spreads in the population, which in turn determines the 

way we administer the available cures or vaccines.

INTRODUCTION

Figure  10.1

Super-spreaders

One-hundred-forty-four of the 206 SARS pa-
tients diagnosed in Singapore were traced to 
a chain of five individuals that included four 
super-spreaders. The most important of these 
was Patient Zero, the physician from Guang-
dong Province in China, who brought the dis-
ease to the Metropole Hotel. After [1].
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The diversity of phenomena regularly described as spreading processes 

on networks is staggering:

Biological

The spread of pathogens on their respective contact network is the 

main subject of this chapter. Examples include airborne diseases like 

influenza, SARS, or tuberculosis, transmitted when two individuals 

breathe the air in the same room; contagious diseases and parasites 

transmitted when people touch each other; the Ebola virus, transmit-

ted via contact with a patient's bodily fluids, HIV and other sexually 

transmitted diseases passed on during sexual intercourse. Infectious 

diseases also include cancers carried by cancer-causing viruses, like 

HPV or EBV, or diseases carried by parasites like bedbugs or malaria.

Digital

A computer virus is a self-reproducing program that can transmit a 

copy of itself from computer to computer. Its spreading pattern has 

many similarities to the spread of pathogens. But digital viruses also 

have many unique features, determined by the technology behind the 

specific virus.  As mobile phones morphed into hand-held computers, 

lately we also witnessed the appearance of mobile viruses and worms 

that infect smartphones (Figure 10.2).

Social

The role of the social and professional network in the spread and ac-

ceptance of innovations, knowledge, business practices, products, 

behavior, rumors and memes, is a much-studied problem in social 

sciences, marketing and economics [5, 6]. Online environments, like 

Twitter, offer unprecedented ability to track such phenomena. Conse-

quently a staggering number of studies focus on social spreading, ask-

ing for example why can some messages reach millions of individuals, 

while others struggle to get noticed.

The examples discussed above involve diverse spreading agents, from 

biological to computer viruses, ideas and products; they spread on differ-

Figure  10.2

Mobile Phone Viruses

Smart phones, capable of sharing programs 
and data with each other, offer a fertile 
ground for virus writers. Indeed, since 2004 
hundreds of smart phone viruses have been 
identified,  reaching a state of sophistication 
in a few years that took computer viruses 
about two decades to achieve [3]. Mobile virus-
es are transmitted using two main communi-
cation mechanisms [4]: 

Bluetooth (BT) Viruses
A BT virus infects all phones found within BT 
range from the infected phone, which is about 
10-30 meters. As physical proximity is essen-
tial for a BT connection, the transmission of a 
BT virus is determined by the owner’s location 
and the underlying mobility network, con-
necting locations by individuals who travel 
between them (SECTION 10.4). Hence BT viruses 
follow a spreading pattern similar to influen-
za. 

Multimedia Messaging Services (MMS)
Viruses carried by MMS can infect all suscep-
tible phones whose number is in the infect-
ed phone’s phonebook. Hence MMS viruses 
spread on the social network, following a 
long-range spreading pattern that is indepen-
dent of the infected phone’s physical location. 
Consequently the spreading of MMS viruses 
is similar to the patterns characterizing com-
puter viruses. 
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ent types of networks, from social to computer and professional networks; 

they are characterized by widely different time scales and follow different 

mechanisms of transmission (Table 10.1). Despite this diversity, as we show 

in this chapter, these spreading processes obey common patterns and 

can be described using the same network-based theoretical and modeling 

framework. 

PHENOMENA AGENT NETWORK

Venereal Disease

Rumor Spreading

Diffusion of Innovations

Computer Viruses

Mobile Phone Virus

Bedbugs

Malaria

Pathogens

Information, Memes

Ideas, Knowledge

Malwares, Digital viruses

Mobile Viruses

Parasitic Insects

Plasmodium

Sexual Network

Communication Network

Communication Network

Internet

Social Network/Proximity Network

Hotel - Traveler Network

Mosquito - Human network

Table 10.1

Networks and Agents

The spread of a pathogen, a meme or a com-
puter virus is determined by the network on 
which the agent spreads and the transmission 
mechanism of the responsible agent. The table 
lists several much studied spreading phenom-
ena, together with the nature of the particular 
spreading agent and the network on which 
the agent spreads.
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SECTION 10.2

EPIDEMIC MODELING

Epidemiology has developed a robust analytical and numerical frame-

work to model the spread of pathogens. This framework relies on two fun-

damental hypotheses:

i. Compartmentalization

Epidemic models classify each individual based on the stage of the 

disease affecting them. The simplest classification assumes that an 

individual can be in one of three states or compartments:

• Susceptible (S): Healthy individuals who have not yet contacted 

the pathogen (Figure 10.3).

• Infectious (I): Contagious individuals who have contacted the 

pathogen and hence can infect others.

• Recovered (R): Individuals who have been infected before, but 

have recovered from the disease, hence are not infectious. 

The modeling of some diseases requires additional states, like immune 

individuals, who cannot be infected, or latent individuals, who have 

been exposed to the disease, but are not yet contagious.

Individuals can move between compartments. For example, at the be-

ginning of a new influenza outbreak everyone is in the susceptible 

state. Once an individual comes into contact with an infected person, 

she can become infected. Eventually she will recover and develop im-

munity, losing her susceptibility to the the particular strain of influ-

enza.  

ii. Homogenous Mixing

The homogenous mixing hypothesis (also called fully mixed or 

mass-action approximation) assumes that each individual has the 

same chance of coming into contact with an infected individual.  This 

hypothesis eliminates the need to know the precise contact network 

on which the disease spreads, replacing it with the assumption that 

Figure  10.3

Pathogens

A pathogen, a word rooted in the Greek words 
“suffering, passion” (pathos) and “produc-
er of” (genes), denotes an infectious agent or 
germ. A pathogen could be a disease-causing 
microorganism, like a virus, a bacterium, a 
prion, or a fungus. The figure shows sever-
al much-studied pathogens, like the HIV vi-
rus, responsible for AIDS, an influenza virus 
and the hepatitis C virus. After http://www.
livescience.com/18107-hiv-therapeutic-vac-
cines-promise.html and http://www.huff-
ingtonpost.com/2014/01/13/deadly-virus-
es-beautiful-photos_n_4545309.html
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anyone can infect anyone else.

In this section we introduce the epidemic modeling framework built 

on these two hypotheses. To be specific, we explore the dynamics of three 

frequently used epidemic models, the so-called SI, SIS and SIR models, that 

help us understand the basic building blocks of epidemic modeling.

SuSCEPTIBLE-INFECTED (SI) MODEL
Consider a disease that spreads in a population of N individuals. Denote 

with S(t) the number of individuals who are susceptible (healthy) at time 

t and with I(t) the number individuals that have been already infected. At 

time t=0 everyone is susceptible (S(0) =N) and no one is infected (I(0)=0). 

Let us assume that a typical individual has ⟨k⟩ contacts and that the likeli-

hood that the disease will be transmitted from an infected to a susceptible 

individual in a unit time is β.  We ask the following: If a single individual 

becomes infected at time t=0 (i.e. I(0)=1), how many individuals will be in-

fected at some later time t?

Within the homogenous mixing hypothesis the probability that the in-

fected person encounters a susceptible individual is S(t)/N. Therefore the 

infected person comes into contact with ⟨k⟩S(t)/N susceptible individuals 

in a unit time. Since I(t) infected individuals are transmitting the patho-

gen, each at rate β, the average number of new infections dI(t) during a 

timeframe dt is

                      β⟨k⟩
S(t)I(t)

N
dt . 

Consequently I(t) changes at the rate

        dI(t)
dt

= β 〈k〉 S(t)I(t)
N

.        (10.1)

Throughout this chapter we will use the variables 

             s(t) = S(t) / N ,       i(t) = I(t) / N ,           (10.2)

to capture the fraction of the susceptible and of the infected population at 

time t. For simplicity we also drop the (t) variable from i(t) and s(t), re-writ-

ing (10.1) as (ADVANCED TOPICS 10.A) 

             
di
dt

= β 〈k〉si = β 〈k〉i(1− i), (10.3)

where the product β⟨k⟩ is called the transmission rate or transmissibility. 

We solve (10.3) by writing 

                          
di
i
+ di
(1− i)

= β 〈k〉dt .

Integrating both sides, we obtain

                      ln i − ln(1− i)+C = β 〈k〉t .
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Figure  10.4

The Susceptible-Infected (SI) Model

(a) In the SI model an individual can be in one 
of two states: susceptible (healthy) or infect-
ed (sick). The model assumes that if a sus-
ceptible individual comes into contact with 
an infected individual, it becomes infected 
at rate β. The arrow indicates that once an 
individual becomes infected, it stays infect-
ed, hence it cannot recover.

(b) Time evolution of the fraction of infected 
individuals, as predicted by (10.4). At early 
times the fraction of infected individuals 
grows exponentially. As eventually every-
one becomes infected, at large times we 
have i(∞)=1. 

(a)

(b)
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With the initial condition i0= i(t=0), we get C=i0/(1–i0), obtaining that the 

fraction of infected individuals increases in time as  

             i = i0e
β 〈k 〉t

1− i0 + i0e
β 〈k 〉t .  (10.4)

Equation (10.4) predicts that:

• At the beginning the fraction of infected individuals increases exponen-

tially (Figure 10.4b). Indeed, early on an infected individual encounters only 

susceptible individuals, hence the pathogen can easily spread. 

• The characteristic time required to reach an 1/e fraction (about 36%) of all 

susceptible individuals is

                       τ = 1
β 〈k〉

.   (10.5)

Hence τ is the inverse of the speed with which the pathogen spreads 

through the population. Equation (10.5) predicts that increasing either the 

density of links ⟨k⟩ or β enhances the speed of the pathogen and reduces the 

characteristic time.

• With time an infected individual encounters fewer and fewer suscepti-

ble individuals. Hence the growth of i slows for large t (Figure 10.4b).  The 

epidemic ends when everyone has been infected, i.e. when i(t→∞)=1 and 

s(t→∞)=0.

SuSCEPTIBLE-INFECTED-SuSCEPTIBLE (SIS) MODEL
Most pathogens are eventually defeated by the immune system or by 

treatment. To capture this fact we need to allow the infected individuals to 

recover, ceasing to spread the disease. With that we arrive at the so-called 

SIS model, which has the same two states as the SI model, susceptible and 

infected. The difference is that now infected individuals recover at a fixed 

rate μ, becoming susceptible again (Figure 10.5a). The equation describing 

the dynamics of this model is an extension of (10.3), 

     
di
dt

= β 〈k〉i(1− i)− µi ,   (10.6)

where μ is the recovery rate and the μi term captures the rate at which 

the population recovers from the disease. The solution of (10.6) provides the 

fraction of infected individuals in function of time (Figure 10.5b)

                i = (1− µ
β 〈k〉

) Ce(β 〈k 〉−µ )t

1+Ce(β 〈k 〉−µ )t
,  (10.7)

where the initial condition i0= i(t=0) gives C=i0/(1–i0 –μ/β⟨k⟩).

While in the SI model eventually everyone becomes infected, (10.7) pre-

dicts that in the SIS model the epidemic has two possible outcomes:

Figure  10.5

The Susceptible-Infected-Susceptible (SIS) Model

(a) The SIS model has the same states as the SI 
model: susceptible and infected. It differs 
from the SI model in that it allows recovery, 
i.e. infected individuals are cured, becom-
ing susceptible again at rate μ.

(b) Time evolution of the fraction of infected 
individuals in the SIS model, as predicted 
by (10.7). As recovery is possible, at large 
t the system reaches an endemic state, in 
which the fraction of infected individuals 
is constant, i(∞), given by (10.8). Hence in 
the endemic state only a finite fraction of 
individuals are infected. Note that for high 
recovery rate μ the number of infected in-
dividuals decreases exponentially and the 
disease dies out. 
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• Endemic State (μ<β⟨k⟩) 

For low recovery rate the fraction of infected individuals, i, fol-

lows a logistic curve similar to the one observed for the SI model. 

Yet, not everyone is infected, but i reaches a constant i(∞)<1 value 

(Figure 10.5b). This means that at any moment only a finite fraction 

of the population is infected. In this stationary or endemic state 

the number of newly infected individuals equals the number of 

individuals who recover from the disease, hence the infected frac-

tion of the population does not change with time.  We can calcu-

late i(∞) by setting di/dt=0 in (10.6), obtaining 

              i(∞) = 1− µ
β 〈k〉

.    (10.8)

• Disease-free State (μ>β⟨k⟩) 

For a sufficiently high recovery rate the exponent in (10.7) is neg-

ative. Therefore, i decreases exponentially with time, indicating 

that an initial infection will die out exponentially. This is because 

in this state the number of individuals cured per unit time ex-

ceeds the number of newly infected individuals. Therefore with 

time the pathogen disappears from the population. 

In other words, the SIS model predicts that  some pathogens will persist 

in the population while others die out shortly. To understand what governs 

the difference between these two outcomes we write the characteristic 

time of a pathogen as

                              τ = 1
µ(R0 −1)

 ,    (10.9)

where

                    R0 =
β 〈k〉
µ

   (10.10)

is the basic reproductive number. It represents the average number of sus-

ceptible individuals infected by an infected individual during its infectious 

period in a fully susceptible population. In other words, R0 is the number of 

new infections each infected individual causes under ideal circumstances. 

The basic reproductive number is valuable for its predictive power: 

• If R0 exceeds unity, τ is positive, hence the epidemic is in the 

endemic state. Indeed, if each infected individual infects more 

than one healthy person, the pathogen is poised to spread and 

persist in the population. The higher is R0, the faster is the 

spreading process. 

• If R0<1 then τ is negative and the epidemic dies out. Indeed, if 

each infected individual infects less than one additional per-

son, the pathogen cannot persist in the population. 

Consequently, the reproductive number is one of the first parameters 

DISEASE TRANSMISSION R0

Measles

Pertussis

Diptheria

Smallpox

Polio

Rubella

Mumps

HIV/AIDS

SARS

Influenza
(1918 strain)

Airborne

Airborne droplet

Saliva

Social contact

Fecal-oral route

Airborne droplet

Airborne droplet

Sexual contact

Airborne droplet

Airborne droplet

12-18

12-17

6-7

5-7

5-7

5-7

4-7

2-5

2-5

2-3

Table 10.2

The Basic Reproductive Number, R0

The reproductive number (10.10) provides the 
number of individuals an infectious individu-
al infects if all its contacts are susceptible. For 
R0< 1 the pathogen naturally dies out, as the 
number of recovered individuals exceeds the 
number of new infections. If R0>1 the patho-
gen will spread and persist in the population. 
The higher is R0, the faster is the spreading 
process. The table lists R0 for several well-
known pathogens. After [7].
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epidemiologists estimate for a new pathogen, gauging the severity of the 

problem they face. For several well-studies pathogens R0 is listed in Table 
10.2. The high R0 of some of these pathogens underlies the dangers they 

pose: For example each individual infected with measles causes over a doz-

en subsequent infections.

SuSCEPTIBLE-INFECTED-rECOVErED (SIr) MODEL
For many pathogens, like most strains of influenza, individuals develop 

immunity after they recover from the infection. Hence, instead of return-

ing to the susceptible state, they are “removed” from the population. These 

recovered individuals do not count any longer from the perspective of the 

pathogen as they cannot be infected, nor can they infect others. The SIR 

model, whose properties are discussed in Figure 10.6, captures the dynamics 

of this process.

In summary, depending on the characteristics of a pathogen, we need 

different models to capture the dynamics of an epidemic outbreak.  As 

shown in Figure 10.7, the predictions of the SI, SIS, and SIR models agree 

with each other in the early stages of an epidemic: When the number of 

infected individuals is small, the disease spreads freely and the number of 

infected individuals increases exponentially. The outcomes are different 

for large times: In the SI model everyone becomes infected; the SIS model 

either reaches an endemic state, in which a finite fraction of individuals 

are always infected, or the infection dies out; in the SIR model everyone 

recovers at the end. The reproductive number predicts the long-term fate 

of an epidemic: for R0<1 the pathogen persists in the population, while for 

R0>1 it dies out naturally.

The models discussed so far have ignored the fact that that an individ-

ual comes into contact only with its network-based neighbors in the per-

tinent contact network. We assumed homogenous mixing instead, which 

means that an infected individual can infect any other individual. It also 

means that an infected individual typically infects only ⟨k⟩ other individu-

als, ignoring variations in node degrees. To accurately predict the dynam-

ics of an epidemic, we need to consider the precise role the contact network 

plays in epidemic phenomena. 

Figure 10.6

The Susceptible-Infected-Recovered (SIR) Model

(a) In contrast with the SIS model, in the SIR 
model recovered individuals enter a recov-
ered state, meaning that they develop im-
munity rather than becoming susceptible 
again. Flu, SARS and Plague are diseases 
with this property, hence we must use the 
SIR model to describe their spread. 

(b) The differential equations governing the 
time evolution of the fraction of individu-
als in the susceptible s, infected i and the 
removed r state.

(c) The time dependent behavior of s, i and r 
as predicted by the equations shown in (b). 
According to the model all individuals tran-
sition from a susceptible (healthy) state to 
the infected (sick) state and then to the re-
covered (immune) state. 
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matic model for the study of infectious diseases leading to an endemic state with
a stationary and constant value for the prevalence of infected individuals, i.e.
the degree to which the infection is widespread in the population as measured
by the density of infected. In the SIS model, individuals exist in the suscepti-
ble and infected classes only. The disease transmission is described as in the SI
model, but infected individuals may recover and become susceptible again with
probability µdt, where µ is the recovery rate. Individuals thus run stochastically
through the cycle susceptible � infected � susceptible, hence the name of the
model. The equation describing the evolution of the SIS model therefore contains
a spontaneous transition term and reads as

di(t)
dt

= − µi(t) + β k i(t) [1 − i (t)] . (9.6)

The usual normalization condition s(t) = 1 − i (t) has to be valid at all times.
The SIS model does not take into account the possibility of an individ-

ual’s removal through death or acquired immunization, which would lead to the
so-called susceptible–infected–removed (SIR) model (Anderson and May, 1992;
Murray, 2005). The SIR model, in fact, assumes that infected individuals disap-
pear permanently from the network with rate µ and enter a new compartment R of
removed individuals, whose density in the population is r (t) = R(t)/ N. The intro-
duction of a new compartment yields the following system of equations describing
the dynamics:

ds(t)
dt

= β k i(t) [1 − r (t) − i (t)]

di
dt

= −µi + β k i [1 − r − i ] (9.7)

dr
dt

= µ i (9.8)

Through these dynamics, all infected individuals will sooner or later enter the
recovered compartment, so that it is clear that in the infinite time limit the epi-
demics must fade away. It is interesting to note that both the SIS and SIR models
introduce a time scale 1/µ governing the self-recovery of individuals. We can think
of two extreme cases. If 1/µ is smaller than the spreading time scale 1/ β , then the
process is dominated by the natural recovery of infected to susceptible or removed
individuals. This situation is less interesting since it corresponds to a dynamical
process governed by the decay into a healthy state and the interaction with neigh-
bors plays a minor role. The other extreme case is in the regime 1/µ 1/ β ,
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process is dominated by the natural recovery of infected to susceptible or removed
individuals. This situation is less interesting since it corresponds to a dynamical
process governed by the decay into a healthy state and the interaction with neigh-
bors plays a minor role. The other extreme case is in the regime 1/µ 1/ β ,
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matic model for the study of infectious diseases leading to an endemic state with
a stationary and constant value for the prevalence of infected individuals, i.e.
the degree to which the infection is widespread in the population as measured
by the density of infected. In the SIS model, individuals exist in the suscepti-
ble and infected classes only. The disease transmission is described as in the SI
model, but infected individuals may recover and become susceptible again with
probability µdt, where µ is the recovery rate. Individuals thus run stochastically
through the cycle susceptible � infected � susceptible, hence the name of the
model. The equation describing the evolution of the SIS model therefore contains
a spontaneous transition term and reads as

di(t)
dt

= − µi(t) + β k i(t) [1 − i (t)] . (9.6)

The usual normalization condition s(t) = 1 − i (t) has to be valid at all times.
The SIS model does not take into account the possibility of an individ-

ual’s removal through death or acquired immunization, which would lead to the
so-called susceptible–infected–removed (SIR) model (Anderson and May, 1992;
Murray, 2005). The SIR model, in fact, assumes that infected individuals disap-
pear permanently from the network with rate µ and enter a new compartment R of
removed individuals, whose density in the population is r (t) = R(t)/ N. The intro-
duction of a new compartment yields the following system of equations describing
the dynamics:

ds(t)
dt

= β k i(t) [1 − r (t) − i (t)]

di
dt

= −µi + β k i [1 − r − i ] (9.7)

dr
dt

= µ i (9.8)

Through these dynamics, all infected individuals will sooner or later enter the
recovered compartment, so that it is clear that in the infinite time limit the epi-
demics must fade away. It is interesting to note that both the SIS and SIR models
introduce a time scale 1/µ governing the self-recovery of individuals. We can think
of two extreme cases. If 1/µ is smaller than the spreading time scale 1/ β , then the
process is dominated by the natural recovery of infected to susceptible or removed
individuals. This situation is less interesting since it corresponds to a dynamical
process governed by the decay into a healthy state and the interaction with neigh-
bors plays a minor role. The other extreme case is in the regime 1/µ 1/ β ,
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Figure 10.7

Comparing the SI, SIS and SIR Models

The plot shows growth of the fraction of in-
fected individuals, i, in the SI, SIS and SIR 
models. Two different regimes stand out: 

Exponential Regime 
The models predict an exponential growth in 
the number of infected individuals during 
the early stages of the epidemic. For the same 
β the SI model predicts the fastest growth 
(smallest τ, see (10.5)). For the SIS and SIR mod-
els the growth is slowed by recovery, result-
ing in a larger τ, as predicted by (10.9). Note 
that for sufficiently high recovery rate μ the 
SIS and the SIR models predict a disease-free 
state, when the number of infected individu-
als decays exponentially with time.

Final Regime 
The three models predict different long-term 
outcomes: In the SI model everyone becomes 
infected, i(∞)=1; in the SIS model a finite frac-
tion of individuals are infected i(∞)<1; in the 
SIR model all infected nodes recover, hence 
the number of infected individuals goes to 
zero i(∞)=0.  

The table summarizes the main properties of 
each model.
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NETWORK EPIDEMICS

SECTION 10.3

The ease of air travel, allowing millions to cross continents on a daily 

basis, has dramatically accelerated the speed with which pathogens travel 

around the world. While in medieval times a virus took years to sweep a 

continent (Figure 10.8), today a new virus can reach several continents in a 

matter of days. There is an acute need, therefore, to understand and predict 

the precise patterns that pathogens follow as they spread around the globe.

The epidemic models discussed in the previous section do not incorpo-

rate the structure of the contract network that facilitates the spread of a 

pathogen. Instead they assume that any individual can come into contact 

with any other individual (homogenous mixing hypothesis) and that all 

individuals have comparable number of contacts, ⟨k⟩. Both assumptions 

are false: Individual can transmit a pathogen only to those they come into 

contact with, hence pathogens spread on a complex contact network. Fur-

thermore, these contact networks are often scale-free, hence ⟨k⟩ is not suf-

ficient to characterize their topology.  

Figure 10.8

The Great Plague

The Black Death, one of the most devastating 
pandemics in human history, was an outbreak 
of bubonic plague caused by the bacterium 
Yersinia pestis. The figure shows the gradual 
advance of the disease throughout Europe, 
taking years to sweep the continent. It start-
ed in China and traveled along the Silk Road 
to reach Crimea around 1346. From there, 
probably carried by Oriental rat fleas on the 
black rats that were regular passengers on 
merchant ships, spread throughout the Medi-
terranean and Europe. Its slow spread reflect-
ed the slow travel speed of its era. The black 
death is estimated to have killed 30% to 60% 
of Europe's population [8]. The resulting dev-
astation has caused a series of religious, social 
and economic upheavals, having a profound 
impact on the history of Europe.

After Roger Zenner, Wikipedia.
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The failure of the basic hypotheses prompted a fundamental revision of 

the epidemic modeling framework. This change began with the work of Ro-

mualdo Pastor-Satorras and Alessandro Vespignani, who in 2001 extended 

the basic epidemic models to incorporate in a self-consistent fashion the 

topological characteristics of the underlying contact network [9]. In this 

section we introduce the formalism developed by them, familiarizing our-

selves with network epidemics.

SuSCEPTIBLE-INFECTED (SI) MODEL ON A NETWOrK
If a pathogen spreads on a network, individuals with more links are 

more likely to be in contact with an infected individual, hence they are 

more likely to be infected. Therefore the mathematical formalism must 

consider the degree of each node as an implicit variable. This is achieved 

by the degree block approximation, that distinguishes nodes based on their 

degree and  assumes that nodes with the same degree are statistically 

equivalent (Figure 10.9). Therefore we denote with

          (10.11)

the fraction of nodes with degree k that are infected among all Nk degree-k 

nodes in the network. The total fraction of infected nodes is the sum of all 

infected degree-k nodes 

        .    (10.12)

Given the different node degrees, we write the SI model for each degree 

k separately: 

              .   (10.13)

This equation has the same structure as (10.3): The  infection rate is pro-

portional to β and the fraction of degree-k nodes that are not yet infected, 

which is (1-ik). Yet, there are some key differences:

• The average degree ⟨k⟩ in (10.3) is replaced with each node’s actual 

degree k.   

• The density function Θk represents the fraction of infected  neigh-

bors of a susceptible node k.  In the homogenous mixing assump-

tion Θk is simply the fraction of the infected nodes, i. In a network 

environment, however, the fraction of infected nodes in the vi-

cinity of a node can depend on the node’s degree k and time t.

• While (10.3) captures with a single equation the time dependent 

behavior of the whole system, (10.13) represents a system of kmax 

coupled equations, one equation for each degree present in the 

network. 

We start by exploring the early time behavior of ik, a choice driven by 

both theoretical interest and practical considerations. Indeed, developing 

vaccines, cures, and other medical interventions for a new pathogen can 

take months to years. If we lack a cure, the only way to alter the course 

ik =
Ik
Nk

i =∑
k
pkik

dik
dt

= β(1− ik )kΘk

k = 1

k = 4 k = 2

k = 3

Figure 10.9

Degree Block Approximation

The epidemic models discussed in SECTION 
10.2 grouped each node into compartments 
based on their state, placing them into suscep-
tible, infected, or recovered compartments. To 
account for the role of the network topology, 
the degree block approximation adds an addi-
tional set of compartments, placing all nodes 
that have the same degree into the same block. 
In other words, we assume that nodes with 
the same degree behave similarly. This allows 
us to write a separate rate equation for each 
degree, as we did in (10.13). The degree block 
approximation does not eliminate the com-
partments based on the state of an individual: 
Independent of its degree an individual can be 
susceptible to the disease (empty circles) or in-
fected (full circles). 
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of an epidemic is to do so early, using quarantine, travel restrictions and 

transmission-slowing measures to halt its spread. To make the right deci-

sion about the nature, the timing and the magnitude of each intervention, 

we need an accurate estimate of the number of individuals infected in the 

early stages of the epidemic. 

At the beginning of the epidemic ik is small and the higher order term in 

(10.13) βikkΘk can be neglected. Hence we can approximate (10.13) with

                          .       (10.14) 
 

As we show in ADVANCED TOPICS 10.B, for a network lacking degree cor-

relations the Θk function is independent of k, so using (10.40), (10.14) becomes

                ,     (10.15)

where τSI is the characteristic time for the spread of the pathogen

       (10.16)

Integrating (10.15) we obtain the fraction of infected nodes with degree k
  

        .  (10.17)

Equation (10.17) makes several important predictions: 

• The higher the degree of a node, the more likely that it becomes 

infected. Indeed, for any time t we can write (10.17) as ik=g(t)+kf(t), 

indicating that the group of nodes with higher degree has a higher 

fraction of infected nodes (Figure 10.10). 

• According to (10.12) the total fraction of infected nodes grows with 

time as

       . (10.18)

According to (10.16) the characteristic time τ depends not only on ⟨k⟩, 

but also on the network’s degree distribution through ⟨k2⟩. To fully under-

stand the significance of the prediction (10.16), let us derive τSI  for differ-

ent networks:

• Random Network 

For a random network ⟨k2⟩=⟨k⟩(⟨k⟩+1), obtaining

                                                       ,   (10.19)

recovering the result (10.5) for homogenous networks. 

dik
dt

≈ βkΘk

dik
dt

≈ βki0
〈k〉 −1
〈k〉

et /τ
SI

τ SI = 〈k〉
β 〈k2 〉 − 〈k〉( ) .

ik = i0 (1+
k(〈k〉 −1)
〈k2 〉 − 〈k〉

(et /τ
SI
−1))

i = ∫
0

kmax

ik pkdk = i0 (1+
〈k〉2 − 〈k〉
〈k2 〉 − 〈k〉

(et /τ
SI
−1))

τ ER
SI = 1

β 〈k〉
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Figure 10.10

Fraction of Infected Nodes in the SI Model

Equation (10.17) predicts that the a pathogen 
spreads with different speed on nodes with 
different degrees. To be specific, we can write 
ik=g(t)+kf(t), indicating that at any time the 
fraction of high degree nodes that are infect-
ed is higher than the fraction of low degree 
nodes. The figure shows the fraction of in-
fected nodes with degrees k=1, 10 and 100 in 
an Erdős-Rényi network with average degree 
⟨k⟩=2. It shows that at t=3 less than 3% of the 
k=1 nodes are infected, in contrast with close 
to 20% of the k=10 nodes and close to 30% of 
the k=20 nodes. Consequently, at any time 
virtually all hubs are infected, but small-de-
gree nodes tend to be disease free. Hence the 
disease is maintained in the hubs, which in 
turn broadcast the disease to the rest of the 
network.
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• Scale-free Network with γ≥3 

If the contract network on which the disease spreads is scale-free 

with degree exponent γ ≥3, both ⟨k⟩ and ⟨k2⟩ are finite. Consequent-

ly τSI is also finite and the spreading dynamics is similar to the 

behavior predicted for a random network but with an altered τSI. 

• Scale-free Networks with γ≤3 

For γ <3 in the N→∞ limit ⟨k2⟩→∞ hence (10.16) predicts τSI→0.  In 

other words, the spread of a pathogen on a scale-free network is 
instantaneous. This is perhaps the most unexpected prediction of 

network epidemics. 

The vanishing characteristic time reflects the important role 

hubs play in epidemic phenomena. Indeed, as illustrated in Figure 
10.10, in a scale-free network the hubs are the first to be infected, 

as through the many links they have, they are very likely to be in 

contact with an infected node. Once a hub becomes infected, it 

“broadcasts” the disease to the rest of the network, turning into a 

super-spreader.

• Inhomogenous Networks  

A network does not need to be strictly scale-free for the impact of 

the degree heterogeneity to be detectable. Indeed, (10.16) predicts 

that as long as ⟨k2⟩>⟨k⟩(⟨k⟩+1), τSI is reduced. Hence heterogenous 

network enhance the speed of any pathogen.

In the SI model with time the pathogen reaches all individuals. Conse-

quently the degree heterogeneity affects only the characteric time, which 

in turn determines the speed with which the pathogen sweeps through 

the population. To understand the full impact of the network topology, we 

need to explore the behavior of the  SIS model on a network. 

SIS MODEL AND THE VANISHING EPIDEMIC THrESHOLD
The continuum equation describing the dynamics of the SIS model on 

a network is a straightforward extension of the SI model discussed in SEC-
TION 10.2, 

            (10.20)

The difference between (10.13) and (10.20) is the presence of the recov-

ery term -μik. This changes the  characteristic time of the epidemic to (AD-
VANCED TOPICS 10.B)    

          .      (10.21)

For sufficiently large μ the characteristic time is negative, hence ik de-

cays exponentially.  The condition for the decay depends not only on the 

recovery rate and ⟨k⟩, but also on the network heterogenity, through ⟨k2⟩. To 

predict when a pathogen persists in the population we define the spread-
ing rate

dik
dt

= β(1− ik )kΘk (t)− µik .

τ SIS = 〈k〉
β 〈k2 〉 − µ〈k〉
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           (10.22)

which depends only on the biological characteristics of the pathogen, 

namely the transmission probability β and the recovery rate μ. The higher 

is λ, the more likely that the disease will spread. Yet, the number of infect-

ed individuals does not increase gradually with λ. Rather, the pathogen can 

spread only if its spreading rate exceeds an epidemic threshold λc. Next we 

calculate λc for random and scale-free networks.

• Random Network 

If a pathogen spreads on a random network, we can use ⟨k2⟩=⟨k⟩

(⟨k+1⟩) in (10.21), obtaining that the pathogen persists in the pop-

ulation if

                  .   (10.23)

Using (10.22) we obtain

     ,   (10.24)

obtaining the epidemic threshold of a random network as 

     .   (10.25)

As ⟨k⟩ is always finite, a random network always has a nonzero 

epidemic threshold (Figure 10.11), with key consequences: 

• If the spreading rate λ exceeds the epidemic threshold λc, the 

pathogen will spread until it reaches an endemic state, where 

a finite fraction i(λ) of the population is infected at any time. 

• If λ<λc, the pathogen dies out, i.e. i(λ)=0. 

Hence the epidemic threshold allows us to decide if a pathogen 

can or cannot persist in a population. This transition from the 

absence to the presence of an epidemic outbreak by increasing 

the spreading rate λ is at the basis of most campaigns to stop a 

pathogen (SECTION 10.6). 

• Scale-free Network 

For a network with an arbitrary degree distribution we set τSIS >0 

in (10.21), obtaining the epidemic threshold as

     .    (10.26)

As for a scale-free network ⟨k2⟩ diverges in the N→∞ limit, for 

large networks the epidemic threshold is expected to vanish (Fig-
ures 10.11 and 10.12). This means that even viruses that are hard to 
pass from individual to individual can spread successfully, repre-

λ = β
µ
,

τ ER
SIS = 1

β(〈k〉+1)− µ
> 0
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Figure 10.11

Epidemic Threshold

The fraction of infected individuals 
i(λ)=i(t→∞) in the endemic state of the SIS 
model. The curves are for a random (green) 
and for a scale-free contact network (purple). 
The random network has a finite epidemic 
threshold λc, implying that a pathogen with 
a small spreading rate (λ<λc) must die out, i.e. 
i(λc)=0. If, however, the spreading rate of the 
pathogen exceeds λc, the pathogen becomes 
endemic and a finite fraction of the popula-
tion is infected at any time. For a scale-free 
network we have λc=0, hence even viruses 
with a very small spreading rate λ can persist 
in the population. 

Figure 10.12

The Asymptotic Behavior of the SIS Model

The fraction of individuals infected in the 
endemic state, i(λ)=i(t→∞), depends on the 
structure of the underlying network and the 
disease parameters β and μ. The figure sum-
marizes the key properties of the epidemic 
threshold λc, the density function Θ(λ) and i(λ) 
for a scale-free network with degree exponent 
γ. The results indicate that only for γ >4 does 
the epidemics on a scale-free network con-
verge to the results of the traditional epidemic 
models. After [10].
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senting the second fundamental prediction of network epidemics. 

The vanishing epidemic threshold is a direct consequence of 

the hubs. Indeed, a pathogen that fails to infect other nodes be-

fore the infected individual recovers, will slowly disappear from 

the population (ADVANCED TOPICS 10.A). In a random network all 

nodes have comparable degree, k≈⟨k⟩, hence if the spreading rate 

is under the epidemic threshold, the pathogen has no avenues 

to spread. In a scale-free network, however, even if a pathogen 

is only weakly infectious, if it infects a hub, the hub can pass it 

on to a large number of other nodes, allowing it to persist in the 

population.

In summary, the results of this section show that accounting for the 

network topology greatly alters the predictive power of the epidemic mod-

els. We derived two fundamental results:

• In a large scale-free network τ=0, which means that a virus can 

instantaneously reach most nodes. 

• In a large scale-free network λc=0, which means that even viruses 

with small spreading rate can persist in the population.

Both results are the consequence of hubs’ ability to broadcast a patho-

gen to a large number of other nodes.

Note that these results are not limited to scale-free networks. Rather 

(10.16) and (10.26) predict that both τ and λc depend on ⟨k2⟩, hence the effects 

discussed above will impact any network with high degree heterogeneity. 

In other words, if ⟨k2⟩ is larger than the random expectation ⟨k⟩(⟨k+1⟩), we 

will observe an enhanced spreading process, resulting in a smaller τ and λc 

than predicted by the traditional epidemic models. As this implies a faster 

spread of the pathogen than predicted by the traditional epidemic models, 

efforts to control an epidemic cannot ignore this difference.

The results of this section were based on the degree-block approximation, 

which treats the detailed time-dependent infection process in a mean-field 

Table 10.3

Epidemic Models on Networks

The table shows the rate equation for the three 
basic epidemic models (SI, SIS, SIR) on a net-
work with arbitrary ⟨k⟩ and ⟨k2⟩, together with 
the corresponding characteristic τ and the ep-
idemic threshold λc. For the SI model λc =0, as 
in the absence of recovery (μ=0) a pathogen 
spreads until it reaches all susceptible individu-
als. The listed τ and λc are derived in ADVANCED 
TOPICS 10.B.

SI

MODEL CONTINUUM EQUATION

SIR

SIS

k
( k2 k )

k
k2

1
k2

k
1

k
k2 (µ + ) k

dik

dt
= s k k µik

sk = 1 il rk

dik

dt
= [1 ik ]k k

dik

dt
= [1 ik ]k k µik

k
k2 µ k

τ

0

λc
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fashion. Note, however, that this approximation, while simplifies the presen-

tation, is not necessary. The underlying stochastic problem can be treated 

in its full mathematical complexity [11-14]. Such calculations show that due 

to the fact that the hubs can be re-infected in the SIS model, the epidemic 

threshold vanishes even for γ >3, in contrast with the finite threshold predict-

ed by the mean-field approach (Figure 10.12).  Hence hubs play an even more 

important role than our earlier calculations indicate.
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CONTACT NETWORKS

SECTION 10.4

Network epidemics predicts that the speed with which a pathogen 

spreads  depends on the degree distribution of the relevant contact net-

work. Indeed, we found that ⟨k2⟩ affects both the characteristic time τ and 

the epidemic threshold λc. None of these findings are consequential if the 

network on which a pathogen spreads is random - in that case the predic-

tions of network epidemics are indistinguishable from the predictions of 

the traditional epidemic models encountered in SECTION 10.2. In this section 

we inspect the structure of several contact networks encountered in epi-

demic phenomena, offering direct empirical evidence of the significance 

of the underlying degree heterogeneities.

SEXuALLY TrANSMITTED DISEASES 
The HIV virus, the pathogen responsible for AIDS, spreads mainly 

through sexual intercourse. Consequently, the relevant contact network 

captures who had sexual relationship with whom. The structure of this sex 

web was first revealed by a study surveying the sexual habits of the Swed-

ish population [15]. Through interviews and questionnaires, researchers 

collected information from 4,781 randomly chosen Swedes of ages 18 to 74. 

The participants were not asked to reveal the identity of their sexual part-

ners, but only to estimate the number of sexual partners they had during 

their lifetime. Hence the researchers could reconstruct the degree distri-

bution of the sexual network [16], finding that it is well approximated with 

a power law (Figure 10.13). This was the first empirical evidence of the rele-

vance of scale-free networks to the spread of pathogens. The finding was 

confirmed by data collected in Britain, US and Africa [17]. 

The scale-free nature of the sexual network indicates that most individ-

uals have relatively few sexual partners. A few individuals, however, had 

hundreds of sexual partners during their lifetime. Consequently the sexual 

network has a high ⟨k2⟩, which lowers both τ and λc. 

AIrBOrNE DISEASES  
For airborne diseases, like influenza, SARS or H1N1, the contact net-

work captures the set of individuals a person comes into physical proxim-

Figure 10.13

The Sex Web

Cumulative distribution of the total number 
of sexual partners k since sexual initiation for 
individuals interviewed in the 1996 study on 
sexual patterns in Sweden [15]. For women a 
power law fit to the tail indicates γ=3.1±0.3 
for k>20; for men γ =2.6±0.3 in the range 
20<k<400. Note that for men the average 
number of partners is higher than for wom-
en. This difference may be rooted social bias, 
prompting males to exaggerate and females 
to suppress the number of sexual partners 
they report. After [16].
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BOX 10.1
SEXuAL HuBS

Figure 10.14

Romantic Links in a High School

Romantic and sexual links between high 
school students in midwestern United 
States. Each circle represents a student 
and the links represent romantic rela-
tionships during six months preceding 
the interview. The numbers indicate the 
frequency of each subgraph: there are 63 
couples isolated from the rest of the net-
work. After [20].
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ity. The structure of this contact network is explored at two levels. First, 

the global travel network allows us to predict the worldwide spread of a 

pathogen, representing the input of several large-scale epidemic predic-

tion tools (SECTION 10.7). Second, digital badges probe the local properties 

of the contact network, i.e. the number of individuals a person directly in-

teracts with. 

Global Travel Network 

To predict the spread of pathogens, we must know how far infected in-

dividuals travel. Our understanding of individual travel patterns exploded 

with the use of mobile phones, that offer direct information about individ-

ual mobility [21-24]. In the context of epidemic phenomena, the most stud-

ied mobility data comes from air travel, the mode of transportation that 

determines the speed with which a pathogen moves around the globe. Con-

sequently the air transportation network, that connects airports with direct 

flights, plays a key role in modeling and predicting the spread of pathogens 

[25-27]. As Figure 10.15 shows, this network is scale-free with degree expo-

nent γ=1.8. This low value is possible because there are multiple flights be-

tween two airports, hence the network is not simple. A similar power law 

distribution is detected for the link weights, indicating that the number 

of passengers traveling between two airports is typically low, but between 

some airports the traffic can be extraordinary. As we discuss in SECTION 10.5, 

these heterogeneities play a key role in the spread of specific pathogens.

Anecdotal evidence suggests that sexual hubs are real. Take for exam-

ple Wilt Chamberlain, a Hall of Fame basketball player in the 1980s, 

who claimed having sex with a staggering number of 20,000 part-

ners. “Yes, that’s correct, twenty thousand different ladies,” he wrote 

in his autobiography [18]. “At my age, that equals to having sex with 

1.2 woman a day, every day, since I was fifteen years old.” Within the 

AIDS literature the story of Geetan Dugas, a flight attendant with ap-

proximately 250 homosexual partners, is well documented [19]. He is 

often called patient zero, whom, given his extensive travel, became a 

super-spreader of AIDS within the gay community. Hubs are observed 

even in high school romantic networks (Figure 10.14).
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Figure 10.15

Air Transportation Network

The degree distribution of the air transpor-
tation network is well approximated by a 
power-law with γ =1.8 ±0.2. The map was built 
using the International Air Transport Associ-
ation database that contains the world list of 
airport and the direct flights between them 
in 2002. The resulting network is a weighted 
graph containing the N=3,100 largest airports 
as nodes that are connected by L=17,182 direct 
flights as links, together accounting for 99% 
of the worldwide traffic. After [25].
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>

Online Resource 10.1

Detecting Networks via RFIDs

A video introducing  the RFID technology and 
their use in mapping social interactions.

>

Local Contact Patterns 

Many airborne diseases spread thanks to face-to-face interactions [28-

31]. These interaction patterns can be monitored using Radio-Frequency 

Identification Devices (RFID) [29,31], mobile-phone based sociometric badg-

es [32,33], and other wireless technologies [34].

RFID are digital badges that detect the proximity of other individuals 

that wear a badge (Online resource 10.1). They have been deployed in various 

environment, capturing for example the interactions between more than 

14, 000 visitors of a Science Gallery over a three month period or between 

100 participants of a three-day conference [29]. An RFID-mapped network 

shown in Figure 10.16 captures the interactions between high school  stu-

dents and their teachers during a two-day period. Several findings stand 

out:

• RFID tags detect interactions only with individuals that wear the 

same badge and face each other, limiting the number of detected 

contacts. Consequently the contact networks mapped out in these 

studies typically have an exponential degree distribution.

• The duration of each face-to-face interaction follows a power law 

distribution over several orders of magnitude. Therefore most 

contacts are brief, but there are a few lasting interactions, docu-

menting bursty temporal pattern [35] with key consequences for 

the spread of pathogens (SECTION 10.5).

• The link weights, which capture the cumulative time two individ-

uals have spent together, also follow a power law distribution. 

Therefore individuals spend most of their time with only a few 

others, again with important implications on spreading patterns 

(SECTION 10.5).

• For most airborne pathogens spatial proximity is sufficient for 

transmission. For example, standing next to an infected individ-

ual in the elevator may be sufficient to transmit SARS or H1N1, an 

interaction not recorded by a RFID tag. 

In summary, RFID tags provide remarkably detailed temporal and spa-

tial information about local contacts. To be useful these studies must be 

scaled up, using for example mobile phone based technologies [36].

LOCATION NETWOrKS 
For many airborne pathogens the relevant contact network is the so-

called location network, whose nodes are the locations that are connected 

by individuals that move regularly between them. Measurements com-

bined with agent-based simulations indicate that the location network is 

fat tailed [37]: malls, airports, schools or supermarkets act as hubs, being 

linked to an exceptionally large number of smaller locations, like homes 

and offices. Therefore, once the pathogen infects a hub, the disease can 

rapidly reach many other locations.

Figure 10.16

Face-to-face Interactions

A face-to-face contact network mapped out 
using RFA tags, capturing interactions be-
tween 232 students and 10 teachers across 10 
classes in a school [31]. The structure of the 
maps obtained by RFID tags depend on the 
context in which they are collected. For exam-
ple the school network shown here reveals the 
presence of clear communities. In contrast, 
a study capturing the interactions between 
individuals that visited a museum reveal an 
almost linear network [29]. Finally, a network 
of attendees of a small conference is rather 
dense, as most participants interact with most 
others [29]. After [31].
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>

Online Resource 10.2

Hospital Outbreaks

Bacteria resistant to current antibiotics pose 
an important threat to global health. Such 
bacteria are particularly prevalent in hospi-
tals and health care facilities. The Interactive 
Feature by Scientific American describes the 
tracking of bacterical outbreaks in hospitals. 

>

DIGITAL VIruSES
The study of digital viruses, that infect computers and smart phones, 

represents an increasingly important application  of epidemic phenome-

na. As we discuss next, the relevent contact networks are determined by 

the spreading mode of the respective digital pathogen.

Computer Viruses 
Computer viruses display just as much diversity as biological viruses: 

depending on the nature of the virus and its spreading mechanism, the 

relevant contact network can differ dramatically. Many computer viruses 

spread as email attachments. Once a user opens the attachment, the vi-

rus infects the user’s computer and mails a copy of itself to the email ad-

dresses found in the computer. Hence the pertinent contact network is the 

email network, which, as we discussed in Table 4.1, is scale-free [58]. Other 

computer viruses exploit various communication protocols, spreading on 

networks that reflect the Internet's pattern of interconnectedness, which 

is again scale-free (Table 4.1). Finally, some malware scan IP addresses, 

spreading on fully connected networks. 

Mobile Phone Viruses 

Mobile phone viruses spread via MMS and Bluetooth (Figure 10.2). An 

MMS virus sends a copy of itself to all phone numbers found in the phone's 

contact list. Therefore MMS viruses exploit the social network behind 

mobile communications. As shown in Table 4.1, the mobile call network is 

scale-free with a high degree exponent. Mobile viruses can also spread via 

Bluetooth, passing a copy of themselves to all susceptible phones with a BT 

connection in their physical proximity. As discussed above, this co-loca-

tion network is also highly heterogenous [4].

In summary, in the past decade technological advances allowed us  to 

map out the structure of several networks that support the spread of bio-

logical or digital viruses, from sexual to proximity-based contact networks 

(see also ONLINE rESOurCE 10.2). Many of these, like the email network, the 

internet, or sexual networks, are scale-free. For others, like co-location net-

works, the degree distribution may not be fitted with a simple power law, 

yet show significant degree heterogeneity with high ⟨k2⟩. This means that 

the analytical results obtained in the previous section are of direct rele-

vance to pathogens spreading on most networks. Consequently the under-

lying heterogenous contact networks allow even weakly virulent viruses to 

easily spread in the population.



23SPREADING PHENOMENA

BEYOND THE DEGREE 
DISTRIBUTION

SECTION 10.5

So far we have kept our models simple: We assumed that pathogens 

spread on an unweighted network uniquely defined by its degree distri-

bution. Yet, real networks have a number of characteristics that are not 

captured by pk alone, like degree correlations or community structure. 

Furthermore, the links are typically weighted and the interactions have 

a finite temporal duration. In this section we explore the impact of these 

properties on the spread of a pathogen.

TEMPOrAL NETWOrKS
Most interactions that we perceive as social links are brief and infre-

quent. As a pathogen can be only transmitted when there is an actual con-

tact, an accurate modeling framework must also consider the timing and 

the duration of each interaction. Ignoring the timing of the interactions 

can lead to misleading conclusions [39-41]. For example, the static network 

of Figure 10.17b was obtained by aggregating the individual interactions 

shown in Figure 10.17a. On the aggregated network the infection has the 

same chance of spreading from D to A as from A to D. Yet, by inspecting 

the timing of each interaction, we realize that while an infection starting 

from A can infect D, an infection that starts at D cannot reach A. Therefore, 

to accurately predict an epidemic process we must consider the fact that 

pathogens spread on temporal networks, a topic of increasing interest in 

network science [40-43]. By ignoring the temporality of these contact pat-

terns, we typically overestimate the speed and the extent of an outbreak 

[42,43].

BurSTY CONTACT PATTErNS
The theoretical approaches discussed in the SECTIONS 10.2 and 10.3 as-

sume that the timing of the interactions between two connected nodes 

is random. This means that the interevent times between consecutive 

contacts follow an exponential distribution, resulting in a random but 

uniform sequence of events (Figure 10.18a-c). The measurements indicate 

otherwise: The interevent times in most social systems follow a power law 

distribution [35,44] (Fig. 10.18d-f). This means that the sequence of contacts 

Figure 10.17

Temporal Networks

Most interactions in a network are not continu-
ous, but have a finite duration. We must there-
fore view the underlying networks as temporal 
networks, an increasingly active research topic 
in network science.

(a) Temporal Network 

The timeline of the interactions between 
four individuals. Each vertical line marks 
the moment when two individuals come 
into contact with each other. If A is the first 
to be infected, the pathogen can spread 
from A to B and then to C, eventually reach-
ing D. If, however, D is the first to be infect-
ed, the disease can reach C and B, but not 
A. This is because there is a temporal path 
from A to D. 

(b) Aggregated Network 

The network obtained by merging the tem-
poral interactions shown in (a). If we only 
have access to this aggregated representa-
tion, the pathogen can reach all individuals, 
independent of its starting point. After [40].
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Figure 10.18

Bursty Interactions

(a) If the pattern of activity of an individual 
is random, the interevent times follow a 
Poisson process, which assumes that in any 
moment an event takes place with the same 
probability q. The horizontal axis denotes 
time and each vertical line corresponds to 
an event whose timing is chosen at random. 
The observed inter-event times are compa-
rable to each other and very long delays are 
rare. 

(b) The absence of long delays is visible if we 
show the inter-event times τi for 1,000 con-
secutive random events. The height of each 
vertical line corresponds to the gaps seen in 
(a). 

(c) The probability of finding exactly n events 
within a fixed time interval follows the 
Poisson distribution P(n,q)=e–qt(qt)n/n!, pre-
dicting that the inter-event time distribu-
tion follows P(τi)~e–qτi, shown on a log-linear 
plot. 

(d) The succession of events for a temporal 
pattern whose interevent times follow a 
power-law distribution. While most events 
follow each other closely, forming bursts of 
activity, there are a few exceptionally long 
interevent times, corresponding to long 
gaps in the contact pattern. The time se-
quence is not as uniform as in (a), but has a 
bursty character. 

(e) The waiting time τi of 1,000 consecutive 
events, where the mean event time is cho-
sen to coincide with the mean event time of 
the Poisson process shown in (b). The large 
spikes correspond to exceptionally long de-
lays. 

(f) The delay time distribution P(τi)~τi
–2 for the 

bursty process shown in (d) and (e). After 
[35].

(a)

(b)

(d)

(e)

(c)

(f)

between two individuals is characterized by periods of frequent interac-

tions, when multiple contacts follow each other within a relatively short 

time frame. Yet, the power law also implies that occasionally there are a 

very long time gaps between two contacts. Therefore the contact patterns 

have an uneven, “bursty” character in time (Figure 10.18d,e).

Bursty interactions are observed in a number of contact processes of 

relevance for epidemic phenomena, from email communications to call 

patterns and sexual contacts. Once present, burstiness alters the dynamics 

of the spreading process [43]. To be specific, power law interevent times 

increase the characteristic time τ, consequently the number of infected 

individuals decays slower than predicted by a random contact pattern. For 

example, if the time between consecutive emails would follow a Poisson 

distribution, an email virus would decay following i(t)~exp(–t/τ) with a de-

cay time of τ≈1 day. In the real data, however, the decay time is τ≈21 days, 

a much slower process, correctly predicted by the theory if we use power 

law interevent times [43].

DEGrEE COrrELATIONS
As discussed in CHAPTEr 7, many social networks are assortative, imply-

ing that high degree nodes tend to connect to other high degree nodes. Do 

these degree correlations affect the spread of a pathogen? The calculations 

indicate that degree correlations leave key aspects of network epidemics in 

place, but they alter the speed with which a pathogen spreads in a network:

• Degree correlations alter the epidemic threshold λc: assortative 

correlations decrease λc and dissasortative correlations increase 

it [45,46].
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• Despite the changes in λc, for the SIS model the epidemic thresh-

old vanishes for a scale-free network with diverging second mo-

ment, whether the network is assortative, neutral or disassorta-

tive [47]. Hence the fundamental results of SECTION 10.3 are not 

affected by degree correlations.

• Given that hubs are the first to be infected in a network, assorta-

tivity accelerates the spread of a pathogen. In contrast disassor-

tativity slows the spreading process. 

• Finally, in the SIR model assortative correlations were found to 

lower the prevalence but increase the average lifetime of an epi-

demic outbreak [48].

LINK WEIGHTS AND COMMuNITIES
Throughout this chapter we assumed that all tie strengths are equal, fo-

cusing our attention on pathogens spreading on an unweighted network. 

In reality tie strengths vary considerably, a heterogeneity that plays an im-

portant role in spreading phenomena. Indeed, the more time an individual 

spends with an infected individual, the more likely that she too becomes 

infected.

In the same vein, previously we ignored the community structure of the 

network on which the pathogen spreads. Yet, the existence communities 

(CHAPTEr 9) leads to repeated interactions between the nodes within the 

same community, altering the spreading dynamics. 

The mobile phone network allows us to explore the role of tie strengths 

and communities on spreading phenomena [49]. Let us assume that at t=0 

we provide a randomly selected individual with some key information. At 

each time step this “infected” individual i passes the information to her 

contact j with probability pij~βwij, where β is the spreading probability and 

wij is the strength of the ties captured by the number of minutes i and j have 

spent with each other on the phone. Indeed, the more time two individuals 

talk, the higher is the chance that they will pass on the information. To 

understand the role of the link weights in the spreading process, we also 

consider the situation when the spreading takes place on a control network, 

that has the same wiring diagram but all tie strengths are set equal to w= 

⟨wij⟩. 

As Figure 10.19a illustrates, information travels significantly faster on 

the control network. The reduced speed observed in the real system indi-

cates that the information is trapped within communities. Indeed, as we 

discussed in CHAPTEr 9, strong ties tend to be within communities while 

weak ties are between them [50]. Therefore, once the information reach-

es a member of a community, it can rapidly reach all other members of 

the same community, given the strong ties between them. Yet, as the ties 

between the communities are weak, the information has difficulty escap-

ing the community. Consequently the rapid invasion of the community is 

followed by long intervals during which the infection is trapped within a 
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Figure 10.19

Information Diffusion in Mobile Phone Networks

The spread of information on a weighted mo-
bile call graph, where the probability that a 
node passes information to one of its neigh-
bors is proportional to the strength of the tie 
between them. The tie strength is the number 
of minutes two individuals talk on the phone. 

(a) The fraction of infected nodes in function 
of time. The blue circles capture the spread 
on the network with the real tie strengths; 
the green symbols represent the control 
case, when all tie strengths are equal.  

(b) Spreading in a small network neighbor-
hood, following the real link weights. The 
information is released from the red node, 
the arrow weight indicating the tie strength. 
The simulation was repeated 1,000 times; 
the size of the arrowheads is proportional 
to the number of times the information was 
passed along the corresponding direction, 
and the color indicates the total number 
of transmissions along that link. The back-
ground contours highlight the difference in 
the direction the information follows in the 
real and the control simulations. 

(c) Same in (b), but we assume that each link has 
the same weight w=⟨wij⟩(control). After [49].
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community. When all link weights are equal (control), the bridges between 

communities are strengthened, and the trapping vanishes.

The difference between the real and the control spreading process is 

illustrated by Figure 10.20b,c, that shows the spreading pattern in a small 

neighborhood of the mobile call network. In the control simulation the 

information tends to follow the shortest path. When the link weights are 

taken into account, information flows along a longer backbone with strong 

ties. For example, the information rarely reaches the lower half of the net-

work in Figure 10.20b, a region always reached in the control simulation 

shown in (c). 

COMPLEX CONTAGION
Communities have multiple consequences for spreading, from in-

ducing global cascades [51,52] to altering the activity of individuals [53]. 

The diffusion of memes, representing ideas or behavior that spread 

from individual to individual, further highlights the important role of com-

munities [54]. Meme diffusion has attracted considerable attention from 

marketing [5, 55] to network science [56,57], communications [58], and so-

cial media [59-61]. Pathogens and memes can follow different spreading 

patterns, prompting us to systematically distinguish simple from complex 

contagion [54,62,63]. 

Simple contagion is the process we explored so far: It is sufficient to 

come into contact with an infected individual to be infected. The spread 

of memes, products and behavior is often described by complex contagion, 

capturing the fact that most individuals do not adopt a new meme, product 

or behavioral pattern at the first contact. Rather, adoption requires rein-

forcement [64], i.e. repeated contact with several individuals who have al-

ready adopted. For example, the higher is the fraction of a person’s friends 

that have a mobile phone, the more likely that she also buys one. 

In simple contagion communities trap an information or a pathogen, 

slowing the spreading (Figure 10.19a). The effect is reversed in complex 

contagion: Because communities have redundant ties, they offer social 

reinforcement, exposing an individual to multiple examples of adoption. 

Hence communities can incubate a meme, a product or a behavioral pat-

tern, enhancing its adoption. 

The difference between simple and complex contagion is well captured 

by Twitter data. Tweets, or short messages, are often labeled with hashtags, 

which are keywords acting as memes. Twitter users can follow other us-

ers, receiving their messages; they can forward tweets to their own fol-

lowers (retweet), or mention others in tweets. The measurements indicate 

that most hashtags are trapped in specific communities, a signature of 

complex contagion [54]. A high concentration of a meme within a certain 

community is evidence of reinforcement. In contrast, viral memes spread 

across communities, following a pattern similar to that encountered in bi-
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ological pathogens. In general the more communities a meme reaches, the 

more viral it is (Figure 10.20).

In summary, several network characteristics can affect the spread of 

a pathogen in a network, from degree correlations to link weights and the 

bursty nature of the contact pattern.  As we discussed in this section, some 

network characteristics slow a pathogen, others aid their spread. These ef-

fects must therefore be accounted for if we wish to predict the spread of a 

real pathogen. While these patterns are of obvious relevance for infectious 

diseases, they also influence the spread of such non-infectious diseases as 

obesity (BOX 10.2).

Figure 10.20

Simple vs. Complex Contagion

The community structure of the Twitter fol-
lower network. Each circle corresponds to a 
community and its size is proportional to the 
number of tweets produced by the respective 
community. The color of a community rep-
resents the time when the studied hashtag 
(meme) is first used in the community. Light-
er colors denote the first communities to use a 
hashtag, darker colors denote the last commu-
nity to adapt it. 

(a) Simple Contagion 

The evolution of the viral meme captured by 
the #ThoughtsDuringSchool hashtag from 
its early stage (30 tweets, left) to the late 
stage (200 tweets, right). The meme jumps 
easily between communities, infecting 
many of them, following a contagion pat-
tern encountered in the case of biological 
pathogens. 

(b) Complex Contagion 

The evolution of a non-viral meme caputed 
by the #ProperBand hashtag from the ear-
ly stage (left) to the final stage (65 tweets, 
right). The tweet is trapped in a few of com-
munities, having difficulty to escape them. 
This is a signature of reinforcement, an 
indication that the meme follows complex 
contagion. After [54].

(a)

(b)
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BOX 10.2
DO Our FrIENDS MAKE uS FAT?

Infectious diseases, like influenza, SARS, or AIDS, spread through 

the transmission of a pathogen. But could the social network aid the 

spread of noninfectious diseases as well? Recent measurements indi-

cate that it does, offering evidence that social networks can impact 

the spread of obesity, happiness, and behavioral patterns, like giving 

up smoking [65,66].

Obesity is diagnosed through an individual’s body-mass index (BMI), 

which is determined by numerous factors, from genetics to diet and 

exercise. The measurements show that our friends also play an im-

portant role. The analysis of the social network of 5,209 men and 

women has found that if one of our friends is obese, the risk that we 

too gain weight in the next two to four years increases by 57% [65]. The 

risk triples if our best friend is overweight: In this case, our chances 

of weight gain jumps by 171% (Figure 10.21). For all practical purposes, 

obesity appears to be just as contagious as influenza or AIDS, despite 

the fact that there is no "obesity pathogen" that transmits it.

Figure 10.21

The Web of Obesity

The largest connected component of the 
social network capturing the friendship 
ties between 2,200 individuals enrolled 
in the Framingham Heart Study. Each 
node represents an individual; nodes 
with blue borders are men, those with 
red borders are women. The size of each 
node is proportional to the person's BMI, 
yellow nodes denoting obese individuals 
(BMI ≥30). Purple links are friendship or 
marital ties and orange links are family 
ties (e.g. siblings). Clusters of obese and 
non-obese individuals are visible in the 
network. The analysis indicates that 
these clusters cannot be attributed to 
homophily, i.e. the fact that individuals 
of similar body size may befriend with 
each other. They document instead a 
complex contagion process, capturing 
the "spread" of obesity along the links of 
the social network. After [65].

Online Resource 10.3

Spreading in Social Networks 

“If your friends are obese, your risk of 
obesity is 45 percent higher. … If your 
friend’s friends are obese, your risk of 
obesity is 25 percent higher. … If your 
friend’s friend’s friend, someone you 
probably don’t even know, is obese, 
your risk of obesity is 10 percent higher. 
It’s only when you get to your friend’s 
friend’s friend’s friends that there’s no 
longer a relationship between that per-
son’s body size and your own body size.”

Watch Nicholas Christakis explaining 
the spread of health patterns in social 
networks.

>

>
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IMMUNIZATION

SECTION 10.6

Immunization strategies specify how vaccines, treatments or drugs are 

distributed in the population. Ideally, should a treatment or vaccine exist, 

it should be given  to every infected individual or those at risk of contract-

ing the pathogen. Yet,  often cost considerations, the difficulty of reaching 

all individuals at risk, and real or perceived side effects of the treatment 

prohibit full coverage. Given these constraints, immunization strategies 

aim to minimize the threat of a pandemic by most effectively distributing 

the available vaccines or treatments.

Immunization strategies are guided by an important prediction of the 

traditional epidemic models: If a pathogen’s spreading rate λ is reduced 

under its critical threshold λc, the virus naturally dies out (Figure 10.11).  Yet, 

the epidemic threshold vanishes in scale-free networks, questioning the 

effectiveness of this strategy. Indeed, if the epidemic threshold vanishes, 

immunization strategies can not move λ under λc. In this section we discuss 

how to use our understanding of the network topology to design effective 

network-based immunization strategies that counter the impact of the 

vanishing epidemic threshold. 

rANDOM IMMuNIZATION
The main purpose of immunization is to protect the immunized in-

dividual from an infection. Equally important, however, is its secondary 

role: Immunization reduces the speed with which the pathogen spreads in 

a population. To illustrate this effect consider the situation when a ran-

domly selected g fraction of individuals are immunized in a population [8]. 

Let us assue that the pathogen follows the SIS model (10.3). The immu-

nized nodes are invisible to the pathogen, and only the remaining (1–g) 

fraction of the nodes can contact and spread the disease. Consequent-

ly, the effective degree of each susceptible node changes from ⟨k⟩ to ⟨k⟩

(1–g), which decreases the spreading rate of the pathogen from λ= β/μ to 
λ'=λ(1–g). Next we explore the consequences of this reduction in both ran-

dom and scale-free contact networks.
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• Random Networks 

If the pathogen spreads on a random network, for a sufficiently 

high g the spreading rate λ' could fall below the epidemic thresh-

old (10.25). The immunization rate gc necessary to achieve this is 

calculated by setting 

             ,    

 

obtaining

             .   (10.27)

Consequently, if vaccination increases the fraction of immu-

nized individuals above gc, it pushes the spreading rate under the 

epidemic threshold λc. In this case τ becomes negative and the 

pathogen dies out naturally. This explains why health official 

encourage a high fraction of the population take the influenza 

vaccine: The vaccine protects not only the individual, but also the 

rest of the population by decreasing the pathogen’s spreading 

rate. Similarly, a condom not only protects the individual who 

uses it from contacting the HIV virus, but also decrease the rate 

at which AIDS spreads in the sexual network. Hence for random 

networks a sufficiently high immunization rate can eliminate 

the pathogen from the population. 

• Heterogenous Networks 

If the pathogen spreads on a network with high ⟨k2⟩, and random 

immunization changes λ to λ(1–g), we can use (10.26) to determine 

the critical immunization gc

       (10.28)

obtaining

           .   (10.29)

For a random network (10.29) reduces to (10.27). For a scale-free 

network with γ<3 we have ⟨k2⟩→∞, hence (10.29) predicts gc →1. In 

other words if the contact network has a high ⟨k2⟩, we need to im-
munize virtually all nodes to stop the epidemic. This prediction is 

consistent with the finding that for many diseases we must im-

munize 80%-100% of the population to eradicate the pathogen. 

For example, measles requires 95% of the population to be immu-

nized [8]; for digital viruses the strategies relying on random im-

munization call for close to 100% of the computers to install the 

appropriate antivirus software [67].

To illustrate the role degree heterogeneity plays in immuni-

zation let us consider a digital virus spreading on the email net-

work. If we make the email network random and undirected, we 

(1− gc )β
µ

= 1
〈k〉+1

gc = 1−
µ
β

1
〈k〉+1

β
µ
(1− gc ) =

〈k〉
〈k2 〉

gc = 1−
µ
β

〈k〉
〈k2 〉

BOX 10.3
HOW TO HALT AN EPIDEMIC? 

Health safety officials rely on 

several interventions to control 

or delay an epidemic outbreak. 

Some of the most common in-

terventions include:

Transmission-Reducing Interven-
tions

Face masks, gloves, and hand 

washing reduces the transmis-

sion rate of airborne or contact 

based pathogens. Similarly, 

condoms reduce the transmis-

sion rate of sexually transmit-

ted pathogens.

Contact-Reducing Interventions 

For diseases with severe health 

consequences officials can quar-

antine patients, close schools 

and limit access to frequently 

visited public spaces, like movie 

theaters and malls. These make 

the network sparser by reducing 

the number of contacts between 

individuals, hence decreasing the 

transmission rate.

Vaccinations 

Vaccinations permanently 

remove the vaccinated nodes 

from the network, as they 

cannot be infected nor can they 

spread the disease. Vaccina-

tions also reduce the spreading 

rate, enhancing the likelihood 

that the pathogen dies out.
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have ⟨k⟩=3.26. Using λ=1 in (10.27) we obtain gc=0.76. In other words, 

to eradicate the virus we need to convince 76% of computer users 

to update their antivirus software. Yet, the email network is scale-

free with ⟨k2⟩=1,271 (undirected version), hence (10.27) does not ap-

ply. In this case (10.29) predicts gc=0.997 for λ=1, meaning that more 

that 99.7% of the users must install the software to halt the email 

virus. It is virtually impossible to achieve this level of compliance 

- many users simply ignore all warnings. This is the reason why 

email viruses linger for years and disappear only after the operat-

ing systems that supports them is phased out [67].

VACCINATION STrATEGIES IN SCALE-FrEE NETWOrKS
The ineffectiveness of random immunization is rooted in the vanish-

ing epidemic threshold. Consequently, to successfully eradicate a patho-

gen in heterogenous networks, we must find ways to increase the epidemic 

threshold. This requires us to reduce the variance, ⟨k2⟩, of the underlying 

contact network.

The hubs are responsible for the large variance of heterogenous net-

works. Therefore if we immunize the hubs, i.e. all nodes whose degree ex-

ceeds some preselected k'max, we decrease the variance and increase the ep-

idemic threshold according to (10.26) [68,69]. Indeed, if nodes with degrees 

k>k'max are absent, the epidemic threshold changes to (ADVANCED TOPICS 
10.C)

         .   (10.30)

Therefore, for γ<3, the more hubs we cure (i.e. the smaller is k'max), the larg-

er will be the epidemic threshold (Figure 10.22). By immunizing a sufficient 

fraction of the hubs we can drop λc below λ= β/μ that characterizes the 

pathogen. This procedure is equivalent with altering the underlying net-

work: By immunizing the hubs, we are fragmenting the contact network, 

making more difficult for the pathogen to reach the nodes in other compo-

nents (Figure 10.23).

′λc ≈ γ − 2
3− γ

kmin
2−γ

(kmax
' )γ −3

Figure 10.22

Immunizing the Hubs

In heterogenous networks a virus can be erad-
icated by increasing the epidemic threshold 
through hub immunization. The figure shows 
the expected epidemic threshold if we immu-
nize all nodes with degree larger than k'max. The 
more hubs are immunized (i.e. the smaller is 
k'max), the larger is λc, increasing the chance 
that the disease dies out. Immunizing the 
hubs changes the network on which the dis-
ease spreads, making the hubs invisible to the 
pathogen (Figure 10.23).

kmax

c

0               50             100

0.8

0.6

0.4
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Figure 10.23

Robustness and Immunization

Scale-free networks show a remarkable resil-
ience to random node and link failures (CHAP-
TEr 8). At the same time, they are vulnerable 
to attacks: If we remove their most connected 
nodes, scale-free networks break apart. This 
phenomena has many similarities to the im-
munization problem: Random immunization 
is unable to eradicate a disease, but selective 
immunization, that targets the hubs, can re-
store a finite critical threshold, helping us 
eradicate the disease. The analogy is not acci-
dental: The robustness and the immunization 
problem can be both linked to the diverging 
⟨k2⟩. Indeed, the vanishing epidemic threshold 
is equivalent with the finding that the perco-
lation threshold under random node removal 
problem converges to one (ADVANCED TOPICS 
10.D). Similarly, the re-emergence of the epi-
demic threshold under hub immunization is 
equivalent with the small percolation thresh-
old characterizing a scale-free network under 
attack. Therefore, the attack and targeted im-
munization problems represent two sides of 
the same coin. 

To illustrate the equivalence between attacks 
and targeted immunization, consider the net-
work shown in (a). An attack that removes 
its five largest hubs breaks the network into 
many isolated islands, as shown in (b). Tar-
geted immunization plays the same role: By 
making the hubs immune to the disease,  the 
network on which the pathogen spreads be-
comes the fragmented network in (b). As the 
immunized network is broken into small is-
lands, the pathogen will be stuck in one of the 
small clusters, unable to infect the nodes in 
the other clusters. 

(a) (b)
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Hub immunization represents a perspective change in immunization 

protocols: instead of trying to decrease the spreading rate using random 

immunization, we must alter the topology of the contact network, which 

in turn increases λc above the biologically determined λ= β/μ.

The problem with a hub-based immunization strategy is that for most 

epidemic processes we lack a detailed map of the contact network. Indeed, 

we do not know the number of sexual partners each individual has in a 

population, nor can we accurately identify the super-spreaders during an 

influenza outbreak. In other words it is difficult to identify the hubs. Yet, 

we can still exploit the network topology to design more efficient immu-

nization strategies. To do so, we rely on the friendship paradox, the fact 

that on average the neighbors of a node have higher degree than the node 

itself (BOX 7.1). Therefore, by immunizing the acquaintances of a randomly 

selected individual, we target the hubs without having to know precisely 

which individuals are hubs. The procedure consists of the following steps 

[70]: 

1) Choose randomly a p fraction of nodes, like we do during random im-

munization. Call these nodes Group 0.

2) Select randomly a link for each node in Group 0. We call Group 1 the 

set of nodes to which these links connect to. For example, we ask each 

individual from Group 0 to nominate one of its acquaintance with 

whom he/she engaged in an activity that could have resulted in the 

transmission of the pathogen. In the case of HIV, ask them to name a 

sexual partner.

 3) Immunize the Group 1 individuals. 

This strategy requires no information about the global structure of the 

network. Yet, according to (7.3) the probability that a node with k links be-

longs to Group 1 is proportional to kpk. Consequently the Group 1 individ-

uals have higher average degree than the Group 0 individuals. The impli-

cations of this bias are illustrated in Figure 10.24, which shows the critical 

threshold required to eradicate a pathogen for a scale-free network with 

degree exponent γ. The figure offers several key insights:

1) Random Immunization 

The top curve shows gc for random immunization. For heterogeneous 

networks  (small γ) we find that gc≈1, indicating that we must immu-

nize all nodes to eradicate the disease. As γ approaches 3 the network 

develops a finite epidemic threshold and gc drops. Hence for large γ, 

immunizing a sufficiently high fraction of the population can eradi-

cate the pathogen.

2) Selective Immunization 

For the biased strategy gc is systematically under 30%. Therefore by 

immunizing a randomly chosen neighbor of 30% of the nodes, we 

could eradicate the disease. The efficiency of this strategy depends 

2 2.5 3 3.50

0.2

0.4

0.6

0.8

1

fc

γ

RANDOM VACCINATION

SELECTIVE IMMUNIZATION

gc

Figure 10.24

Selective Immunization of Scale-free Networks. 

The critical immunization threshold gc in 
function of the degree exponent γ of the con-
tact network on which the pathogen spreads 
following the SIS model. The curves corre-
spond to two immunization strategies: ran-
dom immunization (green) and selective im-
munization (purple), that immunizes a first 
neighbor of a randomly selected node. The 
continuous lines represent the analytical re-
sults while the symbols represent simulation 
data for N=106 and m=1. As the population 
has a finite size, we have gc<1 for random im-
munization even for γ<3. Redrawn after [70].
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only weakly on γ. Selective immunization is more efficient than ran-

dom immunization even for high γ, when hubs are less prominent.

In summary, if we have the resources to immunize everyone at risk 

of contacting a pathogen, we should do that - this was the strategy of the 

eradication campaigns (BOX 10.4). When extensive immunization is not 

feasible, we need to employ various immunization strategies to maximize  

the impact of our resources. The effectiveness of each strategy depends 

on the structure of the contact network on which the pathogen spreads. In 

general, random immunization is inefficient for pathogens that spread on 

heterogenous networks: For random immunization to succeed we need to 

reach and immunize close to 100% of the susceptable nodes, which is im-

possible in most circumstances. In contrast, strategies that immunize the 

hubs have high effectiveness. Selective immunization, that immunizes the 

neighbors of randomly selected nodes, can significantly enhance effec-

tiveness, without requiring an accurate map of the contact network. This 

strategy is efficient for both random and heterogenous networks.

BOX 10.4
CAN PATHOGENS BE ErADICATED?

At the end of the 1960s smallpox was still widespread in Africa and 

Asia. Before 1967 the smallpox eradication strategy relied on mass 

vaccination, a strategy that was ineffective in densely populated ar-

eas. Health officials eventually developed network-based protocols 

to stop the transmission: They set out to find and treat anyone who 

had been in contact with an infected individual. This strategy allowed 

smallpox to become the first disease to be officially eradicated (Figure 
10.25).

Eradication is the complete elimination of a pathogen from the popu-

lation. To select an infectious disease for eradication, health officials 

must make sure that the targeted pathogen does not have a non-hu-

man reservoir, so human vaccination can truly eradicate it. There is 

also need for an efficient and practical vaccine or drug to interrupt 

its transmission. So far eradication campaigns had mixed success: 

smallpox and rinderpest were successfully eradicated, but programs 

targeting hookworm, malaria, and yellow fever have failed. 

Figure 10.25

Eradicating Smallpox

Rahima Banu, the last smallpox infect-
ed patient in Bangladesh in 1976. After 
[71].
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EPIDEMIC PREDICTION

SECTION 10.7

During much of its history humanity has been helpless when faced 

with a pandemic. Lacking drugs and vaccines, infectious diseases repeat-

edly swept through continents, decimating the world's population. The 

first vaccine was tested only in 1796 and the systematic development of 

vaccines and cures against new pathogens became possible only in the 

1990s. Despite the spectacular medical advances, we have effective vac-

cines only against a small number of pathogens. Consequently transmis-

sion-reducing and quarantine-based measures remain the main tools of 

health professionals in combatting new pathogens. For the combination 

of vaccines, treatments and quarantine-based measures to be effective, we 

need to predict when and where the pathogen emerges next, allowing local 

health officials to best deploy their resources.

The real-time prediction of an epidemic outbreak is a very recent devel-

opment. The ground was set by the development of the epidemic modeling 

framework in the 1980s [72] and by the 2003 SARS epidemic, which result-

ed in worldwide reporting guidelines about ongoing outbreaks. The subse-

quent systematic availability of data pertaining to a pandemic [1] offered 

real-time input to modeling efforts. The 2009 H1N1 outbreak was the first 

beneficiary of these developments, becoming the first pandemic whose 

spread was predicted in real time.

The emergence of any new pathogen raises several key questions: 

• Where did the pathogen originate? 

• Where do we expect new cases?

• When will the epidemic arrive at various densely populated areas?

• How many infections are to be expected?

• What can we do to slow its spread?

• How can we eradicate it?

Today these questions are addressed using powerful epidemic simula-

>

Online Resource 10.4

North American Flight Patterns

Real time flights across North America, rely-
ing on data released by the Federal Aviation 
Administration. This global transportation 
network is responsible for the spread of patho-
gens across continents. Consequently flight 
schedules represent the input for epidemic 
forecasts. While this video, produced by Aaron 
Koblin, could easily be seen as a purely scien-
tific illustration, it is also viewed as digital art 
by the art community. Indeed, the video is now 
in Media Art collection of the Museum of Mod-
ern Art (MoMA) in New York.

>
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tors that consider as input demographic, mobility-related (Online resource 
10.4), and epidemiological data [73-75]. The algorithms behind these tools 

range from stochastic meta-population models [76-78] to agent-based 

computer simulations that capture the behavior and the interactions of 

millions of individuals [79]. In this section we summarize the capabilities 

of these tools, highlighting the role of network science in these develop-

ments.

rEAL-TIME FOrECAST
Epidemic forecast aims to foresee the real time spread of a pathogen, 

predicting the number of infected individuals expected each week in each 

major city [79,80]. The first successful real time pandemic forecast based 

on network science relied on the Global Epidemic and Mobility (GLEAM) 

computational model [80] (Figure 10.26, Online resource 10.5), a stochastic 

framework that uses as input high-resolution data on worldwide human 

demography and mobility.  GLEAM employs a  network-based computa-

tional model:

• GLEAM maps each geographic location into the nodes of a network.

• Transport between these nodes, representing the links,  are provided 

by global transportation data, like airline schedules (Online resource 
10.4).

• GLEAM estimates the epidemic parameters, like the transmission 

rate or reproduction number, using a network-based approach: It re-

lies on chronological data that captures the worldwide spread of the 

Figure 10.26

Modeling the 2009 H1N1 Pandemic.  

(a) The spread of the H1N1 virus during the 
early stage of the 2009 outbreak. The ar-
rows represent the arrival of the first infec-
tions in previously unaffected countries. 
The color code indicates the time of the vi-
rus’ arrival.

(b)  The flowchart of the Global Epidemic and 
Mobility (GLEAM) computational mod-
el, used to predict the real-time spread 
of pathogens like H1N1 or Ebola. The left 
column (Input) represents the input da-
tabases, capturing demographic, mobili-
ty and epidemiological information. The 
center column (model) describes the net-
work-based dynamic processes that are 
modeled at each time step. The right col-
umn (Output) offers examples of quantities 
the model can predict. After [82].

(a)

(b)

INPUT THE MODEL OUTPUT

DEMOGRAPHIC 
DATA

MOBILITY 
DATA

INDIVIDUAL
LEVEL

SIMULATIONS

# OF CASES 
(ILI, HOSPITAL-
IZED,ICU, ETC.)

# DRUGS &
INTERVENTION

EFFICACY

SEEDING.
ARRIVAL TIME,

GEOTEMPORAL 
SPREADING

EPIDEMIC 
MODEL

intra-population 
transmission 
dynamics

compartmental natural 
history of the disease

age structure and 
other determinants

response strategies 
(containment, mitiga-
tion, pharmaceutical 
interventions

air travel: explicit 
stochastic simulations 
based on IATA/OAG data

ground movements:
effective short- range 
multimodal mobility

time-scale separation 
& effective force of 
infection

inter-population 
mobility
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Online Resource 10.5

GLEAM

A video describing the GLEAM software pack-
age for epidemic prediction.

>
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pandemic, rather than medical reports [81]. 

GLEAM then implements the network-based epidemic framework de-

scribed in SECTION 10.3,  generating a large number of potential outcomes 

of the pathogen’s global progression for the coming months. For H1N1 the 

predictions were compared with data collected from surveillance and viro-

logic sources in 48 countries during the full course of the pandemic [80], 

resulting in several key findings:

• Peak Time 

Peak time corresponds to the week when most individuals are in-

fected in a particular country. Predicting the peak time helps health 

officials decide the timing and the quantity of the vaccines or treat-

ments they distribute. The peak time depends on the arrival time of 

the first infection and the demographic and the mobility character-

istics of each country. The observed peak time fell within the predic-

tion interval for 87% of the countries (Figure 10.27). In the remaining 

cases the difference between the real and the predicted peak was at 

most two weeks.

• Early Peak 

GLEAM predicted that the  H1N1 epidemic will peak out in November, 

rather than in January or February, the typical peak time of influen-

za-like viruses. This unexpected prediction turned out to be correct, 

confirming the model’s predictive power. The early peak time was a 

consequence of the fact that H1N1 originated in Mexico, rather than 

South Asia (where many flu viruses come from), hence it took the 

virus less time to arrive to the northern hemisphere.

• The Impact of Vaccination  

Several countries implemented vaccination campaigns to accel-

erate the decline of the pandemic. The simulations indicated that 

these mass vaccination campaigns had only negligible impact on 

the course of the epidemic. The reason is that the timing of these 

campaigns was guided by the expectation of a January peak time, 

prompting the deployment of the vaccines after the November 2009 

peak [83], too late to have a strong effect.

‘WHAT IF’ ANALYSIS
By incorporating the time and nature of each containment and miti-

gation procedure, simulations can estimate the efficiency of specific con-

tingency plans [73-75,77,84]. Next we discuss the impact of two such inter-

ventions.

• Travel Restrictions

Given the important role air travel plays in the spread of a patho-

gen, faced with a dangerous pandemic, like an Ebola outbreak (Fig-
ure 10.28), the first instinct is to restrict travel. Yet, in a world where 

key resources travel by air, a travel ban leads to economic collapse. 

Therefore before resorting to a travel ban, we must make sure that 

Figure 10.27

Activity Peaks for H1N1

The predicted and the observed peak time for 
the H1N1 virus in several countries. The peak 
time corresponds to the week when most in-
dividuals are infected by the pathogen, and 
is measured in weeks after the beginning of 
the epidemic. The model predictions were 
obtained by analyzing 2,000 stochastic reali-
zations of the outbreak, generating the error 
bars in the figure. After [82].

Figure 10.28

The Deadliest Outbreak

With a fatality rate in the vicinity of 80%, 
the Ebola virus is one of the deadliest viruses 
known to humans. Its first known incidence 
was in 1976 in Zaire, killing 280 of the 312 
infected individuals by hemorrhagic fever, a 
combination of high fever and bleeding disor-
der. The virus can be transmitted by contact 
with the blood or the secretion of an infected 
individual.
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BOX 10.5
A NIGHT AT THE MOVIES

For a fictionalized but plausible depiction of a major pandemic, watch 

Contagion, the 2011 medical thriller directed by Steven Soderbergh, 

featuring Marion Cotillard, Bryan Cranston, Matt Damon, Laurence 

Fishburne, Jude Law, Gwyneth Paltrow, Kate Winslet, and Jennifer 

Ehle. The movie follows the desperate attempts of public health offi-

cials to stop a virus and the ensuing panic from sweeping the globe, 

hence addressing the impact of both biological and social contagion.  

The 1995 medical disaster film Outbreak directed by Wolfgang Pe-

tersen, starring Dustin Hoffman, Rene Russo and Morgan Freeman, 

focuses on a deadly Ebola-like virus  that starts from a small village 

in Zaire and reaches the United States. Both movies illustrate the dif-

ficult choices civilian and military agencies must take to contain the 

spread of a deadly pathogen.

Figure 10.30

Outbreak: Fiction and Truth

The theatrical release posters of two pan-
demic-related movies, Contagion and 
Outbreak. 
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Figure 10.29

The Impact of Travel Reduction

The impact of travel reduction on the arrival 
time of the H1N1 virus from Mexico to various 
countries, compared with the reference sce-
nario of no travel reduction. The percentages 
on the vertical axis show the degree of travel 
reduction implemented around the world. The 
largest delay is less than 20 days, observed for 
a 90% travel restriction. After [77].

travel restrictions have beneficial effects on the pandemic.  For this 

we must realize that awareness of a viral outbreak results in self-im-

posed travel reductions. For example,  there was a 40% decline in 

travel to and from Mexico in May 2009, during the H1N1 outbreak, as 

individuals canceled non-necessary business and leisure activities in 

the infected region. The modeling indicates [80,82] that this 40% re-

duction delayed the arrival of the first infection with less than 3 days 

in various countries around the world. Furthermore, even if travel 

dropped 90%, the peak time is delayed with less than 20 days (Figure 
10.29). 

Most important, travel restrictions do not decrease the number of 

infected individuals. They only delay the outbreak, offering local 

authorities more time to prepare for the pandemic. Hence travel re-

strictions are effective only if the delay caused by them increases lo-

cal vaccination levels or helps the deployment of cures. 

• Antiviral Treatment  

During the 2009 H1N1 pandemic Canada, Germany, Hong Kong, 

Japan, the UK, and the USA distributed antiviral drugs to mitigate 

the impact of the disease [85]. This prompted modelers to ask what 

would have been the impact if all countries that had drug stockpiles 

would have distributed it to their population [86]. The simulations 

indicate that peak times would have been delayed with about 3 to 4 

weeks, offering time to immunize a larger fraction of the population 

before the pandemic reached its peak.
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>
Online Resource 10.6

The Speed of a Pandemic

 The spread of a pathogen, as predicted by 
GLEAM, from three initial outbreak locations. 
While the geographic spreading pattern is 
difficult to interpret, in the effective distance 
representation the pandemic follows a regular 
radial pattern (Figure 10.31). 

The observed spreading patterns prompt us to 
ask: What is the speed of a typical pathogen 
as it spreads around the globe? The speed de-
pends on three key parameters:  

1. The basic reporduction number R0, which 
is in the vicinity of 2 for influenza type vi-
ruses (Table 10.2).  

2. The recovery rate, which is approximately 
3 days for influenza. 

3. The mobility rate, which represents the 
total fraction of the population that travels 
during a day. This parameter is in the range 
of 0.01-0.001. 

Running GLEAM (Figure 10.26) with these pa-
rameters we can compute the correlation be-
tween the arrival time and the geographic dis-
tance to the source of the epidemic, obtaining 
a speed of about 250-300 km/day. Therefore 
an influenza virus moves through a continent 
with the speed of a sports car or of a smaller 
airplane [89].

>

EFFECTIVE DISTANCE
Before cars and airplanes pathogens traveled on foot or at most with the 

speed of a horse. Hence a pandemic like the Black Death in Europe  moved 

slowly from village to village (Figure 10.8), following a diffusive process de-

scribed by simple reaction-diffusion models [87,88].  As the next infection 

always emerged in the geographic proximity of the previous infections,     

there was a strong correlation between the time of the outbreak and the 

physical distance from the origin of the outbreak. 

Today, with airline travel, physical distance has lost its relevance for 

epidemic phenomena. A pathogen that emerges in Manhattan can just as 

easily travel to London than to Garrison, NY, a village an our drive from 

Manhattan. This prompts us to ask: Is there a better space to view the 

spread of an epidemic than the physical space? Such space does exist if we 

replace the conventional geographic distance with an effective distance 

derived from the mobility network [89]. The nodes of the mobility network 

are cities and the links represent the amount of travel between them. Each 

link is directed and weighted, characterized by a flux-fraction 0≤pij≤1, that 

represents the fraction of travelers that leave node i and arrive at node j. 
The values of pij can be extracted from airline schedules, having pij>0 only 

if there is direct travel from i to j.

Given the multiple routes a person can take between any two cities, a 

pathogen can follow multiple paths on the mobility network. Yet, its spread 

is dominated by the most probable trajectories predicted by the mobility 

matrix pij. This allows us to define the effective distance dij between two 

connected locations i and j, as

              .      (10.31)

If pij is small, implying that only a small fraction of individuals that 

leave from i travel to j, then the effective distance between i and j is large. 

Note that dij ≠dji: For a small village i located near a metropolis j we expect 

dij to be small, as most travelers from i go to j. Yet, dji is large as only a small 

fraction of travelers leaving the metropolis head to the small village. The 

logarithm in (10.31) accounts for the fact that effective distances are addi-

tive, whereas probabilities along multi-step paths are multiplicative.  

As Figure 10.31 indicates (see also ONLINE rESOurCE 10.6), if we use (10.31) 
to represent the distance of each city from the source of an epidemic, the 

pathogen follows circular wave fronts. This is in contrast with the complex 

spreading pattern we observe if we view the pandemic in the geographical 

space. Furthermore, while the arrival time of H1N1 appears to be random if 

plotted in function of the physical distance, it correlates strongly with the 

effective distance (Figure 10.32). We can therefore use the effective distance 

to determine the speed of a pathogen (ONLINE rESOurCE 10.6).

A surprising but welcome aspect of epidemic forecast is that the predic-

tions of different models are rather similar, despite the fact that they use 

different mobility data (airline schedules [25,26] or dollar bill movement 

dij = (1− ln pij ) ≥ 0
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[24]) and different assumptions about the epidemic parameters (recovery 

rate, transmission rate, etc). The effective distance helps us understand 

why the various model predictions converge. Indeed, we can write the ar-

rival time of a pathogen to location a as [89]

     (10.32)

Therefore the arrival time is the ratio of the effective distance deff and 

an effective speed Veff.  The effective speed is determined only by the epi-

demiological parameters of the pathogen, whereas the effective distance 

deff depends only on the topology of the mobility network encoded by pij.  

When confronted with a new outbreak, the pathogen-specific epidemio-

logical parameters are unknown in the beginning. However, (10.32) predicts 

that the relative arrival times are independent of the epidemiological pa-
rameters. For example, for an outbreak that starts at node i, the ratio of the 

arrival times to nodes j and l is

             ,

i.e. the ratio depends only on the effective distances. Therefore, the relative 

arrival times of the disease depend only on the topology of the mobility 

network.  As the mobility patterns around the world are unique and mod-

el-independent, the predictions of different models converge, indepen-

dent of the choice of the epidemiological parameters.

In summary, joint advances in data collection and network epidemics 

have offered the capability to predict the real-time spread of a pathogen. 

The developed models can help design response and mitigation scenarios, 

train health and emergency personnel, can be used to explore the impact 

of various interventions, from quarantine to travel restrictions, and to op-

timize the deployment of treatments and vaccines.

Interestingly, the recent success of epidemic forecast is not due to the 

improved understanding of the underlying biology of infectious patho-

gens. It can be attributed instead to the lucky situation that when it comes 

to the spreading of a pathogen, the epidemic parameters are of secondary 

importance. The most important factor is the structure of the mobility net-

work. That, however, can be accurately estimated from travel schedules, 

allowing us to turn human mobility patterns into accurate predictions 

about the course of a pandemic.

Ta =
deff (P)

Veff (β,R0,γ ,ε )

Ta ( j / i)
Ta (l / i)

= deff ( j / i)
deff (l / i)
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Figure 10.32

Effective Distance and Arrival Time

(a) Geographic Distance 

Arrival times vs. geographic distance from 
its source (Mexico) for the 2009 H1N1 pan-
demic. Each circle represents one of the 140 
affected countries and the symbol size indi-
cates the total traffic in each country. Arriv-
al times are the date of the first confirmed 
case in a given country after the beginning 
of the outbreak on March 17, 2009. In this 
representation the arrival time and the geo-
graphic distance are largely independent of 
each other (R0=0.0394). 

(b) Effective Distance

Epidemic arrival time Ta vs. effective dis-
tance Deff for H1N1, demonstrating the strong 
correlations between the effective distance 
(10.31) and the arrival time. After [89].

(a)

(b)
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BOX 10.6
IDENTIFYING THE SOurCE OF A PANDEMIC

Identifying the source of an epidemic is an important component of 

epidemic control.  The source could be the first individual in a contact 

network, or the city where the pathogen first emerged in the mobility 

network. The mathematical formulation of the problem [91] inspired 

a burst of research on the subject [92-99].

The difficulty in finding the source is rooted in the stochastic nature 

of the infection process: different initial conditions can lead to simi-

lar infection patterns at the observation time. The approach we take 

depends on the information we have about the epidemic:

• In the simplest case at a given moment t we know the nodes 

that have been infected and the network on which the pathogen 

spreads.  The task is to find the source i [91] (Figure 10.33).

• If we also have the time of infection for each node, we can re-

construct the dynamics of the epidemic, significantly enhancing 

our ability to detect the source.

• The best strategy is to monitor the hubs, as they have the earliest 

and the most accurate information about a breakout. For exam-

ple, for a pathogen spreading on a scale-free network, monitor-

ing the state of 18% of the highest degree nodes can offer a 90% 

success rate in detecting the source. In contrast, to achieve the 

same level of accuracy we need to monitor 41% of the nodes if we 

select randomly the nodes we monitor [93].

• In the effective distance representation (Figure 10.31) the infection 

follows a circular pattern only if we use the right outbreak loca-

tion. Otherwise the observed pattern is asymmetric. Therefore, we 

can detect the source by finding the location (node) from which 

the outbreak pattern shows the highest radial symmetry [89]. 

Figure 10.33

Epidemic Sources

Finding the source of an epidemic is like 
finding the source of a water ripple. As 
pathogens do not spread in a uniform 
medium, the challenge is to identify the 
appropriate “ripples” in the mobility net-
work.
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SUMMARY

SECTION 10.8

Most networks facilitate transfer along their links: transfer of trust, 

knowledge, habits or information (social networks), electricity (power grid), 

money (financial networks), goods (trade networks). To understand these 

phenomena, we must understand how the network topology affects these 

dynamical processes. In this chapter we focused on the spread of patho-

gens along the links of the network, the area where our understanding of 

the interplay between dynamical phenomena and network topology is the 

most advanced. We showed that the network topology has a drastic impact 

on the dynamics of the spreading process, offering distinct predictions 

for spreading on random and on scale-free networks. This finding laid the 

ground for addressing a wider class of problems: the need to systematical-

ly understand the impact networks have on various dynamical processes 

[100], an increasingly active chapter of network science [101,102].

Modeling the spread of pathogens also represents an important practi-

cal application of network science. The advances in this area were rather 

spectacular, giving birth to accurate epidemic forecasts, something that 

was only a dream a decade earlier. Two advances made this possible. The 

first is the emergence of a robust theoretical framework to describe net-

work-based epidemics. The second is access to accurate real time data on 

human travel and demographics, allowing us to reconstruct the mobility 

network that is responsible for the global spread of a pathogen. As we have 

seen in SECTION 10.7, the biological parameters and the network contribu-

tions to the accuracy of the observed predictive power are decoupled. Con-

sequently, an accurate forecast requires primarily an accurate knowledge 

of the mobility network.

The analytical framework of network epidemics has offered a number 

of unexpected results, the most important being the vanishing character-

istic spreading time and epidemic threshold in heterogeneous networks. 

As most contact networks encountered in epidemic processes have a broad 

degree distribution, these results are of immediate and of lasting theoret-

ical and practical interest. 

BOX 10.7
AT A GLANCE: NETWOrK EPIDEMICS

Infection Rate:                    β 

Recovery Rate:              μ 

Spreading Rate: 

Reproductive Number: 

SI Model:  

SIS Model:

Characteristic time: 
  
SI:

SIS:

SIR:

Epidemic Threshold:

SIS:

 
SIR:     

Immunization Threshold (SIS):   
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Equally important are the insights network epidemiology offers for im-

munization strategies. As we showed in SECTION 10.6, while random immu-

nization can successfully eradicate a virus that spreads on a random net-

work, this strategy is suboptimal in a scale-free network. As most contact 

networks are heterogenous, this is a rather depressing conclusion. Yet, we 

showed that selective immunization strategies can restore the epidemic 

threshold and suppress the prevalence of a pathogen. Selective immuniz-

tion succeeds by systematically altering the topology of the network on 

which a pathogen spreads.

BOX 10.8
HISTOrICAL NOTE: NETWOrK EPIDEMICS

Figure 10.34

Romualdo Pastor-Satorras and  Alessandro 
Vespignani

Physicists by training, Pastor-Satorras 
was a postdoctoral associate with Vespig-
nani at ICTP in Trieste when they discov-
ered the impact of the scale-free property 
on the epidemic threshold. Subsequently 
both researchers had major contributions 
to network science, from the discovery of 
degree correlations (CHAPTEr 7) to our un-
derstanding of weighted networks. 

Epidemic phenomena became a central topic in network science af-

ter Romualdo Pastor-Satorras and Alessandro Vespignani introduced 

the continuum theory that can account for the properties of the un-

derlying contact network. They also discovered the dependence of the 

epidemic threshold and characteristic time on the second moment of 

the degree distribution, a central result of network epidemics.  Sub-

sequently Vespignani and his research group have developed GLEAM, 

a computational framework that offers real-time predictions for the 

spread of a pathogen.
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SECTION 10.9

HOMEWORK

10.1. Epidemics on Networks

Calculate the characteristic time τ and the epidemic threshold λc of 

the SI, SIS and SIR models for networks with

(a) Exponential degree distribution.

(b) Stretched exponential degree distribution.

(c) Delta distribution (all nodes have the same degree).

Assume that the networks are uncorrelated and infinite. Refer to Ta-
ble 4.2 for the functional form of the distribution and the corresponding 

first and second moments.

10.2. Random Obesity in Social Networks 

Consider a social network with degree distribution pk, where 50% of 

the nodes are obese. Make the assumption that obese nodes are distrib-

uted randomly within the network.

(a) If the network has degree correlation, encoded in the join probabil-

ity ekk', what is the probability P (øo) that a non-obese (ø) individual 

is friend with an obese individual (o)? And what is the probability P 

(oo) that two obese individuals are friends?

(b) Assume that the network is uncorrelated. How many second neigh-

bors of a degree-k node are obese?

Calculate the same quantities of (a)-(b) if the percentage of obese in-

creases to 70%.

10.3. Immunization 

Choose four networks from Table 4.1 (assume that directed networks 

behave like undirected and uncorrelated networks with pk =pkin
 ) and 

consider an epidemic process spreading on them. Remember: not only 

pathogens, but also ideas or opinions can spread on a network! Deter-

mine for each network the critical fraction gc necessary to stop the ep-



HOMEWOrK45SPREADING PHENOMENA

idemic if we randomly immunise a g-fracion of the nodes. How would 

the epidemic threshold λc change if all nodes with degree higher than 

1,000 are immunized?

10.4. Epidemic on Bipartite Networks 

Consider a bipartite network, with two types of nodes, which we in-

dicate as male (M) and female (F).On this network a pathogen can be 

transmitted only from the node of one set to the node of the other set. 

Assume that the rate of transmission from an M node to an F node, βM→F , 

is different from the rate of transmission from an F node to an M node, 

βF→M . Write the equations of the corresponding SI model, assuming the 

degree block approximation and that the network is uncorrelated.
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ADVANCED TOPICS 10.A
MICROSCOPIC MODELS  
OF EPIDEMIC PROCESSES

rANDOM NETWOrKS

In SECTIONS 10.2 and 10.3 we relied on the continuum approach to de-

scribe epidemic phenomena. In this section we show that the key results 

can be derived using microscopic models and probability-based reason-

ing. These arguments help us understand the origin of the continuum ap-

proach and improve our understanding of epidemic phenomena.

DErIVING THE EPIDEMIC EQuATION
We start by deriving the continuum model (10.3) from the microscop-

ic processes that describe the interactions between two individuals [101]. 

Consider a susceptible individual in contact with an infected individual, 

so that the susceptible individual becomes infected with probability βdt 

during the time interval dt. The probability that the susceptible individual 

is not infected in the dt interval is (1– βdt). If the susceptible individual i 
has degree ki, each of its ki links could in principle infect it. Therefore the 

probability that it avoids infection is (1– βdt)
ki. Finally the total probability 

that node i becomes infected in time dt is 1– (1– βdt)
ki, or one minus the total 

probability that it is not infected. Assuming βdt≪1, at the leading order the 

probability that a susceptible individual becomes infected is

                                   .   (10.33)

In a random network all nodes have approximately 〈k〉 neighbors. Re-

placing ki with 〈k〉 in (10.33) we obtain the first term of the continuum equa-

tion (10.3). If we do not replace ki with 〈k〉, we obtain to the first term of 

(10.13), capturing the spread of a pathogen in a heterogenous network.

EPIDEMIC THrESHOLD AND NETWOrK TOPOLOGY
A key result of SECTION 10.3 connects the network topology to the epi-

demic threshold λc, a result derived using the continuum theory. We can 

arrive at the same result using a mechanistic argument that illustrates the 

connection between the epidemic threshold and the network topology. 

Consider a pathogen that is transmitted with probability β in a unit 

time. Therefore in a unit time an infected node with degree k will infect 

1− (1− βdt)ki ≈ βkidt

SECTION 10.10
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βk neighbors. If each infected node recovers at rate μ, then the character-

istic time that a node stays infected is 1/μ. The pathogen can persist in the 

population only if during this 1/μ time interval the infected node infects at 

least one other node. Otherwise, the pathogen gradually dies out.

In other words, if βk/μ<1, then our degree-k node recovers before it 

could infect other nodes. If we consider a random network, where most 

nodes have comparable degrees, k~〈k〉, the condition βk/μ=1 allows us to 

calculate the epidemic threshold.  Using λ= β/μ  we obtain λc =1/〈k〉, which 

is the high-k limit of the result (10.25) derived for random networks. It tells 

us that the ability of a pathogen to spread is determined by the interplay 

between the epidemiological characteristics of the pathogen (β and μ) and 

the network topology (〈k〉).

In a scale-free network nodes have widely different degrees. Therefore 

while the network’s average degree may satisfy β〈k〉/μ<1, suggesting that 

the virus will die out, for all nodes with k>〈k〉 we have βk/μ>1. If such a high 

degree node is infected, even if the spreading rate λ is under the threshold 

1/〈k〉, the disease can spread, persisting in the hubs. This is the reason why 

the epidemic threshold vanishes in networks with high 〈k2〉.
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ADVANCED TOPICS 10.B
ANALYTICAL SOLUTION 
OF THE SI, SIS AND SIR 
MODELS

In this section we solve the SI, SIS and SIR models on a network, deriv-

ing the results summarized in Table 10.3, namely the characteristic spread-

ing time τ and the epidemic threshold λc for each model.

THE DENSITY FuNCTION
The density function Θk provides the fraction of infected nodes in the 

neighborhood of a susceptible node with degree k. As discussed in SECTION 
10.3, to calculate ik, we must first determine Θk. If a network lacks degree 

correlations, the probability that a link points from a node with degree k to 

a node with degree k' is independent of k. Hence the probability that a ran-

domly chosen link points to a node with degree k' is the excess degree (7.3),

            .

At least one link of each infected node is connected to another infected 

node, the one that transmitted the infection. Therefore the number of links 

available for future transmission is (k'–1), allowing us to write 

        .                (10.34)

In other words,  in the absence of degree correlations Θk is independent 

of k. Differentiating (10.34) we obtain

                              .                  (10.35)

To make further progress, we need to consider the specific model the 

pathogen follows.

′k pk '

∑
k
kpk

= k ' pk '
〈k〉

Θk =
∑
k '
(k '−1)pk 'ik '

〈k〉
=Θ

dΘ
dt

=
k
∑ (k −1)pk

〈k〉
dik
d

SECTION 10.11
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SI MODEL
Using (10.13) and (10.35) we obtain

                         .  (10.36)

To predict the early behavior of the epidemics, we consider the fact that 

for small t the fraction of infected individuals is much smaller than one. 

Therefore we can neglect the second order terms in (10.36), obtaining

                        .   (10.37)

This has the solution 

       ,    (10.38)

where

           .    (10.39)

Using the initial condition

        ,

which means that initially an i0fraction of nodes are infected uniformly 

(hence ik(t=0)=i0 for all k), we obtain the time dependent Θ as

               .  (10.40)

We insert this into (10.13) to arrive at (10.15).

SIr MODEL
In the SIR model the density of infected nodes follows

         ,  (10.41)

where rk is the fraction of recovered nodes with degree k. Keeping only 

the first order terms (which means that we ignore ik and rk in the paren-

thesis above, as for small t they are much smaller than one), we obtain

              .   (10.42)

Multiplying this equation with (k–1)pk/〈k〉 and summing over k we have

          .  (10.43)

dΘ
dt

= β∑
k

(k2 − k)pk
〈k〉

[1− ik ]Θ

dΘ
dt

= β 〈k2 〉
〈k〉

−1⎛
⎝⎜

⎞
⎠⎟
Θ

Θ(t) = Cet /τ

τ = 〈k〉
β(〈k2 〉 − 〈k〉)

Θ(t = 0) = C = i0
〈k〉 −1
〈k〉

Θ(t) = i0
〈k〉 −1
〈k〉

et /τ

dik
dt

= β(1− ik − rk )kΘ− µik

dik
dt

= βkΘ− µik

dΘ
dt

= β 〈k2 〉 − 〈k〉
〈k〉

− µ⎛
⎝⎜

⎞
⎠⎟
Θ
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The solution of (10.43) is  

           ,    (10.44)

where the characteristic time for the SIR model is

                                 .   (10.45)

A global outbreak is possible only if τ>0, i.e. when the number of in-

fected nodes grows exponentially with time. This yields the condition for a 

global outbreak as 

             ,    (10.46)

allowing us to write the epidemic threshold for the SIR model as (Table 10.3) 

         .   (10.47)

SIS MODEL
In the SIS model the density of infected nodes is given by (10.18),

      .  (10.48)

There is a small but important difference in the density function of the 

SIS model. For the SI and the SIR models, if a node is infected, then at 

least one of its neighbors must also be infected or recovered, hence at 

most (k–1) of its neighbors are susceptible, the origin of the (-1) term 

in the paranthesis of (10.34) . However, in the SIS model the previously 

infected neighbor can become susceptible again, therefore all k links 

of a node can be available to spread the disease. Hence we modify the 

definition (10.34) to obtain

                           .   (10.49)

Again keeping only the first order terms we obtain

               .   (10.50)

Multiplying the equation with (k–1)pk/〈k〉 and summing over k we have

                    .   (10.51)

This again has the solution 

       ,     (10.52)

Θ(t) = Cet /τ

τ = 〈k〉
β 〈k2 〉 − 〈k〉(β + µ)

λ = β
µ
> 〈k〉
〈k2 〉 − 〈k〉

λc =
1

〈k2 〉
〈k〉

−1

dik
dt

= β(1− ik )kΘ− µik

Θk =
∑

′k
′k p ′k i ′k

〈k〉
=Θ

dik
dt

= βkΘ− µik

dΘ
dt

= β 〈k2 〉
〈k〉

− µ⎛
⎝⎜

⎞
⎠⎟
Θ

Θ(t) = Cet /τ
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where the characteristic time of the SIS model is

            .    (10.53)

A global outbreak is possible if τ>0, which yields the condition for a 

global outbreak as 

       ,    (10.54)

and the epidemic threshold  for the SIS model as (Table 10.3)

                      .   (10.55)

τ = 〈k〉
β 〈k2 〉 − 〈k〉µ

λ = β
µ
> 〈k〉
〈k2 〉

λc =
〈k〉
〈k2 〉
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ADVANCED TOPICS 10.C
TARGETED IMMUNIZATION

In this section we derive the epidemic threshold for the SIS and SIR 

models on scale-free networks under hub immunization. We start with an 

uncorrelated network with power law degree distribution pk=c.k -γ where 

c≈(γ–1)/kmin
-γ+1 and k≥kmin. In SECTION 10.16 we obtained for the critical spread-

ing rate, 

                       (SIS model) 

and

                       (SIR model).

Under hub immunization we immunize all nodes whose degree is larg-

er than k0. From the perspective of the epidemic this is equivalent with 

removing the high degree nodes from the network. Therefore to calculate 

the new critical spreading rate, we need to determine the average degree 

〈k'〉 and the second moment 〈k'2〉 after the hubs have been removed. This 

problem was addressed in the ADVANCED TOPICS 8.F, where we studied the 

robustness of a network under attack. We have seen that hub removal has 

two effects:

1) The maximum degree of the network changes to k0.

2) The links connected to the removed hubs are also removed, as if we 

randomly remove an

                              (10.56)

fraction of links. 

The degree distribution of the resulting network is 

          . 

λc =
〈k〉
〈k2 〉

= 1
κ

λc =
1

〈k2 〉
〈k〉

−1
= 1
κ −1

f = k0
kmin

⎛
⎝⎜

⎞
⎠⎟

−γ +2

′p ′k = ∑
k=k min

k0
k
′k

⎛
⎝⎜

⎞
⎠⎟
f
˜ k− ′k

(1− f ) ′k pk

SECTION 10.12
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According to (8.39) and (8.40) this yields

                          ,      

         ,

where 〈k〉 is the average and 〈k2〉 is the second moment of the degree distri-

bution before the link removal, but with maximum degree k0. For the SIS 

model this means

         ,                   (10.57)

where, according to equation (8.47), for 2>γ>3

               .                (10.58)

Combining (10.56), (10.57) and (10.58) we obtain

             . (10.59)

For the SIR model a similar calculation yields

             .        (10.60)

For both the SIR and SIS models if k0≫kmin we have

               .   (10.61)

〈 ′k 〉 = (1− f )〈k〉

〈 ′k 2 〉 = (1− f )2 〈k2 〉+ f (1− f )〈k〉

′λc = (1− f )〈k〉
(1− f )2 〈k2 〉+ f (1− f )〈k〉

= 1
(1− f )κ + f

κ = γ − 2
3− γ

k0
3−γ kmin

γ −2

′λc = γ − 2
3− γ

k0
3−γ kmin

γ −2 − γ − 2
3− γ

k0
5−2γ kmin

2γ −4 + k0
2−γ kmin

γ −2⎡

⎣
⎢

⎤

⎦
⎥

−1

′λc = γ − 2
3− γ

k0
3−γ kmin

γ −2 − γ − 2
3− γ

k0
5−2γ kmin

2γ −4 + k0
2−γ kmin

γ −2 −1⎡

⎣
⎢

⎤

⎦
⎥

−1

′λc ≈ 3− γ
γ − 2

k0
γ −3kmin

2−γ
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ADVANCED TOPICS 10.D
THE SIR MODEL AND 
BOND PERCOLATION

The SIR model is a dynamical model that captures the time dependent 

spread of an infection in a network. Yet, it can be mapped into a static bond 

percolation problem [103-106]. This mapping offers analytical tools that 

help us predict the model’s behavior. 

Consider an epidemic process on a network, so that each infected node 

transmits a pathogen to each of its neighbors with rate β, and recovers 

after a recovery time τ=1/μ. We view the infection as a Poisson process, 

consisting of series of random contacts with average interevent time βτ. 

Therefore the probability that an infected node does not transmit the 

pathogen to susceptible neighbors decreases exponentially in time, or  e–βτ. 

The infected node stays infected until it recovers in τ=1/μ time. Therefore 

the overall probability that the pathogen is passed on is 1– e–βτ. 

This process is equivalent with bond percolation on the same network, 

where each directed link is occupied with probability pb=1–e–βτ (Figure 10.35). 

If β and τ are the same for each node, the network can be considered un-

directed. Although this mapping looses the temporal dynamics of the epi-

demic process, it has several advantages:

• The total fraction of infected nodes in the endemic state maps 

into the size of the giant component of the percolation problem.

• The probability that a pathogen dies out before reaching the en-

demic state equals the fraction of the nodes in a randomly select-

ed finite component in the percolation problem.

• We can determine the epidemic threshold by exploiting the 

known properties of bond percolation. Consider the average 

number of links outgoing from a node that can be reached by a 

link. This allows us to retrace the course of the epidemic: If an in-

fected individual infects on average at least one other individual, 

then the epidemic can reach an endemic state. Since a node can 

be reached by one of its k links, the probability to be reached is 

kpk/N〈k〉. The probability of each of its k–1 outgoing links infect-

SOURCE

pb = 1 − e− β /µ

1

2

34

5

Figure 10.35

Mapping Epidemics into Percolation

Consider the contact network on which the 
epidemic spreads. To map the spreading pro-
cess into percolation, we leave in place each 
link with probability, pb=1–e–β/µ, a probability 
determined by the biological characteristics 
of the pathogen. Therefore links are removed 
with probability e–β/µ. The cluster size distribu-
tion of the remaining network can be mapped 
exactly into the outbreak size. For large β/µ we 
will likely have a giant component, indicating 
that we could face a global outbreak. β/µ cor-
responds to a virus that has difficulty spread-
ing and we end up with numerous small clus-
ters, indicating that the pathogen will likely 
die out.

SECTION 10.13
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ing its neighbor is pb. 

Since the network is randomly connected, as long as the epidemic has 

not spread yet, the average number of neighbors infected by the selected 

node is

                   . 

An endemic state can be reached only if 〈Ri〉>1, obtaining the condition 

for the epidemic as [107,108] 

           .    (10.62)

Equation (10.62) agrees with the result (10.46) derived earlier from the 

dynamical models: Scale-free networks with γ≤3 have a divergent second 

moment, hence such networks undergo a percolation transition even at 

pb→0. That is, a virus can spread on this network regardless of how small is 

the infection probability β or how small is the recovery time τ.

〈Ri 〉 = pb∑ pkk(k −1)
〈k〉

(〈k
2 〉

〈k〉
−1) > 1

pb
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