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Preface 

Physicists are currently contributing to the modeling of 'complex systems' 
by using tools and methodologies developed in statistical mechanics and 
theoretical physics. Financial markets are remarkably well-defined complex 
systems, which are continuously monitored - down to time scales of seconds. 
Further, virtually every economic transaction is recorded, and an increas-
ing fraction of the total number of recorded economic data is becoming 
accessible to interested researchers. Facts such as these make financial mar-
kets extremely attractive for researchers interested in developing a deeper 
understanding of modeling of complex systems. 

Economists - and mathematicians - are the researchers with the longer 
tradition in the investigation of financial systems. Physicists, on the other 
hand, have generally investigated economic systems and problems only oc-
casionally. Recently, however, a growing number of physicists is becoming 
involved in the analysis of economic systems. Correspondingly, a signifi-
cant number of papers of relevance to economics is now being published 
in physics journals. Moreover, new interdisciplinary journals - and dedi-
cated sections of existing journals - have been launched, and international 
conferences are being organized. 

In addition to fundamental issues, practical concerns may explain part of 
the recent interest of physicists in finance. For example, risk management, 
a key activity in financial institutions, is a complex task that benefits from 
a multidisciplinary approach. Often the approaches taken by physicists are 
complementary to those of more established disciplines, so including physi-
cists in a multidisciplinary risk management team may give a cutting edge to 
the team, and enable it to succeed in the most efficient way in a competitive 
environment. 

This book is designed to introduce the multidisciplinary field of econo-
physics, a neologism that denotes the activities of physicists who are working 
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Preface ix 

on economics problems to test a variety of new conceptual approaches de-
riving from the physical sciences. The book is short, and is not designed to 
review all the recent work done in this rapidly developing area. Rather, the 
book offers an introduction that is sufficient to allow the current literature 
to be profitably read. Since this literature spans disciplines ranging from 
financial mathematics and probability theory to physics and economics, un-
avoidable notation confusion is minimized by including a systematic notation 
list in the appendix. 

We wish to thank many colleagues for their assistance in helping prepare 
this book. Various drafts were kindly criticized by Andreas Buchleitner, 
Giovanni Bonanno, Parameswaran Gopikrishnan, Fabrizio Lillo, Johannes 
Voigt, Dietrich Stauffer, Angelo Vulpiani, and Dietrich Wolf. 

Jerry D. Morrow demonstrated his considerable  skills in carrying 
out the countless revisions required. Robert Tomposki's tireless library re-
search greatly improved the bibliography. We especially thank the staff of 
Cambridge University Press - most especially Simon Capelin (Publishing 
Director in the Physical Sciences), Sue Tuck (Production Controller), and 
Lindsay Nightingale (Copy Editor), and the CUP Technical Applications 
Group - for their remarkable efficiency and good cheer throughout this 
entire project. 

As we study the final page proof, we must resist the strong urge to re-write 
the treatment of several topics that we now realize can be explained more 
clearly and precisely. We do hope that readers who notice these and other 
imperfections will communicate their thoughts to us. 

Rosario N. Mantegna H. 

Eugene Stanley 
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Introduction 

1.1 Motivation 

Since the 1970s, a series of significant changes has taken place in the 
world of finance. One key year was 1973, when currencies began to be 
traded in financial markets and their values determined by the foreign 
exchange market, a financial market active 24 hours a day all over the 
world. During that same year, Black and Scholes [18] published the first 
paper that presented a rational option-pricing formula. 

Since that time, the volume of foreign exchange trading has been growing 
at an impressive rate. The transaction volume in 1995 was 80 times what it 
was in 1973. An even more impressive growth has taken place in the field of 
derivative products. The total value of financial derivative market contracts 
issued in 1996 was 35 trillion US dollars. Contracts totaling approximately 
25 trillion USD were negotiated in the over-the-counter market (i.e., directly 
between firms or financial institutions), and the rest (approximately 10 trillion 
USD) in specialized exchanges that deal only in derivative contracts. Today, 
financial markets facilitate the trading of huge amounts of money, assets, 
and goods in a competitive global environment. 

A second revolution began in the 1980s when electronic trading, already 
a part of the environment of the major stock exchanges, was adapted to the 
foreign exchange market. The electronic storing of data relating to financial 
contracts - or to prices at which traders are willing to buy (bid quotes) or sell 
(ask quotes) a financial asset - was put in place at about the same time that 
electronic trading became widespread. One result is that today a huge amount 
of electronically stored financial data is readily available. These data are 
characterized by the property of being high-frequency data - the average time 
delay between two records can be as short as a few seconds. The enormous 
expansion of financial markets requires strong investments in money and 
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2 Introduction 

human resources to achieve reliable quantification and minimization of risk 
for the financial institutions involved. 

1.2 Pioneering approaches 

In this book we discuss the application to financial markets of such concepts 
as power-law distributions, correlations, scaling, unpredictable time series, 
and random processes. During the past 30 years, physicists have achieved 
important results in the field of phase transitions, statistical mechanics, 
nonlinear dynamics, and disordered systems. In these fields, power laws, 
scaling, and unpredictable (stochastic or deterministic) time series are present 
and the current interpretation of the underlying physics is often obtained 
using these concepts. 

With this background in mind, it may surprise scholars trained in the 
natural sciences to learn that the first use of a power-law distribution - and 
the first mathematical formalization of a random walk - took place in the 
social sciences. Almost exactly 100 years ago, the Italian social economist 
Pareto investigated the statistical character of the wealth of individuals in a 
stable economy by modeling them using the distribution 

           (1.1) 

where y is the number of people having income x or greater than x and 
v is an exponent that Pareto estimated to be 1.5 [132]. Pareto noticed 
that his result was quite general and applicable to nations 'as different as 
those of England, of Ireland, of Germany, of the Italian cities, and even of 
Peru'. 

It should be fully appreciated that the concept of a power-law distribution 
is counterintuitive, because it may lack any characteristic scale. This property 
prevented the use of power-law distributions in the natural sciences until 
the recent emergence of new paradigms (i) in probability theory, thanks 
to the work of Levy [92] and thanks to the application of power-law 
distributions to several problems pursued by Mandelbrot [103]; and (ii) in 
the study of phase transitions, which introduced the concepts of scaling for 
thermodynamic functions and correlation functions [147]. 

Another concept ubiquitous in the natural sciences is the random walk. 
The first theoretical description of a random walk in the natural sciences 
was performed in 1905 by Einstein [48] in his famous paper dealing with 
the determination of the Avogadro number. In subsequent years, the math-
ematics of the random walk was made more rigorous by Wiener [158], and 
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now the random walk concept has spread across almost all research areas 
in the natural sciences. 

The first formalization of a random walk was not in a publication by 
Einstein, but in a doctoral thesis by Bachelier [8]. Bachelier, a French math-
ematician, presented his thesis to the faculty of sciences at the Academy of 
Paris on 29 March 1900, for the degree of Docteur en Sciences Mathematiques. 
His advisor was Poincare, one of the greatest mathematicians of his time. 
The thesis, entitled Theorie de la speculation, is surprising in several respects. 
It deals with the pricing of options in speculative markets, an activity that 
today is extremely important in financial markets where derivative securities 

- those whose value depends on the values of other more basic underlying 
variables - are regularly traded on many different exchanges. To complete 
this task, Bachelier determined the probability of price changes by writing 
down what is now called the Chapman-Kolmogorov equation and recogniz 
ing that what is now called a Wiener process satisfies the diffusion equation 
(this point was rediscovered by Einstein in his 1905 paper on Brownian 
motion). Retrospectively analyzed, Bachelier's thesis lacks rigor in some of 
its mathematical and economic points. Specifically, the determination of a 
Gaussian distribution for the price changes was - mathematically speaking 
- not sufficiently motivated. On the economic side, Bachelier investigated 
price changes, whereas economists are mainly dealing with changes in the 
logarithm of price. However, these limitations do not diminish the value of 
Bachelier's pioneering work. 

To put Bachelier's work into perspective, the Black & Scholes option-
pricing model - considered the milestone in option-pricing theory - was 
published in 1973, almost three-quarters of a century after the publication of 
his thesis. Moreover, theorists and practitioners are aware that the Black & 
Scholes model needs correction in its application, meaning that the problem 
of which stochastic process describes the changes in the logarithm of prices 
in a financial market is still an open one. 

The problem of the distribution of price changes has been considered by 
several authors since the 1950s, which was the period when mathematicians 
began to show interest in the modeling of stock market prices. Bachelier's 
original proposal of Gaussian distributed price changes was soon replaced by 
a model in which stock prices are log-normal distributed, i.e., stock prices are 
performing a geometric Brownian motion. In a geometric Brownian motion, 
the differences of the logarithms of prices are Gaussian distributed. This 
model is known to provide only a first approximation of what is observed 
in real data. For this reason, a number of alternative models have been 
proposed with the aim of explaining 
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(i) the empirical evidence that the tails of measured distributions are fatter 

than expected for a geometric Brownian motion; and (ii) the 
time fluctuations of the second moment of price changes. 

Among the alternative models proposed, 'the most revolutionary develop-
ment in the theory of speculative prices since Bachelier's initial work' [38], 
is Mandelbrot's hypothesis that price changes follow a Levy stable dis-
tribution [102]. Levy stable processes are stochastic processes obeying a 
generalized central limit theorem. By obeying a generalized form of the cen-
tral limit theorem, they have a number of interesting properties. They are 
stable (as are the more common Gaussian processes) - i.e., the sum of two 
independent stochastic processesand characterized by the same Levy 
distribution of index is itself a stochastic process characterized by a Levy 
distribution of the same index. The shape of the distribution is maintained 
(is stable) by summing up independent identically distributed Levy stable 
random variables. 

As we shall see, Levy stable processes define a basin of attraction in the 
functional space of probability density functions. The sum of independent 
identically distributed stochastic processes characterized by a 

probability density function with power-law tails, 

         (1.2) 

will converge, in probability, to a Levy stable stochastic process of index a 
when n tends to infinity [66]. 

This property tells us that the distribution of a Levy stable process is a 
power-law distribution for large values of the stochastic variable x. The fact 
that power-law distributions may lack a typical scale is reflected in Levy 
stable processes by the property that the variance of Levy stable processes is 
infinite for α < 2. Stochastic processes with infinite variance, although well 
defined mathematically, are extremely difficult to use and, moreover, raise 
fundamental questions when applied to real systems. For example, in physical 
systems the second moment is often related to the system temperature, so 
infinite variances imply an infinite (or undefined) temperature. In financial 
systems, an infinite variance would complicate the important task of risk 
estimation. 

1.3 The chaos approach 

A widely accepted belief in financial theory is that time series of asset prices 
are unpredictable. This belief is the cornerstone of the description of price 
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dynamics as stochastic processes. Since the 1980s it has been recognized in 
the physical sciences that unpredictable time series and stochastic processes 
are not synonymous. Specifically, chaos theory has shown that unpredictable 
time series can arise from deterministic nonlinear systems. The results ob-
tained in the study of physical and biological systems triggered an interest 
in economic systems, and theoretical and empirical studies have investigated 
whether the time evolution of asset prices in financial markets might indeed 
be due to underlying nonlinear deterministic dynamics of a (limited) number 
of variables. 

One of the goals of researchers studying financial markets with the tools 
of nonlinear dynamics has been to reconstruct the (hypothetical) strange 
attractor present in the chaotic time evolution and to measure its dimension 
d. The reconstruction of the underlying attractor and its dimension d is not 
an easy task. The more reliable estimation of d is the inequality d > 6. For 
chaotic systems with d > 3, it is rather difficult to distinguish between a 
chaotic time evolution and a random process, especially if the underlying 
deterministic dynamics are unknown. Hence, from an empirical point of 
view, it is quite unlikely that it will be possible to discriminate between the 
random and the chaotic hypotheses. 

Although it cannot be ruled out that financial markets follow chaotic 
dynamics, we choose to work within a paradigm that asserts price dynamics 
are stochastic processes. Our choice is motivated by the observation that the 
time evolution of an asset price depends on all the information affecting (or 
believed to be affecting) the investigated asset and it seems unlikely to us 
that all this information can be essentially described by a small number of 
nonlinear deterministic equations. 

1.4 The present focus 

Financial markets exhibit several of the properties that characterize complex 
systems. They are open systems in which many subunits interact nonlinearly 
in the presence of feedback. In financial markets, the governing rules are 
rather stable and the time evolution of the system is continuously moni-
tored. It is now possible to develop models and to test their accuracy and 
predictive power using available data, since large databases exist even for 
high-frequency data. 

One of the more active areas in finance is the pricing of derivative 
instruments. In the simplest case, an asset is described by a stochastic process 
and a derivative security (or contingent claim) is evaluated on the basis of 
the type of security and the value and statistical properties of the underlying 
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asset. This problem presents at least two different aspects: (i) 'fundamental' 
aspects, which are related to the nature of the random process of the asset, 
and (ii) 'applied' or 'technical' aspects, which are related to the solution of 
the option-pricing problem under the assumption that the underlying asset 
performs the proposed random process. 

Recently, a growing number of physicists have attempted to analyze and 
model financial markets and, more generally, economic systems. The interest 
of this community in financial and economic systems has roots that date 
back to 1936, when Majorana wrote a pioneering paper on the essential 
analogy between statistical laws in physics and in the social sciences [101]. 
This unorthodox point of view was considered of marginal interest until 
recently. Indeed, prior to the 1990s, very few professional physicists did any 
research associated with social or economic systems. The exceptions included 
Kadanoff [76], Montroll [125], and a group of physical scientists at the Santa 
Fe Institute [5]. 

Since 1990, the physics research activity in this field has become less 
episodic and a research community has begun to emerge. New interdisci-
plinary journals have been published, conferences have been organized, and 
a set of potentially tractable scientific problems has been provisionally iden-
tified. The research activity of this group of physicists is complementary to 
the most traditional approaches of finance and mathematical finance. One 
characteristic difference is the emphasis that physicists put on the empir-
ical analysis of economic data. Another is the background of theory and 
method in the field of statistical physics developed over the past 30 years 
that physicists bring to the subject. The concepts of scaling, universality, 
disordered frustrated systems, and self-organized systems might be helpful in 
the analysis and modeling of financial and economic systems. One argument 
that is sometimes raised at this point is that an empirical analysis performed 
on financial or economic data is not equivalent to the usual experimental 
investigation that takes place in physical sciences. In other words, it is im-
possible to perform large-scale experiments in economics and finance that 
could falsify any given theory. 

We note that this limitation is not specific to economic and financial 
systems, but also affects such well developed areas of physics as astrophysics, 
atmospheric physics, and geophysics. Hence, in analogy to activity in these 
more established areas, we find that we are able to test and falsify any theories 
associated with the currently available sets of financial and economic data 
provided in the form of recorded files of financial and economic activity. 

Among the important areas of physics research dealing with financial and 
economic systems, one concerns the complete statistical characterization of 
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the stochastic process of price changes of a financial asset. Several studies 
have been performed that focus on different aspects of the analyzed stochastic 
process, e.g., the shape of the distribution of price changes [22,64,67,105, 111, 
135], the temporal memory [35,93,95,112], and the higher-order statistical 
properties [6,31,126]. This is still an active area, and attempts are ongoing 
to develop the most satisfactory stochastic model describing all the features 
encountered in empirical analyses. One important accomplishment in this 
area is an almost complete consensus concerning the finiteness of the second 
moment of price changes. This has been a longstanding problem in finance, 
and its resolution has come about because of the renewed interest in the 
empirical study of financial systems. 

A second area concerns the development of a theoretical model that is 
able to encompass all the essential features of real financial markets. Several 
models have been proposed [10,11,23,25,29,90,91,104,117,142,146,149-
152], and some of the main properties of the stochastic dynamics of stock 
price are reproduced by these models as, for example, the leptokurtic 'fat-
tailed' non-Gaussian shape of the distribution of price differences. Parallel 
attempts in the modeling of financial markets have been developed by 
economists [98-100]. 

Other areas that are undergoing intense investigations deal with the ratio-
nal pricing of a derivative product when some of the canonical assumptions 
of the Black & Scholes model are relaxed [7,21,22] and with aspects of port-
folio selection and its dynamical optimization [14,62,63,116,145]. A further 
area of research considers analogies and differences between price dynamics 
in a financial market and such physical processes as turbulence [64,112,113] 
and ecological systems [55,135]. 

One common theme encountered in these research areas is the time cor-
relation of a financial series. The detection of the presence of a higher-order 
correlation in price changes has motivated a reconsideration of some beliefs 
of what is termed 'technical analysis' [155]. 

In addition to the studies that analyze and model financial systems, there 
are studies of the income distribution of firms and studies of the statistical 
properties of their growth rates [2,3,148,153]. The statistical properties of 
the economic performances of complex organizations such as universities or 
entire countries have also been investigated [89]. 

This brief presentation of some of the current efforts in this emerging 
discipline has only illustrative purposes and cannot be exhaustive. For a more 
complete overview, consider, for example, the proceedings of conferences 
dedicated to these topics [78,88,109]. 



2 

Efficient market hypothesis 

2.1 Concepts, paradigms, and variables 

Financial markets are systems in which a large number of traders interact 
with one another and react to external information in order to determine 
the best price for a given item. The goods might be as different as animals, 
ore, equities, currencies, or bonds - or derivative products issued on those 
underlying financial goods. Some markets are localized in specific cities (e.g., 
New York, Tokyo, and London) while others (such as the foreign exchange 
market) are delocalized and accessible all over the world. 

When one inspects a time series of the time evolution of the price, volume, 
and number of transactions of a financial product, one recognizes that the 
time evolution is unpredictable. At first sight, one might sense a curious 
paradox. An important time series, such as the price of a financial good, 
is essentially indistinguishable from a stochastic process. There are deep 
reasons for this kind of behavior, and in this chapter we will examine some 
of these. 

2.2 Arbitrage 

A key concept for the understanding of markets is the concept of arbitrage 
- the purchase and sale of the same or equivalent security in order to profit 
from price discrepancies. Two simple examples illustrate this concept. At a 
given time, 1 kg of oranges costs 0.60 euro in Naples and 0.50 USD in 
Miami. If the cost of transporting and storing 1 kg of oranges from Miami 
to Naples is 0.10 euro, by buying 100,000 kg of oranges in Miami and 
immediately selling them in Naples it is possible to realize a risk-free profit 
of 

   
(2.1)  
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Here it is assumed that the exchange rate between the US dollar and the 
euro is 0.80 at the time of the transaction. 

This kind of arbitrage opportunity can also be observed in financial 
markets. Consider the following situation. A stock is traded in two different 
stock exchanges in two countries with different currencies, e.g., Milan and 
New York. The current price of a share of the stock is 9 USD in New York 
and 8 euro in Milan and the exchange rate between USD and euro is 0.80. 
By buying 1,000 shares of the stock in New York and selling them in Milan, 
the arbitrager makes a profit (apart from transaction costs) of 

      (2.2) 

The presence of traders looking for arbitrage conditions contributes to a 
market's ability to evolve the most rational price for a good. To see this, 
suppose that one has discovered an arbitrage opportunity. One will exploit 
it and, if one succeeds in making a profit, one will repeat the same action. 
In the above example, oranges are bought in Miami and sold in Naples. 
If this action is carried out repeatedly and systematically, the demand for 
oranges will increase in Miami and decrease in Naples. The net effect of 
this action will then be an increase in the price of oranges in Miami and 
a decrease in the price in Naples. After a period of time, the prices in 
both locations will become more 'rational', and thus will no longer provide 
arbitrage opportunities. 

To summarize: (i) new arbitrage opportunities continually appear and are 
discovered in the markets but (ii) as soon as an arbitrage opportunity begins 
to be exploited, the system moves in a direction that gradually eliminates 
the arbitrage opportunity. 

2.3 Efficient market hypothesis 

Markets are complex systems that incorporate information about a given 
asset in the time series of its price. The most accepted paradigm among 
scholars in finance is that the market is highly efficient in the determination 
of the most rational price of the traded asset. The efficient market hypothesis 
was originally formulated in the 1960s [53]. A market is said to be efficient 
if all the available information is instantly processed when it reaches the 
market and it is immediately reflected in a new value of prices of the assets 
traded. 

The theoretical motivation for the efficient market hypothesis has its roots 
in the pioneering work of Bachelier [8], who at the beginning of the twentieth 
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century proposed that the price of assets in a speculative market be described 
as a stochastic process. This work remained almost unknown until the 1950s, 
when empirical results [38] about the serial correlation of the rate of return 
showed that correlations on a short time scale are negligible and that the 
approximate behavior of return time series is indeed similar to uncorrelated 
random walks. 

The efficient market hypothesis was formulated explicitly in 1965 by 
Samuelson [141], who showed mathematically that properly anticipated 
prices fluctuate randomly. Using the hypothesis of rational behavior and 
market efficiency, he was able to demonstrate how, the expected 
value of the price of a given asset at time t + 1, is related to the previous 
values of prices  through the relation 

       
(2.3) 

Stochastic processes obeying the conditional probability given in Eq. (2.3) 
are called martingales (see Appendix B for a formal definition). The notion 
of a martingale is, intuitively, a probabilistic model of a 'fair' game. In 
gambler's terms, the game is fair when gains and losses cancel, and the 
gambler's expected future wealth coincides with the gambler's present assets. 
The fair game conclusion about the price changes observed in a financial 
market is equivalent to the statement that there is no way of making a profit 
on an asset by simply using the recorded history of its price fluctuations. 
The conclusion of this 'weak form' of the efficient market hypothesis is then 
that price changes are unpredictable from the historical time series of those 
changes. 

Since the 1960s, a great number of empirical investigations have been 
devoted to testing the efficient market hypothesis [54]. In the great majority 
of the empirical studies, the time correlation between price changes has been 
found to be negligibly small, supporting the efficient market hypothesis. 
However, it was shown in the 1980s that by using the information present 
in additional time series such as earnings/price ratios, dividend yields, and 
term-structure variables, it is possible to make predictions of the rate of 
return of a given asset on a long time scale, much longer than a month. 
Thus empirical observations have challenged the stricter form of the efficient 
market hypothesis. 

Thus empirical observations and theoretical considerations show that price 
changes are difficult if not impossible to predict if one starts from the time 
series of price changes. In its strict form, an efficient market is an idealized 
system. In actual markets, residual inefficiencies are always present. Searching 
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out and exploiting arbitrage opportunities is one way of eliminating market 
inefficiencies. 

2.4 Algorithmic complexity theory 

The description of a fair game in terms of a martingale is rather formal. In 
this section we will provide an explanation - in terms of information theory 
and algorithmic complexity theory - of why the time series of returns appears 
to be random. Algorithmic complexity theory was developed independently 
by Kolmogorov [85] and Chaitin [28] in the mid-1960s, by chance during 
the same period as the application of the martingale to economics. 

Within algorithmic complexity theory, the complexity of a given object 
coded in an n-digit binary sequence is given by the bit length of 
the shortest computer program that can print the given symbolic sequence. 
Kolmogorov showed that such an algorithm exists; he called this algorithm 
asymptotically optimal. 

To illustrate this concept, suppose that as a part of space exploration we 
want to transport information about the scientific and social achievements of 
the human race to regions outside the solar system. Among the information 
blocks we include, we transmit the value of n expressed as a decimal carried 
out to 125,000 places and the time series of the daily values of the Dow-
Jones industrial average between 1898 and the year of the space exploration 
(approximately 125,000 digits). To minimize the amount of storage space 
and transmission time needed for these two items of information, we write 
the two number sequences using, for each series, an algorithm that makes 
use of the regularities present in the sequence of digits. The best algorithm 
found for the sequence of digits in the value of % is extremely short. In 
contrast, an algorithm with comparable efficiency has not been found for 
the time series of the Dow-Jones index. The Dow-Jones index time series is 
a nonredundant time series. 

Within algorithmic complexity theory, a series of symbols is considered 
unpredictable if the information embodied in it cannot be 'compressed' or 
reduced to a more compact form. This statement is made more formal by 
saying that the most efficient algorithm reproducing the original series of 
symbols has the same length as the symbol sequence itself. 

Algorithmic complexity theory helps us understand the behavior of a 
financial time series. In particular: 

(i) Algorithmic complexity theory makes a clearer connection between the 
efficient market hypothesis and the unpredictable character of stock 
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returns. Such a connection is now supported by the property that a time 
series that has a dense amount of nonredundant economic information 
(as the efficient market hypothesis requires for the stock returns time 
series) exhibits statistical features that are almost indistinguishable from 
those observed in a time series that is random. 

(ii) Measurements of the deviation from randomness provide a tool to verify 
the validity and limitations of the efficient market hypothesis. 

(iii) From the point of view of algorithmic complexity theory, it is impossible 
to discriminate between trading on 'noise' and trading on 'information' 
(where now we use 'information' to refer to fundamental information 
concerning the traded asset, internal or external to the market). Algo-
rithmic complexity theory detects no difference between a time series 
carrying a large amount of nonredundant economic information and a 
pure random process. 

2.5 Amount of information in a financial time series 

Financial time series look unpredictable, and their future values are essen-
tially impossible to predict. This property of the financial time series is not 
a manifestation of the fact that the time series of price of financial assets 
does not reflect any valuable and important economic information. Indeed, 
the opposite is true. The time series of the prices in a financial market 
carries a large amount of nonredundant information. Because the quantity 
of this information is so large, it is difficult to extract a subset of economic 
information associated with some specific aspect. The difficulty in making 
predictions is thus related to an abundance of information in the financial 
data, not to a lack of it. When a given piece of information affects the 
price in a market in a specific way, the market is not completely efficient. 
This allows us to detect, from the time series of price, the presence of this 
information. In similar cases, arbitrage strategies can be devised and they 
will last until the market recovers efficiency in mixing all the sources of 
information during the price formation. 

2.6 Idealized systems in physics and finance 

The efficient market is an idealized system. Real markets are only approxi-
mately efficient. This fact will probably not sound too unfamiliar to physicists 
because they are well acquainted with the study of idealized systems. Indeed, 
the use of idealized systems in scientific investigation has been instrumen-
tal in the development of physics as a discipline. Where would physics be 
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without idealizations such as frictionless motion, reversible transformations 
in thermodynamics, and infinite systems in the critical state? Physicists use 
these abstractions in order to develop theories and to design experiments. 
At the same time, physicists always remember that idealized systems only 
approximate real systems, and that the behavior of real systems will always 
deviate from that of idealized systems. A similar approach can be taken in 
the study of financial systems. We can assume realistic 'ideal' conditions, e.g., 
the existence of a perfectly efficient market, and within this ideal framework 
develop theories and perform empirical tests. The validity of the results will 
depend on the validity of the assumptions made. 

The concept of the efficient market is useful in any attempt to model 
financial markets. After accepting this paradigm, an important step is to 
fully characterize the statistical properties of the random processes observed 
in financial markets. In the following chapters, we will see that this task 
is not straightforward, and that several advanced concepts of probability 
theory are required to achieve a satisfactory description of the statistical 
properties of financial market data. 



3 

Random walk 

In this chapter we discuss some statistical properties of a random walk. 
Specifically, (i) we discuss the central limit theorem, (ii) we consider the 
scaling properties of the probability densities of walk increments, and (iii) 
we present the concept of asymptotic convergence to an attractor in the 
functional space of probability densities. 

3.1 One-dimensional discrete case 

Consider the sum of n independent identically distributed (i.i.d.) random 
variables , 

         (3.1) 

Here can be regarded as the sum of n random variables or 

as the position of a single walker at time , where n is the number 
of steps performed, and At the time interval required to perform one step. 
Identically distributed random variables  are characterized by moments 

 that do not depend on i. The simplest example is a walk performed 
by taking random steps of size s, so randomly takes the values ±s. The 
first and second moments for such a process are 

 and                              (3.2) 

For this random walk 

          (3.3) 

From (3.1)-(3.3), it follows that 

        
(3.4) 
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and 

     

(3.5) 

For a random walk, the variance of the process grows linearly with the 
number of steps n. Starting from the discrete random walk, a continuous 
limit can be constructed, as described in the next section. 

3.2 The continuous limit 

The continuous limit of a random walk may be achieved by considering the 
limit  and  such that  is finite. Then 

         
(3.6) 

To have consistency in the limits  or  with , it follows 

that 

          (3.7) 

The linear dependence of the variance  on t is characteristic of a 
diffusive process, and D is termed the diffusion constant. 

This stochastic process is called a Wiener process. Usually it is implicitly 
assumed that for or,  the stochastic process x(t) is a Gaussian 
process. The equivalence 

'random walk' 'Gaussian walk' 

holds only when and is not generally true in the discrete case when 

n is finite, since is characterized by a probability density function (pdf) 
that is, in general, non-Gaussian and that assumes the Gaussian shape only 
asymptotically with n. The pdf of the process, - or equivalently 

 - is a function of n, and  is arbitrary. 
How does the shape of  change with time? Under the assumption 

of independence, 

        (3.8) 

where denotes the convolution. In Fig. 3.1 we show four different 
pdfs : (i) a delta distribution, (ii) a uniform distribution, (iii) a Gaussian 
distribution, and (iv) a Lorentzian (or Cauchy) distribution. When one of 
these distributions characterizes the random variables , the pdf  
changes as n increases (Fig. 3.2). 
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Fig. 3.1. Examples of different probability density functions (pdfs). From top to 
bottom are shown (i) , (ii) a uniform pdf with zero 
mean and unit standard deviation, (iii) a Gaussian pdf with zero mean and unit 
standard deviation, and (iv) a Lorentzian pdf with unit scale factor. 

 

Fig. 3.2. Behavior of  for i.i.d. random variables with n = 1,2 for the pdfs of 

Fig. 3.1. 
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Whereas all the distributions change as a function of n, a difference is ob-
served between the first two and the Gaussian and Lorentzian distributions. 
The functions  for the delta and for the uniform distribution change 

both in scale and in functional form as n increases, while the Gaussian and 
the Lorentzian distributions do not change in shape but only in scale (they 
become broader when n increases). When the functional form of  is 

the same as the functional form of  , the stochastic process is said to 
be stable. Thus Gaussian and Lorentzian processes are stable but, in general, 
stochastic processes are not. 

3.3 Central limit theorem 

Suppose that a random variable  is composed of many parts  

 , such that each  is independent and with finite variance , 
, and 

         
(3.9) 

 Suppose further that, when , the Lindeberg condition [94] holds, 

         
(3.10) 

where, for every is a truncated random variable that is equal to 

when  and zero otherwise. Then the central limit theorem (CLT) 

states that 

        
(3.11) 

 is characterized by a Gaussian pdf with unit variance 

        
(3.12) 

A formal proof of the CLT is given in probability texts such as Feller [56]. 

Using two concrete examples, we 'illustrate' the main point of the theorem, 
the gradual convergence of to the Gaussian shape when n increases. 

In our examples, we simulate the stochastic processby assuming that is 
characterized by (i) a double triangular (Fig. 3.3) or (ii) a uniform  
(Fig. 3.4). As expected, the  distribution broadens when n increases. 

We emphasize the convergence to the Gaussian asymptotic distribution 
by plotting the pdf using scaled units, defining 

           
(3.13) 



Fig. 3.3. Top: Simulation of  for n ranging from n = 1 to n = 250 for the case 
When  is a double triangular function (inset). Bottom: Same distribution 
using scaled units. 

and 

          (3.14) 

By analyzing the scaled pdfs  observed at large values of n in Figs. 3.3 
and 3.4, we note that the distributions rapidly converge to the functional 
form of the Gaussian of unit variance (shown as a smooth curve for large 
n). 

We emphasize the fundamental hypothesis of the CLT. What is required 
is both independence and finite variance of the random variables . When 
these conditions are not satisfied, other limit theorems must be considered 
(see Chapter 4). 
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Fig. 3.4. Top: Simulation of  for n ranging from n = 1 to n = 50 for the case 

when  is uniformly distributed. Bottom: Same distribution in scaled units. 

3.4 The speed of convergence 

For independent random variables with finite variance, the CLT ensures that 
 will converge to a stochastic process with pdf 

       
(3.15) 

How fast is this convergence? Chebyshev considered this problem for a sum 
 of i.i.d. random variables . He proved [30] that the scaled distribution 

function given by 

         
(3.16) 
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differs from the asymptotic scaled normal distribution function  by an 

amount 

  
(3.17) 

where the  are polynomials in S, the coefficients of which depend on the 

first j + 2 moments of the random variable . The explicit form of these 
polynomials can be found in the Gnedenko and Kolmogorov monograph on 
limit distributions [66]. 

A simpler solution was found by Berry [17] and Esseen [51]. Their results 
are today called the Berry-Esseen theorems [57]. The Berry-Esseen theorems 
provide simple inequalities controlling the absolute difference between the 
scaled distribution function of the process and the asymptotic scaled normal 
distribution function. However, the inequalities obtained for the Berry-Esseen 
theorems are less stringent than what is obtained by the Chebyshev solution 
of Eq. (3.17). 

3.4.1 Berry-Esseen Theorem 1 

Let the be independent variables with a common distribution function F 
such that 

 (3.18)       (3.19) 

         (3.20) 

Then [57], for all S and n, 

         
(3.21) 

The inequality (3.21) tells us that the convergence speed of the distribution 
function of  to its asymptotic Gaussian shape is essentially controlled 
by the ratio of the third moment of the absolute value of  to the cube of 
the standard deviation of . 

3.4.2 Berry-Esseen Theorem 2 

Theorem 2 is a generalization that considers random variables that might 
not be identically distributed. Let thebe independent variables such that 

          (3.22) 

          (3.23) 

          (3.24) 



 

Fig. 3.5. Pictorial representation of the convergence to the Gaussian pdf  for 
the sum of i.i.d. finite variance random variables. 

and define 

         (3.25) 

and 

         (3.26) 

Then [57] for all S and n, 

         
(3.27) 

3.5 Basin of attraction 

The study of limit theorems uses the concept of the basin of attraction of 
a probability distribution. To introduce this concept, we focus our attention 
on the changes in the functional form of  that occur when n changes. 
We restrict our discussion to identically distributed random variables . 

 then coincides with  and is characterized by the choices made 

in selecting the random variables . When n increases, changes its 
functional form and, if the hypotheses of the CLT are verified, assumes 
the Gaussian functional form for an asymptotically large value of n. The 
Gaussian pdf is an attractor (or fixed point) in the functional space of pdfs 
for all the pdfs that fulfill the requirements of the CLT. The set of such pdfs 
constitutes the basin of attraction of the Gaussian pdf. 

In Fig. 3.5, we provide a pictorial representation of the motion of both the 
uniform and exponential  in the functional space of pdfs, and sketch the 
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convergence to the Gaussian attractor of the two stochastic processes . 
Both stochastic processes are obtained by summing n i.i.d. random 
variables  and  . The two processes  and  differ in their pdfs, 
indicated by their starting from different regions of the functional space. 
When n increases, both pdfs  become progressively closer to the 
Gaussian attractor . The number of steps required to observe the 
convergence of   to  provides an indication of the speed of 
convergence of the two families of processes. Although the Gaussian 
attractor is the most important attractor in the functional space of pdfs, 
other attractors also exist, and we consider them in the next chapter. 
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Levy stochastic processes and limit theorems 

In Chapter 3, we briefly introduced the concept of stable distribution, namely 
a specific type of distribution encountered in the sum of n i.i.d. random 
variables that has the property that it does not change its functional form 
for different values of n. In this chapter we consider the entire class of stable 
distributions and we discuss their principal properties. 

4.1 Stable distributions 

In §3.2 we stated that the Lorentzian and Gaussian distributions are stable. 
Here we provide a formal proof of this statement. 

For Lorentzian random variables, the probability density function is 

         
(4.1) 

The Fourier transform of the pdf 

         
(4.2) 

is called the characteristic function of the stochastic process. For the Lorentzian 
distribution, the integral is elementary. Substituting (4.1) into (4.2), we have 

          (4.3) 

The convolution theorem states that the Fourier transform of a convolu-
tion of two functions is the product of the Fourier transforms of the two 
functions, 

    
(4.4) 

For i.i.d. random variables, 

          (4.5) 

23 
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The pdf  of the sum of two i.i.d. random variables is given by the 

convolution of the two pdfs of each random variable 

        (4.6) 

The convolution theorem then implies that the characteristic function  
of  is given by 

          
(4.7) 

In the general case, 

     
(4.8) 

where  is defined by (3.1). Hence 

          (4.9) 

The utility of the characteristic function approach can be illustrated by 
obtaining the pdf for the sum  of two i.i.d. random variables, each of 
which obeys (4.1). Applying (4.6) would be cumbersome, while the 
characteristic function approach is quite direct, since for the Lorentzian 
distribution, 

          (4.10) 

By performing the inverse Fourier transform 

        
(4.11) 

we obtain the probability density function 

         
(4.12) 

The functional form of , and more generally of , is Lorentzian. 
Hence a Lorentzian distribution is a stable distribution. For 

Gaussian random variables, the analog of (4.1) is the pdf 

         
(4.13) 

The characteristic function is 

        
(4.14) 

where . Hence from (4.7) 

          (4.15) 
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By performing the inverse Fourier transform, we obtain 

         
(4.16) 

Thus the Gaussian distribution is also a stable distribution. Writing (4.16) 
in the form 

       
(4.17) 

we find 

           (4.18) 

We have verified that two stable stochastic processes exist: Lorentzian 
and Gaussian. The characteristic functions of both processes have the same 
functional form 

          (4.19) 

where  for the Lorentzian from (4.3), and  for the Gaussian from 
(4.15). 

Levy [92] and Khintchine [80] solved the general problem of determining 
the entire class of stable distributions. They found that the most general 
form of a characteristic function of a stable process is 

    

(4.20) 

where  is a positive scale factor,  is any real number, and  is 

an asymmetry parameter ranging from —1 to 1. 

The analytical form of the Levy stable distribution is known only for a 
few values of  and : 

• (Levy-Smirnov) 
• (Lorentzian) 
• (Gaussian) 

Henceforth we consider here only the symmetric stable distribution 
( ) with a zero mean ( ). Under these assumptions, the 
characteristic 
function assumes the form of Eq. (4.19). The symmetric stable distribution 
of index  and scale factoris, from (4.20) and (4.11), 

       
(4.21) 
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For , a series expansion valid for large arguments ( ) is [16] 

    
(4.22) 

where  is the Euler  function and 

         (4.23) 

From (4.22) we find the asymptotic approximation of a stable distribution 
of index valid for large values of , 

      
(4.24) 

The asymptotic behavior for large values of x is a power-law behavior, 
a property with deep consequences for the moments of the distribution. 
Specifically,  diverges forwhen . In  particular, all Levy 
stable processes with  have infinite variance. Thus non-Gaussian stable 

stochastic processes do not have a characteristic scale - the variance is 
infinite! 

4.2 Scaling and self-similarity 

We have seen that Levy distributions are stable. In this section, we will 
argue that these stable distributions are also self-similar. How do we rescale 
a non-Gaussian stable distribution to reveal its self-similarity? One way is to 
consider the 'probability of return to the origin' , which we obtain 
by starting from the characteristic function 

          (4.25) 

From (4.11), 

       
(4.26) 

Hence 

      
(4.27) 

The  distribution is properly rescaled by defining 

         (4.28) 

The normalization 

         
(4.29) 
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is assured if 

           
(4.30) 

When , the scaling relations coincide with what we used for a 
Gaussian process in Chapter 3, namely Eqs. (3.13) and (3.14). 

4.3 Limit theorem for stable distributions 

In the previous chapter, we discussed the central limit theorem and we noted 
that the Gaussian distribution is an attractor in the functional space of 
pdfs. The Gaussian distribution is a peculiar stable distribution; it is the 
only stable distribution having all its moments finite. It is then natural to 
ask if non-Gaussian stable distributions are also attractors in the functional 
space of pdfs. The answer is affirmative. There exists a limit theorem [65,66] 
stating that the pdf of a sum of n i.i.d. random variables converges, in 
probability, to a stable distribution under certain conditions on the pdf of 
the random variable . Consider the stochastic process , with 

 being i.i.d. random variables. Suppose 

      
(4.31) 

and 

          
(4.32) 

Then  approaches a stable non-Gaussian distribution  of index  

and asymmetry parameter , and  belongs to the attraction basin of 

 
Since is a continuous parameter over the range , an infinite 

number of attractors is present in the functional space of pdfs. They com-
prise the set of all the stable distributions. Figure 4.1 shows schematically 
several such attractors, and also the convergence of a certain number of 
stochastic processes to the asymptotic attracting pdf. An important differ-
ence is observed between the Gaussian attractor and stable non-Gaussian 
attractors: finite variance random variables are present in the Gaussian basin 
of attraction, whereas random variables with infinite variance are present in 
the basins of attraction of stable non-Gaussian distributions. We have seen 
that stochastic processes with infinite variance are characterized by distribu-
tions with power-law tails. Hence such distributions with power-law tails are 
present in the stable non-Gaussian basins of attraction. 



Fig. 4.1. Pictorial representation of the convergence process (in probability) to some 
of the stable attractors of the sum of i.i.d. random variables. The black circle is the 
Gaussian attractor and the black squares the Levy stable non-Gaussian attractors 
characterized by different values of the index α. 

4.4 Power-law distributions 

Are power-law distributions meaningful or meaningless? Mathematically 
they are meaningful, despite the presence of diverging moments. Physically, 
they are meaningless for finite ('isolated') systems. For example, an infinite 
second moment in the formalism of equilibrium statistical mechanics would 
imply an infinite temperature. 

What about open ('non-isolated') systems? Indeed, Bernoulli considered 
random variables with infinite expectations in describing a fair game, the St 
Petersburg paradox, while Pareto found power-law distributions empirically 
in the distribution of incomes. Mandelbrot used power-law distributions in 
describing economic and physical systems. 

Power-law distributions are counterintuitive because they lack a charac-
teristic scale. More generally, examples of random variables with infinite 
expectations were treated as paradoxes before the work of Levy. A cele-
brated example is the St Petersburg paradox. N. Bernoulli introduced the 
game in the early 1700s and D. Bernoulli wrote about it in the Commentary 
of the St Petersburg Academy [56]. 

4.4.1 The St Petersburg paradox 

A banker flips a coin  times. The player wins  coins if n tails occur 
before the first head. The outcomes are made clear in the following chart: 
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The cumulative expected win is  How many coins 
must the player risk in order to play? To determine the fair 'ante', each 
party must decide how much he is willing to gamble. Specifically, the banker 
asks for his expected loss - it is an infinite number of coins. The player 
disagrees because he assumes he will not win an infinite number of coins 
with probability one (two coins or fewer with probability 3/4, four coins or 
fewer with probability 7/8, and so on). The two parties cannot come to an 
agreement. Why? The 'modern' answer is that they are trying to determine 
a characteristic scale for a problem that has no characteristic scale. 

4.4.2 Power laws in finite systems 

Today, power-law distributions are used in the description of open systems. 
However, the scaling observed is often limited by finite size effects or some 
other limitation intrinsic to the system. A good example of the fruitful 
use of power laws and of the difficulties related to their use is provided 
by critical phenomena [147]. Power-law correlation functions are observed 
in the critical state of an infinite system, but if the system is finite, the 
finiteness limits the range within which a power-law behavior is observed. 
In spite of this limitation, the introduction and the use of the concept of 
scaling - which is related to the power-law nature of correlation - is crucial 
for the understanding of critical phenomena even when finite systems are 
considered [59]. 

4.5 Price change statistics 

In this book, we are considering the limit theorems of probability theory 
to have a theoretical framework that tells us what kind of distribution we 
should expect for price changes in financial markets. Stable non-Gaussian 
distributions are of interest because they obey limit theorems. However, we 
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Fig. 4.2. Monthly volatility of the S&P 500 index measured for the 13-year period 
January 1984 to December 1996. Courtesy of P. Gopikrishnan. 

should not expect to observe price change distributions that are stable. The 
reason is related to the hypotheses underlying the limit theorem for stable 
distributions: The random variables  are (i) pairwise-independent and 
(ii) identically distributed. Hypothesis (i) has been well verified for time 
horizons ranging from a few minutes to several years. However, 
hypothesis (ii) is not generally verified by empirical observation because, 
e.g., the standard deviation of price changes is strongly time-dependent. This 
phenomenon is known in finance as time-dependent volatility [143] (an 
example is shown in Fig. 4.2). 

A more appropriate limit theorem is one based only on the assumption 
that random variables are independent but not necessarily identically 
distributed. A limit theorem valid for a sum  of independent random 
variables  was first presented by Bawly and Khintchine [66,81], who 
considered the class of limit laws for the sum  of n independent 
infinitesimal random variables. Infinitesimal is used here as a technical term 
meaning that in the sum  there is no single stochastic variable 
that dominates the sum. Then the Khintchine theorem states that it is 
necessary and sufficient that , the limit distribution function, be 
infinitely divisible. 
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4.6 Infinitely divisible random processes 

A random process 3; is infinitely divisible if, for every natural number k, it can 
be represented as the sum of k i.i.d. random variables . The distribution 
function  is infinitely divisible if and only if the characteristic 
function  is, for every natural number k, the kth power of some 
characteristic function . In formal terms 

          (4.33) 

with the requirements (i)  and (ii)  is continuous. 

4.6.1 Stable processes 

A normally distributed random variable  is infinitely divisible because, 
from (4.14), 

        
(4.34) 

so a solution of the functional equation (4.33) is 

        
(4.35) 

A symmetric stable random variable is infinitely divisible. In fact, from (4.19) 

        (4.36) 

so 

        
(4.37) 

4.6.2 Poisson process 

The Poisson process , with m = 0,1,..., n, has a char- 
acteristic function 

         (4.38) 

so, from (4.33), 

        
(4.39) 



Fig. 4.3. Illustrative scheme of the classes of random processes discussed in this 
chapter. The solid circle denotes the stable Gaussian process. 

4.6.3 Gamma distributed random variables 

The Gamma distribution has pdf 

          
(4.40) 

For  and , the characteristic function is 

         (4.41) 

so, from (4.33), 

         (4.42) 

4.6.4 Uniformly distributed random variables 

The class of infinitely divisible stochastic processes is large, but there arc 
several stochastic processes that are not infinitely divisible. One example is 
a random process with a uniform pdf 

       

(4.43)
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In this case, the characteristic function is 

          
(4.44) 

and the process is not infinitely divisible because the kth root does not exist. 

4.7 Summary 

In Fig. 4.3 we provide a schematic illustration of some important classes of 
stochastic processes discussed in this chapter. 

The class of infinitely divisible random processes is a large class that 
includes the class of stable random processes. Infinitely divisible random 
processes may have finite or infinite variance. Stable non-Gaussian random 
processes have infinite variance, whereas the Gaussian process is the only 
stable process with finite variance. 

Empirical observations, together with limit theorems of probability theory, 
allow one to conclude that the pdf of price changes must progressively 
converge to an infinitely divisible pdf for long time horizons. Hence the 
Khintchine limit theorem ensures that for large values of n, the price change 
distribution is well defined, in spite of the fact that the price change stochastic 
process  at a time t may be characterized by parameters and 
functional forms that are t-dependent. Moreover, the Khintchine theorem 
states that the distribution  is close to an infinitely divisible pdf and 
the degree 
of convergence increases when n increases. Hence a long time horizon pdf 
of price changes can be considered in terms of a sum of i.i.d. random 
variables. Even in the presence of volatility fluctuations, it is possible to 
model price changes in terms of newly defined i.i.d. random variables. These 
are the variables defined by Eq. (4.33). One must keep in mind that the 
information extracted from this i.i.d. random process applies to pdfs for long 
time horizons, and not to local time scales. 



5 

Scales in financial data 

A truly gargantuan quantity of financial data is currently being recorded and 
stored in computers. Indeed, nowadays every transaction of every financial 
market in the entire world is recorded somewhere. The nature and format of 
these data depend upon the financial asset in question and on the particular 
institution collecting the data. Data have been recorded 

• on a daily basis since the 19th century (Fig. 5.1, for an example), 
• with a sampling rate of 1 min or less since 1984 (Fig. 5.2), and 
• transaction-by-transaction ('tick-by-tick') since 1993 (Fig. 5.3). 

Statistical analyses of financial data have been performed since the record-
ing activity started. Since the 1950s, when computer data processing became 

 

Fig. 5.1. Daily data on the prices of Coca Cola Co. stock. Records show the date, 
the open price, the maximum and the minimum price during the day, the closing 
price, the volume traded during the day, and additional information on the record. 
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Fig. 5.2. High-frequency records of the S&P 500 index. The data contain information 
on the value of the index at each time for which it is calculated. 

available, statistical analysis has progressively involved a larger and larger 
number of financial records. For example, Mandelbrot's 1963 cotton-price 
study [102] analyzed  records, the 1995 study [111] of the Standard 

& Poor's 500 index analyzed   records, and a recent tick-by-tick 

study [67] used  relative price changes for the 1,000 largest companies 

traded in the New York Stock Exchange. 

Statistical analyses of market data are essential, both for the fundamental 
reason of understanding market dynamics and for applied reasons related 
to the key problems of option pricing and portfolio management. In this 
chapter we consider some peculiarities of financial data, scales and units. 
Indeed, the role of scales and reference units in finance and physics is rather 
different, and we discuss this difference in detail. 

5.1 Price scales in financial markets 

In physics, the problem of reference units is considered basic to all experi-
mental and theoretical work. Efforts are continually made to find the optimal 
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Fig. 5.3. High-frequency quotes on the foreign exchange market, collected by Olsen 
& Associates Corporation. The records comprise the time (GMT), the bid, the 
ask on Japanese yen/German Deutschmark transactions, and information on the 
country, city, and financial institution issuing the quote. 

reference units and to improve the accuracy of their determination [33,40]. 
A branch of physics, metrology, is exclusively devoted to this task, and 
large specialized institutions in metrology exist all over the world. In finance, 
almost the opposite is the case. The scales used are often given in units 
(currencies) that are themselves fluctuating in time and transactions occur at 
random times with random intensities. For this reason, great care must be 
taken in the selection of the most appropriate variable to be studied, taking 
into account the implicit assumptions associated with each possible choice. 

Here we first consider the problem of price scales. In the next section we 
consider the problem of time scales. 

The price unit of financial goods is usually the currency of the country in 
which the particular financial market is located. The value of the currency 
is not constant in time. A currency can change its value because of 

• inflation, 
• economic growth or economic recession, and 
• fluctuations in the global currency market. 

Examples of some macroeconomic records are given in Figs. 5.4 and 5.5. 
In Fig. 5.4, we show a table of the annual percent changes of the gross 
domestic product of several industrial countries at constant 1980 currency 
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Fig. 5.4. Annual percent change of the gross domestic product of several countries 
over a 10-year period; data are obtained from International Financial Statistics 
(International Monetary Fund, 1988), page 165. 

 

Fig. 5.5. Monthly consumer price index in the United States during the 15-year 
period 1972 to 1986, normalized to the value of 100 USD for the year 1980. Data 
from International Financial Statistics, Supplement on Price Statistics (International 
Monetary Fund, 1986), page 70. 

values. The economic growth of a country is itself a random variable. In Fig. 
5.5, the monthly values of the US consumer price index are shown for the 
period 1972 to 1986. Also for this economic indicator, periods of high levels 
of inflation alternate with periods of low levels. For economic indicators, 
many stochastic descriptions have been developed. 

Let us define  as the price of a financial asset at time t. Which is the 
appropriate stochastic variable for us to investigate? Different choices are 
possible and each has its merits and its problems. Below, we discuss the most 
common choices. 

(i) One can investigate price changes, 

        (5.1) 
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The merit of this approach is that nonlinear or stochastic transformations 
are not needed. The problem is that this definition is seriously affected by 
changes in scale: 

(ii) Alternatively, one can analyze deflated, or discounted, price changes, 

       
(5.2) 

where  can be a deflation factor, or a discounting factor. The merits 
of this approach are that (i) nonlinear transformations are not needed and 
(ii) prices are given in terms of 'constant' money - the gains possible with 
riskless investments are accounted for by the factor . The problem is 
that deflators and discounting factors are unpredictable over the long term, 
and there is no unique choice for   

(iii) One can analyze returns, defined as 

       
(5.3) 

The merit of this approach is that returns provide a direct percentage of 
gain or loss in a given time period. The problem is that returns are sensitive 
to scale changes for long time horizons. 

(iv) One can study the successive differences of the natural logarithm of 
price, 

        (5.4) 

The merit of this approach is that the average correction of scale changes is 
incorporated without requiring deflators or discounting factors. The problems 
are (a) the correction of scale change would be correct only if the growth 
rate of the economy were constant, but the growth rate generally fluctuates, 
and these fluctuations are not incorporated into definition (5.4), and (b) 
a nonlinear transformation is used, and nonlinearity strongly affects the 
statistical properties of a stochastic process. Note that the information carried 
by  mixes features of the dynamics of the financial asset together 
with aspects involving fluctuations of macroeconomic indicators. 

The analysis of high-frequency financial data has become widespread ir 
research institutes and financial institutions, and it is worthwhile to considei 
how the above definitions are interrelated in the high-frequency regime. Fron 
(5.4) and (5.1), 

      
(5.5) 
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For high-frequency data,  is small and . Hence 

       
(5.6) 

Since  is a fast variable whereas  is a slow variable, 

          
(5.7) 

where the time dependence of  is negligible. Moreover, if the total 
investigated time period is not too long, , so 

          (5.8) 

To summarize, for high-frequency data and for investigations limited to 
a short time period in a time of low inflation, all four commonly used 
indicators are approximately equal: 

       (5.9) 

However, for investigations over longer time periods, a choice must be made. 
The most commonly studied functions are  and . 

5.2 Time scales in financial markets 

Next we consider the problem of choosing the appropriate time scale to use 
for analyzing market data. Possible candidates for the 'correct' time scale 
include: 

• the physical time, 
• the trading (or market) time, or 
• the number of transactions. 

An indisputable choice is not available. As in the case of price scale unit, 
all the definitions have merits and all have problems. When examining price 
changes that take place when transactions occur, it is worth noting that each 
transaction occurring at a random time (see Fig. 5.6) involves a random 
variable, the volume, of the traded financial good. 

Physical time is well defined, but stock exchanges close at night, over 
weekends, and during holidays. A similar limitation is also present in a 
global market such as the foreign exchange market. Although this market is 
active 24 hours per day, the social organization of business and the presence 
of biological cycles force the market activity to have temporal constraints in 
each financial region of the world. With the choice of a physical time, we do 



 

 

Fig. 5.6. Price change during the day of 3 January 1994 of an Exxon stock traded 
in the New York Stock Exchange. The price is recorded when a transaction occurs, 
and transactions occur randomly in time. 

not know now to model the stochastic dynamics of prices and the arrival of 
information during hours in which the market is closed. 

Trading time is well defined in stock exchanges - it is the time that elapses 
during open market hours. In the foreign exchange market, it coincides with 
the physical time. Empirical studies have tried to determine the variance 
of log price changes observed from closure to closure in financial markets. 
These studies show that the variance determined by considering closure 
values of successive days is only approximately 20% lower than the variance 
determined by considering closure values across weekends [52,60]. This 
empirical evidence supports the choice of using trading time in the modeling 
of price dynamics. Indeed, the trading time is the most common choice 
in research studies and in the studies performed for the determination of 
volatility in option pricing. However, problems also arise with this definition. 
Specifically, 

(i) information, affecting the dynamics of the price of a financial asset can 
be released while the market is closed (or its activity is negligible in a 
given financial area), 
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Fig. 5.7. Volatility (to be discussed in Chapter 7) of the S&P 500 high-frequency 
data. A daily cycle with a period of 6.5 trading hours is clearly observed in the time 
evolution. 

(ii) in high-frequency analyses overnight price changes are treated as short-
time price changes, and 

(iii) the market activity is implicitly assumed to be uniform during market 
hours. 

This last assumption is not verified by empirical analyses. Trading activity 
is not uniform during trading hours, either in terms of volume or in number 
of contracts. Rather, a daily cycle is observed in market data: the volatility is 
higher at the opening and closing hours, and usually the lowest value of the 
day occurs during the middle hours. As an example, we show in Fig. 5.7 the 
intraday 1-minute volatility of the S&P 500 index determined each trading 
hour. Clearly seen is a daily cycle with a period of 6.5 trading hours. 

An analogous, almost periodic behavior is observed in the average activity 
of the foreign exchange market (Fig. 5.8). In this case, the three different 
peaks of the intraday cycle observed in the volatility of price changes reflect 
the daily peak activity in three different regions of the world - Asia, Europe, 
and the Americas [41]. 
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Fig. 5.8. Average hourly activity in the foreign exchange global market. Intraday 
cycles are also observed. Note that the three peaks are related to the maximal activity 
in each of the three main geographic areas, America, Asia, and Europe. Adapted 
from [41]. 

 

Fig. 5.9. Schematic illustration of the occurrence of successive transactions in trans-
action units. 

One can explore other definitions of temporal activity that are not affected 
by the fact that trading activity is not uniform in time. One definition 
concerns the time index of the number of effective transactions occurring 
in the market for a given financial asset. The use of this definition is not 
easy because tick-by-tick data are necessary to perform a statistical analysis 
in terms of such a time index. However, such an analysis is possible today 
because tick-by-tick data are available, at least for some financial markets. 

If 'time' is defined in terms of the number of transactions (Fig. 5.9), 
then one source of randomness observed in financial markets is eliminated, 
specifically the time elapsing between transactions. However, the second 
source of randomness, the volume of the transaction, still remains. 
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5.3 Summary 

It is not straightforward to select the price function and the time reference 
frame to be used in the analysis and modeling of the stochastic dynamics 
of a price. Several choices are possible, each based on explicit or implicit 
assumptions that may or may not be verifiable for an asset in a given period 
of time. Empirical analyses are often performed with slightly different (i) 
definitions of the variables investigated, e.g., returns and log price differences, 
(ii) periods of time analyzed, and (iii) frequency of recorded data. Results are 
sensitive to these choices, so particular care must be taken when we compare 
results obtained by different researchers for different financial goods under 
different time conditions. Perhaps this is one of the reasons why the complete 
characterization of the statistical properties of price changes is still lacking, 
despite a large number of empirical analyses. 



6 

Stationarity and time correlation 

In this chapter we consider the degree of stationarity observed in time 
series of price changes in financial markets. We discuss various definitions 
of stationarity, and consider which of them best applies to financial data. 
We take a similar approach concerning time correlation, namely we first 
discuss the classes of correlation of short-range and long-range correlated 
stochastic processes, and then we present and discuss some empirical studies 
of financial data. When the stochastic variables are independent, stationarity 
implies that the stochastic process  is independent identically 
distributed. The statistical observables characterizing a stochastic process 
can be written in terms of nth-order statistical properties. The case n = 1 is 
sufficient to define the mean, 

        
(6.1) 

where  gives the probability density of observing the random value x 

at time t. The case n = 2 is used to define the autocorrelation function 

    
(6.2) 

where is the joint probability density thatis observed at time 

 and is observed at time. To fully characterize the statistical properties 
of a stochastic process, knowledge of the function  

is required for every and n. Most studies are limited to consideration of 
the 'two-point' function,  

6.1 Stationary stochastic processes 

A stochastic process  is stationary if its pdf  is invariant under 
a time shift. This definition is sometimes considered to be a very strict 
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definition of a stationary stochastic process, and it is termed by physical 
scientists strict-sense stationarity. There are, in fact, less restrictive definitions 
of stationary stochastic processes [131]. Examples include the following: 

(a) A wide-sense stationary stochastic process is defined by the three con 
ditions 

          (6.3) 

        (6.4) 

where  is a function of , and 

          (6.5) 

Thus the variance of the process, , is time-independent. 

(b) Asymptotically stationary stochastic processes are observed when the 
statistics of the random variables  does not depend on 
c if c is large. 

(c) Nth-order stationary stochastic processes arise when the joint probability 
density 

    (6.6) 

holds not for every value of n, but only for  

(d) Stochastic processes stationary in an interval are found when (6.6) holds 
for every  and  in the interval considered. 

At the end of this chapter, after a discussion about the time correlation 
properties of price changes, we discuss which definition of stationarity is 
more appropriate for the price changes in financial markets. 

6.2 Correlation 

The autocorrelation function  is sensitive to the average value of the 

stochastic process. For stochastic processes with average value different from 
zero, it is useful to consider the autocovariance, 

       (6.7) 

For stationary processes, the autocovariance is 

         (6.8) 
The typical shape of for positively correlated stochastic variables is a 
decreasing function, starting from  and ending at  for 

large values of  (see Fig. 6.1). 

For the sake of simplicity and without loss of generality, we consider 



 

Fig. 6.1. Typical autocovariance function of a stochastic process with finite memory. 

stochastic processes with zero mean and unit variance,  and  

1. With this choice, the autocorrelation function and the autocovariance 

function are the same. 

Now we focus on the kind of time memory that can be observed in 
stochastic processes. An important question concerns the typical scale (time 
memory) of the autocorrelation function. For stationary processes, we can 
answer this important question by considering the integral of . The 
area below  can take on three possible values (Fig. 6.2), 

       

(6.9) 

When  is finite, there exists a typical time memory  called the 
correlation time of the process. 
Examples are the following: Case 
(a);  

         
(6.10) 
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Fig. 6.2. Autocorrelation functions with and without a typical time scale. 

Case (b):  

       
(6.11) 

Case (c): , where, if , 

          
(6.12) 

The finiteness of the area under the autocorrelation function gives infor-
mation about the typical time scale of the memory of the process. In fact, as 
a zero-order approximation, it is possible to model the system by saying that 
full correlation is present up to  and no correlation is present for , 
where  is the area under the autocorrelation function. However, not all 
the integrals of monotonic decreasing functions are finite! 

In case (c), it is impossible to select a time scale that can separate a regime 
of temporal correlations from a regime of pairwise independence. Random 
variables characterized by an autocorrelation function such as case (c) are 
said to be long-range correlated. 

The above heuristic discussion can be formalized [27] for stationary pro-
cesses by considering the general behavior of the variance of the sum  of 
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n stochastic variables . From the definition (3.1), it follows that 

      

(6.13) 

where k assumes values from 1 to n and   is the autocorrelation 
between the variables  and . By restricting our discussion to 
positively correlated random variables, we have . For large 
values of n,  satisfies the relation 

      

(6.14) 

Depending on the behavior of the second term of this equation, we have 
two cases: 

(i) The sum of correlation terms is finite for large values of n, namely 

        

(6.15) 

In this case, it is said that the random variables are weakly dependent or 
short-range correlated. Indeed, for sufficiently large values of n, the behavior 

 valid for independent random variables, still holds 
(ii) The sum of correlation terms diverges, 

        

(6.16) 

When this condition holds, the random variables are said to be strongly 
dependent or long-range correlated. Similar random variables show a depen-
dence on n of the variance of  that is stronger than linear. Long-range 
correlated random variables are characterized by the lack of a typical tem-
poral scale. This behavior is observed in stochastic processes characterized 
by a power-law autocorrelation function as in Eq. (6.12). 

We have noted that the sum of n random variables can also 
be seen as a stochastic process in time when  represents a random 
process detected at time  In this case, the continuous limit of 
the sum of correlation terms with  is equal to  Hence, 
for time-dependent stochastic processes, the integral of the autocotrelation 
function can be used to distinguish between short-range correlated and 
long-range correlated random variables. 
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6.3 Short-range correlated random processes 

In the previous section we noted that short-range correlated random pro-
cesses are characterized by a typical time memory. One simple example is 
given by a stochastic process having an exponential decaying autocorrela-
tion function (see Eq. (6.10)). This form describes, for example, the statistical 
memory of the velocity  of a Brownian particle, as the 
autocorrelation function of  is 

         (6.17) 

In addition to the characterization of the two-point statistical properties 
in terms of autocorrelation function, the same statistical properties might be 
investigated in the frequency domain. To this end, we consider the power 
spectrum of the random variable. The power spectrum of a wide-sense 
stationary random process is the Fourier transform of its autocorrelation 
function 

        
(6.18) 

For the velocity autocorrelation function of (6.17), the power spectrum is 

         
(6.19) 

When , the power spectrum is essentially frequency-independent. 
Then, for a time window much longer than , the stochastic process is ap-
proximately white noise. The integral of white noise is called a Wiener 
process, a nonstationary process characterized by a power spectrum with the 
functional form 

          
(6.20) 

In summary, short-range correlated stochastic processes can be character-
ized with respect to their second-order statistical properties by investigating 
the autocorrelation function and/or the power spectrum. Fast-decaying auto-
correlation functions and power spectra resembling white noise (or  
power spectra for the integrated variable) are 'fingerprints' of short-range 
correlated stochastic processes. 

6.4 Long-range correlated random processes 

Stochastic processes characterized by a power-law autocorrelation function 
(as in Eq. (6.12)) are long-range correlated. Power-law autocorrelation func-
tions are observed in many systems - physical, biological, and economic. Let 
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us consider a stochastic process with a power spectrum of the form 

          
(6.21) 

with . In the last section we saw that the case corresponds 
to white noise, while  corresponds to the Wiener process. When , 
a stochastic process characterized by a spectral density as in Eq. (6.21) is 
called noise, while the general case  is sometimes called  

noise.  noise has been observed in a wide variety of phenomena, 
ranging from the current fluctuations in diodes and transistors to the 
fluctuations in traffic flow on a highway [46,79,103,136,156]. 

These stochastic processes are nonstationary. Provided that one observes 
the noise at t imes  and  such that the observation t ime  is 
short compared with the time elapsed since the process began ( ), 
one can evaluate the autocorrelation function. Let us consider the concrete 
example of a noise current source with a white power spectral density 
driving the input of a one-dimensional resistor-capacitor transmission line 
of infinite length. In this system, for  and , the 
autocorrelation function of such a nonstationary stochastic process is 
described by a form similar to Eq. (6.12) used for stationary processes [79], 

          (6.22) 

For  

        (6.23) 

Finally, for the borderline case  and  

        (6.24). 

The typical shapes of these autocorrelation functions are shown in Fig. 6.3. 
The autocorrelation function for  noise lacks a typical time scale, so 

 noise is a long-range correlated stochastic process. 
It is difficult in practice to distinguish  noise from a process with many 

characteristic time scales. How many characteristic scales does one require in 
order to mimic a  noise over a given frequency interval? Strictly 
speaking, one requires an infinite number. However, if only a finite accuracy 
is required, then a finite number of characteristic scales is sufficient. It has 
been estimated [79] that a  power spectral density extending over 10 
orders of magnitude can be mimicked at a 5 percent accuracy by the 
response of a linear system in which at least 8 different time scales are 
present, while for a 1 percent accuracy the minimal number of time scales 
needed is of the order of 40. 



Fig. 6.3. Shapes of the autocorrelation functions for a  noise, for the cases 

 0, 1, and 2. After Keshner [79]. 

6.5 Short-range compared with long-range correlated noise 
If a time scale  characterizes the memory of a stochastic process, then 
for time intervals longer than  the conditional probability densities verify 
the equation 

   (6.25) 

Stochastic processes with the above form for their conditional probability 
density are called Markov processes. For the simplest Markov process, 

   (6.26) 

Thus only the first- and second-order conditional probability densities 

 and  are needed to fully characterize the stochastic 

process. Stochastic processes lacking a typical time scale, such as  
noise, are not Markov processes. 

The knowledge of the first- and second-order conditional probability 
densities fully characterizes a Markov process since any higher-order joint 
probability density can be determined from them. For a non-Markovian 
process, this knowledge is not sufficient to fully characterize the stochastic 
process. 

Non-Markovian stochastic processes with the same first-order and second-
order conditional probability densities are, in general, different because the 
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joint probability densities of all orders are required to fully characterize 
long-range correlated stochastic processes. Thus, different  noise 
signals cannot be considered to be the same stochastic process, unless 
information about higher-order joint probability densities is also known. 
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Time correlation in financial time series 

In this chapter, we apply the concepts developed in Chapter 6 to discuss 
empirical observations of the temporal correlations detected in time series 
of price of financial goods. We will see that there are only short-range 
correlations in price changes, but there are long-range correlations in the 
volatility. Further, we shall discuss the degree of stationarity of financial time 
series. 

7.1 Autocorrelation function and spectral density 

Pairwise independence of the changes of the logarithm of price of a financial 
asset is typically investigated by analyzing the autocorrelation function of 
time variations of the logarithm of price (Fig. 7.1) or the spectral density of 
the time series of the logarithm of price itself (Fig. 7.2). These two statistical 
properties are equivalent for stationary stochastic processes. One finds for 
individual stocks that the spectral density of the logarithm of stock price is 
well described by the functional form (cf. Fig. 7.2) 

          
(7.1) 

which is the prediction for the spectral density of a random walk. 

The autocorrelation function of changes of the logarithm of price is a fast-
decaying function usually characterized by a correlation time much shorter 
than a trading day. Accurate detection of the correlation time is possible 
by analyzing high-frequency (intraday) data. For example, one detects a 
correlation time of the order of a few trading minutes by analyzing the high-
frequency data of the time changes of the S&P 500 index (Fig. 7.3). 

The investigation of high-frequency data allows one to extend the analysis 
of spectral density over a large number of frequency decades, even if the 
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Fig. 7.1. Autocorrelation function of the logarithm of price changes for Coca Cola 
daily data for the period 7/89 to 10/95. The time memory is less than one trading 
day. 

 
Fig. 7.2. Spectral density of the logarithm of price of Coca Cola, using daily data 
for the period 7/89 to 10/95. The spectral density is well approximated by a power 
law,  



 

Fig. 7.3. Semi-log plot of the autocorrelation function for the S&P 500, sampled 
at a 1 min time scale. The straight line corresponds to exponential decay with a 
characteristic decay time of 4 min. It is apparent that after about 20 min the 
correlations are at the level of noise. Courtesy of P. Gopikrishnan. 

total time interval over which data are analyzed is not very long. Thus high-
frequency data can be useful to overcome problems associated with 
nonstationarity of fluctuations of economic indicators. 

In Fig. 7.4 we show the spectral density of the S&P 500 index, using data 
recorded during the 4-year period from January 1984 to December 1987. By 
using high-frequency data, we can analyze the spectral density over a fre-
quency interval of about five orders of magnitude. The data support (7.1), in 
agreement with the hypothesis that the stochastic dynamics of the logarithm 
of stock price and of a stock index may be described by a random walk. 

Spectral densities and autocorrelation functions are statistical tools which 
are not extremely sensitive to long-range correlations. Another test, often 
more efficient in detecting the presence of long-range correlations, is based 
on the investigation of the time evolution of the standard deviation σ(t) of 
price changes. In general 

           (7.2) 

where   for independent price changes. Empirical investigations of 
the time evolution of the standard deviation of price changes have recently 
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Fig. 7.4. Spectral density of high-frequency data from the S&P 500 index. Th 
behavior of Eq. (7.1) is observed for almost five decades, with only a small deviation 
detected for the highest frequency investigated. Adapted from [112]. 

been carried out [41,112]. The empirical behavior detected in market data 
is described by Eq. (7.2) with values of  in the time window from 
approximately 30 trading minutes to 100 trading days. The value of is 
specific to the market investigated. Other studies analyze daily data or 
stock indices of New York (the New York Composite Index), Frankfurt 
(the DAX index), and Milan (the MIB index) exchanges, with the results 
for v being 0.52, 0.53, and 0.57 respectively. The values obtained show the 
presence of a weak long-range correlation (the empirical values of v are 
always slightly larger than 0.5). The strength of the long-range correlation 
is market-dependent and seems to be larger for less efficient markets. 

Using high-frequency data for the S&P 500 index, one finds that ) 
has two regimes. For short times (t < 30 trading minutes) a superdiffu-
sive ( ) behavior is observed, while in the long time regime the 
behavior 
is close to diffusive ( ). In the short time regime;  this 

superdiffusive behavior is probably due to the fact that the time series 
have a memory of only a few minutes (Fig. 7.3), although it could also 
depend on the degree to which the process is non-Gaussian. In the long time 
regime covering the time interval from 30 to 104 trading minutes, one finds 

 so only a weak long-range correlation is present. 
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7.2 Higher-order correlations: The volatility 

The autocorrelation function of price changes has exponential decay with 
small characteristic times - a few trading minutes for the S&P500 index 
(Fig. 7.3). However, pairwise independence does not directly imply that the 
price changes are independent random variables. Several studies performed 
by economists and physicists have shown that the autocorrelation function of 
nonlinear functions of price changes has a much longer time memory. Indeed 
nonlinear functions such as the absolute value or the square are long-range 
correlated for stock market indices and for foreign exchange currency rates. 

The presence of long-range correlation in the square value of price changes 
suggests that there might be some other fundamental stochastic process in 
addition to the price change itself. This process is often referred to as volatil-
ity. The volatility is often estimated by calculating the standard deviation of 
the price changes in an appropriate time window. One can also use other 
ways of estimating it, for example by averaging the absolute values of the 
price changes, by maximum likelihood methods or by Bayesian methods 
(see [129] for a review). There are several motivations for considering the 
statistical properties of volatility itself. (i) Volatility can be directly related 
to the amount of information arriving in the market at a given time. For 
example, if there is large amount of information arriving in the market, then 
the traders would act accordingly - resulting in a large number of trades, 
and, in general, in large volatility. (ii) Volatility can be directly used in the 
modeling of the stochastic process governing the price changes, as for exam-
ple in ARCH/GARCH models, to be discussed in Chapter 10. (iii) From a 
practical point of view, volatility is a key parameter in the measure of the 
risk of a financial investment. 

The autocorrelation function of the volatility, estimated either as a local 
average of the absolute value of price changes or by the local standard 
deviation, is well described by a power-law decay [31,36,41,95,137]. Fig-
ure 7.5 shows the autocorrelation function for the absolute values of 1 min 
S&P 500 price changes using the same data as plotted in Fig. 7.3. In this 
case, a power-law decay with an exponent  [96] is a good fit to the 
autocorrelation function. 

Long-range correlations in the absolute value of price changes can also be 
investigated by considering the power spectrum. Figure 7.6 shows the power 
spectrum of absolute value of price changes of the S&P 500 index - measured 
in a one-hour interval. The power spectrum results are consistent with the 
autocorrelation function results, namely a behavior with  
[95,96,114]. 



Fig. 7.5. Log-log plot of the volatility autocorrelation function using the same data 
as in Fig. 7.3. The solid line is a power-law regression fit over the entire range, which 
gives an estimate of the power-law exponent  that quantifies the long-range 
correlations in the autocorrelation function. Courtesy of P. Gopikrishnan. 

Studies on the distribution of volatility report a log-normal distribution for 
the volatility near the center of the distribution [31,96,133], while another 
work suggests that the asymptotic behavior displays power-law behavior [96]. 
Before concluding, we note that the existence of volatility correlation does 
not contradict the observation of pairwise independence of price changes 
because the autocorrelation of price changes depends on the second-order 
conditional probability density, while the volatility autocorrelation is affected 
by higher-order conditional probability densities. 

7.3 Stationarity of price changes 

From the empirical investigations discussed in previous sections, we conclude 
that the stochastic dynamics of price of a financial good can be approxi-
mately described by a random walk characterized by a short-range pairwise 
correlation. Can we describe price changes in terms of a stationary process? 
Empirical analyses of financial data show that price changes cannot be 
described by a strict-sense stationary stochastic process, since the standard 
deviation of price changes, namely the volatility, is time-dependent in real 
markets. Hence, the form of stationarity that is present in financial markets 
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Fig. 7.6. Power spectrum of the volatility of high-frequency S&P 500 time series for 
the 13-year period Jan 1984 to Dec 1996. The straight line shown is not a fit to 
the data, but is the prediction for the power-law exponent —0.7 that is consistent 
with the fit to the data of Fig. 7.5. The sharp peak observed for a frequency of 
approximately one inverse day is related to intraday fluctuations in the volatility. 
Courtesy of P. Gopikrishnan. 

is at best asymptotic stationarity. By analyzing a sufficiently long time series, 
the asymptotic pdf of prices changes is obtained. The asymptotic pdf gives 
the large time statistical properties of the stochastic process. 

7.4 Summary 

In this chapter, we have discussed several facts. (i) The statement 'price 
changes are pairwise uncorrelated' describes quite well the statistical behavior 
observed in empirical data. (ii) A short-time memory of only a few minutes is 
observed in the changes in financial indices. (iii) A weak long-range memory 
appears to be present in price changes as observed in the time evolution of 

. (iv) The volatility is long-range correlated with a spectral density of the 

 type. 
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Stochastic models of price dynamics 

The statistical properties of the time evolution of the price play a key role 
in the modeling of financial markets. For example, the knowledge of the 
stochastic nature of the price of a financial asset is crucial for a rational 
pricing of a derivative product issued on it. The full characterization of 
a stochastic process requires the knowledge of the conditional probability 
densities of all orders. This is an incredible task that cannot be achieved in 
practice. The usual empirical approach used by physicists is performed in 
two steps. The first concerns the investigation of time correlation and power 
spectrum, while the second concerns the study of the asymptotic pdf. 

The most common stochastic model of stock price dynamics assumes that 
In  is a diffusive process, and the  increments are assumed to be 

Gaussian distributed. This model, known as geometric Brownian motion, 
provides a first approximation of the behavior observed in empirical data. 
However, systematic deviations from the model predictions are observed, the 
empirical distributions being more leptokurtic than Gaussian distributions 
(Fig. 8.1). A highly leptokurtic distribution is characterized by a narrower 
and larger maximum, and by fatter tails than in the Gaussian case. The 
degree of leptokurtosis is much larger for high-frequency data (Fig. 8.2). 

Based on theoretical assumptions and empirical analyses, several alterna-
tive models to geometric Brownian motion have been proposed. The models 
differ among themselves not only with respect to the shape and leptokurtosis 
of the pdf, but also with respect to key properties such as 

(i) the finiteness or infiniteness of the second and higher moments of the 
distribution; 

(ii) the nature of stationarity present on a short time scale or asymptotically; 
(iii) the continuous or discontinuous character of  - or ; and 

(iv) the scaling behavior of the stochastic process. 
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Fig. 8.1. Empirical pdf for the logarithm of daily price differences of Chevron stock 
traded in the New York Stock Exchange in the period 1989 to 1995. The smooth 
line is the Gaussian pdf with the same variance calculated from the data. 

To elucidate these concepts, we first discuss a partial subset of these models, 
(i) the Levy stable non-Gaussian model [102], (ii) the Student's t-distribution 
[19], (iii) the mixture of Gaussian distributions [32], and (iv) the truncated 
Levy flight [110]. 

Other prominent models include the jump-diffusion model [121] and the 
hyperbolic-distributed stochastic process [47]. Stochastic models having a 
time-dependent variance over short time intervals are frequently modeled in 
terms of autoregressive conditional heteroskedasticity (ARCH) processes or, 
in generalized form, GARCH processes, as will be discussed in Chapter 10. 

8.1 Levy stable non-Gaussian model 

The first model to take into account explicitly the leptokurtosis empirically 
observed in the probability density function  was proposed in 1963 

when Mandelbrot modeled  for cotton prices as a stochastic process 

with Levy stable non-Gaussian increments. His finding was supported by the 
investigations of Fama in 1965 [52], which were performed by analyzing stock 
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Fig. 8.2. Empirical probability density function for high-frequency price differences 
of the Xerox stock traded in the New York Stock Exchange during the two-year 
period 1994 and 1995. This semi-logarithmic plot shows the leptokurtic nature ob-
served in empirical investigations. For comparison, the Gaussian with the measured 
standard deviation is also shown. Courtesy of P. Gopikrishnan. 

prices in the New York Stock Exchange. The most interesting properties of 
Levy stable non-Gaussian processes are 

• their stability (i.e., their self-similarity), and 
• their relation with a limit theorem - they are attractors in probability 

space. 

Mandelbrot's Levy stable hypothesis implies that  undergoes a 
discontinuous time evolution and  is characterized 
by a non-Gaussian scaling and by a distribution with infinite second and 
higher moments. Since 1963, many papers have been devoted to considering 
the important problem of the finiteness or infiniteness of the variance of  

8.2 Student's t-distribution  

Gaussian processes possess a finite variance. Levy stable non-Gaussian pro-
cesses possess infinite variance. Is there something 'in between' these two 
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limits? Indeed, the Student's t-distribution is the distribution 

        
(8.1) 

of a stochastic process 

         

(8.2) 

obtained from independent stochastic variables  and x, each with 
normal density, zero mean, and unit variance. Here 

         
(8.3) 

When is the Lorentzian distribution. When  is the 

Gaussian distribution. In general,  has finite moments for  Hence 
a stochastic process characterized by a Student's t-distribution may have 
both finite and infinite moments. By varying the control parameter n (which 
controls the finiteness of moments of order k), one can approximate with 
good accuracy the log price change distribution determined from market 
data at a given time horizon [19]. 

The Student's t-distribution is, for  and finite, not stable. This implies 

that its shape is changing at different time horizons and that distributions 
at different time horizons do not obey scaling relations. 

8.3 Mixture of Gaussian distributions 

Another model that is capable of describing the leptokurtic behavior ob-
served in empirical data, and that is compatible with the existence of a 
finite second moment of price changes, was proposed by Clark [32]. His 
model utilizes the concept of a subordinated stochastic process [57]. When a 
stochastic process occurs at times  which are themselves a realiza- 

tion of a stochastic process, starting from the random times ti one can obtain 
a function , called the directing process. Starting from the process 

 occurring at random times a new random process 

 may therefore be formed. The process  is said to be 
subordinated to  and the distribution of the differences of the 
logarithm of price increments  is said to be subordinated to the 
distribution of . 

From analysis of market activity, it is known that the number of trans-
actions occurring in the market in a given time period fluctuates. Clark 
assumed that the trading volume is a plausible measure of the evolution of 
price dynamics. He used as a directing process , the cumulative trading 
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volume up to time t. In his model, the distribution of log price increments 
occurring from a given level of trading volume  is subordinate to 
the one of individual trade  and directed by the distribution of the 

trading volume . By assuming  to be Gaussian and  to have 
all moments finite, Clark was able to prove that   is a leptokurtic 
distribution with all the moments finite. 

Clark interpreted the leptokurtic behavior observed in empirical analyses 
as the result of the fact tha.t the trading activity is not uniformly distributed 
during the trading interval. In his model the second moment of the  
distribution is always finite provided  has a finite second moment. The 

specific form of the distribution depends on the distribution of the directing 
process . In general, the  distributions do not possess scaling 

properties. 

8.4 Truncated Levy flight 

Levy stable non-Gaussian distributions obey scaling relations but have infi-
nite variance. Student's t-distributions and mixtures of Gaussian distributions 
do not, in general, show scaling features and may or may not have finite 
variance. A stochastic process with finite variance and characterized by scaling 
relations in a large but finite interval is the truncated Levy flight (TLF) 
process [110]. The TLF distribution is defined by 

       

(8.4) 

where  is the symmetric Levy distribution of indexand scale factor 

, and c is a normalizing constant. A TLF is not a stable stochastic process, 
since we showed above that only Levy distributions are stable. 

Since it has a finite variance, the TLF will converge to a Gaussian process. 
How quickly will it converge? To answer this question, we consider the 
quantity  where  is a truncated Levy process, and  

const  The distribution  well approximates  in the limit  

while  in the limit  Hence there exists a crossover 

value of n, , such that (Fig. 8.3) 

       
(8.5) 

where  is a Gaussian distribution. The crossover value  is given by 

           (8.6) 



Fig. 8.3. Schematic illustration of our results for the TLF. Shown is the crossover 
found between Levy flight behavior for small n and Gaussian behavior for large 
n. The crossover value  increases rapidly with the cutoff length  Adapted 
from [110]. 

 
Fig. 8.4. Probability of return to the origin of  as a function of n for  and 

 The simulations (circles), obtained with  realizations, are compared 
with the Levy regime (solid line) and the asymptotic Gaussian regime calculated for 

 (dotted line). Adapted from [114]. 

where, for  

    
(8.7) 

It is possible to numerically investigate the convergence process, as n 
increases, of the TLF to its asymptotic Gaussian. To generate a Levy stable 
stochastic process of index a and scale factor  we use Mantegna's 

algorithm [106]; other algorithms exist [140]. In Fig. 8.4, we show the 
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Fig. 8.5. Semi-logarithmic scaled plot of the probability distributions of the TLF 
process characterized by  and  for n = 1, 10, 100, and 1,000. For low 
values of n (n = 1 (circles) and 10 (squares)) the central part of the distributions is 
well described by the Levy stable symmetrical profile associated with  and 

 (solid line). For large values of n (n = 1,000 (inverted triangles)), the TLF 
process has already reached the Gaussian regime and the distribution is essentially 
Gaussian (dotted line). Adapted from [114]. 

probability of return to the origin obtained by simulating the  
process when  and  We also show the asymptotic behaviors 
for small and large n. We see clearly the crossover between the two regimes. 
For the selected control parameters, the crossover  is observed for 

 

For the same control parameters, we also investigate the distribution 
 at different values of n, by simulating a TLF for n = 1, 10, 100, and 

1,000 (Fig. 8.5). In order to be able to compare the shapes of the 
distribution at different values of n, we plot the distributions using the 
scaled variables  and  From Fig. 8.5, it is 
clear that the TLF distribution is changing shape as a function of n. For low 
values of n (n = 1 and 10), we find good agreement with a Levy profile, 
while for large values of n (n = 1,000), the distribution is well approximated 
by the asymptotic Gaussian profile. By comparing the results of Figs. 8.4 
and 8.5, we note that the probability of return to the origin indicates with 
high accuracy the 
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degree of convergence of the process to one of the two asymptotic regimes. 
For example, when n = 1 and 10, the probability of return is clearly in the 
Levy regime (Fig. 8.4) and the central part of the TLF distribution is well 
described by a Levy distribution (Fig. 8.5). Conversely, for n = 1,000 the 
probability of return to the origin is in the Gaussian regime (Fig. 8.4), and the 
distribution almost coincides with the Gaussian distribution characterized 
by the appropriate standard deviation (Fig. 8.5). 

To summarize, by investigating the probability of return to the origin of 
an almost stable non-normal stochastic process with finite variance, one finds 
a clear crossover between Levy and Gaussian regimes. Hence a Levy-like 
probability distribution can be empirically observed for a long (but finite) 
interval of time, even in the presence of stochastic processes characterized 
by a finite variance. 

In Chapter 4 we concluded that, under the efficient market hypothesis, 
the price change distribution for long horizons is well approximated by an 
infinitely divisible pdf. The TLF discussed thus far is not infinitely divisible 
because the truncation of the distribution is abrupt. However, an example of 
infinitely divisible TLFs was introduced by Koponen [86], who considered 
a TLF with a smooth (exponential) cutoff, and found the characteristic 
function 

   
(8.8) 

where  is a scaling factor and 

          
(8.9) 

A process with  given by Eq. (8.8) is infinitely divisible since 
processes whose characteristic functions have an exponential form are 
infinitely divisible. The detailed form of the cutoff does not change the 
overall behavior of the convergence of the TLF to the associated asymptotic 
Gaussian process, since according to the Berry-Esseen theorem, the 
convergence is essentially controlled by the third moment of [144]. 
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Scaling and its breakdown 

No model exists for the stochastic process describing the time evolution of 
the logarithm of price that is accepted by all researchers. In this chapter 
we present one view. To this end, we discuss the results of recent empirical 
studies designed to answer the following questions: 

(i) Is the second moment of the price-change distribution finite? 
(ii) Is self-similarity present? 

(iii) If self-similarity is present, what is its nature? 
(iv) Over what time interval is self-similarity present? 

9.1 Empirical analysis of the S&P 500 index 

We first consider a study of the statistical properties of the time evolution of 
the S&P 500 over the 6-year period January 1984 to December 1989 [111]. 
We label the time series of the index as . The database has 
remarkably high resolution in time, with values of  every minute, 
and sometimes every 15 seconds. 

In this analysis, the time advances only during trading hours. First, we 
calculate the pdf  of the index changes 

        (9.1)  

occurring in a 1-minute interval (so 1 minute). The pdf (see Fig. 9.1) is 

• almost symmetric, 
• highly leptokurtic, and 
• characterized by a non-Gaussian profile for small index changes. 

We extract several subsets of non-overlapping price changes  by varying 

 from 1 to 1,000 minutes. The number of records in each set decreases 
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Fig. 9.1. Comparison of the  probability density function for high-frequency 
S&P 500 price changes with the Gaussian distribution (dotted line) and with a Levy 
stable distribution (solid line) of index  obtained from the scaling analysis 
and scale factor  obtained from P(0) measured when  minute. 
Adapted from [111]. 

from 493,545 ( minute) to 562 ( minutes). The pdfs spread 

as increases, as in any random process (Fig. 9.2). 

When characterizing the functional form of the pdf, the usual approach 
is to investigate the wings. We adopt a different approach: we study the 
probability of return  as a function of  When we plot our 
results on a log-log scale, we observe an interesting power-law 'scaling' 
behavior (Fig. 9.3). This result is compatible with a Levy stable pdf. The 
index a of the Levy distribution is the negative inverse of the slope, by 
Eq. (4.27). We thereby find  For  and 

Eq. (4.27) results in the value  for the scale factor. 

We next compare the empirical results with a Levy stable pdf of index 
 and scale factor  We find that there is a deviation 

from the Levy distribution in the tails (Fig. 9.1). Specifically, when 
 the data in the tails are distinctly lower than the Levy pdf. This 

analysis provides an answer to question (i) by showing that the variance of 
price-change distribution is finite. 

We now address question (ii). We noted already that the maxima of pdfs 
scale for time intervals  minutes. What about other regions of 
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Fig. 9.2. High-frequency data for the S&P 500 index. Probability density functions 
of price changes measured at different time horizons 1, 3,10, 32,100, 
316,1,000 minutes. The typical spreading of a random walk is observed. Adapted 
from [111]. 

 

Fig. 9.3. Probability of return to the origin measured as a function of the time 
interval  The power-law dependence is shown by plotting the measured 
values in a log-log plot. The slope —07712+0.025 over three orders of magnitude is 
consistent with a non-Gaussian scaling. Adapted from [111]. 



 

Fig. 9.4. The same probability density functions as in Fig. 9.2, but now plotted in 
scaled units. A good quality data collapse is observed when the scaling is performed 
using the value  Adapted from [111]. 

the distribution? In Chapter 4 we observed that stable distributions are 
self-similar. The scaling variables for a Levy stable process of index α are 

          
(9.2) 

and 

         
(9.3) 

When we use  for the index of the Levy distribution, the empirical 
results collapse well onto the  min distribution (Fig. 9.4). 

At first glance, some of our findings seem contradictory. Specifically, we 
observe what at first sight appear to be inconsistent results: non-Gaussian 
scaling in the central part of the distribution, a Levy non-Gaussian profile 
for  but nevertheless a finite variance. A finite variance implies 
that the scaling is approximate and valid only for a finite time interval. For 
long time intervals, scaling must break down. To see this breakdown, we 
show in Fig. 9.5 P(0), the probability of return to the origin measured for 
the S&P 500 high-frequency data, together with  the probability of 

return to the origin that would be obtained if the process were Gaussian. 
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Fig. 9.5. Probability of return to the origin for S&P 500 high-frequency data (circles), 
together with the probability of return to the origin that would be obtained if the 
process were Gaussian,  (squares), estimated from the measurement of the 
variance for each value of  The distance between the two points is a measure 
of the non-Gaussian nature of the pdf. Adapted from [112]. 

Empirical values of the variance measured at each investigated value of  
are used to calculate  For a given value of  the difference between 

the two probabilities of return to the origin systematically decreases for 
 minutes. By extrapolating the scaling behavior of P(0) and 

 we estimate that the breakdown of the non-Gaussian scaling occurs 
at approximately 104 trading minutes. Hence we conclude that non-Gaussian 
scaling is observed for a time interval that is large, but finite, ranging from 
1 to approximately 104 trading minutes. 

9.2 Comparison with the TLF distribution  

Most of the empirical findings for the high-frequency changes of the S&P 500 
are consistent with the simple stochastic model discussed in the previous 
section, the TLF. The TLF has some limitations in the modeling of empirical 
findings. The most important concerns the assumption of i.i.d. increments, 
since in a TLF model the control parametersand are time-
independent. This assumption implies that the asymptotic and the short 
time pdfs of 
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Fig. 9.6. Time dependence of the index  determined from the probability of 
return to the origin for the distribution of high-frequency price changes, analyzed on 
a monthly time scale. The determination is repeated for each of the 72 months in the 
period 1/84 to 12/89. Adapted from [114]. 

TLF increments are the same for the same time horizon  We test this 
assumption by studying the time evolution of the  and  parameters; the 
parameter  gives one possible measure of the volatility of the process. We 
consider 72 subsets of the original database, and repeat for each of them the 
same analysis carried out on the entire database. The results are summarized 
in Figs. 9.6 and 9.7, where we show the time evolution of the  and  
parameters. We conclude that  is approximately constant (Fig. 9.6) 
[114], while  shows strong fluctuations, including 'bursts' of activity 
(Fig. 9.7). Hence empirical data show that price changes cannot be 
modeled in terms of a stochastic process with i.i.d. increments. 

In summary, the TLF model well describes the asymptotic price-change 
distributions measured at different time horizons and their scaling properties, 
but fails to describe in a proper way the time-dependent volatility observed 
in market data. 

 

 The parameter is not obtainable because a larger number of records is needed to 
estimate this parameter reliably. 
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Fig. 9.7. Time dependence of the scale factor  determined by using the value of 
 given in Fig. 9.6 and the probability of return to the origin of the distribution 

of high-frequency price changes measured for  minute. The determination 
is repeated for each of the 72 months in the period 1/84 to 12/89. Adapted from 
[114]. 

9.3 Statistical properties of rare events 

One key point in the description of statistical properties of stock prices con-
cerns 'rare events', namely the rare occurrences of large positive or negative 
returns. Quantitative analysis of the statistical properties of such events is 
difficult, and extremely large databases (or extremely long time periods) are 
required to reach reliable conclusions. A study [67] has considered for the 
two-year period January 1994 to December 1995 the high-frequency behavior 
of the 1,000 largest companies (by capitalization) traded in the three major 
US stock markets, the New York Stock Exchange (NYSE), the American 
Stock Exchange (AMEX), and the National Association of Securities 
Dealers Automated Quotation (NASDAQ). For each company, S(t) was 
investigated, and homogeneity between the set of companies was ensured 
by dividing S(t) by the company's volatility, measured over the investigated 
time period. 

The behavior of rare events in the ensemble of 1,000 companies is studied 
by considering the cumulative distribution of the normalized variable  

 where is the volatility of company i. The cumulative probability 
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Fig. 9.8. Log-log plot of the cumulative probability distribution F(g) based on high-
frequency data for the 1,000 largest companies over the two-year period January 
1, 1994 to December 31, 1995. The power-law behavior of Eq. (9.4) well fits the 
data over the range 2 < g < 100 for both positive and negative tail. Exponents are 

 3.10 + 0.03 (positive tail) and (negative tail). Adapted from [67]. 

distribution F(g) of observing a change g or larger was found to be power-
law for large values of g, both for positive and negative values of g (Fig. 9.8), 

          (9.4) 

with exponent  for both the positive and the negative tails, when the 

data are fit over the range 2 < g < 100. Since  this result is also in 
agreement with the conclusion that the second moment of price changes is 
finite [67,68,99]. 

In summary, while a definitive model for the price-change statistics does 
not exist, some results concerning the properties of this stochastic process 
have been found. 
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ARCH and GARCH processes 

We have seen that there is strong empirical and theoretical evidence sup-
porting the conclusion that the volatility of log price changes of a financial 
asset is a time-dependent stochastic process. In this chapter we discuss 
an approach for describing stochastic processes characterized by a time-
dependent variance (volatility), the ARCH processes introduced by Engle 
in 1982 [50]. ARCH models have been applied to several different areas 
of economics. Examples include (i) means and variances of inflation in the 
UK, (ii) stock returns, (iii) interest rates, and (iv) foreign exchange rates. 
ARCH models are widely studied in economics and finance and the lit-
erature is huge. They can also be very attractive for describing physical 
systems. 

ARCH models are simple models able to describe a stochastic process 
which is locally nonstationary but asymptotically stationary. This implies 
that the parameters controlling the conditional probability density function 

 at time t are fluctuating. However, such a 'local' time dependence does 
not prevent the stochastic process from having a well defined asymptotic pdf 
P(x). 

ARCH processes are empirically motivated discrete-time stochastic models 
for which the variance at time t depends, conditionally, on some past values 
of the square value of the random signal itself. ARCH processes define 
classes of stochastic models because each specific model is characterized by 
a given number of control parameters and by a specific form of the pdf, 
called the conditional pdf, of the process generating the random variable at 
time t. 

In this chapter we present some widely used ARCH processes. We focus 
our attention on the shape of the asymptotic probability density function 
and on the scaling properties observed. 

76 



 
Fig. 10.1. Numerical simulation of an ARCH(l) process characterized by the para-
meters  and conditional Gaussian probability density function. 
The time evolution of S(t) (top) and its conditional variance (bottom) are shown. 

10.1 ARCH processes 

A stochastic process with autoregressive conditional heteroskedasticity, namely 
a stochastic process with 'nonconstant variances conditional on the past, but 
constant unconditional variances' [50] is an ARCH(p) process defined by 
the equation 

       (10.1) 

Here  are positive variables and  is a random variable with 
zero mean and variance  characterized by a conditional pdf  Usually 

 is taken to be a Gaussian pdf, but other choices are possible. 
By varying the number p of terms in Eq. (10.1), one can control the amount 

and the nature of the memory of the variance Moreover, the stochastic 
nature of the ARCH(p) process is also changed by changing the form of the 
conditional pdf  An ARCH(p) process is completely determined only 

when p and the shape of  are defined. 
We consider the simplest ARCH process, namely the ARCH(l) process 

with Gaussian conditional pdf. The ARCH(l) process is defined by 

          (10.2) 
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Fig. 10.2. Numerical simulations of ARCH(l) processes with the same unconditional 
variance ( ) and different values of the unconditional kurtosis. Top:  

 (so  by Eq. (10.6)). Middle:(so ). Bottom:  

 (so ). 

and 

          

(10.3) 

In Fig. 10.1 we show the time evolution of S(t) obtained by simulating an 
ARCH(l) process with parameters  and  In the same 
figure we also show the time evolution of the variance  Although the 
conditional pdf is chosen to be Gaussian, the asymptotic pdf presents a 
given degree of leptokurtosis because the variance  of the conditional 
pdf is itself a fluctuating random process. 

An ARCH(l) process with Gaussian conditional pdf is characterized by a 
finite 'unconditional' variance (the variance observed on a long time interval), 
provided 

       (10.4) 

The value of the variance is 

          
(10.5) 
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Fig. 10.3. Successive increments of the simulations shown in Fig. 10.2. Events outside 
three standard deviations are almost absent when (top), are present when 

 (middle), and are more intense when  (bottom). 

The kurtosis of the ARCH(l) process is [50] 

        

(10.6) 

which is finite if 

          
(10.7) 

Hence, by varying  and  it is possible to obtain stochastic 
processes with the same unconditional variance but with different values 
of the kurtosis. 

Next we consider three examples of ARCH(l) time series having the same 
unconditional variance but different values of the kurtosis;  for all 
examples, while the kurtosisincreases from 3 (Wiener process) to 23. In 
Fig. 10.2 we show the S(t) time series, while in Fig. 10.3 we show the x 
time series. By inspecting Fig. 10.2 we note that the 'territory visited' in the 
ARCH(l) process increases for large (despite the fact that  for all 
three examples); corresponding to this observation, we see in Fig. 10.3 that 
jumps of size larger than 3 times the unconditional variance are observed 
when  From the shape of the asymptotic pdfs (Fig. 10.4), we note the 
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Fig. 10.4. Probability density function of the successive increments shown in Fig. 10.3. 
The pdf is Gaussian when  (top) and is leptokurtic whenor or 23 (middle 
and bottom). 

higher degree of leptokurtosis when When  and the 
unconditional pdf P(x) is Gaussian. For , the exact shape of the 

ARCH(l) pdf is unknown. 

10.2 GARCH processes 

In many applications using the linear ARCH(p) model, a large value of p is 
required. This usually poses some problems in the optimal determination of 
the p + 1 parameters  which best describe the time evolution of 

a given economic time series. The overcoming of this difficulty leads to the 
introduction of generalized ARCH processes, called GARCH(p, q) processes, 
introduced by Bollerslev in 1986 [20]. This class of stochastic processes is 
defined by the relation 

   
(10.8) 

where  are control parameters. Here  is a random 
variable with zero mean and variance  and is characterized by a 
conditional pdf which is arbitrary but is often chosen to be Gaussian. 
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We consider the simplest GARCH process, namely the GARCH(1,1) 
process, with Gaussian conditional pdf. It can be shown [9] that 

         
(10.9) 

and the kurtosis is given by the relation 

       

(10.10) 

10.3 Statistical properties of ARCH/GARCH processes 

For the sake of simplicity, in this section we present the statistical properties 
of the GARCH(1,1) process with Gaussian conditional pdf. The properties 
of the more general GARCH(p, q) processes with Gaussian conditional pdf 
are essentially the same [20]. 

First we discuss the class of stochastic processes to which GARCH(1,1) 
belongs. The GARCH(1,1) process is defined by 

        
(10.11) 

The random variable  can be written in term of  by defining 

           (10.12) 

where  is an i.i.d. random process with zero mean, and unit variance. 
Under the assumption of Gaussian conditional pdf,  is Gaussian. By 
using Eq. (10.12), one can rewrite Eq. (10.11) as 

        (10.13) 

Equation (10.13) shows that GARCH(1,1) and, more generally, GARCH(p, q) 
processes are essentially random multiplicative processes. The autocorrela-
tion function of the random variable  is proportional to a 
delta function  

What about the higher-order correlation of the process? Following Boller-
slev [20], we will see that in a GARCH(1,1) process,  is a Markovian 
random variable characterized by the time scale  Hence a 
GARCH(1,1) process provides an interesting example of a stochastic process 

 that is second-order uncorrelated, but is higher-order correlated. 

Let us first recall that a GARCH(1,1) process may be written as 

      (10.14) 
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where 

        (10.15) 

It is worth noting that is serially uncorrelated with zero mean. This form 
of writing the GARCH(1,1) process shows that the GARCH(1,1) process 
can be interpreted as an autoregressive moving average (ARMA) process in 

 This formulation is also useful in determining the autocovariance of  
which is defined as 

      (10.16) 

For a GARCH(1,1) process defined as in Eq. (10.11) with a finite fourth-
order moment, by using Eq. (10.14) and Eq. (10.15) it is possible to conclude 
that 

      
(10.17) 

For the most general case of a GARCH(p, q) process, it is also possible to 
write down the relation between the autocovariance of  and  
(time lag of n steps) with the autocovariance of  and  (time lag of n 
— i steps). This general relation is [20] 

       
(10.18) 

where  and 

          (10.19) 

From Eq. (10.17), we see that the autocovariance of the square of the process 

 is described by the exponential form 

        (10.20) 

where  and , and . In a GARCH(1,1) 
process the square of the process  is a Markovian process 
characterized by the time scale 

The Markovian character of  is also observed in ARCH processes. 
For example, the characteristic time scale of the autocovariance of  
is  in the ARCH(l) process. A difference in the temporal  

memory of ARCH(l) and GARCH(1,1) processes is detected by com-
paring the characteristic time scale for these two processes. Let us con-
sider ARCH(l) and GARCH(1,1) processes with finite second and fourth 
moments. The requirement of the finiteness of the fourth moment implies 
that  must be lower than  (see Eq. (10.7)) for the ARCH(l) pro- 

cess whereas the corresponding GARCH(1,1) process with finite fourth 
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moment  can be character ized by va lues o f   and  such as 
 is close to 1 provided that  is larger than approximately 0.7 

(the conditions for finiteness or infiniteness of moments for a 
GARCH(1,1) process can be found in Ref. [20]). Hence an ARCH(l) 
process with finite fourth moment may be characterized by a maximal 
characteristic time scale in the square of fluctuations of approximately 

 time units whereas in the GARCH(1,1) process 
with finite fourth moment we can observe a characteristic time scale 
longer than hundreds of time units, the only condition being that the"  
parameter must be larger than 0.7. 

In previous chapters, we have shown that there is empirical evidence that 
the variance of returns is characterized by a power-law correlation. Since 
the correlation of the square of a GARCH(1,1) process is exponential, a 
GARCH(1,1) process cannot be used to describe this empirically observed 
phenomenon properly. In spite of this limitation, GARCH(1,1) processes 
are widely used to model financial time series. The limitation is overcome by 
using values of B close to one in empirical analysis [1]. Values of B close to 
one imply a time memory that could be of the order of months. The model's 
values for the and parameters - obtained in the period 1963 to 
1986 by analyzing the daily data of stoqk prices of the Center for Research 
in Security Prices (CRSP) – give 0.07906 and 0.90501 [1]. The 
sum  is then 0.98407, which implies a memory of  
corresponding to 62.3 trading days. Such a long time memory in the 
square of returns mimics in an approximate way the power-law correlation 
of this variable in a finite time window. 

Another key aspect of the statistical properties of the GARCH(1,1) process 
is its behavior for different time horizons. For finite variance GARCH(1,1) 
processes, the central limit theorem applies and one expects that the tempo-
ral aggregation of a GARCH(1,1) process progressively implies a decrease 
in the leptokurtosis of the process. Drost and Nijman [43] carried out a 
quantitative study of this problem. They were able to show that a 'tempo-
ral aggregation' of a GARCH(1,1) process is still a GARCH(1,1) process, 
but it is characterized by different control parameters. Specifically, when a 
GARCH(1,1)  is 'aggregated' as 

          

(10.21) 

It can be shown that is also a GARCH(1,1) process characterized by 



Fig. 10.5. Aggregation of GARCH(1,1). Marks indicate the parameters  and  
of a GARCH(1,1) model generated by doubling or halving the sampling interval. 
The starting GARCH(1,1) processes are characterized by = 0.8 and = 0.05, 
0.1, 0.15, 0.19, 0.199, and 0.1999 (from bottom to top, respectively). After Drost and 
Nijman [43]. 

the control parameters [43] 

         

(10.22) 

where  is the solution of the quadratic equation 

   
(10.23) 

In Fig.  10.5 we show the behavior of  the parameters  and 

 for  the temporal aggregation of GARCH(1,1) processes obtained by 
repeatedly doubling or halving the time interval for GARCH(1,1) processes, 
for a range of parameter values. When the time interval is doubled, the 
parameters move to lower values of  while  may increase or 
decrease, depending on the starting values of  and  However, 
in any case (see the left region of Fig. 10.5), the attractor for all the 
GARCH(1,1) processes with finite variance is the process characterized 
by =0,  = 0 - namely a Gaussian process. 
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Fig. 10.6. Comparison of the empirical pdf measured from high-frequency S&P 500 data 
with = 1 minute with the unconditional pdf of a GARCH (1,1) process characterized 
by  and = 0.9 (Gaussian conditional probability 
density). The agreement is good for more than four decades. 

In summary, for any GARCH(1,1) process, temporal aggregation implies 
that the unconditional pdf of the process presents a degree of leptokurtosis 
that decreases when the time horizon between the variables increases. Unfor-
tunately, the knowledge of the behavior of  and  for any 
value of m is not sufficient to determine the behavior of the probability of 
return to the origin of a GARCH(1,1) process. We investigate this function 
numerically in the next section, where we compare empirical findings and 
GARCH(1,1) simulations. 

10.4 The GARCH(1,1) and empirical observations 

In this section we compare empirical investigations of the S&P 500 high-
frequency data with simulations of a GARCH(1,1) process. Specifically we 
compare the pdf and the scaling properties of our empirical analysis with 
the pdf and the scaling properties of a GARCH(1,1) process character-
ized by the same variance and kurtosis measured in the time series of the 
S&P 500. 
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Fig. 10.7. Scaling properties of a GARCH(1,1) stochastic process (black squares), 
with the same control parameters as in Fig. 10.6. The scaling of the GARCH(1,1) 
process fails to describe the empirical behavior observed in the S&P 500 high-
frequency data (which are also shown for comparison as white circles). Note that 
the slope 0.53 is extremely close to the Gaussian value of 0.5, indicating that the 
scaling is close to the scaling of a Gaussian process. 

The GARCH(1,1) process has three control parameters,  and  

We select the parameters that best describe the data by ensuring that the 
variance and the kurtosis of the GARCH(1,1) process equals the measured 
values. In this way, we determine the values of the two parameters  and 

 The value of the third parameter,  is chosen to be 0.9, because this 
value is often used in the literature [1]. 

From the empirical analysis of the S&P 500 high frequency data, we 
find for = 1 minute that = 0.00257 and  Using Eqs. (10.9) 
and (10.10) we obtain  and = 0.09105. 

By properly choosing the control parameters  and GARCH(1,1) 
stochastic processes with Gaussian conditional pdfs model quite well the 
short-time leptokurtic pdf of price changes. In Fig. 10.6, we show the price 
change distribution of the S&P 500 together with the distribution observed 
for the GARCH(1,1) process. The agreement is quite good. 

The fact that the GARCH(1,1) process describes well the = 1 minute 
pdf does not ensure that the same process describes well the stochastic 
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dynamics of the empirical data for any time horizon  Hence an important 
question to be answered is whether the overall dynamics of high-frequency 
price changes are well described by a GARCH(1,1) process. To describe 
the dynamics of price changes in a complete way, in addition to pdf of 
price changes at a given time horizon, the scaling properties of price change 
pdfs need to be considered also. What about the scaling properties of 
GARCH(1,1) stochastic processes? A theoretical answer at the moment does 
not exist; however, indications can be obtained by performing numerical 
simulations of GARCH processes. 

Figure 10.7 shows the scaling property of the probability of return to 
the origin for a GARCH(1,1) process with conditional Gaussian pdf for 
the same control parameters as those used to obtain the pdf of Fig. 10.6. 
The empirical behavior observed in the S&P 500 high-frequency data is 
also shown for comparison. Although the GARCH(1,1) process is able to 
describe the = 1 minute pdf, it fails to describe the scaling properties 
of pdfs for all time horizons using the same control parameters. Thus to 
test the effectiveness of a model, it is not sufficient to compare distributions 
at a single time horizon. 

10.5 Summary 

ARCH and GARCH processes are extremely interesting classes of stochastic 
processes. They are widely used in finance, and may soon be used in other 
disciplines. Concerning high-frequency stock market data, ARCH/GARCH 
processes with Gaussian conditional pdf are able to describe the pdf of price 
changes at a given time horizon, but fail to describe properly the scaling 
properties of pdfs at different time horizons. 

Open questions concerning this class of stochastic processes include: 

(i) What is the form of the asymptotic pdf of the ARCH and GARCH pro-
cesses characterized by a given conditional probability density function 

 
? 

(ii) What is the nature of the scaling property of the probability of return 
to the origin as a function of the values of the control parameters and 
of the shape of the conditional probability density function? 
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Financial markets and turbulence 

One of the objections often leveled at the approach of physicists working 
with economic systems is that this kind of activity cannot be a branch of 
physics because the 'equation of motion of the process' is unknown. But if 
this criterion - requiring that the Hamiltonian of the process be known or 
obtainable - were to be applied across the board, several fruitful current 
research fields in physics would be disqualified, e.g., the modeling of friction 
and many studies in the area of granular matter. Moreover, a number of 
problems in physics that are described by a well defined equation - such 
as turbulence [61] - are not analytically solvable, even with sophisticated 
mathematical and physical tools. 

On a qualitative level, turbulence and financial markets are attractively 
similar. For example, in turbulence, one injects energy at a large scale by, 
e.g., stirring a bucket of water, and then one observes the manner in which 
the energy is transferred to successively smaller scales. In financial systems 
'information' can be injected into the system on a large scale and the reaction 
to this information is transferred to smaller scales - down to individual 
investors. Indeed, the word 'turbulent' has come into common parlance since 
price fluctuations in finance qualitatively resemble velocity fluctuations in 
turbulence. Is this qualitative parallel useful on a quantitative level, such 
that our understanding of turbulence might be relevant to understanding 
price fluctuations? 

In this chapter, we will discuss fully developed turbulence in parallel 
with the stochastic modeling of stock prices. Our aim is to show that cross-
fertilization between the two disciplines might be useful, not that the 
turbulence analogy is quantitatively correct. We shall find that the formal 
correspondence between turbulence and financial systems is not supported 
by quantitative calculations. 

88 
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11.1 Turbulence 

Turbulence is a well defined but unsolved physical problem which is today 
one of the great challenges in physics. Among the approaches that have been 
tried are analytical approaches, scaling arguments based on dimensional 
analysis, statistical modeling, and numerical simulations. 

Consider a simple system that exhibits turbulence, a fluid of kinematic 
viscosity v flowing with velocity V in a pipe of diameter L. The control 
parameter whose value determines the 'complexity' of this flowing fluid is 
the Reynolds number, 

           
(11.1) 

When Re reaches a particular threshold value, the 'complexities of the fluid 
explode' as it suddenly becomes turbulent. 

The equations describing the time evolution of an incompressible fluid 
have been known since Navier's work was published in 1823 [128], which 
led to what are now called the Navier-Stokes equations, 

    
(11.2) 

and 

          (11.3) 

Here V(r ,t) is the velocity vector at position r  and time t, and P is the 
pressure. The Navier-Stokes equations characterize completely 'fully devel-
oped turbulence', a technical term indicating turbulence at a high Reynolds 
number. The analytical solution of (11.2) and (11.3) has proved impossible, 
and even numerical solutions are impossible for very large values of Re. 

In 1941, a breakthrough in the description of fully developed turbulence 
was achieved by Kolmogorov [82-84]. He showed that in the limit of infinite 
Reynolds numbers, the mean square velocity increment 

       (11.4) 

behaves approximately as 

         (11.5) 

in the inertial range, where the dimensions are smaller than the overall 
dimension within which the fluid's turbulent behavior occurs and larger 
than the typical length below which kinetic energy is dissipated into heat. 
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Kolmogorov's theory describes well the second-order  and pro- 
vides the exact relation for the third-order  moments observed in 

experiments, but fails to describe higher moments. 

In fully developed turbulence, velocity fluctuations are characterized by 
an intermittent behavior, which is reflected in the leptokurtic nature of the 
pdf of velocity increments. Kolmogorov theory is not able to describe the 
intermittent behavior of velocity increments. In the experimental studies 
of fully developed turbulence, experimentalists usually measure the velocity 
V(t) as a function of time. From this time series, the spatial dependence of 
the velocity  can be obtained by making the Taylor hypothesis [124]. 

11.2 Parallel analysis of price dynamics and fluid velocity 

Turbulence displays both analogies with and differences from the time evo-
lution of prices in a financial market. To see this, we discuss the results 
of a parallel analysis [112] of two systems, the time evolution of the S&P 
500 index and the velocity of a turbulent fluid at high Reynolds number. 
Both processes display intermittency and non-Gaussian features at short 
time intervals. Both processes are nonstationary on short time scales, but are 
asymptotically stationary. A better understanding and modeling of stochastic 
processes that are only asymptotically stationary is of potential utility to 
both fields. 

Specifically, we consider the statistical properties of (i) the S&P 500 high-
frequency time series recorded during the six-year period 1984 to 1989 and 
(ii) the wind velocity recorded in the atmospheric surface layer about 6 m 
above a wheat canopy in the Connecticut Agricultural Research Station. 
Similarities and differences are already apparent by direct inspection of the 
time evolutions of the index and the velocity of the fluid, as well as the 
successive measurements of both time series. 

First, we compare the time evolution of the S&P 500 index (Fig. 11.1a) and 
the time evolution of fluid velocity (Fig. 11.2a). We also display one-hour 
changes in the S&P 500 index (Fig. 11.1b) and fluid velocity changes at 
the highest sampling rate (Fig. 11.2b). By analyzing the temporal evolution 
of successive increments in both signals, we can obtain useful information 
concerning the statistical properties of the two signals. A quantitative analysis 
can be performed by considering the volatility for financial data, and the 
square root of the second moment of velocity fluctuations for turbulence data. 

 K. R. Sreenivasan kindly provided the data on fully developed turbulence. 



 

Fig. 11.1. (a) Time evolution of the S&P 500, sampled with a time resolution 
 = 1 h, over the period January 1984 to December 1989. (b) Hourly variations of 

the S&P 500 index in the 6-year period January 1984 to December 1989. 

Both sets of data are seen in Fig. 11.3 to be well described by power laws. 

          (11.6) 

but with quite different values of the exponent v. Index changes are essentially 
uncorrelated (the observed value of = 0.53 is extremely close to 1/2, the 
value expected for uncorrelated changes), while velocity changes are anti-
correlated ( = 0.33 < 1/2). Thus the quantitative difference between the two 
forms of behavior implies that the nature of the time correlation between 
two successive changes must be different for the two processes. Indeed, the 
time evolutions of the index and the velocity in Figs. 11.1a and 11.2a look 
quite different, since there is a high degree of anticorrelation in the 
velocity. This difference is also visually apparent, from Fig. 11.2b, which is 
approximately symmetric about the abscissa, whereas Fig. 11.1b is not. 

This difference between the two stochastic processes is also observable in 
the power spectra of the index and velocity time series (see Fig. 11.4). When 
both obey Eq. (6.21) over several frequency decades, the exponents  are 
quite different. For the S&P 500 index, = 1.98, so the spectral density 

is essentially identical to the power spectrum of an uncorrelated random 
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Fig. 11.2. Time evolution of the fluid velocity in fully developed turbulence. (a) 
Time evolution of the wind velocity recorded in the atmosphere at extremely high 
Reynolds number; the Taylor microscale Reynolds number is of the order of 1,500. 
The time units are given in arbitrary units. (b) Velocity differences of the time series 
given in (a). Adapted from [113]. 

process ( ). For the velocity time series,  in the inertial range 
and  in the dissipative range. 

Ghashghaie et al. [64] have proposed a formal analogy between the vel-
ocity of a turbulent fluid and the currency exchange rate in the foreign 
exchange market. They supported their conclusion by observing that when 
measurements are made at different time horizons  the shapes of the 
pdf of price increments in the foreign exchange market and the pdf of 
velocity increments in fully developed turbulence both change. Specifically, 
the shapes of both pdfs display leptokurtic profiles at short time horizons. 
However, the parallel analysis of the two phenomena [112,113] shows that 
the time correlation is completely different in the two systems (Fig. 11.4). 
Moreover, stochastic processes such as the TLF and the GARCH(1,1) 
processes also describe a temporal evolution of the pdf of the increments 
which evolves from a leptokurtic to a Gaussian shape, so such behavior is 
not specific to the velocity fluctuations of a fully turbulent fluid. 

To detect the degree of similarity between velocity fluctuations and index 
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Fig. 11.3. (a) Standard deviation  of the probability distribution P(Z) charac- 
terizing the increments  plotted double logarithmically as a function of  for 
the S&P 500 time series. After a time interval of superdiffusive behavior (0 < < 15 
minutes), a diffusive behavior close to the one expected for a random process with 
uncorrelated increments is observed; the measured diffusion exponent 0.53 (the 
slope of the solid line) is close to the theoretical value 1/2. (b) Standard deviation 

 of the probability distribution P(U) characterizing the velocity increments 
 plotted double logarithmically as a function offor the 

velocity difference time series in turbulence. After a time interval of superdiffusive 
behavior (0 < < 10), a subdiffusive behavior close to the one expected for a 
fluid in the inertial range is observed. In fact, the measured diffusion exponent 0.33 
(the slope of the solid line) is close to the theoretical value 1/3. Adapted from 
[112]. 

changes, consider the probability of return to the origin, (U = 0), as a 
function of  for a turbulent fluid, obtained by following the same 
procedure used to obtain Fig. 9.3. We display in Fig. 11.5 the measured 

(U = 0). We also show the estimated (U = 0) obtained starting from 
the measured variance of velocity changes  and assuming a Gaussian 
shape for the distribution ( (U = 0) = ). The difference 
between each pair of points is a measure of the ratio  and quantifies 
the degree of non-Gaussian behavior of the velocity differences. We note 
that the turbulence process becomes increasingly Gaussian as the time 
interval increases, but we do not observe any scaling regime. 
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Fig. 11.4. (a) Spectral density of the S&P 500 time series. The  power-law 
behavior expected for a random process with increments that are pairwise 
independent is observed over a frequency interval of more than four orders of 
magnitude. (b) Spectral density of the velocity time series. The  inertial range 
(low frequency) and the dissipative range (high frequency) are clearly observed. 
Adapted from [112]. 

11.3 Scaling in turbulence and in financial markets 

The concept of scaling is used in a number of areas in science, emerging when 
an investigated process does not exhibit a typical scale. A power-law behavior 
in the variance of velocity measurements in turbulence (see Eq. (11.5)) is an 
example of a scaling behavior, as is the power-law behavior of volatility 
at different time horizons in financial markets (see Eq. (11.6)). The reasons 
underlying the two scaling behaviors are, however, quite different. In the 
turbulence case, the 2/3 exponent of the distance  is a direct 
consequence of the fact that, in the inertial range, the statistical properties 
of velocity fluctuations are uniquely and universally determined by the 
scale  and by the mean energy dissipation rate per unit mass  

Next we show that dimensional consistency requires that the mean square 
velocity increment assumes the form 

         (11.7) 

where C is a dimensionless constant. This equation is the only one possi- 
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Fig. 11.5. Measured probability of return to the origin of the velocity of a turbulent 
fluid. Probability of return to the origin P(0) (open circles) and probability of return 
assuming a Gaussian shape  (filled squares) are shown as functions of the 
time sampling interval  Again, the two measured quantities differ in the 
full interval, implying that the profile of the PDF must be non-Gaussian. However, 
in this case, a single scaling power-law behavior does not exist for the entire time 
interval spanning three orders of magnitude. The slope of the best linear fit (which 
is of quite poor quality) is —0.590.11, while a Gaussian distribution would have 
slope -0.5. Adapted from [112]. 

ble because the energy dissipation rate per unit mass has the dimensions 

 In fact, if we define a to be the exponent of  and b to be 
the exponent of  in Eq. (11.7), then dimensional consistency requires that 

         
(11.8) 

where the equality indicates that both sides of the equation have the same 
dimension. This condition is satisfied by equating powers of L and T, 

          
(11.9) 

Hence a = 2/3 and b = 2/3. 
Hence Kolmogorov's law (11.7) is directly related to the observation that 

the mean energy dissipation rate is the only relevant quantity in the inertial 
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range, and to the requirement of dimensional consistency. In fact, (11.7) 
loses its validity when other observables become relevant, such as occurs in 
two-dimensional turbulence, in which there is vorticity conservation. 

Note that the scaling properties observed in a stochastic process for the 
variance at different time horizons and for the probability of return to the 
origin need not be related. In certain specific (and common) cases they are 
related, e.g., in Gaussian or fractional Brownian motion stochastic processes. 
But they are not related 

• in turbulent dynamics, where scaling is present in the variance of velocity 
changes but not present in the probability of return to the origin, and 

• in truncated Levy flights, where the scaling exponent of the variance 

 is always one, but the scaling exponent of the probability of 
return to the origin is  for time intervals shorter than the crossover 

time. 

For financial markets, the scaling law of the volatility at different time 
horizons has a different origin, being a direct consequence of two properties. 
The first is that successive price changes are uncorrelated, while the second 
is that the variance of price changes is finite. Hence, unlike turbulence, 
the scaling property of volatility is related to statistical properties of the 
underlying stochastic process. Thus we have seen that although scaling can 
be observed in disparate systems, the causes of the scaling need not be the 
same. Indeed, the fundamental reasons that lead to scaling in turbulence 
differ from those that lead to scaling in financial markets. 

11.4 Discussion 

The parallel analysis of velocity fluctuations in turbulence and index (or 
exchange rate) changes in financial markets shows that the same statistical 
methods can be used to investigate systems with known, but unsolvable, 
equations of motion, and systems for which a basic mathematical description 
of the process is still lacking. In the two phenomena we find both 

• similarities: intermittency, non-Gaussian pdf, and gradual convergence to 
a Gaussian attractor in probability, and 

• differences: the pdfs have different shapes in the two systems, and the 
probability of return to the origin shows different behavior - for turbulence 
we do not observe a scaling regime whereas for index changes we observe 
a scaling regime spanning a time interval of more than three orders 
of magnitude. Moreover, velocity fluctuations are anticorrelated whereas 
index (or exchange rate) fluctuations are essentially uncorrelated. 
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A closer inspection of Kolmogorov's theory explains why the observation 
of this difference is not surprising. The 2/3 law for the evolution of the 
variance of velocity fluctuations, Eq. (11.5), is valid only for a system in which 
the dynamical evolution is essentially controlled by the energy dissipation 
rate per unit mass. We do not see any rational reason supporting the idea that 
assets in a financial market should have a dynamical evolution controlled 
by a similar variable. Indeed no analog of the 2/3 law appears to hold for 
price dynamics. 
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Correlation and anticorrelation between stocks 

One of the more appealing ideas in econophysics is that financial markets 
can be described along lines similar to successful descriptions of critical 
phenomena. Critical phenomena are physical phenomena that occur in space 
(real or abstract) and time. We have considered thus far only a single 
asset and its time evolution, but in this chapter we discuss an approach 
based on the simultaneous investigation of several stock-price time series 
belonging to a given portfolio. Indeed, the presence of cross-correlations 
(and anticorrelations) between pairs of stocks has long been known, and 
plays a key role in the theory of selecting the most efficient portfolio of 
financial goods [49,115]. We show how relevant these correlations and 
anticorrelations are by discussing a study devoted to detect the amount of 
synchronization present in the dynamics of a pair of stocks traded in a 
financial market [107]. The specific properties of the covariance matrix of 
stock returns of a given portfolio of stocks have been investigated extensively. 
Also we briefly consider studies that aim (i) to detect the number of economic 
factors affecting the dynamics of stock prices in a given financial market [34, 
154], and (ii) to evaluate the deviations observed between market data and 
the results expected from the theory of random matrices [63,87,134]. 

12.1 Simultaneous dynamics of pairs of stocks 

In financial markets, many stocks are traded simultaneously. One way to 
detect similarities and differences in the synchronous time evolution of a 
pair of stocks is to study the correlation coefficient  between the daily 
logarithmic changes in price of two stocks i and j. Generalizing (5.4), we can 
define for stock i  

        (12.1)  
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SO 

       

(12.2) 

Here  is the daily closure price of stock i at time t, and  is the 
daily change of the logarithm of the price of stock i. The angular brackets 
indicate a time average over all the trading days within the investigated time 
period. With this definition, the correlation coefficient  can assume 
values ranging from —1 to 1, with three special values 

completely correlated changes in stock price, 
uncorrelated changes in stock price, and                  (12.3) 
completely anticorrelated changes in stock price. 

We discuss here an investigation of  carried out for 
two sets of stocks of the New York Stock Exchange [107]. 

(i) The 30 stocks used to compute the Dow-Jones Industrial Average 
(DJIA). (ii) The 500 stocks used to compute the Standard & Poor's 500 
index (S&P 500). 

12.1.1 Dow—Jones Industrial Average portfolio 

For the set of 30 stocks of the DJIA, there are  different 

 All the  are calculated for each investigated time period. Table 12.1 
summarizes the minimum and maximum values of the set of  
From Table 12.1 it is evident that the typical maximum value of  
is above 0.5, so in this portfolio there exist some quite positively correlated 
pairs of stocks. The typical minimum value is close to zero, so the degree of 
maximal anticorrelation is small. 

The largest value of the  0.73, is observed in 1990 for the pair of 
stocks Coca Cola and Procter & Gamble. In Fig. 12.1 the time evolution of 

 is shown for both stocks. From the figure it is evident that the prices 
of the two stocks are remarkably synchronized. 

In Table 12.1 only the minimum and maximum values of  for each 
time interval are listed. Additional information about the behavior of the 
correlation coefficient matrix can be obtained by considering the pdf 

 of the full set of 435 correlation coefficients. In fact,  is a bell-
shaped curve; the average is slowly time-dependent, whereas the standard 
deviation  is almost constant [107]. 
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Table 12.1. The observed minimum and maximum 

values when one measures all values of 

correlation coefficient  in the set of 30 stocks 

of the Dow-Jones Industrial Average [107]. 

 

 

Fig. 12.1. Time evolution of lnY(t) for Coca Cola (bottom curve) and Procter & 
Gamble (top curve) in the year 1990. 

For all 435 pairs of stocks,  changes with time. How long is the char-
acteristic time scale over which strongly correlated pairs of stocks maintain 
their correlated status? Figure 12.2 shows the time evolution of ln Y(t) for 
Coca Cola and Procter & Gamble for the five calendar years investigated. 

To quantify the relative value of the correlation coefficient for a pair of 



 

Fig. 12.2. Time evolution of lnY(t) for Coca Cola and Procter & Gamble for the 
five calendar years investigated, 1990 to 1994. The value of  is 0.73, 0.47, 
0.28, 0.33, and 0.39 during the five years from 1990 through 1994, respectively, 
whereas  is 2.62, 1.73, 1.25, 2.44, and 2.27, respectively, during the same five 
years. 

stocks, we define 

         
(12.4) 

to be the deviation of  from its average value using the standard 
deviation  as the unit of measurement, where  is the average of  
over all pairs of stocks ij in the portfolio analyzed. For the case where i 
and j denote Coca Cola and Procter & Gamble,  for all five years 
studied, consistent with the possibility that, for this pair of stocks, the 
correlation coefficient varies with a characteristic time scale of years. 

12.1.2 S&P 500 portfolio 

For the portfolio of stocks used to compute the S&P 500 index, there are 
(500 x 499)/2 = 124,750 different  - many more than for the 30 stocks 
included in the DJIA. Table 12.2 lists the minimum and maximum values 
of  measured for the S&P 500. Consistent with the results obtained 
for the DJIA portfolio, we observe pairs of stocks characterized by a high de- 
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Table 12.2. The observed minimum and maximum 
values for the set of 500 stocks of the S&P 500. 

   

Time period Minimum Maximum 

1990 -0.30 0.81 
1991 -0.29 0.74 
1992 -0.25 0.73 
1993 -0.27 0.81 
1994 -0.25 0.82 

 

Fig. 12.3. Correlation coefficients for the S&P 500:is shown for each of the  

five calendar years 1990 to 1994. 

gree of synchronization [107]. The most prominent case is observed in 1994, 
between Homestake Mining and Placer Dome, Inc. for which — 0.82. 
Anticorrelated stocks are also present but, as for the DJIA, the degree of 
anticorrelation is less than the degree of correlation. The strongest anticor-
relation observed - in 1990, between Barrick Gold and Nynex Corporation 
– is = -0.30. 

Since the total number of correlation coefficients  is much larger than 
for the DJIA, the  pdf has a larger statistical reliability. In Fig. 12.3, 
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 is shown for each of the five calendar years. The figure demonstrates, 
as for the DJIA case, that the center of the pdf is slowly moving in time, 
whereas the width is approximately constant. 

12.2 Statistical properties of correlation matrices 

The statistical properties of the correlation matrix of returns have been 
investigated in both the economics and the physics literature, but with 
differing goals. In economics research, a main goal is to determine the 
number of k factors present in a financial market using the arbitrage pricing 
theory originally developed by Ross [139]. In this theory, an economic factor 
is a factor that is common to the set of stocks under consideration; n one-
period asset returns  are generated by a linear stochastic process with k 
factors. Specifically, 

         (12.5) 

where  represents the risk-free and factor-risk premia mean 
returns, B the  matrix of factor weights,  the time series of the k 
factor affecting the asset returns, and  an asset-specific risk. It is 
assumed that  and  have zero means, and are characterized by 
covariance when  and  for any i. 

The statistical properties of the eigenvalues of a random matrix are well 
documented [39,69,119]. Within the framework of the arbitrage pricing 
theory, the existence of eigenvalues dominating the covariance matrix has 
been interpreted as evidence of a small number of economic k factors driving 
the stochastic dynamics of asset returns in a financial market. Empirical 
analysis seems to suggest that only a few k factors exist, and that there is 
strong evidence for the existence of a prominent k factor among them [24]. 

The empirical analyses pursued by physicists also detect a prominent eigen-
value far larger than - and several other eigenvalues slightly larger than -
what is expected from random matrix theory [87,134]. Physicists hope to use 
the theoretical framework of theories such as Anderson localization theory 
and spin glass theory to interpret these findings. For example, the Anderson 
localization theory motivates the monitoring of the lowest eigenvalues, which 
are associated with eigenvectors that turn out to be controlled by a number 
of independent elements smaller than for the typical eigenvector [134]. 

12.3 Discussion 

Analyses of the correlation coefficient and of the covariance matrices of asset 
returns In financial markets show that synchronization between pairs of assets 
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is present in the market. It is plausible that the presence of a relevant degree 
of cross-correlation between stocks needs to be taken into account in the 
modeling of financial markets. Evidence of the presence of a small number 
of economic factors driving a large number of assets is also detected. These 
findings are not inconsistent with the efficient market hypothesis because 
synchronization between assets and the existence of economic factors do 
not directly imply the temporal predictability of future asset prices. Cross-
correlations after a given time lag, and a precise knowledge of the nature of 
factors and their dynamics, if present, would provide arbitrage opportunities 
and deviation from market efficiency. Indeed, one of these deviations has 
been detected by observing that returns of large stocks lead those of smaller 
stocks [97]. 



13 

Taxonomy of a stock portfolio 

In Chapter 12, we introduced the notion of a correlation coefficient to 
quantify the degree of synchronization of stock i and stock j. In this chapter, 
we will see that this concept is useful in two different ways: (i) it allows 
us to define a metric that provides the relative distance between the stocks 
of a given portfolio, and (ii) it provides a method for extracting economic 
information stored in the stock-price time series. 

13.1 Distance between stocks 

A method of determining a distance between stocks i and j evolving in time 
in a synchronous fashion is the following. Let us consider 

         

(13.1) 

where  the logarithmic price difference of stock i, is given by Eq. 
(12.1). Hence  is the same variable subtracted from its mean, and divided 
by its standard deviation computed over a given time interval. Let us 
consider the n records of  present in the same time interval as the 
components  of an n-dimensional vector  The Euclidean 
distance  between vectors  and  is obtainable from the 
Pythagorean relation 

       
(13.2) 

The vector  has unit length because, from definition (13.1), 

          
(13.3) 
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Hence Eq. (13.2) can be rewritten as 

    

(13.4) 

The sum on the right side of Eq. (13.4),  coincides with  (see 
Eq. (12.2)). Hence Eq. (13.4) leads to (D. Sornette, private communication) 

        
(13.5) 

Because Eq. (13.2) defines a Euclidean distance, the following three prop-
erties must hold: 

Property (i) :  

Property (ii) :                               (13.6) 

Property (iii) :  

Properties (i) and (ii) are easily verified because  implies  

While  implies  The validity of Property (iii), the 'triangular 

inequality', relies on the equivalence of Eq. (13.2) and Eq. (13.5). Thus the 
quantity  fulfills all three properties that must be satisfied by a metric 
distance. 

The introduction of a distance between a synchronous evolving pair of 
assets was first proposed in [108], where a distance numerically verifying 
properties (i)-(iii) was used. The knowledge of the distance matrix between n 
objects is customarily used to decompose the set of n objects into subsets of 
closely related objects. To obtain such a taxonomy, an additional hypothesis 
about the topological space of n objects needs to be formed, and this is the 
subject of the next section. 

13.2 Ultrametric spaces 

Consider a specific example, a portfolio of n = 6 stocks: Chevron (CHV), 
General Electric (GE), Coca Cola (KO), Procter & Gamble (PG), Texaco 
(TX), and Exxon (XON), where in parentheses we identify their tick symbols. 
Starting from the measured values ofover the calendar year 1990, we 
calculate the distance matrix  
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 CHV GE KO PG TX XON 

CHV 0 1.15 1.18 1.15 0.84 0.89 

GE  0 0.86 0.89 1.26 1.16 
KO    0 0.74 1.27 1.11 
PG    0 1.26 1.10 
TX     0 0.94 

XON       0 

We make the working hypothesis that a useful space for linking n stocks 
is an ultrametric space. This hypothesis is motivated a posteriori by the fact 
that the associated taxonomy is meaningful from an economic point of view. 
An ultrametric space is a space in which the distance between objects is an 
ultrametric distance. An ultrametric distance  must satisfy the first two 
properties of a metric distance, (i)  and (ii)  

while the usual triangular inequality of Eq. (13.6) is replaced by a stronger 
inequality, called an ultrametric inequality, 

         
(13.7) 

Ultrametric spaces provide a natural way to describe hierarchically structured 
complex systems, since the concept of ultrametricity is directly connected 
to the concept of hierarchy. They are observed in spin glasses [123], the 
archetype of frustrated disordered systems. A good introduction to the 
concept of ultrametricity for the reader with a background in physical 
science is provided by Rammal et al. [138]. 

The general connection between indexed hierarchies and ultrametrics was 
rigorously studied by Benzecri [15]. Provided that a metric distance between 
n objects exists, several ultrametric spaces can be obtained by performing any 
given partition of the set of n objects. Among all the possible ultrametric 
structures associated with the distance metric,  a single one 
emerges owing to its simplicity and remarkable properties. This is the 
subdominant ultrametric. In the presence of a metric space in which n objects 
are linked together, the subdominant ultrametric can be obtained by 
determining the minimal-spanning tree (MST) connecting the n objects. The 
MST is a concept in graph theory [157]. In a connected weighted graph of n 
objects, the MST is a tree having n — 1 edges that minimize the sum of the 
edge distances. The subdominant ultrametric space associated with a 
metric space provides a well defined topological arrangement that has 
associated a unique indexed hierarchy. Hence the investigation of the 
subdominant ultrametrics allows one to determine in a unique way an 
indexed hierarchy of the n objects 



Fig. 13.1. (a) MST and (b) indexed hierarchical tree obtained for the example of six 
firms, identified by their tick symbols CHV, GE, KO, PG, TX and XON. 

considered. The method of constructing a MST linking a set of n objects, 
known as Kruskal's algorithm [130,157], is simple and direct. 

The MST associated with the Euclidean matrix can be obtained as follows. 
First find the pair of stocks separated by the smallest distance: KO and PG 
(d = 0.74). Then find the pair of stocks with the next-smallest distance: CHV 
and TX (d = 0.84). We now have two separate regions in the MST. If we 
continue, we find next the KO and GE pair (d = 0.86). At this point, the 
regions of the MST are GE-KO-PG and CHV-TX. The next pairs of closest 
stocks are GE-PG and CHV-XON (d = 0.89). The connection GE-PG is 
not considered because both stocks have already been sorted, while XON is 
linked to CHV in the MST. Now the two regions are XON-CHV-TX and 
GE-KO-PG. The smallest distance connecting the two regions is observed 
for PG-XON (d = 1.10). This PG-XON link completes the MST. 

Using this procedure, it is possible to obtain the MST shown in Fig. 13.1a. 
In Fig. 13.1b we show the indexed hierarchical tree associated with the MST. 
The tree shows clearly that in this portfolio there are two groups of stocks. 
In the first group are the oil companies (CHV, TX, and XON), and in the 
second are companies selling consumer products or consumer services (KO, 
PG, and GE). If we start from the indexed hierarchical tree, determining the 
matrix of the ultrametric distance  is straightforward. In our example, 
the  matrix is 
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Fig. 13.2. Indexed hierarchical trees obtained during the calendar years from 1991 
to 1994 for the portfolio of six firms (CHV, GE, KO, PG, TX, and XON). 
 

 CHV GE KO PG TX XON 

CHV 0 1.10 1.10 1.10 0.84 0.89 

GE  0 0.86 0.86 1.10 1.10 

KO   0 0.74 1.10 1.10 

PG    0 1.10 1.10 

TX     0 0.89 

XON      0 

Each element in the  matrix is equal to the maximal distance 
between two successive objects encountered when moving from the 
starting object to the ending object over the shortest path of the MST 
connecting the two objects. In contrast to the  matrix, the number of 
different element values in the ultrametric distance matrix  cannot 
exceed n — 1, as is confirmed by the present example. 

In Chapter 12, we showed that the time evolution ofcan be char-
acterized by slow dynamics over a time scale of years. However,  is a 
statistical quantity and it is relevant to consider how stable a hierarchical 
structure can be (Fig. 13.1b). In Fig. 13.2 we show the indexed hierarchical 
trees obtained in the calendar years from 1991 to 1994 for the portfolio of 
six stocks discussed above. 
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Fig. 13.3. (a) MST and (b) indexed hierarchical tree obtained for the DJIA portfolio 
during the time period 7/89 to 10/95. Adapted from [108]. 

The two main clusters observed in 1990 (Fig. 13.1b), CHV-TX-XON 
and GE-PG-KO, are also observed in all the other years. But the value 
of the baseline distance is time-dependent and the internal structure of 
the two clusters varies. For example, in four of the five years the closest 
oil companies are CHV and TX, whereas in 1991 the closest are CHV 
and XON (cf. Figs. 13.1 and 13.2). The most strongly connected consumer 
product companies are KO and PG in 1990 and 1993, GE and KO in 1991, 
and GE and PG in 1994. 
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Fig. 13.4. Main structure of the MST of the S&P 500 portfolio for the time period 
7/89 to 10/95. Adapted from [108]. 

In summary, empirical analyses show that the indexed hierarchical tree is 
time-dependent, but maintains on a time scale of years a basic structure that 
exhibits a meaningful economic taxonomy. 

13.3 Subdominant ultrametric space of a portfolio of stocks 

The procedure outlined above has been used [108] to obtain the ultrametric 
space of two stock portfolios. The first is the set of 30 stocks used to compute 
the Dow-Jones Industrial Average (DJIA) index. Figure 13.3 shows the MST 
obtained for the DJIA portfolio during the time period 7/89 to 10/95, as 
well as the associated indexed hierarchical tree. Three groups of linked 
stocks are seen in this figure. The first group is made up of oil companies 
(CHV, TX, and XON), the second of consumer-product or consumer-service 
companies (PG, KO, GE, MMM, MCD, T, DD, MRK, and JPM), and the 
third of raw-material companies (IP and AA). The taxonomy associated 
with the subdominnant ultrametric of the DJIA portfolio is a meaningful 
economic taxonomy. Notice that this taxonomy is obtained by starting 
from the time series of stock prices, without any assumptions other than 
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the fundamental one - that the subdominant ultrametric well describes the 
reciprocal arrangement of a stock portfolio. 

The second portfolio is the S&P 500. The associated taxonomy is more 
refined in this portfolio than in the DJIA, because the S&P 500 portfolio 
is much larger and because several companies in it have different economic 
activities. The MST, and the associated indexed hierarchical tree, are too 
complex to display here, but Fig. 13.4 shows the main structure of the MST. 
This is obtained by considering only those lines that end in a group of no 
fewer than two stocks. There are 44 groups obtainable using this procedure 
and, in most cases, these groups are homogeneous with respect to their 
industry sector, and often also with respect to their industry subsector [108] 
as specified in the 49th Forbes Annual Report on American Industry. 

13.4 Summary 

In Chapter 2 we discussed a key point in information theory: a time series 
that is not redundant often closely resembles a random process. In this 
chapter, we have seen that is possible to devise strategies that allow us to 
obtain meaningful taxonomies if we start from the synchronous analysis of 
more than one stock-price time series. Specifically, we can retrieve part of 
the economic information stored in the individual stock-price time series if 
we calculate the distance between each pair of stocks in a portfolio, and we 
assume that a subdominant ultrametric space is an appropriate topology. 
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Options in idealized markets 

In the previous chapters we have seen that the dynamics of stock prices is 
a complex subject, and that a definitive model has yet to be constructed. 
The complexity of the entire financial system is even greater. Not only is the 
trading of financial securities complex, but additional sources of complexity 
come from the issuing of financial contracts on those fluctuating financial 
securities. 

An important class of financial contracts is derivatives, a financial product 
whose price depends upon the price of another (often more basic) finan-
cial product [22,45,73,74,122,127]. Examples of derivatives include forward 
contracts, futures, options, and swaps. Derivatives are traded either in over-
the-counter markets or, in a more formalized way, in specialized exchanges. 
In this chapter, we examine the most basic financial contracts and procedures 
for their rational pricing. We consider idealized markets and we discuss the 
underlying hypothesis used in obtaining a rational price for such a contract. 

14.1 Forward contracts 

The simplest derivative is a forward contract. When a forward contract is 
stipulated, one of the parties agrees to buy a given amount of an asset at 
a specified price (called the forward price or the delivery price K) on a 
specified future date (the delivery date T). The other party agrees to sell the 
specified amount of the asset at the delivery price on the delivery date. The 
party agreeing to buy is said to have a long position, and the party agreeing 
to sell is said to have a short position. 

The actual price Y of the underlying financial asset fluctuates, and the 
price Y (T) at the delivery date usually differs from the delivery price specified 
in the forward contract. The payoff is either positive or negative, so whatever 
is gained by one party will be lost by the other (Fig. 14.1). 
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Fig. 14.1. Payoff for each party involved in a forward contract, as a function of the 
price Y(T) at maturity time T, (a) for the short position (party which agrees to sell 
in the future), (b) for the long position (party which agrees to buy in the future). 

14.2 Futures 

A future contract is a forward contract traded on an exchange. This implies 
that the contract is standardized and that the two parties interact through an 
exchange institution, the clearing house. Immediately following the comple-
tion of the trade, the clearing house writes the contracts - one with the buyer 
and one with the seller. The clearing house guarantees that its contracts will 
be executed at the delivery date. 

14.3 Options 

An option is a financial contract that gives the holder the right to exercise 
a given action (buying or selling) on an underlying asset at time T and at 
price K. The price K is called the strike price or the exercise price, and T is 
called the expiration date, the exercise date, or the date of maturity. 

Options can also be characterized by the nature of the period during 
which the option can be exercised. If the option can be exercised only at 
maturity, t = T, it is called a European option. If the option can be exercised 
at any time between the contract initiation at t = 0 and t = T, it is called 
an American option. In this chapter we consider European options. 

There are call options and put options. In a call option, the buyer of 
the option has the right to buy the underlying financial asset at a given 
strike price K at maturity. This right is obtained by paying to the seller 
of the option an amount of money C(Y,t). In a call option there is no 
symmetry between the two parties of the contract. The buyer of the option 
pays money when the contract is issued and acquires thereby a right to be 
exercised in the future, while the seller of the option receives cash immediately 
but faces potential liabilities in the future (Fig. 14.2). In a put option, the 
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Fig. 14.2. (a) The payoff as a function of the price at maturity time T for a buyer 
of a call option, which costs C(Y,t) at the time the contract is written, where K 
denotes the strike price, (b) The payoff for the seller of the same call option. 

 

Fig. 14.3. Same as Fig. 14.2, for a put option. 

buyer of the option has the right to sell the underlying financial asset at 
a given strike price K at maturity (t = T) back to the seller of the option 
(Fig. 14.3). 

14.4 Speculating and hedging 

Derivatives are attractive financial products for at least two types of traders: 
speculators and hedgers. Speculators are interested in derivatives because 
they can provide an inexpensive way to expose a portfolio to a large amount 
of risk. Hedgers are interested in derivatives because they allow investors to 
reduce the market risk to which they are dteady ex-posed. 
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14.4.1 Speculation: An example 

An investor believes that a particular stock (currently priced at 200 USD) 
will go up in value at time T. He buys a call option for a strike price 
of 220 USD by gambling 5 USD. Suppose that at time t = T (maturity), 
the stock value has risen to 230 USD. The investor can then exercise his 
option by buying a share for 220 USD and then immediately selling it for 
230 USD. The profit will be 10 - 5 = 5 USD - a 100% return. Note that 
in this example the stock return is equal to (230 - 200)/200 = 15%. On the 
other hand, suppose that at maturity the stock value is less than or equal to 
220 USD - the investor will lose his gamble (100% loss). Thus the investor, 
by gambling 5 USD, becomes eligible for huge returns at the expense of 
exposing himself to huge risks. 

14.4.2 Hedging: A form of insurance 

A company in the United States must pay 10,000 euro to European firms in 
180 days. The company can write a forward contract at the present exchange 
rate for the above sum, or can buy a call option for a given strike price at 
180 days' maturity. This eliminates the risk associated with fluctuations in 
the USD/euro exchange rate, but has a cost - either exposure to losses in a 
forward contract, or simply the direct cost in an option contract. 

14.4.3 Hedging: The concept of a riskless portfolio 

To examine more closely the procedure of hedging, we consider a simplified 
version of our problem, namely a binomial model of stock prices [37]. The 
price Y at each time step t may assume only two values (Fig. 14.4). Suppose 
a hedger at each time step holds a number  of shares for each 
option sold on the same stock. In order to minimize the risk, the hedger 
needs to determine the value of  that makes the portfolio riskless. 
The value  of a portfolio is 

          (14.1) 

where  is the value of  shares held by the investor at time t, and C 
is the value of the option sold at time t A riskless investment requires 

           (14.2) 

where  is the portfolio value if the stock goes up, while is the portfolio 



 

Fig. 14.4. Schematic illustration of the binomial model. Here Y denotes the stock 
share price, where C denotes the cost of an option issued on the underlying stock. 
For a given time horizon  denote the possible stock price values, 
while  and  denote the possible values of options. 

value if the stock goes down. Hence from (14.1), 

 

or 

         
(14.3) 

In the limit when t becomes infinitesimal 

           
(14.4) 

Thus  is equal to the partial derivative of the price of the option 
with respect to the price of the stock (at constant t). Because Y changes 
over time,  must also be changed over time in order to 
maximize the effectiveness of the hedging and minimize the risk to the 
portfolio. 

We have seen that at least three different trading strategies are used in 
financial markets: hedging, speculating, and exploiting arbitrage opportuni-
ties. Some traders specialize in one of these three, while others occasionally 
switch from strategy to strategy. Hedgers focus on portfolio risk reduction, 
while speculators maximize portfolio risk. 
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14.5 Option pricing in idealized markets 

For a financial market to function well, participants must thoroughly under-
stand option pricing. The task is to find the rational and fair price C(Y,t) 
of the option under consideration. Since Y(t) is a random variable, C(Y,t) 
is a function of a random variable. 

The first reliable solution of the option-pricing problem was proposed in 
1973 by Black and Scholes [18,120]. Their solution is valid under a series of 
assumptions: 

(i) The stock price follows Ito's stochastic process; 
(ii) security trading is continuous; 

(iii) there are no arbitrage opportunities; 

(iv) selling of securities is possible at any time; 

(v) there are no transaction costs; 
(vi) the market interest rate r is constant; and 
(vii) there are no dividends between t = 0 and t = T. 

Black and Scholes assume that a stock price Y(t) can be described as an 
Ito process, namely a process defined by the stochastic differential equation 
dY = a(Y,t)dt + b(Y,t)dW. Specifically, they assume that a stock price 
follows a geometric Brownian motion 

         (14.5) 

where  is the expected return per unit time,  the variance per unit 
time, and W a Wiener process. This assumption implies that the changes in 
the logarithm of price are Gaussian distributed. 

If one assumes that a stock price is modeled by a geometric Brownian 
motion, any function of Y (including the price of the option C) must be a 
solution of the partial differential equation obtained from a special case of 
Ito's lemma valid for a geometric Brownian motion [75], 

    
(14.6) 

Let us consider the portfolio of the holder of  shares who is selling one 
derivative of the stock at time t. The value of the portfolio is, from (14.1) 
and (14.4), 

         
(14.7) 

The change in the value of the portfolio over a time interval  is 

         
(14.8) 
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Using Ito's lemma, we have 

   
(14.9) 

From the definition of geometric Brownian motion, (14.5), we have 

        
(14.10) 

Hence the change in  is 

 

       
(14.11) 

which simplifies to 

       
(14.12) 

The Black & Scholes assumption that a stock price follows a geometric 
Brownian motion turns out to be crucial in deriving the rational price of an 
option. In fact, without this assumption,  could not be simplified as 
it is in Eq. (14.12). 

The second key assumption concerns the absence of arbitrage. In the 
absence of arbitrage opportunities, the change in the value of portfolio  
must equal the gain obtained by investing the same amount of money in 
a riskless security that provides a return per unit of time r. Under the 
assumption that r is constant, 

          (14.13) 

By equating the two equations for the change in the portfolio value, (14.12) 
and (14.13), we obtain 

       
(14.14) 

which is called the Black & Scholes partial differential equation. To obtain 
(14.14), no assumption about the specific kind of option has been made. This 

partial differential equation is valid for both call and put European options. 

The appropriate C(Y,t) for the chosen type of option will be obtained by 
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selecting the appropriate boundary conditions. An example for a call option 
is 

  when       t = T.     (14.15) 

The parameters in Eq. (14.14) are the variance per unit of time  
and the return per unit of time r of the riskless security. The solution of 
(14.14) depends on these two parameters, and on the values of Y, K, and T 
characterizing the boundary conditions. The Black & Scholes partial 
differential equation has an analytic solution, which is discussed in the next 
section. 

14.6 The Black & Scholes formula 

Black and Scholes solved their partial differential equation (14.14) by making 
the following substitution 

         (14.16) 

where 

    
(14.17) 

and 

        
(14.18) 

With this substitution, the Black & Scholes partial differential equation 
becomes formally equivalent to the heat-transfer equation of physics, 

         
(14.19) 

The heat-transfer equation is analytically solvable and, by using substitu-
tions (14.17) and (14.18), Black and Scholes found their famous equation for 
the option-pricing problem, 

       (14.20) 

where N(x) is the cumulative density function for a Gaussian variable with 
zero mean and unit standard deviation, 

       
(14.21) 

and 

         (14.22) 
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14.7 The complex structure of financial markets 

The Black & Scholes model provides two important financial instruments: 
(a) an analytic solution (14.20) for the rational price of a European option, 
and (b) a trading strategy for building up a riskless portfolio. The existence 
of a riskless portfolio implies also that a specific portfolio of bonds and 
underlying stock can be equivalent to an option issued on the underlying 
stock at any time if the portfolio is properly balanced in terms of Eqs. (14.1) 
and (14.4). In other words, the value of an option can be replicated by an 
appropriate portfolio of stocks and bonds, and synthetic options can be 
realized in a financial market obeying the Black & Scholes assumptions. 

Among assumptions (i) and (vii) of the Black & Scholes model, two 
assumptions are crucial to the existence of a riskless portfolio. The first is 
that the path of stock price dynamics is a geometric Brownian motion. The 
second is that security trading is continuous in time. 

In the previous chapters, we saw that the ultimate dynamics of a stock 
price are discrete in both time and space. Moreover, empirical observations 
of the statistical properties of price-change statistics for the high-frequency 
regime do not support the geometric Brownian motion assumption. Indeed, 
rare events (namely large jumps in the price of a given stock) are observed 
from time to time. 

Hence the Black & Scholes model is a beautiful framework for under-
standing and modeling an ideal financial market, but provides only an 
approximate description of real financial markets. In particular, the Black 
& Scholes assumptions are not verified in real markets and they do not 
guarantee the existence of a riskless portfolio and of synthetic options in 
real markets. 

14.8 Another option-pricing approach 

Other aspects of the option-pricing problem emerge by considering an alter-
native way of obtaining the rational price of an option. In a Black & Scholes 
market, the rational price of an option does not depend on the risk toler-
ance of economic agents. This implies that the assumption of risk-neutrality 
is legitimate in a financial market without imperfections. In a risk-neutral 
economy, the expected rate of returnof an underlying financial asset 
must be equal to the interest rate r. Hence, in the absence of arbitrage 
opportunities, the expected value of an European call option at maturity (t 
= T) is the average expected payoff, namely  where 

 is Y(T) - K when Y(T) - K > 0 and zero when Y(T) - K < 
0. To obtain the risk-neutral value valid at time T — t, this value needs to 
be discounted 
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at the risk-free interest rate, so 

       (14.23) 

Equation (14.23) provides a tool for determining C(Y,t) without solving 
the partial differential equation associated with the option-pricing problem. 
Equation (14.23) can be written in explicit form as 

    
(14.24) 

where  is the conditional probability density of observing 

 at time t = T when  at time t= 0. 
Equation (14.24) shows how crucial exact knowledge of the price-change 

distribution is. Indeed, C(Y,t) is controlled completely by its exact shape in 
a financial market without imperfections. 

Equation (14.24) also provides a flexible tool for the analytic or numerical 
determination of C(Y,t) when the distribution of price changes is known. 
However, it is worth pointing out that Eq. (14.24) is valid only when the 
stochastic process of Y(t) allows the building of a riskless portfolio under 
a risk-neutrality assumption. If there is no riskless portfolio under a risk-
neutrality assumption, there is also no guarantee that a unique option price 
exists satisfying the condition that arbitrage opportunities are not present. 

14.9 Discussion 

The Black & Scholes solution of the option-pricing problem is a milestone in 
modern finance. Their model of financial activity catches the basic features 
of real financial markets. Some aspects, however, do not fully reflect the 
stochastic behavior observed in real markets. To cite three examples: (i) 
the Gaussian hypothesis of changes in the logarithm of a stock price is 
incorrect - especially when changes are high frequency; (ii) the path of 
the underlying asset price can be discontinuous at the arrival of relevant 
economic information; and (iii) the volatility of a given stock or index and 
the interest rate are not constant, and are themselves random processes. 
The modeling of real financial markets, sometimes called the modeling of 
'markets with imperfections', involves a class of problems that we introduce 
in the next chapter. 
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Options in real markets 

In Chapter 14, we considered the option-pricing problem in ideal friction-
less markets. Real markets are often efficient, but they are never ideal. In 
this chapter, we discuss how the complexity of modeling financial markets 
increases when we take into account aspects of real markets that are not 
formalized in the ideal model. These aspects are addressed in the literature 
as market microstructure [26] or market imperfections [127]. 

The terminology used in the economics literature suggests a clear parallel 
with similar scenarios observed in physical sciences. For example, it is much 
easier to construct a generalized description of the motion of a mechanical 
system in an idealized world without friction than in the real world. A similar 
situation is encountered when we compare equilibrium and non-equilibrium 
thermodynamics. In this chapter, we show that knowledge of the statistical 
properties of asset price dynamics is crucial for modeling real financial 
markets. We also address some of the theoretical and practical problems 
that arise when we take market imperfections into account. 

15.1 Discontinuous stock returns 

The existence of a portfolio containing both riskless and risky assets -
replicating exactly the value of an option - is essential in determining 
the rational price of the option under the assumption that no arbitrage 
opportunities are present. Whether a portfolio is replicating or not depends 
on the statistical properties of the dynamics of the underlying asset. In the 
previous chapter, we saw that a replicating portfolio exists when the price of 
the underlying asset follows a geometric Brownian motion, but we also saw 
that this case cannot be generalized. For example, when the asset dynamic 
follows a jump-diffusion model [121], a simple replicating portfolio does not 
exist. A jump-diffusion model is a stochastic process composed of a diffusive 
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term (as in geometric Brownian motion) plus a second term describing jumps 
of random amplitudes occurring at random times. 

Roughly speaking, the presence of two independent sources of randomness 
in the asset price dynamics does not allow the building of a simple replicating 
portfolio. It is not possible to obtain the rational price of an option just by 
assuming the absence of arbitrage opportunities. Other assumptions must be 
made concerning the risk aversion and price expectations of the traders. 

Taking a different perspective, we can say that we need to know the 
statistical properties of a given asset's dynamics before we can determine the 
rational price of an option issued on that asset. Discontinuity in the path of 
the asset's price is only one of the 'imperfections' that can force us to look 
for less general option-pricing procedures. 

15.2 Volatility in real markets 

Another 'imperfection' of real markets concerns the random character of 
the volatility of an asset price. The Black & Scholes option-pricing formula 
for an European option traded in an ideal market depends only on five 
parameters: (i) the stock price Y at time t, (ii) the strike price K, (iii) the 
interest rate r, (iv) the asset volatility rate , and (v) the maturity time T. Of 
these parameters, K and T are set by the kind of financial contract issued, 
while Y and r are known from the market. Thus the only parameter that 
needs to be determined is the volatility rate . 

Note that the volatility rate needed in the Black & Scholes pricing formula 
is the volatility rate of the underlying security that will be observed in the 
future time interval spanning t = 0 and t = T. A similar statement can be 
made about the interest rate r, which may jump at future times. 

We know from the previous analysis that the volatility of security prices is 
a random process. Estimating volatility is not a straightforward procedure. 

15.2.1 Historical volatility 

The first approach is to determine the volatility from historical market 
data. Empirical tests show that such an estimate is affected by the time 
interval used for the determination. One can argue that longer time intervals 
should provide better estimations. However, the local nonstationarity of the 
volatility versus time implies that unconditional volatility, estimated by using 
very long time periods, may be quite different from the volatility observed 
in the lifetime of the option. 

 For a more rigorous discussion of this point, see [44,70]. 



 

 

Fig. 15.1. Schematic illustration of the problems encountered in the determination 
of historical volatility. The nonstationary behavior of the volatility makes the deter-
mination of the average volatility depend on the investigated period of time. Long 
periods of time are observed when the daily volatility is quite different from the 
mean asymptotic value (solid line). 

An empirical rule states that the best estimate of volatility rate is obtained 
by considering historical data in a time interval  chosen to be as long 

as the time to maturity T of the option (Fig. 15.1). 

15.2.2 Implied volatility 

A second, alternative approach to the determination of the volatility is to 
estimate the implied volatility   which is determined starting from the 

options quoted in the market and using the Black & Scholes option-pricing 
formula (14.20). The implied volatility gives an indication about the level of 
volatility expected for the future by options traders. 

The value of  is obtained by using the market values of C(Y,t) and 
by solving numerically the equation 

      (15.1) 
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Fig. 15.2. Schematic illustration of the implied volatility as a function of the differ-
ence between the strike price K and the stock price Y. The specific form shown is 
referred to as a volatility smile. 

where now the time is expressed in days from maturity, and 

      
(15.2) 

and 

         (15.3) 

In a Black & Scholes market, a determination of the implied volatility 
rate would give a constant value  for options with different strike 
prices and different maturity. Moreover, the value of the implied volatility 
should coincide with the volatility obtained from historical data. 

In real markets, the two estimates, in general, do not coincide. Implied 
volatility provides a better estimate of . Empirical analysis shows that 

 is a function of the strike price and of the expiration date. Specifically, 
 is minimal when the strike price K is equal to the initial value of the 

stock price Y ('at the money'), and increases for lower and higher strike 
prices. This phenomenon is often termed a 'volatility smile' (Fig. 15.2). The 
implied volatility increases when the maturity increases. These empirical 
findings confirm that the Black & Scholes model relies on assumptions that 
are only partially verified in real financial markets. 

When random volatility is present, it is generally not possible to determine 
the option price by simply assuming there are no arbitrage opportunities. In 
some models, for example, the market price of the volatility risk needs to be 
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specified before the partial differential equation of the option price can be 
obtained. 

15.3 Hedging in real markets 

In idealized financial markets, the strategy for perfectly hedging a portfolio 
consisting of both riskless and risky assets is known. In real markets, some 
facts make this strategy unrealistic: (i) the rebalancing of the hedged portfolio 
is not performed continuously; (ii) there are transaction costs in real markets; 
(iii) financial assets are often traded in round lots of 100 and assume a degree 
of indivisibility. 

It has been shown that the presence of these unavoidable market imper-
fections implies that a perfect hedging of a portfolio is not guaranteed in a 
real market, even if one assumes that the asset dynamics are well described 
by a geometric Brownian motion [58]. When we consider real markets, the 
complexity of the modeling grows, the number of assumptions increases, and 
the generality of the solutions diminishes. 

15.4 Extension of the Black & Scholes model 

It is a common approach in science to use a model system to understand 
the basic aspect of a scientific problem. The idealized model is not able to 
describe all the occurrences observed in real systems, but is able to describe 
those that are most essential. As soon as the validity of the idealized model is 
assessed, extensions and generalizations of the model are attempted in order 
to better describe the real system under consideration. Some extensions do 
not change the nature of the solutions obtained using the model, but others 
do. 

The Black & Scholes model is one of the more successful idealized models 
currently in use. Since its introduction in 1973, a large amount of literature 
dealing with the extension of the Black & Scholes model has appeared. 
These extensions aim to relax assumptions that may not be realistic for real 
financial markets. Examples include 

• option pricing with stochastic interest rate [4,120]; 
• option pricing with a jump-diffusion/pure-jump stochastic process of stock 

price [13,121]; 
• option pricing with a stochastic volatility [71,72]; and 
• option pricing with non-Gaussian distributions of log prices [7,21] and 

with a truncated Levy distribution [118]. 
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We will briefly comment on general equations describing the time evolution 
of stock price and volatility [12] that is much more general than the Black 
& Scholes assumption of geometric Brownian motion. Our aim is to show 
how the complexity of equations increases when one or several of the Black 
& Scholes assumptions are relaxed. These general equations are 

     
(15.4) 

and 

      (15.5) 

while the Black & Scholes assumption of geometric Brownian motion is, 
from (14.5), 

      
(15.6) 

Here r(t) is the instantaneous spot interest rate,the frequency of 
jumps per year,  the diffusion component of return variance,  
and  standard Wiener processes with covariance 

 J(t) the percentage jump size with 
unconditional mean , q(t) a Poisson process with intensity  and  
and  parameters of the diffusion component of return variance  

It is worth pointing out that the increase in complexity is not only technical, 
but also conceptual. This is the case because the process is so general that it 
is no longer possible to build a simple replicating portfolio, or to perfectly 
hedge an 'optimal' portfolio. The elegance of the Black & Scholes solution 
is lost in real markets. 

15.5 Summary 

Complete knowledge of statistical properties of asset return dynamics is 
essential for fundamental and applied reasons. Such knowledge is crucial for 
the building and testing of a statistical model of a financial market. In spite 
of more than 50 years of effort, this goal has not yet been achieved. 

The practical relevance of the resolution of the problem of the statistical 
properties of asset return dynamics is related to the optimal resolution 
of the rational pricing of an option. This is a financial activity that is 
extremely important in present-day financial markets. We saw that the 
dynamical properties of asset return dynamics - such as the continuous or 
discontinuous nature of its changes, the random character of its volatility, 
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and the knowledge of the pdf function of asset returns - need to be known 
in order to adequately pose, and possibly solve, the option-pricing problem. 
Statistical and theoretical physicists can contribute to the resolution of 
these scientific problems by sharing - with researchers in the other disciplines 
involved - the background in critical phenomena, disordered systems, scaling, 
and universality that has been developed over the last 30 years. 



Appendix A: Martingales 

A new concept was introduced in probability theory about half a century 
ago - the martingale. J. Ville introduced the term, but its roots go back to 
P. Levy in 1934 (see ref. [77]). The first complete theory of martingales was 
formulated by Doob [42]. 

Let the observed process be denoted by Let  represent a family 
of information sets (technically, a 'filtration'). Using a given set of 
information  , one can generate a 'forecast' of the outcome  

 

 is a martingale relative to ( ) if  

(i) is known, given (the technical term is that is adapted), 
 (ii)       (unconditional forecasts are finite), and 

(iii)       , a.s. (n > 1) (i.e., the best forecast of 
unobserved future values is the last observation of). Here is a  
probability measure and all expectations are assumed to be taken with 
respect to A martingale is defined relative to a given filtration and 
probability measure. The essence of a martingale is to be a zero-drift 
stochastic process. 

This concept is fundamental in mathematical finance because, e.g., in a 
world in which interest rates are zero and there are no arbitrage oppor-
tunities, there exists a unique equivalent martingale measure under which 
the price of any non-income-producing security equals its expected future 
price [70]. 
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