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About the Textbook

Introduction to the Modeling and Analysis of Complex Systems introduces students to
mathematical/computational modeling and analysis developed in the emerging interdis-
ciplinary field of Complex Systems Science. Complex systems are systems made of a
large number of microscopic components interacting with each other in nontrivial ways.
Many real-world systems can be understood as complex systems, where critically impor-
tant information resides in the relationships between the parts and not necessarily within
the parts themselves.

This textbook offers an accessible yet technically-oriented introduction to the modeling
and analysis of complex systems. The topics covered include: fundamentals of modeling,
basics of dynamical systems, discrete-time models, continuous-time models, bifurcations,
chaos, cellular automata, continuous field models, static networks, dynamic networks, and
agent-based models. Most of these topics are discussed in two chapters, one focusing on
computational modeling and the other on mathematical analysis. This unique approach
provides a comprehensive view of related concepts and techniques, and allows readers
and instructors to flexibly choose relevant materials based on their objectives and needs.
Python sample codes are provided for each modeling example.
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Reviewer’s Notes

This book provides an excellent introduction to the field of modeling and analysis of com-
plex systems to both undergraduate and graduate students in the physical sciences, social
sciences, health sciences, humanities, and engineering. Knowledge of basic mathemat-
ics is presumed of the reader who is given glimpses into the vast, diverse and rich world of
nonlinear algebraic and differential equations that model various real-world phenomena.
The treatment of the field is thorough and comprehensive, and the book is written in a
very lucid and student-oriented fashion. A distinguishing feature of the book, which uses
the freely available software Python, is numerous examples and hands-on exercises on
complex system modeling, with the student being encouraged to develop and test his or
her own code in order to gain vital experience.

The book is divided into three parts. Part I provides a basic introduction to the art
and science of model building and gives a brief historical overview of complex system
modeling. Part II is concerned with systems having a small number of variables. After
introducing the reader to the important concept of phase space of a dynamical system,
it covers the modeling and analysis of both discrete- and continuous-time systems in a
systematic fashion. A very interesting feature of this part is the analysis of the behavior of
such a system around its equilibrium state, small perturbations around which can lead to
bifurcations and chaos. Part III covers the simulation of systems with a large number of
variables. After introducing the reader to the interactive simulation tool PyCX, it presents
the modeling and analysis of complex systems (e.g., waves in excitable media, spread
of epidemics and forest fires) with cellular automata. It next discusses the modeling and
analysis of continuous fields that are represented by partial differential equations. Exam-
ples are diffusion-reaction systems which can exhibit spontaneous self-organizing behav-
ior (e.g., Turing pattern formation, Belousov-Zhabotinsky reaction and Gray-Scott pattern
formation). Part III concludes with the modeling and analysis of dynamical networks and
agent-based models.

The concepts of emergence and self-organization constitute the underlying thread that
weaves the various chapters of the book together.

About the Reviewer: Dr. Siddharth G. Chatterjee received his Bachelor’s Degree in Tech-
nology (Honors) from the Indian Institute of Technology, Kharagpur, India, and M.S. and
Ph.D. degrees from Rensselaer Polytechnic Institute, Troy, New York, USA, all in Chem-
ical Engineering. He has taught a variety of engineering and mathematical courses and
his research interests are the areas of philosophy of science, mathematical modeling and
simulation. Presently he is Associate Professor in the Department of Paper and Biopro-
cess Engineering at SUNY College of Environmental Science and Forestry, Syracuse,
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New York. He is also a Fellow of the Institution of Engineers (India) and Member of the
Indian Institute of Chemical Engineers.

Sayama has produced a very comprehensive introduction and overview of complexity.
Typically, these topics would occur in many different courses, as a side note or possible
behavior of a particular type of mathematical model, but only after overcoming a huge
hurdle of technical detail. Thus, initially, I saw this book as a “mile-wide, inch-deep” ap-
proach to teaching dynamical systems, cellular automata, networks, and the like. Then
I realized that while students will learn a great deal about these topics, the real focus is
learning about complexity and its hallmarks through particular mathematical models in
which it occurs. In that respect, the book is remarkably deep and excellent at illustrating
how complexity occurs in so many different contexts that it is worth studying in its own
right. In other words, Sayama sort of rotates the axes from “calculus”, “linear algebra”,
and so forth, so that the axes are “self-organization”, “emergence”, etc. This means that I
would be equally happy to use the modeling chapters in a 100-level introduction to mod-
eling course or to use the analysis chapters in an upper-level, calculus-based modeling
course. The Python programming used throughout provides a nice introduction to simula-
tion and gives readers an excellent sandbox in which to explore the topic. The exercises
provide an excellent starting point to help readers ask and answer interesting questions
about the models and about the underlying situations being modeled. The logical struc-
ture of the material takes maximum advantage of early material to support analysis and
understanding of more difficult models. The organization also means that students expe-
riencing such material early in their academic careers will naturally have a framework for
later studies that delve more deeply into the analysis and application of particular mathe-
matical tools, like PDEs or networks.

About the Reviewer: Dr. Kris Green earned his Ph.D. in applied mathematics from the Uni-
versity of Arizona. Since then, he has earned the rank of full professor at St. John Fisher
College where he often teaches differential equations, mathematical modeling, multivari-
able calculus and numerical analysis, as well as a variety of other courses. He has guided
a number of successful undergraduate research projects related to modeling of complex
systems, and is currently interested in applications of such models to education, both in
terms of teaching and learning and of the educational system as a whole. Outside of the
office, he can often be found training in various martial arts or enjoying life with his wife
and two cats.
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Preface

This is an introductory textbook about the concepts and techniques of mathematical/com-
putational modeling and analysis developed in the emerging interdisciplinary field of com-
plex systems science. Complex systems can be informally defined as networks of many
interacting components that may arise and evolve through self-organization. Many real-
world systems can be modeled and understood as complex systems, such as political
organizations, human cultures/languages, national and international economies, stock
markets, the Internet, social networks, the global climate, food webs, brains, physiolog-
ical systems, and even gene regulatory networks within a single cell; essentially, they
are everywhere. In all of these systems, a massive amount of microscopic components
are interacting with each other in nontrivial ways, where important information resides in
the relationships between the parts and not necessarily within the parts themselves. It
is therefore imperative to model and analyze how such interactions form and operate in
order to understand what will emerge at a macroscopic scale in the system.

Complex systems science has gained an increasing amount of attention from both in-
side and outside of academia over the last few decades. There are many excellent books
already published, which can introduce you to the big ideas and key take-home messages
about complex systems. In the meantime, one persistent challenge I have been having in
teaching complex systems over the last several years is the apparent lack of accessible,
easy-to-follow, introductory-level technical textbooks. What I mean by technical textbooks
are the ones that get down to the “wet and dirty” details of how to build mathematical or
computational models of complex systems and how to simulate and analyze them. Other
books that go into such levels of detail are typically written for advanced students who are
already doing some kind of research in physics, mathematics, or computer science. What
I needed, instead, was a technical textbook that would be more appropriate for a broader
audience—college freshmen and sophomores in any science, technology, engineering,
and mathematics (STEM) areas, undergraduate/graduate students in other majors, such
as the social sciences, management/organizational sciences, health sciences and the hu-
manities, and even advanced high school students looking for research projects who are

ix



x

interested in complex systems modeling.
This OpenSUNY textbook is my humble attempt to meet this need. As someone who

didn’t major in either physics or mathematics, and who moved away from the mainstream
of computer science, I thought I could be a good “translator” of technical material for
laypeople who don’t major in those quantitative fields. To make the material as tangible
as possible, I included a lot of step-by-step instructions on how to develop models (espe-
cially computer simulation codes), as well as many visuals, in this book. Those detailed
instructions/visuals may sometimes look a bit redundant, but hopefully they will make the
technical material more accessible to many of you. I also hope that this book can serve
as a good introduction and reference for graduate students and researchers who are new
to the field of complex systems.

In this textbook, we will use Python for computational modeling and simulation. Python
is a rapidly growing computer programming language widely used for scientific computing
and also for system development in the information technology industries. It is freely
available and quite easy to learn for non-computer science majors. I hope that using
Python as a modeling and simulation tool will help you gain some real marketable skills,
and it will thus be much more beneficial than using other pre-made modeling/simulation
software. All the Python sample codes for modeling examples are available from the
textbook’s website at http://bingweb.binghamton.edu/~sayama/textbook/, which are
directly linked from each code example shown in this textbook (if you are reading this
electronically). Solutions for the exercises are also available from this website.

To maintain a good balance between accessibility and technical depth/rigor, I have
written most of the topics in two chapters, one focusing on hands-on modeling work and
the other focusing on more advanced mathematical analysis. Here is a more specific
breakdown:

Preliminary chapters 1, 2

Modeling chapters 3, 4, 6, 10, 11, 13, 15, 16, 19

Analysis chapters 5, 7, 8, 9, 12, 14, 17, 18

The preliminary and modeling chapters are marked with an orange side bar at the top,
while the analysis chapters are marked with a blue side bar at the bottom. The modeling
chapters won’t require any in-depth mathematical skills; some basic knowledge of deriva-
tives and probabilities is enough. The analysis chapters are based on a more solid under-
standing of calculus, differential equations, linear algebra, and probability and statistics.
I hope this unique way of organizing topics in two complementary chapters will provide

http://bingweb.binghamton.edu/~sayama/textbook/


xi

a comprehensive view of the related concepts and techniques, as well as allow you to
flexibly choose relevant materials based on your learning/teaching objectives and needs.

If you are an instructor, here are some suggested uses for this textbook:

• One-semester course as an introduction to complex systems modeling

– Target audience: College freshmen or sophomores (or also for research projects
by advanced high school students)

– Chapters to be covered: Part I and some modeling chapters selected from
Parts II & III

• One-semester course as an introduction to dynamical systems

– Target audience: Senior undergraduate or graduate students

– Chapters to be covered: Parts I & II, plus Continuous Field Models chapters
(both modeling and analysis)

• One-semester advanced course on complex systems modeling and analysis

– Target audience: Graduate students who already know dynamical systems

– Chapters to be covered: Part III (both modeling and analysis)

• Two-semester course sequence on both modeling and analysis of complex systems

– Target audience: Senior undergraduate or graduate students

– Chapters to be covered: Whole textbook

Note that the chapters of this textbook are organized purely based on their content. They
are not designed to be convenient curricular modules that can be learned or taught in
similar amounts of time. Some chapters (especially the preliminary ones) are very short
and easy, while others (especially the analysis ones) are extensive and challenging. If you
are teaching a course using this book, it is recommended to allocate time and resources
to each chapter according to its length and difficulty level.

One more thing I need to note is that the contents of this book are focused on dynam-
ical models, and as such, they are not intended to cover all aspects of complex systems
science. There are many important topics that are not included in the text because of
the limitation of space and time. For example, topics that involve probability, stochasticity,
and statistics, such as information theory, entropy, complexity measurement, stochastic
models, statistical analysis, and machine learning, are not discussed much in this book.
Fortunately, there are several excellent textbooks on these topics already available.
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This textbook was made possible, thanks to the help and support of a number of
people. I would like to first express my sincere gratitude to Ken McLeod, the former
Chair of the Department of Bioengineering at Binghamton University, who encouraged
me to write this textbook. The initial brainstorming discussions I had with him helped me
tremendously in shaping the basic topics and structure of this book. After all, it was Ken
who hired me at Binghamton, so I owe him a lot anyway. Thank you Ken.

My thanks also go to Yaneer Bar-Yam, the President of the New England Complex
Systems Institute (NECSI), where I did my postdoctoral studies (alas, way more than a
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included in this textbook. I would also like to thank my former PhD advisor, Yoshio Oy-
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ton University and now an MBA student at the University of Maryland, and Przemysław
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owe greatly. If you find PyCX’s GUI useful, you should be grateful to them, not me. Please
send them a thank you note.
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proved the quality of the text.

My thanks are also due to my fellow faculty members and graduate students at the
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Chen, Hal Lewis, Vlad Miskovic, Chun-An Chou, Brandon Gibb, Genki Ichinose, David
Sloan Wilson, Prahalad Rao, Jeff Schmidt, Benjamin James Bush, Xinpei Ma, and Hy-
obin Kim, as well as other fantastic collaborators I was lucky enough to have outside
the campus, including Thilo Gross, René Doursat, László Barabási, Roberta Sinatra, Ju-
nichi Yamanoi, Stephen Uzzo, Catherine Cramer, Lori Sheetz, Mason Porter, Paul Trunfio,
Gene Stanley, Carol Reynolds, Alan Troidl, Hugues Bersini, J. Scott Turner, Lindsay Yaz-
zolino, and many others. Collaboration with these wonderful people has given me lots of
insight and energy to work on various complex systems research and education projects.

I would also like to thank the people who gave me valuable feedback on the draft
versions of this book, including Barry Goldman, Blake Stacey, Ernesto Costa, Ricardo
Alvira, Joe Norman, Navdep Kaur, Dene Farrell, Aming Li, Daniel Goldstein, Stephanie
Smith, Hoang Peter Ta, Nygos Fantastico, Michael Chambers, and Tarun Bist. Needless
to say, I am solely responsible for all typos, errors, or mistakes remaining in this textbook.
I would greatly appreciate any feedback from any of you.

My final thanks go to a non-living object, my Lenovo Yoga 13 laptop, on which I was
able to write the whole textbook anytime, anywhere. It endured the owner’s careless
handling (which caused its touchscreen to crack) and yet worked pretty well to the end.

I hope you enjoy this OpenSUNY textbook and begin an exciting journey into complex
systems.

July 2015

Hiroki Sayama
Binghamton, NY / Natick, MA / Dresden, Germany





Contents

I Preliminaries 1

1 Introduction 3
1.1 Complex Systems in a Nutshell . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Topical Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Fundamentals of Modeling 11
2.1 Models in Science and Engineering . . . . . . . . . . . . . . . . . . . . . . 11
2.2 How to Create a Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Modeling Complex Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 What Are Good Models? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 A Historical Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

II Systems with a Small Number of Variables 27

3 Basics of Dynamical Systems 29
3.1 What Are Dynamical Systems? . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Phase Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 What Can We Learn? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Discrete-Time Models I: Modeling 35
4.1 Discrete-Time Models with Difference Equations . . . . . . . . . . . . . . . 35
4.2 Classifications of Model Equations . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Simulating Discrete-Time Models with One Variable . . . . . . . . . . . . . 39
4.4 Simulating Discrete-Time Models with Multiple Variables . . . . . . . . . . . 46
4.5 Building Your Own Model Equation . . . . . . . . . . . . . . . . . . . . . . . 51
4.6 Building Your Own Model Equations with Multiple Variables . . . . . . . . . 55

xv



xvi CONTENTS

5 Discrete-Time Models II: Analysis 61
5.1 Finding Equilibrium Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Phase Space Visualization of Continuous-State Discrete-Time Models . . . 62
5.3 Cobweb Plots for One-Dimensional Iterative Maps . . . . . . . . . . . . . . 68
5.4 Graph-Based Phase Space Visualization of Discrete-State Discrete-Time

Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.5 Variable Rescaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.6 Asymptotic Behavior of Discrete-Time Linear Dynamical Systems . . . . . . 81
5.7 Linear Stability Analysis of Discrete-Time Nonlinear Dynamical Systems . . 90

6 Continuous-Time Models I: Modeling 99
6.1 Continuous-Time Models with Differential Equations . . . . . . . . . . . . . 99
6.2 Classifications of Model Equations . . . . . . . . . . . . . . . . . . . . . . . 100
6.3 Connecting Continuous-Time Models with Discrete-Time Models . . . . . . 102
6.4 Simulating Continuous-Time Models . . . . . . . . . . . . . . . . . . . . . . 104
6.5 Building Your Own Model Equation . . . . . . . . . . . . . . . . . . . . . . . 108

7 Continuous-Time Models II: Analysis 111
7.1 Finding Equilibrium Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.2 Phase Space Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.3 Variable Rescaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.4 Asymptotic Behavior of Continuous-Time Linear Dynamical Systems . . . . 120
7.5 Linear Stability Analysis of Nonlinear Dynamical Systems . . . . . . . . . . 125

8 Bifurcations 131
8.1 What Are Bifurcations? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.2 Bifurcations in 1-D Continuous-Time Models . . . . . . . . . . . . . . . . . 132
8.3 Hopf Bifurcations in 2-D Continuous-Time Models . . . . . . . . . . . . . . 140
8.4 Bifurcations in Discrete-Time Models . . . . . . . . . . . . . . . . . . . . . . 144

9 Chaos 153
9.1 Chaos in Discrete-Time Models . . . . . . . . . . . . . . . . . . . . . . . . . 153
9.2 Characteristics of Chaos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
9.3 Lyapunov Exponent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
9.4 Chaos in Continuous-Time Models . . . . . . . . . . . . . . . . . . . . . . . 162



CONTENTS xvii

III Systems with a Large Number of Variables 171

10 Interactive Simulation of Complex Systems 173
10.1 Simulation of Systems with a Large Number of Variables . . . . . . . . . . . 173
10.2 Interactive Simulation with PyCX . . . . . . . . . . . . . . . . . . . . . . . . 174
10.3 Interactive Parameter Control in PyCX . . . . . . . . . . . . . . . . . . . . . 180
10.4 Simulation without PyCX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

11 Cellular Automata I: Modeling 185
11.1 Definition of Cellular Automata . . . . . . . . . . . . . . . . . . . . . . . . . 185
11.2 Examples of Simple Binary Cellular Automata Rules . . . . . . . . . . . . . 190
11.3 Simulating Cellular Automata . . . . . . . . . . . . . . . . . . . . . . . . . . 192
11.4 Extensions of Cellular Automata . . . . . . . . . . . . . . . . . . . . . . . . 200
11.5 Examples of Biological Cellular Automata Models . . . . . . . . . . . . . . . 201

12 Cellular Automata II: Analysis 209
12.1 Sizes of Rule Space and Phase Space . . . . . . . . . . . . . . . . . . . . . 209
12.2 Phase Space Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
12.3 Mean-Field Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
12.4 Renormalization Group Analysis to Predict Percolation Thresholds . . . . . 219

13 Continuous Field Models I: Modeling 227
13.1 Continuous Field Models with Partial Differential Equations . . . . . . . . . 227
13.2 Fundamentals of Vector Calculus . . . . . . . . . . . . . . . . . . . . . . . . 229
13.3 Visualizing Two-Dimensional Scalar and Vector Fields . . . . . . . . . . . . 236
13.4 Modeling Spatial Movement . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
13.5 Simulation of Continuous Field Models . . . . . . . . . . . . . . . . . . . . . 249
13.6 Reaction-Diffusion Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

14 Continuous Field Models II: Analysis 269
14.1 Finding Equilibrium States . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
14.2 Variable Rescaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
14.3 Linear Stability Analysis of Continuous Field Models . . . . . . . . . . . . . 275
14.4 Linear Stability Analysis of Reaction-Diffusion Systems . . . . . . . . . . . 285

15 Basics of Networks 295
15.1 Network Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
15.2 Terminologies of Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . 296



xviii CONTENTS

15.3 Constructing Network Models with NetworkX . . . . . . . . . . . . . . . . . 303
15.4 Visualizing Networks with NetworkX . . . . . . . . . . . . . . . . . . . . . . 310
15.5 Importing/Exporting Network Data . . . . . . . . . . . . . . . . . . . . . . . 314
15.6 Generating Random Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 320

16 Dynamical Networks I: Modeling 325
16.1 Dynamical Network Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
16.2 Simulating Dynamics on Networks . . . . . . . . . . . . . . . . . . . . . . . 326
16.3 Simulating Dynamics of Networks . . . . . . . . . . . . . . . . . . . . . . . 348
16.4 Simulating Adaptive Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 360

17 Dynamical Networks II: Analysis of Network Topologies 371
17.1 Network Size, Density, and Percolation . . . . . . . . . . . . . . . . . . . . . 371
17.2 Shortest Path Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
17.3 Centralities and Coreness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
17.4 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
17.5 Degree Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
17.6 Assortativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
17.7 Community Structure and Modularity . . . . . . . . . . . . . . . . . . . . . . 400

18 Dynamical Networks III: Analysis of Network Dynamics 405
18.1 Dynamics of Continuous-State Networks . . . . . . . . . . . . . . . . . . . . 405
18.2 Diffusion on Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
18.3 Synchronizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
18.4 Mean-Field Approximation of Discrete-State Networks . . . . . . . . . . . . 416
18.5 Mean-Field Approximation on Random Networks . . . . . . . . . . . . . . . 417
18.6 Mean-Field Approximation on Scale-Free Networks . . . . . . . . . . . . . . 420

19 Agent-Based Models 427
19.1 What Are Agent-Based Models? . . . . . . . . . . . . . . . . . . . . . . . . 427
19.2 Building an Agent-Based Model . . . . . . . . . . . . . . . . . . . . . . . . . 431
19.3 Agent-Environment Interaction . . . . . . . . . . . . . . . . . . . . . . . . . 440
19.4 Ecological and Evolutionary Models . . . . . . . . . . . . . . . . . . . . . . 448

Bibliography 465

Index 473



Part I

Preliminaries

1





Chapter 1

Introduction

1.1 Complex Systems in a Nutshell

It may be rather unusual to begin a textbook with an outright definition of a topic, but
anyway, here is what we mean by complex systems in this textbook1:

Complex systems are networks made of a number of components that interact with
each other, typically in a nonlinear fashion. Complex systems may arise and evolve
through self-organization, such that they are neither completely regular nor com-
pletely random, permitting the development of emergent behavior at macroscopic
scales.

These properties can be found in many real-world systems, e.g., gene regulatory net-
works within a cell, physiological systems of an organism, brains and other neural sys-
tems, food webs, the global climate, stock markets, the Internet, social media, national
and international economies, and even human cultures and civilizations.

To better understand what complex systems are, it might help to know what they are
not. One example of systems that are not complex is a collection of independent compo-
nents, such as an ideal gas (as discussed in thermodynamics) and random coin tosses
(as discussed in probability theory). This class of systems was called “problems of dis-
organized complexity” by American mathematician and systems scientist Warren Weaver
[2]. Conventional statistics works perfectly when handling such independent entities. An-
other example, which is at the other extreme, is a collection of strongly coupled compo-

1In fact, the first sentence of this definition is just a bit wordier version of Herbert Simon’s famous def-
inition in his 1962 paper [1]: “[A] complex system [is a system] made up of a large number of parts that
interact in a nonsimple way.”

3



4 CHAPTER 1. INTRODUCTION

nents, such as rigid bodies (as discussed in classical mechanics) and fixed coin tosses
(I’m not sure which discipline studies this). Weaver called this class of systems “prob-
lems of simplicity” [2]. In this class, the components of a system are tightly coupled to
each other with only a few or no degrees of freedom left within the system, so one can
describe the collection as a single entity with a small number of variables. There are very
well-developed theories and tools available to handle either case. Unfortunately, however,
most real-world systems are somewhere in between.

Complex systems science is a rapidly growing scientific research area that fills the
huge gap between the two traditional views that consider systems made of either com-
pletely independent or completely coupled components. This is the gap where what
Weaver called “problems of organized complexity” exist [2]. Complex systems science
develops conceptual, mathematical, and computational tools to describe systems made
of interdependent components. It studies the structural and dynamical properties of vari-
ous systems to obtain general, cross-disciplinary implications and applications.

Complex systems science has multiple historical roots and topical clusters of concepts,
as illustrated in Fig. 1.1. There are two core concepts that go across almost all subareas
of complex systems: emergence and self-organization.

The idea of emergence was originally discussed in philosophy more than a century
ago. There are many natural phenomena where some property of a system observed
at macroscopic scales simply can’t be reduced to microscopic physical rules that drive
the system’s behavior. For example, you can easily tell that a dog wagging its tail is
alive, but it is extremely difficult to explain what kind of microscopic physical/chemical
processes going on in its body are making this organism “alive.” Another typical example
is your consciousness. You know you are conscious, but it is hard to describe what
kind of neurophysiological processes make you a “conscious” entity. Those macroscopic
properties (livingness, consciousness) are called emergent properties of the systems.

Despite its long history of discussion and debate, there are still a number of differ-
ent definitions for the concept of emergence in complex systems science. However, the
one thing that is common in most of the proposed definitions is that the emergence is
about the system’s properties at different scales. If you observe a property at a macro-
scopic scale that is fundamentally different from what you would naturally expect from
microscopic rules, then you are witnessing emergence. More concisely, emergence is a
nontrivial relationship between the system’s properties at different scales. This definition
was proposed by complex systems scientist Yaneer Bar-Yam [4]. I will adopt this definition
since it is simple and consistent with most of the definitions proposed in the literature.
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Figure 1.1: Visual, organizational map of complex systems science broken into seven
topical areas. The three circles on the left (Nonlinear Dynamics, Systems Theory, and
Game Theory) are the historical roots of complex systems science, while the other
four circles (Pattern Formation, Evolution and Adaptation, Networks, and Collective
Behavior) are the more recently studied topical areas. Created by the author and
available from Wikipedia [3].
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Emergence is a nontrivial relationship between the properties of a system at micro-
scopic and macroscopic scales. Macroscopic properties are called emergent when it
is hard to explain them simply from microscopic properties.

Another key idea of complex systems science is self-organization, which is some-
times confused with emergence. Some researchers even use these terms almost in-
terchangeably. One clear distinction, though, is that, while emergence is about scale,
self-organization is about time (in addition to scale). Namely, you call something self-
organizing when you observe that the system spontaneously organizes itself to produce
a nontrivial macroscopic structure and/or behavior (or “order,” if you will) as time pro-
gresses. In other words, self-organization is a dynamical process that looks as if it were
going against the second law of thermodynamics (which states that entropy of a closed
system increases monotonically over time). Many physical, biological, and social sys-
tems show self-organizing behavior, which could appear mysterious when people were
not aware of the possibility of self-organization. Of course, these systems are not truly
going against the law of thermodynamics, because they are open systems that are driven
by energy flow coming from and going to the outside of the system. In a sense, the idea
of self-organization gives a dynamical explanation for emergent properties of complex
systems.

Self-organization is a dynamical process by which a system spontaneously forms
nontrivial macroscopic structures and/or behaviors over time.

Around these two key ideas, there are several topical clusters, which are illustrated in
Fig. 1.1. Let’s quickly review them.

1.2 Topical Clusters

Nonlinear dynamics is probably the topical cluster that has the longest history, at least
from as far back as the 17th century when Isaac Newton and Gottfried Wilhelm Leibniz
invented calculus and differential equations. But it was found only in the 20th century that
systems that include nonlinearity in their dynamics could show some weird behaviors,
such as chaos [5, 6] (which will be discussed later). Here, nonlinearity means that the
outputs of a system are not given by a linear combination of the inputs. In the context
of system behavior, the inputs and outputs can be the current and next states of the
system, and if their relationship is not linear, the system is called a nonlinear system.
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The possibility of chaotic behavior in such nonlinear systems implies that there will be
no analytical solutions generally available for them. This constitutes one of the several
origins of the idea of complexity.

Systems theory is another important root of complex systems science. It rapidly de-
veloped during and after World War II, when there was a huge demand for mathematical
theories to formulate systems that could perform computation, control, and/or communi-
cation. This category includes several ground-breaking accomplishments in the last cen-
tury, such as Alan Turing’s foundational work on theoretical computer science [7], Norbert
Wiener’s cybernetics [8], and Claude Shannon’s information and communication theories
[9]. A common feature shared by those theories is that they all originated from some engi-
neering discipline, where engineers were facing real-world complex problems and had to
come up with tools to meet societal demands. Many innovative ideas of systems thinking
were invented in this field, which still form the key components of today’s complex systems
science.

Game theory also has an interesting societal background. It is a mathematical theory,
established by John von Neumann and Oskar Morgenstern [10], which formulates the
decisions and behaviors of people playing games with each other. It was developed
during the Cold War, when there was a need to seek a balance between the two mega
powers that dominated the world at that time. The rationality of the game players was
typically assumed in many game theory models, which made it possible to formulate the
decision making process as a kind of deterministic dynamical system (in which either
decisions themselves or their probabilities could be modeled deterministically). In this
sense, game theory is linked to nonlinear dynamics. One of the many contributions game
theory has made to science in general is that it demonstrated ways to model and analyze
human behavior with great rigor, which has made huge influences on economics, political
science, psychology, and other areas of social sciences, as well as contributing to ecology
and evolutionary biology.

Later in the 20th century, it became clearly recognized that various innovative ideas
and tools arising in those research areas were all developed to understand the behavior
of systems made of multiple interactive components whose macroscopic behaviors were
often hard to predict from the microscopic rules or laws that govern their dynamics. In the
1980s, those systems began to be the subject of widespread interdisciplinary discussions
under the unified moniker of “complex systems.” The research area of complex systems
science is therefore inherently interdisciplinary, which has remained unchanged since the
inception of the field. The recent developments of complex systems research may be
roughly categorized into four topical clusters: pattern formation, evolution and adaptation,
networks, and collective behavior.
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Pattern formation is a self-organizing process that involves space as well as time. A
system is made of a large number of components that are distributed over a spatial do-
main, and their interactions (typically local ones) create an interesting spatial pattern over
time. Cellular automata, developed by John von Neumann and Stanisław Ulam in the
1940s [11], are a well-known example of mathematical models that address pattern for-
mation. Another modeling framework is partial differential equations (PDEs) that describe
spatial changes of functions in addition to their temporal changes. We will discuss these
modeling frameworks later in this textbook.

Evolution and adaptation have been discussed in several different contexts. One con-
text is obviously evolutionary biology, which can be traced back to Charles Darwin’s evo-
lutionary theory. But another, which is often discussed more closely to complex systems,
is developed in the “complex adaptive systems” context, which involves evolutionary com-
putation, artificial neural networks, and other frameworks of man-made adaptive systems
that are inspired by biological and neurological processes. Called soft computing, ma-
chine learning, or computational intelligence, nowadays, these frameworks began their
rapid development in the 1980s, at the same time when complex systems science was
about to arise, and thus they were strongly coupled—conceptually as well as in the lit-
erature. In complex systems science, evolution and adaptation are often considered to
be general mechanisms that can not only explain biological processes, but also create
non-biological processes that have dynamic learning and creative abilities. This goes well
beyond what a typical biological study covers.

Finally, networks and collective behavior are probably the most current research fronts
of complex systems science (as of 2015). Each has a relatively long history of its own. In
particular, the study of networks was long known as graph theory in mathematics, which
was started by Leonhard Euler back in the 18th century. In the meantime, the recent boom
of network and collective behavior research has been largely driven by the availability of
increasingly large amounts of data. This is obviously caused by the explosion of the In-
ternet and the WWW, and especially the rise of mobile phones and social media over the
last decade. With these information technology infrastructures, researchers are now able
to obtain high-resolution, high-throughput data about how people are connected to each
other, how they are communicating with each other, how they are moving geographically,
what they are interested in, what they buy, how they form opinions or preferences, how
they respond to disastrous events, and the list goes on and on. This allows scientists
to analyze the structure of networks at multiple scales and also to develop dynamical
models of how the collectives behave. Similar data-driven movements are also seen in
biology and medicine (e.g., behavioral ecology, systems biology, epidemiology), neuro-
science (e.g., the Human Connectome Project [12]), and other areas. It is expected that
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these topical areas will expand further in the coming decades as the understanding of
the collective dynamics of complex systems will increase their relevance in our everyday
lives.

Here, I should note that these seven topical clusters are based on my own view of
the field, and they are by no means well defined or well accepted by the community.
There must be many other ways to categorize diverse complex systems related topics.
These clusters are more or less categorized based on research communities and subject
areas, while the methodologies of modeling and analysis traverse across many of those
clusters. Therefore, the following chapters of this textbook are organized based on the
methodologies of modeling and analysis, and they are not based on specific subjects
to be modeled or analyzed. In this way, I hope you will be able to learn the “how-to”
skills systematically in the most generalizable way, so that you can apply them to various
subjects of your own interest.

Exercise 1.1 Choose a few concepts of your own interest from Fig. 1.1. Do
a quick online literature search for those words, using Google Scholar (http:
//scholar.google.com/), arXiv (http://arxiv.org/), etc., to find out more about
their meaning, when and how frequently they are used in the literature, and in what
context.

Exercise 1.2 Conduct an online search to find visual examples or illustrations of
some of the concepts shown in Fig. 1.1. Discuss which example(s) and/or illustra-
tion(s) are most effective in conveying the key idea of each concept. Then create
a short presentation of complex systems science using the visual materials you
selected.

Exercise 1.3 Think of other ways to organize the concepts shown in Fig. 1.1 (and
any other relevant concepts you want to include). Then create your own version of
a map of complex systems science.

Now we are ready to move on. Let’s begin our journey of complex systems modeling
and analysis.

http://scholar.google.com/
http://scholar.google.com/
http://arxiv.org/




Chapter 2

Fundamentals of Modeling

2.1 Models in Science and Engineering

Science is an endeavor to try to understand the world around us by discovering funda-
mental laws that describe how it works. Such laws include Newton’s law of motion, the
ideal gas law, Ohm’s law in electrical circuits, the conservation law of energy, and so on,
some of which you may have learned already.

A typical cycle of scientific effort by which scientists discover these fundamental laws
may look something like this:

1. Observe nature.

2. Develop a hypothesis that could explain your observations.

3. From your hypothesis, make some predictions that are testable through an experi-
ment.

4. Carry out the experiment to see if your predictions are actually true.

• Yes→ Your hypothesis is proven, congratulations. Uncork a champagne bottle
and publish a paper.

• No→ Your hypothesis was wrong, unfortunately. Go back to the lab or the field,
get more data, and develop another hypothesis.

Many people think this is how science works. But there is at least one thing that is not
quite right in the list above. What is it? Can you figure it out?

11
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As some of you may know already, the problem exists in the last part, i.e., when the
experiment produced a result that matched your predictions. Let’s do some logic to better
understand what the problem really is. Assume that you observed a phenomenon P in
nature and came up with a hypothesis H that can explain P . This means that a logical
statement H → P is always true (because you chose H that way). To prove H, you also
derived a prediction Q from H, i.e., another logical statement H → Q is always true, too.
Then you conduct experiments to see if Q can be actually observed. What if Q is actually
observed? Or, what if “not Q” is observed instead?

If “not Q” is observed, things are easy. Logically speaking, (H → Q) is equivalent to
(not Q → not H) because they are contrapositions of each other, i.e., logically identical
statements that can be converted from one to another by negating both the condition and
the consequence and then flipping their order. This means that, if not Q is true, then it
logically proves that not H is also true, i.e., your hypothesis is wrong. This argument is
clear, and there is no problem with it (aside from the fact that you will probably have to
redo your hypothesis building and testing).

The real problem occurs when your experiment gives you the desired result, Q. Logi-
cally speaking, “(H → Q) and Q” doesn’t tell you anything about whether H is true or not!
There are many ways your hypothesis could be wrong or insufficient even if the predicted
outcome was obtained in the experiment. For example, maybe another alternative hy-
pothesis R could be the right one (R→ P , R→ Q), or maybe H would need an additional
condition K to predict P and Q (H and K → P , H and K → Q) but you were not aware
of the existence of K.

Let me give you a concrete example. One morning, you looked outside and found
that your lawn was wet (observation P ). You hypothesized that it must have rained while
you were asleep (hypothesis H), which perfectly explains your observation (H → P ).
Then you predicted that, if it rained overnight, the driveway next door must also be wet
(prediction Q that satisfies H → Q). You went out to look and, indeed, it was also wet
(if not, H would be clearly wrong). Now, think about whether this new observation really
proves your hypothesis that it rained overnight. If you think critically, you should be able to
come up with other scenarios in which both your lawn and the driveway next door could
be wet without having a rainy night. Maybe the humidity in the air was unusually high,
so the condensation in the early morning made the ground wet everywhere. Or maybe a
fire hydrant by the street got hit by a car early that morning and it burst open, wetting the
nearby area. There could be many other potential explanations for your observation.

In sum, obtaining supportive evidence from experiments doesn’t prove your hypoth-
esis in a logical sense. It only means that you have failed to disprove your hypothesis.
However, many people still believe that science can prove things in an absolute way. It
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can’t. There is no logical way for us to reach the ground truth of nature1.
This means that all the “laws of nature,” including those listed previously, are no more

than well-tested hypotheses at best. Scientists have repeatedly failed to disprove them,
so we give them more credibility than we do to other hypotheses. But there is absolutely
no guarantee of their universal, permanent correctness. There is always room for other
alternative theories to better explain nature.

In this sense, all science can do is just build models of nature. All of the laws of nature
mentioned earlier are also models, not scientific facts, strictly speaking. This is something
every single person working on scientific research should always keep in mind.

I have used the word “model” many times already in this book without giving it a defi-
nition. So here is an informal definition:

A model is a simplified representation of a system. It can be conceptual, verbal,
diagrammatic, physical, or formal (mathematical).

As a cognitive entity interacting with the external world, you are always creating a
model of something in your mind. For example, at this very moment as you are reading
this textbook, you are probably creating a model of what is written in this book. Modeling
is a fundamental part of our daily cognition and decision making; it is not limited only to
science.

With this understanding of models in mind, we can say that science is an endless effort
to create models of nature, because, after all, modeling is the one and only rational ap-
proach to the unreachable reality. And similarly, engineering is an endless effort to control
or influence nature to make something desirable happen, by creating and controlling its
models. Therefore, modeling occupies the most essential part in any endeavor in science
and engineering.

Exercise 2.1 In the “wet lawn” scenario discussed above, come up with a few
more alternative hypotheses that could explain both the wet lawn and the wet
driveway without assuming that it rained. Then think of ways to find out which
hypothesis is most likely to be the real cause.

1This fact is deeply related to the impossibility of general system identification, including the identification
of computational processes.
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Exercise 2.2 Name a couple of scientific models that are extensively used in
today’s scientific/engineering fields. Then investigate the following:

• How were they developed?

• What made them more useful than earlier models?

• How could they possibly be wrong?

2.2 How to Create a Model

There are a number of approaches for scientific model building. My favorite way of clas-
sifying various kinds of modeling approaches is to put them into the following two major
families:

Descriptive modeling In this approach, researchers try to specify the actual state
of a system at a given time point (or at multiple time points) in a descriptive
manner. Taking a picture, creating a miniature (this is literally a “model” in the
usual sense of the word), and writing a biography of someone, all belong to
this family of modeling effort. This can also be done using quantitative meth-
ods (e.g., equations, statistics, computational algorithms), such as regression
analysis and pattern recognition. They all try to capture “what the system looks
like.”

Rule-based modeling In this approach, researchers try to come up with dynami-
cal rules that can explain the observed behavior of a system. This allows re-
searchers to make predictions of its possible (e.g., future) states. Dynamical
equations, theories, and first principles, which describe how the system will
change and evolve over time, all belong to this family of modeling effort. This
is usually done using quantitative methods, but it can also be achieved at con-
ceptual levels as well (e.g., Charles Darwin’s evolutionary theory). They all try
to capture “how the system will behave.”

Both modeling approaches are equally important in science and engineering. For
example, observation of planetary movement using telescopes in the early 17th century
generated a lot of descriptive information about how they actually moved. This information
was already a model of nature because it constituted a simplified representation of reality.
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In the meantime, Newton derived the law of motion to make sense out of observational
information, which was a rule-based modeling approach that allowed people to make
predictions about how the planets would/could move in the future or in a hypothetical
scenario. In other words, descriptive modeling is a process in which descriptions of a
system are produced and accumulated, while rule-based modeling is a process in which
underlying dynamical explanations are built for those descriptions. These two approaches
take turns and form a single cycle of the scientific modeling effort.

In this textbook, we will focus on the latter, the rule-based modeling approach. This is
because rule-based modeling plays a particularly important role in complex systems sci-
ence. More specifically, developing a rule-based model at microscopic scales and study-
ing its macroscopic behaviors through computer simulation and/or mathematical analysis
is almost a necessity to understand emergence and self-organization of complex sys-
tems. We will discuss how to develop rule-based models and what the challenges are
throughout this textbook.

A typical cycle of rule-based modeling effort goes through the following steps (which
are similar to the cycle of scientific discoveries we discussed above):

1. Observe the system of your interest.

2. Reflect on the possible rules that might cause the system’s characteristics that were
seen in the observation.

3. Derive predictions from those rules and compare them with reality.

4. Repeat the above steps to modify the rules until you are satisfied with the model (or
you run out of time or funding).

This seems okay, and it doesn’t contain the logical problem of “proving a hypothesis”
that we had before, because I loosened the termination criteria to be your satisfaction
as a researcher. However, there is still one particular step that is fundamentally difficult.
Which step do you think it is?

Of course, each of the four steps has its own unique challenges, but as an educator
who has been teaching complex systems modeling for many years, I find that the second
step (“Reflect on possible rules that might cause the system’s characteristics seen in
the observation.”) is particularly challenging to modelers. This is because this step is
so deeply interwoven with the modeler’s knowledge, experience, and everyday cognitive
processes. It is based on who you are, what you know, and how you see the world—it
is, ultimately, a personal thinking process, which is very difficult to teach or to learn in a
structured way.
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Let me give you some examples to illustrate my point. The following figure shows
an observation of a system over time. Can you create a mathematical model of this
observation?

Time 

Some quantity 

Figure 2.1: Observation example 1.

This one should be quite easy, because the observed data show that nothing changed
over time. The description “no change” is already a valid model written in English, but if
you prefer writing it in mathematical form, you may want to write it as

x(t) = C (2.1)

or, if you use a differential equation,

dx

dt
= 0. (2.2)

Coming up with these models is a no brainer, because we have seen this kind of behavior
many times in our daily lives.

Here is another example. Can you create a mathematical model of this observation?

Time 

Some quantity 

Figure 2.2: Observation example 2.
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Now we see some changes. It seems the quantity monotonically increased over time.
Then your brain must be searching your past memories for a pattern that looks like this
curve you are looking at, and you may already have come up with a phrase like “expo-
nential growth,” or more mathematically, equations like

x(t) = aebt (2.3)

or

dx

dt
= bx. (2.4)

This may be easy or hard, depending on how much knowledge you have about such
exponential growth models.

In the meantime, if you show the same curve to middle school students, they may
proudly say that this must be the right half of a flattened parabola that they just learned
about last week. And there is nothing fundamentally wrong with that idea. It could be a
right half of a parabola, indeed. We never know for sure until we see what the entire curve
looks like for −∞ < t <∞.

Let’s move on to a more difficult example. Create a mathematical model of the follow-
ing observation.

Time 

Some quantity 

Figure 2.3: Observation example 3.

It is getting harder. Unless you have seen this kind of dynamic behavior before, you
will have a hard time coming up with any concise explanation of it. An engineer might say,
“This is a sawtooth wave,” or a computer scientist might say, “This is time mod something.”
Or, an even more brilliant answer could come from an elementary school kid, saying, “This
must be months in a calendar!” (which is equivalent to what the computer scientist said,
by the way). In either case, people tend to map a new observation to something they
already know in their mind when they create a model.
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This last example is the toughest. Create a mathematical model of the following ob-
servation.

Time 

Some quantity 

Figure 2.4: Observation example 4.

Did you come up with any ideas? I have seen only a few people who were able to
make reasonable models of this observation throughout my career. The reason why this
example is so hard to model is because we don’t see this kind of behavior often in our
lives. We are simply not experienced with it. We don’t have a good mental template to
use to capture the essence of this pattern2.

I hope that these examples have made my point clear by now. Coming up with a model
is inherently a personal process, which depends on your own knowledge, experience, and
worldview. There is no single algorithm or procedure you can follow to develop a good
model. The modeling process is a full-scale interaction between the external world and
your whole, intellectual self. To become a good modeler, you will need to gain diverse
knowledge and experience and develop rich worldviews. This is why I said it would be
very difficult to be taught.

Exercise 2.3 Create a few different models for each of the examples shown
above. Discuss how those models differ from each other, and what you should do
to determine which model is more appropriate as an explanation of the observed
behavior.

2For those who are curious—this kind of curve could be generated by raising a sine or cosine function of
time to an odd number (e.g., sin3(t), cos5(t)), but I am not sure if knowing this would ever help you in your
future career.
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2.3 Modeling Complex Systems

The challenge in developing a model becomes particularly tough when it comes to the
modeling of complex systems, because their unique properties (networks, nonlinearity,
emergence, self-organization, etc.) are not what we are familiar with. We usually think
about things on a single scale in a step-by-step, linear chain of reasoning, in which causes
and effects are clearly distinguished and discussed sequentially. But this approach is not
suitable for understanding complex systems where a massive amount of components
are interacting with each other interdependently to generate patterns over a broad range
of scales. Therefore, the behavior of complex systems often appears to contradict our
everyday experiences.

As illustrated in the examples above, it is extremely difficult for us to come up with a
reasonable model when we are facing something unfamiliar. And it is even more difficult
to come up with a reasonable set of microscopic rules that could explain the observed
macroscopic properties of a system. Most of us are simply not experienced enough to
make logical connections between things at multiple different scales.

How can we improve our abilities to model complex systems? The answer might be
as simple as this: We need to become experienced and familiar with various dynamics
of complex systems to become a good modeler of them. How can we become experi-
enced? This is a tricky question, but thanks to the availability of the computers around
us, computational modeling and simulation is becoming a reasonable, practical method
for this purpose. You can construct your own model with full details of microscopic rules
coded into your computer, and then let it actually show the macroscopic behavior aris-
ing from those rules. Such computational modeling and simulation is a very powerful
tool that allows you to gain interactive, intuitive (simulated) experiences of various possi-
ble dynamics that help you make mental connections between micro- and macroscopic
scales. I would say there are virtually no better tools available for studying the dynamics
of complex systems in general.

There are a number of pre-built tools available for complex systems modeling and
simulation, including NetLogo [13], Repast [14], MASON [15], Golly [16], and so on. You
could also build your own model by using general-purpose computer programming lan-
guages, including C, C++, Java, Python, R, Mathematica, MATLAB, etc. In this textbook,
we choose Python as our modeling tool, specifically Python 2.7, and use PyCX [17] to
build interactive dynamic simulation models3. Python is free and widely used in scien-

3For those who are new to Python programming, see Python’s online tutorial at https://docs.python.
org/2/tutorial/index.html. Several pre-packaged Python distributions are available for free, such
as Anaconda (available from http://continuum.io/downloads) and Enthought Canopy (available from

https://docs.python.org/2/tutorial/index.html
https://docs.python.org/2/tutorial/index.html
http://continuum.io/downloads
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tific computing as well as in the information technology industries. More details of the
rationale for this choice can be found in [17].

When you create a model of a complex system, you typically need to think about the
following:

1. What are the key questions you want to address?

2. To answer those key questions, at what scale should you describe the behaviors
of the system’s components? These components will be the “microscopic” compo-
nents of the system, and you will define dynamical rules for their behaviors.

3. How is the system structured? This includes what those microscopic components
are, and how they will be interacting with each other.

4. What are the possible states of the system? This means describing what kind of
dynamical states each component can take.

5. How does the state of the system change over time? This includes defining the
dynamical rules by which the components’ states will change over time via their
mutual interaction, as well as defining how the interactions among the components
will change over time.

Figuring out the “right” choices for these questions is by no means a trivial task. You will
likely need to loop through these questions several times until your model successfully
produces behaviors that mimic key aspects of the system you are trying to model. We will
practice many examples of these steps throughout this textbook.

Exercise 2.4 Create a schematic model of some real-world system of your choice
that is made of many interacting components. Which scale do you choose to de-
scribe the microscopic components? What are those components? What states
can they take? How are those components connected? How do their states
change over time? After answering all of these questions, make a mental prediction
about what kind of macroscopic behaviors would arise if you ran a computational
simulation of your model.

https://enthought.com/products/canopy/). A recommended environment is Anaconda’s Python code
editor named “Spyder.”

https://enthought.com/products/canopy/
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2.4 What Are Good Models?

You can create various kinds of models for a system, but useful ones have several impor-
tant properties. Here is a very brief summary of what a good model should look like:

A good model is simple, valid, and robust.

Simplicity of a model is really the key essence of what modeling is all about. The
main reason why we want to build a model is that we want to have a shorter, simpler
description of reality. As the famous principle of Occam’s razor says, if you have two
models with equal predictive power, you should choose the simpler one. This is not a
theorem or any logically proven fact, but it is a commonly accepted practice in science.
Parsimony is good because it is economical (e.g., we can store more models within the
limited capacity of our brain if they are simpler) and also insightful (e.g., we may find
useful patterns or applications in the models if they are simple). If you can eliminate any
parameters, variables, or assumptions from your model without losing its characteristic
behavior, you should.

Validity of a model is how closely the model’s prediction agrees with the observed
reality. This is of utmost importance from a practical viewpoint. If your model’s prediction
doesn’t reasonably match the observation, the model is not representing reality and is
probably useless. It is also very important to check the validity of not only the predictions
of the model but also the assumptions it uses, i.e., whether each of the assumptions
used in your model makes sense at its face value, in view of the existing knowledge as
well as our common sense. Sometimes this “face validity” is more important in complex
systems modeling, because there are many situations where we simply can’t conduct a
quantitative comparison between the model prediction and the observational data. Even
if this is the case, you should at least check the face validity of your model assumptions
based on your understanding about the system and/or the phenomena.

Note that there is often a trade-off between trying to achieve simplicity and validity of a
model. If you increase the model complexity, you may be able to achieve a better fit to the
observed data, but the model’s simplicity is lost and you also have the risk of overfitting—
that is, the model prediction may become adjusted too closely to a specific observation at
the cost of generalizability to other cases. You need to strike the right balance between
those two criteria.

Finally, robustness of a model is how insensitive the model’s prediction is to minor vari-
ations of model assumptions and/or parameter settings. This is important because there
are always errors when we create assumptions about, or measure parameter values from,
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the real world. If the prediction made by your model is sensitive to their minor variations,
then the conclusion derived from it is probably not reliable. But if your model is robust,
the conclusion will hold under minor variations of model assumptions and parameters,
therefore it will more likely apply to reality, and we can put more trust in it.

Exercise 2.5 Humanity has created a number of models of the solar system in
its history. Some of them are summarized below:

• Ptolemy’s geocentric model (which assumes that the Sun and other planets
are revolving around the Earth)

• Copernicus’ heliocentric model (which assumes that the Earth and other plan-
ets are revolving around the Sun in concentric circular orbits)

• Kepler’s laws of planetary motion (which assumes that the Earth and other
planets are revolving in elliptic orbits, at one of whose foci is the Sun, and that
the area swept by a line connecting a planet and the Sun during a unit time
period is always the same)

• Newton’s law of gravity (which assumes that a gravitational force between
two objects is proportional to their masses and inversely proportional to their
distance squared)

Investigate these models, and compare them in terms of simplicity, validity and
robustness.

2.5 A Historical Perspective

As the final section in this chapter, I would like to present some historical perspective of
how people have been developing modeling methodologies over time, especially those for
complex systems (Fig. 2.5). Humans have been creating descriptive models (diagrams,
pictures, physical models, texts, etc.) and some conceptual rule-based models since
ancient times. More quantitative modeling approaches arose as more advanced mathe-
matical tools became available. In the descriptive modeling family, descriptive statistics
is among such quantitative modeling approaches. In the rule-based modeling family, dy-
namical equations (e.g., differential equations, difference equations) began to be used to
quantitatively formulate theories that had remained at conceptual levels before.

During the second half of the 20th century, computational tools became available to
researchers, which opened up a whole new area of computational modeling approaches
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Figure 2.5: Schematic illustration of how modeling methodologies have developed
historically.
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for complex systems modeling. The first of this kind was cellular automata, a massive
number of identical finite-state machines that are arranged in a regular grid structure and
update their states dynamically according to their own and their neighbors’ states. Cel-
lular automata were developed by John von Neumann and Stanisław Ulam in the 1940s,
initially as a theoretical medium to implement self-reproducing machines [11], but later
they became a very popular modeling framework for simulating various interesting emer-
gent behaviors and also for more serious scientific modeling of spatio-temporal dynamics
[18]. Cellular automata are a special case of dynamical networks whose topologies are
limited to regular grids and whose nodes are usually assumed to be homogeneous and
identical.

Dynamical networks formed the next wave of complex systems modeling in the 1970s
and 1980s. Their inspiration came from artificial neural network research by Warren Mc-
Culloch and Walter Pitts [19] as well as by John Hopfield [20, 21], and also from theoretical
gene regulatory network research by Stuart Kauffman [22]. In this modeling framework,
the topologies of systems are no longer constrained to regular grids, and the components
and their connections can be heterogeneous with different rules and weights. Therefore,
dynamical networks include cellular automata as a special case within them. Dynamical
networks have recently merged with another thread of research on topological analysis
that originated in graph theory, statistical physics, social sciences, and computational sci-
ence, to form a new interdisciplinary field of network science [23, 24, 25].

Finally, further generalization was achieved by removing the requirement of explicit
network topologies from the models, which is now called agent-based modeling (ABM).
In ABM, the only requirement is that the system is made of multiple discrete “agents” that
interact with each other (and possibly with the environment), whether they are structured
into a network or not. Therefore ABM includes network models and cellular automata as
its special cases. The use of ABM became gradually popular during the 1980s, 1990s,
and 2000s. One of the primary driving forces for it was the application of complex sys-
tems modeling to ecological, social, economic, and political processes, in fields like game
theory and microeconomics. The surge of genetic algorithms and other population-based
search/optimization algorithms in computer science also took place at about the same
time, which also had synergistic effects on the rise of ABM.

I must be clear that the historical overview presented above is my own personal view,
and it hasn’t been rigorously evaluated or validated by any science historians (therefore
this may not be a valid model!). But I hope that this perspective is useful in putting various
modeling frameworks into a unified, chronological picture. The following chapters of this
textbook roughly follow the historical path of the models illustrated in this perspective.
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Exercise 2.6 Do a quick online literature search to find a few scientific articles
that develop or use mathematical/computational models. Read the articles to learn
more about their models, and map them to the appropriate locations in Fig. 2.5.
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Chapter 3

Basics of Dynamical Systems

3.1 What Are Dynamical Systems?

Dynamical systems theory is the very foundation of almost any kind of rule-based models
of complex systems. It considers how systems change over time, not just static properties
of observations. A dynamical system can be informally defined as follows1:

A dynamical system is a system whose state is uniquely specified by a set of variables
and whose behavior is described by predefined rules.

Examples of dynamical systems include population growth, a swinging pendulum, the
motions of celestial bodies, and the behavior of “rational” individuals playing a negotiation
game, to name a few. The first three examples sound legitimate, as those are systems
that typically appear in physics textbooks. But what about the last example? Could hu-
man behavior be modeled as a deterministic dynamical system? The answer depends on
how you formulate the model using relevant assumptions. If you assume that individuals
make decisions always perfectly rationally, then the decision making process becomes
deterministic, and therefore the interactions among them may be modeled as a determin-
istic dynamical system. Of course, this doesn’t guarantee whether it is a good model or
not; the assumption has to be critically evaluated based on the criteria discussed in the
previous chapter.

Anyway, dynamical systems can be described over either discrete time steps or a
continuous time line. Their general mathematical formulations are as follows:

1A traditional definition of dynamical systems considers deterministic systems only, but stochastic (i.e.,
probabilistic) behaviors can also be modeled in a dynamical system by, for example, representing the prob-
ability distribution of the system’s states as a meta-level state.

29
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Discrete-time dynamical system

xt = F (xt−1, t) (3.1)

This type of model is called a difference equation, a recurrence equation, or an
iterative map (if there is no t on the right hand side).

Continuous-time dynamical system

dx

dt
= F (x, t) (3.2)

This type of model is called a differential equation.

In either case, xt or x is the state variable of the system at time t, which may take a scalar
or vector value. F is a function that determines the rules by which the system changes
its state over time. The formulas given above are first-order versions of dynamical sys-
tems (i.e., the equations don’t involve xt−2, xt−3, . . ., or d2x/dt2, d3x/dt3, . . .). But these
first-order forms are general enough to cover all sorts of dynamics that are possible in
dynamical systems, as we will discuss later.

Exercise 3.1 Have you learned of any models in the natural or social sciences
that are formulated as either discrete-time or continuous-time dynamical systems
as shown above? If so, what are they? What are the assumptions behind those
models?

Exercise 3.2 What are some appropriate choices for state variables in the follow-
ing systems?

• population growth

• swinging pendulum

• motions of celestial bodies

• behavior of “rational” individuals playing a negotiation game
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3.2 Phase Space

Behaviors of a dynamical system can be studied by using the concept of a phase space,
which is informally defined as follows:

A phase space of a dynamical system is a theoretical space where every state of the
system is mapped to a unique spatial location.

The number of state variables needed to uniquely specify the system’s state is called the
degrees of freedom in the system. You can build a phase space of a system by having
an axis for each degree of freedom, i.e., by taking each state variable as one of the
orthogonal axes. Therefore, the degrees of freedom of a system equal the dimensions
of its phase space. For example, describing the behavior of a ball thrown upward in a
frictionless vertical tube can be specified with two scalar variables, the ball’s position and
velocity, at least until it hits the bottom again. You can thus create its phase space in two
dimensions, as shown in Fig. 3.1.

Position x 

Velocity v 

Position x 

V
e
lo

c
it
y
 v

 

Figure 3.1: A ball thrown upward in a vertical tube (left) and a schematic illustration of
its phase space (right). The dynamic behavior of the ball can be visualized as a static
trajectory in the phase space (red arrows).

One of the benefits of drawing a phase space is that it allows you to visually represent
the dynamically changing behavior of a system as a static trajectory in it. This provides
a lot of intuitive, geometrical insight into the system’s dynamics, which would be hard to
infer if you were just looking at algebraic equations.
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Exercise 3.3 In the example above, when the ball hits the floor in the vertical
tube, its kinetic energy is quickly converted into elastic energy (i.e., deformation
of the ball), and then it is converted back into kinetic energy again (i.e., upward
velocity). Think about how you can illustrate this process in the phase space. Are
the two dimensions enough or do you need to introduce an additional dimension?
Then try to illustrate the trajectory of the system going through a bouncing event in
the phase space.

3.3 What Can We Learn?

There are several important things you can learn from phase space visualizations. First,
you can tell from the phase space what will eventually happen to a system’s state in the
long run. For a deterministic dynamical system, its future state is uniquely determined by
its current state (hence, the name “deterministic”). Trajectories of a deterministic dynam-
ical system will never branch off in its phase space (though they could merge), because
if they did, that would mean that multiple future states were possible, which would vio-
late the deterministic nature of the system. No branching means that, once you specify
an initial state of the system, the trajectory that follows is uniquely determined too. You
can visually inspect where the trajectories are going in the phase space visualization.
They may diverge to infinity, converge to a certain point, or remain dynamically chang-
ing yet stay in a confined region in the phase space from which no outgoing trajectories
are running out. Such a converging point or a region is called an attractor. The concept
of attractors is particularly important for understanding the self-organization of complex
systems. Even if it may look magical and mysterious, self-organization of complex sys-
tems can be understood as a process whereby the system is simply falling into one of the
attractors in a high-dimensional phase space.

Second, you can learn how a system’s fate depends on its initial state. For each at-
tractor, you can find the set of all the initial states from which you will eventually end up
falling into that attractor. This set is called the basin of attraction of that attractor. If you
have more than one attractor in the phase space (and/or if the phase space also shows
divergence to infinity), you can divide the phase space into several different regions. Such
a “map” drawn on the phase space reveals how sensitive the system is to its initial con-
ditions. If one region is dominating in the phase space, the system’s fate doesn’t depend
much on its initial condition. But if there are several regions that are equally represented
in the phase space, the system’s fate sensitively depends on its initial condition.
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Another thing you can learn from phase space visualizations is the stability of the
system’s states. If you see that trajectories are converging to a certain point or area in
the phase space, that means the system’s state is stable in that area. But if you see
trajectories are diverging from a certain point or area, that means the system’s state is
unstable in that area. Knowing system stability is often extremely important to understand,
design, and/or control systems in real-world applications. The following chapters will put
a particular emphasis on this stability issue.

Exercise 3.4 Where are the attractor(s) in the phase space of the bouncing ball
example created in Exercise 3.3? Assume that every time the ball bounces it loses
a bit of its kinetic energy.

Exercise 3.5 For each attractor obtained in Exercise 3.4 above, identify its basin
of attraction.

Exercise 3.6 For each of the phase spaces shown below, identify the following:

• attractor(s)

• basin of attraction for each attractor

• stability of the system’s state at several locations in the phase space

Exercise 3.7 Consider a market where two equally good products, A and B, are
competing with each other for market share. There is a customer review website
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where users of each product submit their ratings. Since there is no actual differ-
ence in the product quality, the average rating scores are about the same between
the two products, but the customers can also see the total number of submitted
ratings for each product, which shows how popular the product is in the market.
Customers tend to adopt a more popular choice. Answer the following questions:

• What would the phase space of this system look like?

• Are there any attractors? Are there any basins of attraction?

• How does the system’s fate depend on its initial state?

• If you were in charge of marketing product A, what would you do?



Chapter 4

Discrete-Time Models I: Modeling

4.1 Discrete-Time Models with Difference Equations

Discrete-time models are easy to understand, develop and simulate. They are easily im-
plementable for stepwise computer simulations, and they are often suitable for modeling
experimental data that are almost always already discrete. Moreover, they can repre-
sent abrupt changes in the system’s states, and possibly chaotic dynamics, using fewer
variables than their continuous-time counterparts (this will be discussed more in Chapter
9).

The discrete-time models of dynamical systems are often called difference equations,
because you can rewrite any first-order discrete-time dynamical system with a state vari-
able x (Eq. (3.1)), i.e.,

xt = F (xt−1, t) (4.1)

into a “difference” form

∆x = xt − xt−1 = F (xt−1, t)− xt−1, (4.2)

which is mathematically more similar to differential equations. But in this book, we mostly
stick to the original form that directly specifies the next value of x, which is more straight-
forward and easier to understand.

Note that Eq. (4.1) can also be written as

xt+1 = F (xt, t), (4.3)

which is mathematically equivalent to Eq. (4.1) and perhaps more commonly used in the
literature. But we will use the notation with xt, xt−1, xt−2, etc., in this textbook, because

35
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this notation makes it easier to see how many previous steps are needed to calculate the
next step (e.g., if the right hand side contains xt−1 and xt−2, that means you will need to
know the system’s state in previous two steps to determine its next state).

From a difference equation, you can produce a series of values of the state variable x
over time, starting with initial condition x0:

{x0, x1, x2, x3, . . .} (4.4)

This is called time series. In this case, it is a prediction made using the difference equa-
tion model, but in other contexts, time series also means sequential values obtained by
empirical observation of real-world systems as well.

Here is a very simple example of a discrete-time, discrete-state dynamical system.
The system is made of two interacting components: A and B. Each component takes one
of two possible states: Blue or red. Their behaviors are determined by the following rules:

• A tries to stay the same color as B.

• B tries to be the opposite color of A.

These rules are applied to their states simultaneously in discrete time steps.

Exercise 4.1 Write the state transition functions FA(sA, sB) and FB(sA, sB) for this
system, where sA and sB are the states of A and B, respectively.

Exercise 4.2 Produce a time series of (sA, sB) starting with an initial condition
with both components in blue, using the model you created. What kind of behavior
will arise?

4.2 Classifications of Model Equations

There are some technical terminologies I need to introduce before moving on to further
discussions:

Linear system A dynamical equation whose rules involve just a linear combination
of state variables (a constant times a variable, a constant, or their sum).
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Nonlinear system Anything else (e.g., equation involving squares, cubes, radicals,
trigonometric functions, etc., of state variables).

First-order system A difference equation whose rules involve state variables of the
immediate past (at time t− 1) onlya.

Higher-order system Anything else.
aNote that the meaning of “order” in this context is different from the order of terms in polynomials.

Autonomous system A dynamical equation whose rules don’t explicitly include time
t or any other external variables.

Non-autonomous system A dynamical equation whose rules do include time t or
other external variables explicitly.

Exercise 4.3 Decide whether each of the following examples is (1) linear or non-
linear, (2) first-order or higher-order, and (3) autonomous or non-autonomous.

1. xt = axt−1 + b

2. xt = axt−1 + bxt−2 + cxt−3

3. xt = axt−1(1− xt−1)

4. xt = axt−1 + bxt− 22 + c
√
xt−1xt−3

5. xt = axt−1xt−2 + bxt−3 + sin t

6. xt = axt−1 + byt−1, yt = cxt−1 + dyt−1

Also, there are some useful things that you should know about these classifications:

Non-autonomous, higher-order difference equations can always be converted into
autonomous, first-order forms, by introducing additional state variables.

For example, the second-order difference equation

xt = xt−1 + xt−2 (4.5)
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(which is called the Fibonacci sequence) can be converted into a first-order form by intro-
ducing a “memory” variable y as follows:

yt = xt−1 (4.6)

Using this, xt−2 can be rewritten as yt−1. Therefore the equation can be rewritten as
follows:

xt = xt−1 + yt−1 (4.7)

yt = xt−1 (4.8)

This is now first-order. This conversion technique works for third-order or any higher-
order equations as well, as long as the historical dependency is finite. Similarly, a non-
autonomous equation

xt = xt−1 + t (4.9)

can be converted into an autonomous form by introducing a “clock” variable z as follows:

zt = zt−1 + 1, z0 = 1 (4.10)

This definition guarantees zt−1 = t. Using this, the equation can be rewritten as

xt = xt−1 + zt−1, (4.11)

which is now autonomous. These mathematical tricks might look like some kind of cheat-
ing, but they really aren’t. The take-home message on this is that autonomous first-order
equations can cover all the dynamics of any non-autonomous, higher-order equations.
This gives us confidence that we can safely focus on autonomous first-order equations
without missing anything fundamental. This is probably why autonomous first-order dif-
ference equations are called by a particular name: iterative maps.

Exercise 4.4 Convert the following difference equations into an autonomous,
first-order form.

1. xt = xt−1(1− xt−1) sin t

2. xt = xt−1 + xt−2 − xt−3

Another important thing about dynamical equations is the following distinction between
linear and nonlinear systems:
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Linear equations are always analytically solvable, while nonlinear equations don’t
have analytical solutions in general.

Here, an analytical solution means a solution written in the form of xt = f(t) without
using state variables on the right hand side. This kind of solution is also called a closed-
form solution because the right hand side is “closed,” i.e., it only needs t and doesn’t need
x. Obtaining a closed-form solution is helpful because it gives you a way to calculate (i.e.,
predict) the system’s state directly from t at any point in time in the future, without actually
simulating the whole history of its behavior. Unfortunately this is not possible for nonlinear
systems in most cases.

4.3 Simulating Discrete-Time Models with One Variable

Now is the time to do our very first exercise of computer simulation of discrete-time models
in Python. Let’s begin with this very simple linear difference equation model of a scalar
variable x:

xt = axt−1 (4.12)

Here, a is a model parameter that specifies the ratio between the current state and the
next state. Our objective is to find out what kind of behavior this model will show through
computer simulation.

When you want to conduct a computer simulation of any sort, there are at least three
essential things you will need to program, as follows:

Three essential components of computer simulation

Initialize. You will need to set up the initial values for all the state variables of the
system.

Observe. You will need to define how you are going to monitor the state of the sys-
tem. This could be done by just printing out some variables, collecting mea-
surements in a list structure, or visualizing the state of the system.

Update. You will need to define how you are going to update the values of those
state variables in every time step. This part will be defined as a function, and it
will be executed repeatedly.
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We will keep using this three-part architecture of simulation codes throughout this text-
book. All the sample codes are available from the textbook’s website at http://bingweb.
binghamton.edu/~sayama/textbook/, directly linked from each Code example if you are
reading this electronically.

To write the initialization part, you will need to decide how you are going to represent
the system’s state in your computer code. This will become a challenging task when we
work on simulations of more complex systems, but at this point, this is fairly easy. Since
we have just one variable, we can decide to use a symbol x to represent the state of the
system. So here is a sample code for initialization:

Code 4.1:
def initialize():

global x

x = 1.

In this example, we defined the initialization as a Python function that initializes the global
variable x from inside the function itself. This is why we need to declare that x is global
at the beginning. While such use of global variables is not welcomed in mainstream
computer science and software engineering, I have found that it actually makes simulation
codes much easier to understand and write for the majority of people who don’t have
much experience in computer programming. Therefore, we frequently use global variables
throughout this textbook.

Next, we need to code the observation part. There are many different ways to keep
track of the state variables in a computer simulation, but here let’s use a very simple
approach to create a time series list. This can be done by first initializing the list with the
initial state of the system, and then appending the current state to the list each time the
observation is made. We can define the observation part as a function to make it easier
to read. Here is the updated code:

Code 4.2:
def initialize():

global x, result

x = 1.

result = [x]

def observe():

global x, result

result.append(x)

http://bingweb.binghamton.edu/~sayama/textbook/
http://bingweb.binghamton.edu/~sayama/textbook/
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Finally, we need to program the updating part. This is where the actual simulation
occurs. This can be implemented in another function:

Code 4.3:
def update():

global x, result

x = a * x

Note that the last line directly overwrites the content of symbol x. There is no distinction
between xt−1 and xt, but this is okay, because the past values of x are stored in the results
list in the observe function.

Now we have all the three crucial components implemented. We also need to add
parameter settings to the beginning, and the iterative loop of updating at the end. Here,
let’s let a = 1.1 so that the value of x increases by 10% in each time step. The completed
simulation code looks like this:

Code 4.4:
a = 1.1

def initialize():

global x, result

x = 1.

result = [x]

def observe():

global x, result

result.append(x)

def update():

global x, result

x = a * x

initialize()

for t in xrange(30):

update()

observe()

Here we simulate the behavior of the system for 30 time steps. Try running this code in
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your Python and make sure you don’t get any errors. If so, congratulations! You have just
completed the first computer simulation of a dynamical system.

Of course, this code doesn’t produce any output, so you can’t be sure if the simulation
ran correctly or not. An easy way to see the result is to add the following line to the end
of the code:

Code 4.5:
print result

If you run the code again, you will probably see something like this:

Code 4.6:
[1.0, 1.1, 1.2100000000000002, 1.3310000000000004, 1.4641000000000006,

1.6105100000000008, 1.771561000000001, 1.9487171000000014,

2.1435888100000016, 2.357947691000002, 2.5937424601000023,

2.853116706110003, 3.1384283767210035, 3.4522712143931042,

3.797498335832415, 4.177248169415656, 4.594972986357222,

5.054470284992944, 5.559917313492239, 6.115909044841463,

6.72749994932561, 7.400249944258172, 8.140274938683989,

8.954302432552389, 9.849732675807628, 10.834705943388391,

11.91817653772723, 13.109994191499954, 14.420993610649951,

15.863092971714948, 17.449402268886445]

We see that the value of x certainly grew. But just staring at those numbers won’t give us
much information about how it grew. We should visualize these numbers to observe the
growth process in a more intuitive manner.

To create a visual plot, we will need to use the matplotlib library1. Here we use its
pylab environment included in matplotlib. Pylab provides a MATLAB-like working envi-
ronment by bundling matplotlib’s plotting functions together with a number of frequently
used mathematical/computational functions (e.g., trigonometric functions, random num-
ber generators, etc.). To use pylab, you can add the following line to the beginning of your
code2:

1It is already included in Anaconda and Enthought Canopy. If you are using a different distribution of
Python, matplotlib is freely available from http://matplotlib.org/.

2Another way to import pylab is to write “import pylab” instead, which is recommended by more
programming-savvy people. If you do this, however, pylab’s functions have to have the prefix pylab added
to them, such as pylab.plot(result). For simplicity, we use “from pylab import *” throughout this text-
book.

http://matplotlib.org/
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Code 4.7:
from pylab import *

And then you can add the following lines to the end of your code:

Code 4.8:
plot(result)

show()

The completed code as a whole is as follows (you can download the actual Python code
by clicking on the name of the code in this textbook):

Code 4.9: exponential-growth.py
from pylab import *

a = 1.1

def initialize():

global x, result

x = 1.

result = [x]

def observe():

global x, result

result.append(x)

def update():

global x, result

x = a * x

initialize()

for t in xrange(30):

update()

observe()

plot(result)

show()

http://bingweb.binghamton.edu/~sayama/textbook/code/exponential-growth.py
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Run this code and you should get a new window that looks like Fig. 4.1. If not, check your
code carefully and correct any mistakes. Once you get a successfully visualized plot,
you can clearly see an exponential growth process in it. Indeed, Eq. (4.12) is a typical
mathematical model of exponential growth or exponential decay. You can obtain several
distinct behaviors by varying the value of a.
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Figure 4.1: Visual output of Code 4.9.

Exercise 4.5 Conduct simulations of this model for various values of parameter
a to see what kind of behaviors are possible in this model and how the value of a
determines the resulting behavior.

For your information, there are a number of options you can specify in the plot func-
tion, such as adding a title, labeling axes, changing color, changing plot ranges, etc. Also,
you can manipulate the result of the plotting interactively by using the icons located at the
bottom of the plot window. Check out matplotlib’s website (http://matplotlib.org/) to
learn more about those additional features yourself.

In the visualization above, the horizontal axis is automatically filled in by integers start-
ing with 0. But if you want to give your own time values (e.g., at intervals of 0.1), you can

http://matplotlib.org/
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simulate the progress of time as well, as follows (revised parts are marked with ###):

Code 4.10: exponential-growth-time.py
from pylab import *

a = 1.1

def initialize():

global x, result, t, timesteps ###

x = 1.

result = [x]

t = 0. ###

timesteps = [t] ###

def observe():

global x, result, t, timesteps ###

result.append(x)

timesteps.append(t) ###

def update():

global x, result, t, timesteps ###

x = a * x

t = t + 0.1 ###

initialize()

while t < 3.: ###

update()

observe()

plot(timesteps, result) ###

show()

Exercise 4.6 Implement a simulation code of the following difference equation:

xt = axt−1 + b, x0 = 1 (4.13)

This equation is still linear, but now it has a constant term in addition to axt−1. Some
real-world examples that can be modeled in this equation include fish population

http://bingweb.binghamton.edu/~sayama/textbook/code/exponential-growth-time.py
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growth with constant removals due to fishing, and growth of credit card balances
with constant monthly payments (both with negative b). Change the values of a
and b, and see if the system’s behaviors are the same as those of the simple
exponential growth/decay model.

4.4 Simulating Discrete-Time Models with Multiple Vari-
ables

Now we are making a first step to complex systems simulation. Let’s increase the number
of variables from one to two. Consider the following difference equations:

xt = 0.5xt−1 + yt−1 (4.14)

yt = −0.5xt−1 + yt−1 (4.15)

x0 = 1, y0 = 1 (4.16)

These equations can also be written using vectors and a matrix as follows:(
x

y

)
t

=

(
0.5 1

−0.5 1

)(
x

y

)
t−1

(4.17)

Try implementing the simulation code of the equation above. This may seem fairly
straightforward, requiring only minor changes to what we had before. Namely, you just
need to simulate two difference equations simultaneously. Your new code may look like
this:

Code 4.11: oscillation-wrong.py
from pylab import *

def initialize():

global x, y, xresult, yresult

x = 1.

y = 1.

xresult = [x]

yresult = [y]

def observe():

http://bingweb.binghamton.edu/~sayama/textbook/code/oscillation-wrong.py
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global x, y, xresult, yresult

xresult.append(x)

yresult.append(y)

def update():

global x, y, xresult, yresult

x = 0.5 * x + y

y = -0.5 * x + y

initialize()

for t in xrange(30):

update()

observe()

plot(xresult, ’b-’)

plot(yresult, ’g--’)

show()

What I did in this code is essentially to repeat things for both x and y. Executing two plot

commands at the end produces two curves in a single chart. I added the ’b-’ and ’g--’

options to the plot functions to draw xresult in a blue solid curve and yresult in a green
dashed curve. If you run this code, it produces a decent result (Fig. 4.2), so things might
look okay. However, there is one critical mistake I made in the code above. Can you spot
it? This is a rather fundamental issue in complex systems simulation in general, so we’d
better notice and fix it earlier than later. Read the code carefully again, and try to find
where and how I did it wrong.

Did you find it? The answer is that I did not do a good job in updating x and y simulta-
neously. Look at the following part of the code:

Code 4.12:
x = 0.5 * x + y

y = -0.5 * x + y

Note that, as soon as the first line is executed, the value of x is overwritten by its new
value. When the second line is executed, the value of x on its right hand side is already
updated, but it should still be the original value. In order to correctly simulate simultaneous
updating of x and y, you will need to do something like this:
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Figure 4.2: Visual output of Code 4.11. This result is actually wrong.

Code 4.13: oscillation-correct.py
nextx = 0.5 * x + y

nexty = -0.5 * x + y

x, y = nextx, nexty

Here we have two sets of state variables, x, y and nextx, nexty. We first calculate the
next state values and store them in nextx, nexty, and then copy them to x, y, which will
be used in the next iteration. In this way, we can avoid any interference between the state
variables during the updating process. If you apply this change to the code, you will get a
correct simulation result (Fig. 4.3).

The issue of how to implement simultaneous updating of multiple variables is a com-
mon technical theme that appears in many complex systems simulation models, as we
will discuss more in later chapters. As seen in the example above, a simple solution is to
prepare two separate sets of the state variables, one for now and the other for the imme-
diate future, and calculate the updated values of state variables without directly modifying
them during the updating.

In the visualizations above, we simply plotted the state variables over time, but there is

http://bingweb.binghamton.edu/~sayama/textbook/code/oscillation-correct.py
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Figure 4.3: Visual output of the simulation result based on a correctly implemented
code with Code 4.13.
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another way of visualizing simulation results in a phase space. If your model involves just
two state variables (or three if you know 3-D plotting), you should try this visualization to
see the structure of the phase space. All you need to do is to replace the following part

Code 4.14:
plot(xresult)

plot(yresult)

with this:

Code 4.15: oscillation-correct-phasespace.py
plot(xresult, yresult)

This will produce a trajectory of the system state in an x-y phase space, which clearly
shows that the system is in an oval, periodic oscillation (Fig. 4.4), which is a typical sig-
nature of a linear system.
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Figure 4.4: Visualization of the simulation result in a phase space using Code 4.15.

http://bingweb.binghamton.edu/~sayama/textbook/code/oscillation-correct-phasespace.py
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Exercise 4.7 Simulate the above two-variable system using several different co-
efficients in the equations and see what kind of behaviors can arise.

Exercise 4.8 Simulate the behavior of the following Fibonacci sequence. You
first need to convert it into a two-variable first-order difference equation, and then
implement a simulation code for it.

xt = xt−1 + xt−2, x0 = 1, x1 = 1 (4.18)

If you play with this simulation model for various coefficient values, you will soon no-
tice that there are only certain kinds of behaviors possible in this system. Sometimes
the curves show exponential growth or decay, or sometimes they show more smooth os-
cillatory behaviors. These two behaviors are often combined to show an exponentially
growing oscillation, etc. But that’s about it. You don’t see any more complex behaviors
coming out of this model. This is because the system is linear, i.e., the model equation
is composed of a simple linear sum of first-order terms of state variables. So here is an
important fact you should keep in mind:

Linear dynamical systems can show only exponential growth/decay, periodic oscilla-
tion, stationary states (no change), or their hybrids (e.g., exponentially growing oscil-
lation)a.

aSometimes they can also show behaviors that are represented by polynomials (or products of poly-
nomials and exponentials) of time. This occurs when their coefficient matrices are non-diagonalizable.

In other words, these behaviors are signatures of linear systems. If you observe such
behavior in nature, you may be able to assume that the underlying rules that produced
the behavior could be linear.

4.5 Building Your Own Model Equation

Now that you know how to simulate the dynamics of difference equations, you may want
to try building your own model equation and test its behaviors. Then a question arises:
How do you build your own model equation?
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Mathematics is a language that is used to describe the world. Just like that there is no
single correct way to describe an idea in English, there is no single correct way to build a
mathematical model equation either. It is highly dependent on your own personal literacy,
creativity, and expressiveness in the language of mathematics. Ultimately, you just need
to keep “reading” and “writing” math every day, in order to get better in mathematical
model building.

Having said that, there are some practical tips I can offer to help you build your own
model equations. Here they are:

Practical tips for mathematical model building

1. If you aren’t sure where to start, just grab an existing model and tweak it.

2. Implement each model assumption one by one. Don’t try to reach the final
model in one jump.

3. To implement a new assumption, first identify which part of the model equation
represents the quantity you are about to change, replace it with an unknown
function, and then design the function.

4. Whenever possible, adopt the simplest mathematical form.

5. Once your equation is complete, check if it behaves as you desired. It is often
helpful to test its behavior with extreme values assigned to variables and/or
parameters.

Let me illustrate each of those tips by going through an example. Consider build-
ing another population growth model that can show not just exponential growth but also
convergence to a certain population limit. Any ideas about where to start?

As the first tip suggests, you could use an existing model that is similar to what you
want to model, and then modify it for your needs. Since this example is about population
growth, we already know one such model: the exponential growth model. So let’s start
there:

xt = axt−1 (4.19)

This model is very simple. It consists of just two components: growth ratio a and popula-
tion size xt−1.

The second tip says you should take a step-by-step approach. So let’s think about
what we additionally need to implement in this model. Our new model should show the
following two behaviors:
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• Exponential growth

• Convergence to a certain population limit

We should check the first one first. The original model already shows exponential growth
by itself, so this is already done. So we move on to the second one. Obviously, the original
model doesn’t show such convergence, so this is what we will need to implement in the
model.

The third tip says you need to focus on a specific component to be revised. There are
many options here. You could revise a, xt−1, or you could even add another term to the
right hand side. But in this particular case, the convergence to a certain limit means that
the growth ratio a should go to 1 (i.e., no net growth). So, we can focus on the a part, and
replace it by an unknown function of the population size f(xt−1). The model equation now
looks like this:

xt = f(xt−1)xt−1 (4.20)

Now your task just got simpler: just to design function f(x). Think about constraints it has
to satisfy. f(x) should be close to the original constant a when the population is small,
i.e., when there are enough environmental resources, to show exponential growth. In the
meantime, f(x) should approach 1 when the population approaches a carrying capacity of
the environment (let’s call it K for now). Mathematically speaking, these constraints mean
that the function f(x) needs to go through the following two points: (x, f(x)) = (0, a) and
(K, 1).

And this is where the fourth tip comes in. If you have no additional information about
what the model should look like, you should choose the simplest possible form that satis-
fies the requirements. In this particular case, a straight line that connects the two points
above is the simplest one (Fig. 4.5), which is given by

f(x) = −a− 1

K
x+ a. (4.21)

You can plug this form into the original equation, to complete a new mathematical equa-
tion:

xt =

(
−a− 1

K
xt−1 + a

)
xt−1 (4.22)

Now it seems your model building is complete. Following the fifth tip, let’s check if
the new model behaves the way you intended. As the tip suggests, testing with extreme
values often helps find out possible issues in the model. What happens when xt−1 = 0? In
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Figure 4.5: The simplest example of how the growth ratio a = f(x) should behave as
a function of population size x.

this case, the equation becomes xt = 0, so there is no growth. This makes perfect sense;
if there are no organisms left, there should be no growth. Another extreme case: What
happens when xt−1 = K? In this case, the equation becomes xt = xt−1, i.e., the system
maintains the same population size. This is the new convergent behavior you wanted to
implement, so this is also good news. Now you can check the behaviors of the new model
by computer simulations.

Exercise 4.9 Simulate the behavior of the new population growth model for sev-
eral different values of parameter a and initial condition x0 to see what kind of
behaviors are possible.

xt =

(
−a− 1

K
xt−1 + a

)
xt−1 (4.23)

For your information, the new model equation we have just derived above actually
has a particular name; it is called the logistic growth model in mathematical biology and
several other disciplines. You can apply a parameter substitution r = a − 1 to make the
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equation into a more well-known form:

xt =

(
−a− 1

K
xt−1 + a

)
xt−1 (4.24)

=
(
− r

K
xt−1 + r + 1

)
xt−1 (4.25)

= xt−1 + rxt−1

(
1− xt−1

K

)
(4.26)

This formula has two terms on its right hand side: the current population size (xt−1) and
the number of newborns (rxt−1(· · · )). If x is much smaller than K, the value inside the
parentheses gets closer to 1, and thus the model is approximated by

xt ≈ xt−1 + rxt−1. (4.27)

This means that r times the current population is added to the population at each time
step, resulting in exponential growth. But when x comes close to K, inside the parenthe-
ses approaches 0, so there will be no net growth.

Exercise 4.10 Create a mathematical model of population growth in which the
growth ratio is highest at a certain optimal population size, but it goes down as the
population deviates from the optimal size. Then simulate its behavior and see how
its behavior differs from that of the logistic growth model.

4.6 Building Your Own Model Equations with Multiple
Variables

We can take one more step to increase the complexity of the model building, by including
more than one variable. Following the theme of population growth, let’s consider eco-
logical interactions between two species. A typical scenario would be the predator-prey
interaction. Let’s stick to the population-level description of the system so each species
can be described by one variable (say, x and y).

The first thing you should consider is each variable’s inherent dynamics, i.e., what
would happen if there were no influences coming from other variables. If there is always
plenty of food available for the prey, we can assume the following:

• Prey grows if there are no predators.
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Figure 4.6: Inherent dynamics of each of the prey and predator populations illustrated
in a causal loop diagram.

• Predators die if there are no prey.

These assumptions can be diagrammatically illustrated in Fig. 4.6.
This type of diagram is called a causal loop diagram in System Dynamics [26]. Each

circle, or node, in this diagram represents a state variable in the system. The self-loop
arrow attached to each node represents the effect of the variables on itself (e.g., the more
prey there are, the faster their growth will be, etc.). The plus/minus signs next to the
arrows show whether the effect is positive or negative.

We can now consider the interactions between the two variables, i.e., how one variable
influences the other and vice versa. Naturally, there should be the following effects:

• The prey’s death rate increases as the predator population increases.

• The predators’ growth rate increases as the prey population increases.

These interactions can be illustrated as arrows between nodes in the causal loop diagram
(Fig. 4.7).

Now is the time to translate the structure of the system illustrated in the diagram into
mathematical equations. Each arrow in the diagram tells us whether the effect is positive
or negative, but they don’t give any exact mathematical form, so we will need to create a
mathematical representation for each (possibly using the aforementioned tips).
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Figure 4.7: Interactions between the prey and predator populations illustrated in a
causal loop diagram.

The inherent dynamics of the two variables are quite straightforward to model. Since
we already know how to model growth and decay, we can just borrow those existing
models as building components, like this:

xt = xt−1 + rxxt−1(1− xt−1/K) (4.28)

yt = yt−1 − dyyt−1 (4.29)

Here, I used the logistic growth model for the prey (x) while using the exponential decay
model for the predators (y). rx is the growth rate of the prey, and dy is the death rate of
the predators (0 < dy < 1).

To implement additional assumptions about the predator-prey interactions, we need to
figure out which part of the equations should be modified. In this example it is obvious,
because we already know that the interactions should change the death rate of the prey
and the growth rate of the predators. These terms are not yet present in the equations
above, so we can simply add a new unknown term to each equation:

xt = xt−1 + rxt−1(1− xt−1/K)− dx(yt−1)xt−1 (4.30)

yt = yt−1 − dyt−1 + ry(xt−1)yt−1 (4.31)

Now the problems are much better defined. We just need to come up with a mathematical
form for dx and ry.
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The death rate of the prey should be 0 if there are no predators, while it should ap-
proach 1 (= 100% mortality rate!) if there are too many predators. There are a number
of mathematical formulas that behave this way. A simple example would be the following
hyperbolic function

dx(y) = 1− 1

by + 1
, (4.32)

where b determines how quickly dx increases as y increases.
The growth rate of the predators should be 0 if there are no prey, while it can go up in-

definitely as the prey population increases. Therefore, the simplest possible mathematical
form could be

ry(x) = cx, (4.33)

where c determines how quickly ry increases as x increases.
Let’s put these functions back into the equations. We obtain the following:

xt = xt−1 + rxt−1

(
1− xt−1

K

)
−
(

1− 1

byt−1 + 1

)
xt−1 (4.34)

yt = yt−1 − dyt−1 + cxt−1yt−1 (4.35)

Exercise 4.11 Test the equations above by assuming extreme values for x and y,
and make sure the model behaves as we intended.

Exercise 4.12 Implement a simulation code for the equations above, and observe
the model behavior for various parameter settings.

Figure 4.8 shows a sample simulation result with r = b = d = c = 1, K = 5 and x0 =

y0 = 1. The system shows an oscillatory behavior, but as its phase space visualization
(Fig. 4.8 right) indicates, it is not a harmonic oscillation seen in linear systems, but it is a
nonlinear oscillation with distorted orbits.

The model we have created above is actually a variation of the Lotka-Volterra model,
which describes various forms of predator-prey interactions. The Lotka-Volterra model is
probably one of the most famous mathematical models of nonlinear dynamical systems
that involves multiple variables.
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Figure 4.8: Simulation results of the predator-prey model. Left: State variables plot-
ted over time. Blue (solid) = prey, green (dashed) = predators. Right: Phase space
visualization of the same result.

Exercise 4.13 Try several different parameter settings for r, b, d, and c, and see
how the system’s behavior changes. In some cases you may find an unrealistic,
invalid behavior (e.g., indefinite growth of predators). If so, revise the model to fix
the problem.

In this chapter, we reviewed some basics of mathematical modeling in difference equa-
tions. As I keep saying, the best way to learn modeling is through practice. Here are some
more modeling exercises. I hope you enjoy them!

Exercise 4.14 Develop a discrete-time mathematical model of two species com-
peting for the same resource, and simulate its behavior.

Exercise 4.15 Consider the dynamics of public opinions about political ideolo-
gies. For simplicity, let’s assume that there are only three options: conservative,
liberal, and neutral. Conservative and liberal are equally attractive (or annoying,
maybe) to people, with no fundamental asymmetry between them. The populari-
ties of conservative and liberal ideologies can be represented by two variables, pc
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and pl, respectively (0 ≤ pc ≤ 1; 0 ≤ pl ≤ 1; 0 ≤ pc + pl ≤ 1). This implies that
1− pc − pl = pn represents the popularity of neutral.

Assume that at each election poll, people will change their ideological states
among the three options according to their relative popularities in the previous poll.
For example, the rate of switching from option X to option Y can be considered
proportional to (pY − pX) if pY > pX , or 0 otherwise. You should consider six
different cases of such switching behaviors (conservative to liberal, conservative
to neutral, liberal to conservative, liberal to neutral, neutral to conservative, and
neutral to liberal) and represent them in dynamical equations.

Complete a discrete-time mathematical model that describes this system, and
simulate its behavior. See what the possible final outcomes are after a sufficiently
long time period.

Exercise 4.16 Revise the model of public opinion dynamics developed in the pre-
vious exercise so that the political parties of the two ideologies (conservative and
liberal) run a political campaign to promote voters’ switching to their ideologies from
their competitions, at a rate inversely proportional to their current popularity (i.e.,
the less popular they are, the more intense their campaign will be). Simulate the
behavior of this revised model and see how such political campaigning changes
the dynamics of the system.



Chapter 5

Discrete-Time Models II: Analysis

5.1 Finding Equilibrium Points

When you analyze an autonomous, first-order discrete-time dynamical system (a.k.a. it-
erative map)

xt = F (xt−1), (5.1)

one of the first things you should do is to find its equilibrium points (also called fixed
points or steady states), i.e., states where the system can stay unchanged over time.
Equilibrium points are important for both theoretical and practical reasons. Theoretically,
they are key points in the system’s phase space, which serve as meaningful references
when we understand the structure of the phase space. And practically, there are many
situations where we want to sustain the system at a certain state that is desirable for us.
In such cases, it is quite important to know whether the desired state is an equilibrium
point, and if it is, whether it is stable or unstable.

To find equilibrium points of a system, you can substitute all the x’s in the equation
with a constant xeq (either scalar or vector) to obtain

xeq = F (xeq), (5.2)

and then solve this equation with regard to xeq. If you have more than one state variable,
you should do the same for all of them. For example, here is how you can find the
equilibrium points of the logistic growth model:

xt = xt−1 + rxt−1

(
1− xt−1

K

)
(5.3)

61
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Replacing all the x’s with xeq, we obtain the following:

xeq = xeq + rxeq

(
1− xeq

K

)
(5.4)

0 = rxeq

(
1− xeq

K

)
(5.5)

xeq = 0, K (5.6)

The result shows that the population will not change if there are no organisms (xeq = 0)
or if the population size reaches the carrying capacity of the environment (xeq = K). Both
make perfect sense.

Exercise 5.1 Obtain the equilibrium point(s) of the following difference equation:

xt = 2xt−1 − x2
t−1 (5.7)

Exercise 5.2 Obtain the equilibrium point(s) of the following two-dimensional dif-
ference equation model:

xt = xt−1yt−1 (5.8)

yt = yt−1(xt−1 − 1) (5.9)

Exercise 5.3 Obtain the equilibrium point(s) of the following difference equation:

xt = xt−1 − x2
t−2 + 1 (5.10)

Note that this is a second-order difference equation, so you will need to first convert
it into a first-order form and then find the equilibrium point(s).

5.2 Phase Space Visualization of Continuous-State
Discrete-Time Models

Once you find where the equilibrium points of the system are, the next natural step of
analysis would be to draw the entire picture of its phase space (if the system is two or
three dimensional).
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For discrete-time systems with continuous-state variables (i.e., state variables that
take real values), drawing a phase space can be done very easily using straightforward
computer simulations, just like we did in Fig. 4.3. To reveal a large-scale structure of the
phase space, however, you will probably need to draw many simulation results starting
from different initial states. This can be achieved by modifying the initialization function
so that it can receive specific initial values for state variables, and then you can put the
simulation code into for loops that sweep the parameter values for a given range. For
example:

Code 5.1: phasespace-drawing.py
from pylab import *

def initialize(x0, y0): ###

global x, y, xresult, yresult

x = x0 ###

y = y0 ###

xresult = [x]

yresult = [y]

def observe():

global x, y, xresult, yresult

xresult.append(x)

yresult.append(y)

def update():

global x, y, xresult, yresult

nextx = 0.5 * x + y

nexty = -0.5 * x + y

x, y = nextx, nexty

for x0 in arange(-2, 2, .5): ###

for y0 in arange(-2, 2, .5): ###

initialize(x0, y0) ###

for t in xrange(30):

update()

observe()

plot(xresult, yresult, ’b’) ###

http://bingweb.binghamton.edu/~sayama/textbook/code/phasespace-drawing.py
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show()

Revised parts from the previous example are marked with ###. Here, the arange function
was used to vary initial x and y values over [−2, 2] at interval 0.5. For each initial state, a
simulation is conducted for 30 steps, and then the result is plotted in blue (the ’b’ option
of plot). The output of this code is Fig. 5.1, which clearly shows that the phase space of
this system is made of many concentric trajectories around the origin.
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Figure 5.1: Phase space drawn using Code 5.1.

Exercise 5.4 Draw a phase space of the following two-dimensional difference
equation model in Python:

xt = xt−1 + 0.1(xt−1 − xt−1yt−1) (5.11)

yt = yt−1 + 0.1(yt−1 − xt−1yt−1) (5.12)

(x > 0, y > 0) (5.13)
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Three-dimensional systems can also be visualized in a similar manner. For example,
let’s try visualizing the following three-dimensional difference equation model:

xt = 0.5x+ y (5.14)

yt = −0.5x+ y (5.15)

zt = −x− y + z (5.16)

Plotting in 3-D requires an additional matplotlib component called Axes3D. A sample
code is given in Code 5.2. Note the new import Axes3D line at the beginning, as well
as the two additional lines before the for loops. This code produces the result shown in
Fig. 5.2.

Code 5.2: phasespace-drawing-3d.py
from pylab import *

from mpl_toolkits.mplot3d import Axes3D

def initialize(x0, y0, z0):

global x, y, z, xresult, yresult, zresult

x = x0

y = y0

z = z0

xresult = [x]

yresult = [y]

zresult = [z]

def observe():

global x, y, z, xresult, yresult, zresult

xresult.append(x)

yresult.append(y)

zresult.append(z)

def update():

global x, y, z, xresult, yresult, zresult

nextx = 0.5 * x + y

nexty = -0.5 * x + y

nextz = - x - y + z

x, y, z = nextx, nexty, nextz

http://bingweb.binghamton.edu/~sayama/textbook/code/phasespace-drawing-3d.py
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ax = gca(projection=’3d’)

for x0 in arange(-2, 2, 1):

for y0 in arange(-2, 2, 1):

for z0 in arange(-2, 2, 1):

initialize(x0, y0, z0)

for t in xrange(30):

update()

observe()

ax.plot(xresult, yresult, zresult, ’b’)

show()

Note that it is generally not a good idea to draw many trajectories in a 3-D phase space,
because the visualization would become very crowded and difficult to see. Drawing a
small number of characteristic trajectories is more useful.

In general, you should keep in mind that phase space visualization of discrete-time
models may not always give images that are easily visible to human eye. This is because
the state of a discrete-time system can jump around in the phase space, and thus the
trajectories can cross over each other (this will not happen for continuous-time models).
Here is an example. Replace the content of the update function in Code 5.1 with the
following:

Code 5.3: phasespace-drawing-bad.py
nextx = - 0.5 * x - 0.7 * y

nexty = x - 0.5 * y

As a result, you get Fig. 5.3.

While this may be aesthetically pleasing, it doesn’t help our understanding of the sys-
tem very much because there are just too many trajectories overlaid in the diagram. In
this sense, the straightforward phase space visualization may not always be helpful for
analyzing discrete-time dynamical systems. In the following sections, we will discuss a
few possible workarounds for this problem.

http://bingweb.binghamton.edu/~sayama/textbook/code/phasespace-drawing-bad.py
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Figure 5.2: Three-dimensional phase space drawn with Code 5.2. If you are drawing
this from an interactive environment, such as Anaconda Spyder or Enthought Canopy,
you can rotate the 3-D plot interactively by clicking and dragging.
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Figure 5.3: Phase space drawn with Code 5.3.

5.3 Cobweb Plots for One-Dimensional Iterative Maps

One possible way to solve the overcrowded phase space of a discrete-time system is to
create two phase spaces, one for time t− 1 and another for t, and then draw trajectories
of the system’s state in a meta-phase space that is obtained by placing those two phase
spaces orthogonally to each other. In this way, you would potentially disentangle the
tangled trajectories to make them visually understandable.

However, this seemingly brilliant idea has one fundamental problem. It works only
for one-dimensional systems, because two- or higher dimensional systems require four-
or more dimensions to visualize the meta-phase space, which can’t be visualized in the
three-dimensional physical world in which we are confined.

This meta-phase space idea is still effective and powerful for visualizing the dynamics
of one-dimensional iterative maps. The resulting visualization is called a cobweb plot,
which plays an important role as an intuitive analytical tool to understand the nonlinear
dynamics of one-dimensional systems.

Here is how to manually draw a cobweb plot of a one-dimensional iterative map, xt =

f(xt−1), with the range of xt being [xmin, xmax]. Get a piece of paper and a pen, and do the
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following:

1. Draw a square on your paper. Label the bottom edge as the axis for xt−1, and the
left edge as the axis for xt. Label the range of their values on the axes (Fig. 5.4).

xt-1 

xt 

xmin xmax 

xmax 

xmin 

Figure 5.4: Drawing a cobweb plot (1).

2. Draw a curve xt = f(xt−1) and a diagonal line xt = xt−1 within the square (Fig. 5.5).
Note that the system’s equilibrium points appear in this plot as the points where the
curve and the line intersect.

3. Draw a trajectory from xt−1 to xt. This can be done by using the curve xt = f(xt−1)

(Fig. 5.6). Start from a current state value on the bottom axis (initially, this is the
initial value x0, as shown in Fig. 5.6), and move vertically until you reach the curve.
Then switch the direction of the movement to horizontal and reach the left axis. You
end up at the next value of the system’s state (x1 in Fig. 5.6). The two red arrows
connecting the two axes represent the trajectory between the two consecutive time
points.

4. Reflect the new state value back onto the horizontal axis. This can be done as a
simple mirror reflection using the diagonal line (Fig. 5.7). This completes one step
of the “manual simulation” on the cobweb plot.



70 CHAPTER 5. DISCRETE-TIME MODELS II: ANALYSIS

xt-1 

xt 

xmin xmax 

xmax 

xmin 

xt = xt-1 

xt = f(xt-1) 

Figure 5.5: Drawing a cobweb plot (2).

5. Repeat the steps above to see where the system eventually goes (Fig. 5.8).

6. Once you get used to this process, you will notice that you don’t really have to touch
either axis. All you need to do to draw a cobweb plot is to bounce back and forth
between the curve and the line (Fig. 5.9)—move vertically to the curve, horizontally
to the line, and repeat.

Exercise 5.5 Draw a cobweb plot for each of the following models:

• xt = xt−1 + 0.1, x0 = 0.1

• xt = 1.1xt−1, x0 = 0.1

Exercise 5.6 Draw a cobweb plot of the following logistic growth model with r = 1,
K = 1, N0 = 0.1:

Nt = Nt−1 + rNt−1(1−Nt−1/K) (5.17)
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x0 

x1 

Figure 5.6: Drawing a cobweb plot (3).

Cobweb plots can also be drawn using Python. Code 5.4 is an example of how to draw
a cobweb plot of the exponential growth model (Code 4.9). Its output is given in Fig. 5.10.

Code 5.4: cobweb-plot.py
from pylab import *

a = 1.1

def initialize():

global x, result

x = 1.

result = [x]

def observe():

global x, result

result.append(x)

def f(x): ### iterative map is now defined as f(x)

http://bingweb.binghamton.edu/~sayama/textbook/code/cobweb-plot.py


72 CHAPTER 5. DISCRETE-TIME MODELS II: ANALYSIS

xt-1 
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Figure 5.7: Drawing a cobweb plot (4).

return a * x

def update():

global x, result

x = f(x)

initialize()

for t in xrange(30):

update()

observe()

### drawing diagonal line

xmin, xmax = 0, 20

plot([xmin, xmax], [xmin, xmax], ’k’)

### drawing curve

rng = arange(xmin, xmax, (xmax - xmin) / 100.)
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Figure 5.8: Drawing a cobweb plot (5).

plot(rng, map(f, rng), ’k’)

### drawing trajectory

horizontal = [result[0]]

vertical = [result[0]]

for x in result[1:]:

horizontal.append(vertical[-1])

vertical.append(x)

horizontal.append(x)

vertical.append(x)

plot(horizontal, vertical, ’b’)

show()

Exercise 5.7 Using Python, draw a cobweb plot of the logistic growth model with
r = 2.5, K = 1, N0 = 0.1.
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Figure 5.9: Drawing a cobweb plot (6).

5.4 Graph-Based Phase Space Visualization of Discrete-
State Discrete-Time Models

The cobweb plot approach discussed above works only for one-dimensional systems,
because we can’t embed such plots for any higher dimensional systems in a 3-D physical
space. However, this dimensional restriction vanishes if the system’s states are discrete
and finite. For such a system, you can always enumerate all possible state transitions
and create the entire phase space of the system as a state-transition graph, which can be
visualized reasonably well even within a 2-D visualization space.

Here is an example. Let’s consider the following second-order (i.e., two-dimensional)
difference equation:

xt = xt−1xt−2 mod 6 (5.18)

The “mod 6” at the end of the equation means that its right hand side is always a
remainder of the division of xt−1xt−2 by 6. This means that the possible state of x is
limited only to 0, 1, 2, 3, 4, or 5, i.e., the state of the system (x, y) (where y is the previous
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Figure 5.10: Visual output of Code 5.4. This is a cobweb plot of the exponential growth
model simulated in Code 4.9.
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value of x) is confined within a finite set of 6× 6 = 36 possible combinations ranging from
(0, 0) to (5, 5). It is very easy to enumerate all the 36 states and numerically study which
state each of them will transition to. The result of this analysis looks like:

• (0, 0)→ (0, 0)

• (1, 0)→ (0, 1)

• (2, 0)→ (0, 2)

• . . .

• (3, 2)→ (0, 3)

• (4, 2)→ (2, 4)

• (5, 2)→ (4, 5)

• . . .

• (3, 5)→ (3, 3)

• (4, 5)→ (2, 4)

• (5, 5)→ (1, 5)

By enumerating all the state transitions, we obtain a list of connections between the
discrete states, which forms a network, or a graph in mathematical terminology. We will
learn more about modeling and analysis of networks later in this textbook, but I can give
you a little bit of a preview here. We can use a Python module called NetworkX [27] to
construct and visualize the network1. See Code 5.5.

Code 5.5: graph-based-phasespace.py
from pylab import *

import networkx as nx

g = nx.DiGraph()

for x in range(6):

for y in range(6):

1If you are using Anaconda, NetworkX is already installed. If you are using Enthought Canopy, you can
easily install it using its Package Manager.

http://bingweb.binghamton.edu/~sayama/textbook/code/graph-based-phasespace.py
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g.add_edge((x, y), ((x * y) % 6, x))

ccs = [cc for cc in nx.connected_components(g.to_undirected())]

n = len(ccs)

w = ceil(sqrt(n))

h = ceil(n / w)

for i in xrange(n):

subplot(h, w, i + 1)

nx.draw(nx.subgraph(g, ccs[i]), with_labels = True)

show()

In this example, a network object, named g, is constructed using NetworkX’s DiGraph

(directed graph) object class, because the state transitions have a direction from one state
to another. I also did some additional tricks to improve the result of the visualization. I split
the network into multiple separate connected components using NetworkX’s connected_

components function, and then arranged them in a grid of plots using pylab’s subplot fea-
ture. The result is shown in Fig. 5.11. Each of the six networks represent one connected
component, which corresponds to one basin of attraction. The directions of transitions are
indicated by thick line segments instead of conventional arrowheads, i.e., each transition
goes from the thin end to the thick end of a line (although some thick line segments are
hidden beneath the nodes in the crowded areas). You can follow the directions of those
links to find out where the system is going in each basin of attraction. The attractor may
be a single state or a dynamic loop. Don’t worry if you don’t understand the details of this
sample code. We will discuss how to use NetworkX in more detail later.

Exercise 5.8 Draw a phase space of the following difference equation within the
range 0 ≤ x < 100 by modifying Code 5.5:

xt = x
xt−1

t−1 mod 100 (5.19)

5.5 Variable Rescaling

Aside from finding equilibrium points and visualizing phase spaces, there are many other
mathematical analyses you can do to study the dynamics of discrete-time models. But
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Figure 5.11: Graph-based phase space of Eq. (5.18) drawn with Code 5.5.
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before jumping right into such paper-and-pencil mathematical work, I would like to show
you a very useful technique that can make your mathematical work much easier. It is
called variable rescaling.

Variable rescaling is a technique to eliminate parameters from your model without
losing generality. The basic idea is this: Variables that appear in your model represent
quantities that are measured in some kind of units, but those units can be arbitrarily cho-
sen without changing the dynamics of the system being modeled. This must be true for all
scientific quantities that have physical dimensions—switching from inches to centimeters
shouldn’t cause any change in how physics works! This means that you have the freedom
to choose any convenient unit for each variable, some of which may simplify your model
equations.

Let’s see how variable rescaling works with an example. Here is the logistic growth
model we discussed before:

xt = xt−1 + rxt−1

(
1− xt−1

K

)
(5.20)

There is only one variable in this model, x, so there is only one unit we can change,
i.e., the unit of the population counts. The first step of variable rescaling is to replace
each of the variables with a new notation made of a non-zero constant and a new state
variable, like this:

x→ αx′ (5.21)

With this replacement, the model equation becomes

αx′t = αx′t−1 + rαx′t−1

(
1−

αx′t−1

K

)
. (5.22)

The second step is to simplify the equation and then find a “convenient” choice for
the constant that will make your equation simpler. This is a rather open-ended process
with many different directions to go, so you will need to do some explorations to find out
what kind of unit choices make your model simplest. For the logistic growth model, the
equation can be further simplified, for example, like
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x′t = x′t−1 + rx′t−1

(
1−

αx′t−1

K

)
(5.23)

= x′t−1

(
1 + r

(
1−

αx′t−1

K

))
(5.24)

= x′t−1

(
1 + r −

rαx′t−1

K

)
(5.25)

= (1 + r)x′t−1

(
1−

rαx′t−1

K(1 + r)

)
. (5.26)

Here, the most convenient choice of α would be α = K(1 + r)/r, with which the equation
above becomes

x′t = (1 + r)x′t−1(1− x′t−1). (5.27)

Furthermore, you can always define new parameters to make equations even simpler.
Here, you can define a new parameter r′ = 1 + r, with which you obtain the following final
equation:

x′t = r′x′t−1(1− x′t−1) (5.28)

Note that this is not the only way of rescaling variables; there are other ways to simplify the
model. Nonetheless, you might be surprised to see how simple the model can become.
The dynamics of the rescaled model are still exactly the same as before, i.e., the original
model and the rescaled model have the same mathematical properties. We can learn a
few more things from this result. First, α = K(1 + r)/r tells us what is the meaningful
unit for you to use in measuring the population in this context. Second, even though the
original model appeared to have two parameters (r and K), this model essentially has
only one parameter, r′, so exploring values of r′ should give you all possible dynamics
of the model (i.e., there is no need to explore in the r-K parameter space). In general,
if your model has k variables, you may be able to eliminate up to k parameters from the
model by variable rescaling (but not always).

By the way, this simplified version of the logistic growth model obtained above,

xt = rxt−1(1− xt−1), (5.29)

has a designated name; it is called the logistic map. It is arguably the most extensively
studied 1-D nonlinear iterative map. This will be discussed in more detail in Chapter 8.

Here is a summary of variable rescaling:
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You should try variable rescaling to eliminate as many parameters as possible from
your model before conducting a mathematical analysis. You may be able to eliminate
as many parameters as the variables in your model. To rescale variables, do the
following:

1. Replace all variables with a non-zero constant times a new variable.

2. Simplify the model equations.

3. Find “convenient” choices for the constants that will make your equations as
simple as possible.

4. Define new parameters, as needed, to make the equations even simpler.

Exercise 5.9 Simplify the following difference equation by variable rescaling:

xt =
a

xt−1 + b
(5.30)

Exercise 5.10 Simplify the following two-dimensional predator-prey difference
equation model by variable rescaling:

xt = xt−1 + rxt−1

(
1− xt−1

K

)
−
(

1− 1

byt−1 + 1

)
xt−1 (5.31)

yt = yt−1 − dyt−1 + cxt−1yt−1 (5.32)

5.6 Asymptotic Behavior of Discrete-Time Linear Dy-
namical Systems

One of the main objectives of rule-based modeling is to make predictions of the future.
So, it is a natural question to ask where the system will eventually go in the (infinite) long
run. This is called the asymptotic behavior of the system when time is taken to infinity,
which turns out to be fully predictable if the system is linear.

Within the scope of discrete-time models, linear dynamical systems are systems whose



82 CHAPTER 5. DISCRETE-TIME MODELS II: ANALYSIS

dynamics can be described as

xt = Axt−1, (5.33)

where x is the state vector of the system and A is the coefficient matrix. Technically, you
could also add a constant vector to the right hand side, such as

xt = Axt−1 + a, (5.34)

but this can always be converted into a constant-free form by adding one more dimension,
i.e.,

yt =

 xt

1

 =

 A a

0 1

 xt−1

1

 = Byt−1. (5.35)

Therefore, we can be assured that the constant-free form of Eq. (5.33) covers all possible
behaviors of linear difference equations.

Obviously, Eq. (5.33) has the following closed-form solution:

xt = Atx0 (5.36)

This is simply because A is multiplied to the state vector x from the left at every time step.
Now the key question is this: How will Eq. (5.36) behave when t → ∞? In studying

this, the exponential function of the matrix, At, is a nuisance. We need to turn it into
a more tractable form in order to understand what will happen to this system as t gets
bigger. And this is where eigenvalues and eigenvectors of the matrix A come to play a
very important role. Just to recap, eigenvalues λi and eigenvectors vi of A are the scalars
and vectors that satisfy

Avi = λivi. (5.37)

In other words, throwing at a matrix one of its eigenvectors will “destroy the matrix” and
turn it into a mere scalar number, which is the eigenvalue that corresponds to the eigen-
vector used. If we repeatedly apply this “matrix neutralization” technique, we get

Atvi = At−1λivi = At−2λ2
i vi = . . . = λtivi. (5.38)

This looks promising. Now, we just need to apply the above simplification to Eq. (5.36).
To do so, we need to represent the initial state x0 by using A’s eigenvectors as the basis
vectors, i.e.,

x0 = b1v1 + b2v2 + . . .+ bnvn, (5.39)
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where n is the dimension of the state space (i.e., A is an n × n matrix). Most real-world
n× n matrices are diagonalizable and thus have n linearly independent eigenvectors, so
here we assume that we can use them as the basis vectors to represent any initial state
x0

2. If you replace x0 with this new notation in Eq. (5.36), we get the following:

xt = At(b1v1 + b2v2 + . . .+ bnvn) (5.40)

= b1A
tv1 + b2A

tv2 + . . .+ bnA
tvn (5.41)

= b1λ
t
1v1 + b2λ

t
2v2 + . . .+ bnλ

t
nvn (5.42)

This result clearly shows that the asymptotic behavior of xt is given by a summation of
multiple exponential terms of λi. There are competitions among those exponential terms,
and which term will eventually dominate the others is determined by the absolute value of
λi. For example, if λ1 has the largest absolute value (|λ1| > |λ2|, |λ3|, . . . |λn|), then

xt = λt1

(
b1v1 + b2

(
λ2

λ1

)t
v2 + . . .+ bn

(
λn
λ1

)t
vn

)
, (5.43)

lim
t→∞

xt ≈ λt1b1v1. (5.44)

This eigenvalue with the largest absolute value is called a dominant eigenvalue, and its
corresponding eigenvector is called a dominant eigenvector, which will dictate which di-
rection (a.k.a. mode in physics) the system’s state will be going asymptotically. Here is
an important fact about linear dynamical systems:

If the coefficient matrix of a linear dynamical system has just one dominant eigen-
value, then the state of the system will asymptotically point to the direction given by
its corresponding eigenvector regardless of the initial state.

This can be considered a very simple, trivial, linear version of self-organization.
Let’s look at an example to better understand this concept. Consider the asymptotic

behavior of the Fibonacci sequence:

xt = xt−1 + xt−2 (5.45)

2This assumption doesn’t apply to defective (non-diagonalizable) matrices that don’t have n linearly
independent eigenvectors. However, such cases are rather rare in real-world applications, because any
arbitrarily small perturbations added to a defective matrix would make it diagonalizable. Problems with such
sensitive, ill-behaving properties are sometimes called pathological in mathematics and physics. For more
details about matrix diagonalizability and other related issues, look at linear algebra textbooks, e.g. [28].
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As we studied already, this equation can be turned into the following two-dimensional
first-order model:

xt = xt−1 + yt−1 (5.46)

yt = xt−1 (5.47)

This can be rewritten by letting (xt, yt)⇒ xt and using a vector-matrix notation, as

xt =

(
1 1

1 0

)
xt−1. (5.48)

So, we just need to calculate the eigenvalues and eigenvectors of the above coefficient
matrix to understand the asymptotic behavior of this system. Eigenvalues of a matrix A
can be obtained by solving the following equation for λ:

det(A− λI) = 0 (5.49)

Here, det(X) is the determinant of matrix X. For this Fibonacci sequence example, this
equation is

det

(
1− λ 1

1 −λ

)
= −(1− λ)λ− 1 = λ2 − λ− 1 = 0, (5.50)

which gives

λ =
1±
√

5

2
(5.51)

as its solutions. Note that one of them ((1 +
√

5)/2 = 1.618 . . .) is the golden ratio! It is
interesting that the golden ratio appears from such a simple dynamical system.

Of course, you can also use Python to calculate the eigenvalues and eigenvectors (or,
to be more precise, their approximated values). Do the following:

Code 5.6:
from pylab import *

eig([[1, 1], [1, 0]])

The eig function is there to calculate eigenvalues and eigenvectors of a square matrix.
You immediately get the following results:

Code 5.7:
(array([ 1.61803399, -0.61803399]), array([[ 0.85065081, -0.52573111],

[ 0.52573111, 0.85065081]]))
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The first array shows the list of eigenvalues (it surely includes the golden ratio), while the
second one shows the eigenvector matrix (i.e., a square matrix whose column vectors
are eigenvectors of the original matrix). The eigenvectors are listed in the same order as
eigenvalues. Now we need to interpret this result. The eigenvalues are 1.61803399 and
-0.61803399. Which one is dominant?

The answer is the first one, because its absolute value is greater than the second
one’s. This means that, asymptotically, the system’s behavior looks like this:

xt ≈ 1.61803399 xt−1 (5.52)

Namely, the dominant eigenvalue tells us the asymptotic ratio of magnitudes of the
state vectors between two consecutive time points (in this case, it approaches the golden
ratio). If the absolute value of the dominant eigenvalue is greater than 1, then the system
will diverge to infinity, i.e., the system is unstable. If less than 1, the system will eventually
shrink to zero, i.e., the system is stable. If it is precisely 1, then the dominant eigenvector
component of the system’s state will be conserved with neither divergence nor conver-
gence, and thus the system may converge to a non-zero equilibrium point. The same
interpretation can be applied to non-dominant eigenvalues as well.

An eigenvalue tells us whether a particular component of a system’s state (given by
its corresponding eigenvector) grows or shrinks over time. For discrete-time models:

• |λ| > 1 means that the component is growing.

• |λ| < 1 means that the component is shrinking.

• |λ| = 1 means that the component is conserved.

For discrete-time models, the absolute value of the dominant eigenvalue λd deter-
mines the stability of the whole system as follows:

• |λd| > 1: The system is unstable, diverging to infinity.

• |λd| < 1: The system is stable, converging to the origin.

• |λd| = 1: The system is stable, but the dominant eigenvector component is
conserved, and therefore the system may converge to a non-zero equilibrium
point.
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We can now look at the dominant eigenvector that corresponds to the dominant eigen-
value, which is (0.85065081, 0.52573111). This eigenvector tells you the asymptotic di-
rection of the system’s state. That is, after a long period of time, the system’s state (xt, yt)

will be proportional to (0.85065081, 0.52573111), regardless of its initial state.
Let’s confirm this analytical result with computer simulations.

Exercise 5.11 Visualize the phase space of Eq. (5.48).

The results are shown in Fig. 5.12, for 3, 6, and 9 steps of simulation. As you can see
in the figure, the system’s trajectories asymptotically diverge toward the direction given by
the dominant eigenvector (0.85065081, 0.52573111), as predicted in the analysis above.
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Figure 5.12: Phase space visualizations of Eq. (5.48) for three different simulation
lengths.

Figure 5.13 illustrates the relationships among the eigenvalues, eigenvectors, and the
phase space of a discrete-time dynamical system. The two eigenvectors show the di-
rections of two invariant lines in the phase space (shown in red). Any state on each of
those lines will be mapped onto the same line. There is also an eigenvalue associated
with each line (λ1 and λ2 in the figure). If its absolute value is greater than 1, the corre-
sponding eigenvector component of the system’s state is growing exponentially (λ1, v1),
whereas if it is less than 1, the component is shrinking exponentially (λ2, v2). In addi-
tion, for discrete-time models, if the eigenvalue is negative, the corresponding eigenvec-
tor component alternates its sign with regard to the origin every time the system’s state is
updated (which is the case for λ2, v2 in the figure).

Here is a summary perspective for you to understand the dynamics of linear sys-
tems:
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l2 < 0 

Figure 5.13: Relationships among eigenvalues, eigenvectors, and the phase space of
a discrete-time dynamical system.
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Dynamics of a linear system are decomposable into multiple independent one-dimen-
sional exponential dynamics, each of which takes place along the direction given by
an eigenvector. A general trajectory from an arbitrary initial condition can be obtained
by a simple linear superposition of those independent dynamics.

One more thing. Sometimes you may find some eigenvalues of a coefficient matrix to
be complex conjugate, not real. This may happen only if the matrix is asymmetric (i.e.,
symmetric matrices always have only real eigenvalues). If this happens, the eigenvectors
also take complex values, which means that there are no invariant lines in the phase
space. So, what is happening there? The answer is rotation. As you remember, linear
systems can show oscillatory behaviors, which are rotations in their phase space. In such
cases, their coefficient matrices have complex conjugate eigenvalues. The meaning of
the absolute values of those complex eigenvalues is still the same as before—greater
than 1 means instability, and less than 1 means stability. Here is a summary:

If a linear system’s coefficient matrix has complex conjugate eigenvalues, the sys-
tem’s state is rotating around the origin in its phase space. The absolute value of
those complex conjugate eigenvalues still determines the stability of the system, as
follows:

• |λ| > 1 means rotation with an expanding amplitude.

• |λ| < 1 means rotation with a shrinking amplitude.

• |λ| = 1 means rotation with a sustained amplitude.

Here is an example of such rotating systems, with coefficients taken from Code 4.13.

Code 5.8:
from pylab import *

eig([[0.5, 1], [-0.5, 1]])

The result is this:

Code 5.9:
(array([ 0.75+0.66143783j, 0.75-0.66143783j]), array([[ 0.81649658+0.j,

0.81649658-0.j], [ 0.20412415+0.54006172j, 0.20412415-0.54006172j]]))
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Now we see the complex unit j (yes, Python uses j instead of i to represent the imaginary
unit i) in the result, which means this system is showing oscillation. Moreover, you can
calculate the absolute value of those eigenvalues:

Code 5.10:
map(abs, eig([[0.5, 1], [-0.5, 1]])[0])

Then the result is as follows:

Code 5.11:
[0.99999999999999989, 0.99999999999999989]

This means that |λ| is essentially 1, indicating that the system shows sustained oscillation,
as seen in Fig. 4.3.

For higher-dimensional systems, various kinds of eigenvalues can appear in a mixed
way; some of them may show exponential growth, some may show exponential decay,
and some others may show rotation. This means that all of those behaviors are going
on simultaneously and independently in the system. A list of all the eigenvalues is called
the eigenvalue spectrum of the system (or just spectrum for short). The eigenvalue
spectrum carries a lot of valuable information about the system’s behavior, but often, the
most important information is whether the system is stable or not, which can be obtained
from the dominant eigenvalue.

Exercise 5.12 Study the asymptotic behavior of the following three-dimensional
difference equation model by calculating its eigenvalues and eigenvectors:

xt = xt−1 − yt−1 (5.53)

yt = −xt−1 − 3yt−1 + zt−1 (5.54)

zt = yt−1 + zt−1 (5.55)

Exercise 5.13 Consider the dynamics of opinion diffusion among five people sit-
ting in a ring-shaped structure. Each individual is connected to her two nearest
neighbors (i.e., left and right). Initially they have random opinions (represented as
random real numbers), but at every time step, each individual changes her opinion
to the local average in her social neighborhood (i.e, her own opinion plus those of
her two neighbors, divided by 3). Write down these dynamics as a linear difference
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equation with five variables, then study its asymptotic behavior by calculating its
eigenvalues and eigenvectors.

Exercise 5.14 What if a linear system has more than one dominant, real-valued
eigenvalue? What does it imply for the relationship between the initial condition
and the asymptotic behavior of the system?

5.7 Linear Stability Analysis of Discrete-Time Nonlinear
Dynamical Systems

All of the discussions above about eigenvalues and eigenvectors are for linear dynami-
cal systems. Can we apply the same methodology to study the asymptotic behavior of
nonlinear systems? Unfortunately, the answer is a depressing no. Asymptotic behav-
iors of nonlinear systems can be very complex, and there is no general methodology to
systematically analyze and predict them. We will revisit this issue later.

Having said that, we can still use eigenvalues and eigenvectors to conduct a linear sta-
bility analysis of nonlinear systems, which is an analytical method to determine the stabil-
ity of the system at or near its equilibrium point by approximating its dynamics around that
point as a linear dynamical system (linearization). While linear stability analysis doesn’t
tell much about a system’s asymptotic behavior at large, it is still very useful for many
practical applications, because people are often interested in how to sustain a system’s
state at or near a desired equilibrium, or perhaps how to disrupt the system’s status quo
to induce a fundamental change.

The basic idea of linear stability analysis is to rewrite the dynamics of the system
in terms of a small perturbation added to the equilibrium point of your interest. Here I
put an emphasis onto the word “small” for a reason. When we say small perturbation
in this context, we mean not just small but really, really small (infinitesimally small in
mathematical terms), so small that we can safely ignore its square or any higher-order
terms. This operation is what linearization is all about.

Here is how linear stability analysis works. Let’s consider the dynamics of a nonlinear
difference equation

xt = F (xt−1) (5.56)
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around its equilibrium point xeq. By definition, xeq satisfies

xeq = F (xeq). (5.57)

To analyze the stability of the system around this equilibrium point, we switch our per-
spective from a global coordinate system to a local one, by zooming in and capturing a
small perturbation added to the equilibrium point, ∆xt = xt − xeq . Specifically, we apply
the following replacement

xt ⇒ xeq + ∆xt (5.58)

to Eq. (5.56), to obtain

xeq + ∆xt = F (xeq + ∆xt−1). (5.59)

The right hand side of the equation above is still a nonlinear function. If xt is scalar
and thus F (x) is a scalar function, the right hand side can be easily approximated using
the Taylor expansion as follows:

F (xeq + ∆xt−1) = F (xeq) + F ′(xeq)∆xt−1 +
F ′′(xeq)

2!
∆x2

t−1 +
F ′′′(xeq)

3!
∆x3

t−1 + . . .

(5.60)

≈ F (xeq) + F ′(xeq)∆xt−1 (5.61)

This means that, for a scalar function F , F (xeq + ∆x) can be linearly approximated by the
value of the function at xeq plus a derivative of the function times the displacement from
xeq. Together with this result and Eq. (5.57), Eq. (5.59) becomes the following very simple
linear difference equation:

∆xt ≈ F ′(xeq)∆xt−1 (5.62)

This means that, if |F ′(xeq)| > 1, ∆x grows exponentially, and thus the equilibrium point
xeq is unstable. Or if |F ′(xeq)| < 1, ∆x shrinks exponentially, and thus xeq is stable.
Interestingly, this conclusion has some connection to the cobweb plot we discussed be-
fore. |F ′(xeq)| is the slope of function F at an equilibrium point (where the function curve
crosses the diagonal straight line in the cobweb plot). If the slope is too steep, either
positively or negatively, trajectories will diverge away from the equilibrium point. If the
slope is less steep than 1, trajectories will converge to the point. You may have noticed
such characteristics when you drew the cobweb plots. Linear stability analysis offers a
mathematical explanation of that.
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Now, what if F is a multidimensional nonlinear function? Such an F can be spelled
out as a set of multiple scalar functions, as follows:

x1,t = F1(x1,t−1, x2,t−1, . . . , xn,t−1) (5.63)

x2,t = F2(x1,t−1, x2,t−1, . . . , xn,t−1) (5.64)
...

xn,t = Fn(x1,t−1, x2,t−1, . . . , xn,t−1) (5.65)

Using variable replacement similar to Eq. (5.58), these equations are rewritten as follows:

x1,eq + ∆x1,t = F1(x1,eq + ∆x1,t−1, x2,eq + ∆x2,t−1 . . . , xn,eq + ∆xn,t−1) (5.66)

x2,eq + ∆x2,t = F2(x1,eq + ∆x1,t−1, x2,eq + ∆x2,t−1 . . . , xn,eq + ∆xn,t−1) (5.67)
...

xn,eq + ∆xn,t = Fn(x1,eq + ∆x1,t−1, x2,eq + ∆x2,t−1 . . . , xn,eq + ∆xn,t−1) (5.68)

Since there are many ∆xi’s in this formula, the Taylor expansion might not apply simply.
However, the assumption that they are extremely small helps simplify the analysis here.
By zooming in to an infinitesimally small area near the equilibrium point, each Fi looks like
a completely flat “plane” in a multidimensional space (Fig. 5.14) where all nonlinear inter-
actions among ∆xi’s are negligible. This means that the value of Fi can be approximated
by a simple linear sum of independent contributions coming from the n dimensions, each
of which can be calculated in a manner similar to Eq. (5.61), as

Fi(x1,eq + ∆x1,t−1, x2,eq + ∆x2,t−1 . . . , xn,eq + ∆xn,t−1)

≈ Fi(xeq) +
∂Fi
∂x1

∣∣∣∣
xeq

∆x1,t−1 +
∂Fi
∂x2

∣∣∣∣
xeq

∆x2,t−1 + . . .+
∂Fi
∂xn

∣∣∣∣
xeq

∆xn,t−1. (5.69)

This linear approximation allows us to rewrite Eqs. (5.66)–(5.68) into the following,
very concise linear equation:

xeq + ∆xt ≈ F (xeq) +


∂F1

∂x1

∂F1

∂x2
. . . ∂F1

∂xn
∂F2

∂x1

∂F2

∂x2
. . . ∂F2

∂xn...
... . . . ...

∂Fn

∂x1
∂Fn

∂x2
. . . ∂Fn

∂xn


∣∣∣∣∣∣∣∣∣
x=xeq

∆xt−1 (5.70)

The coefficient matrix filled with partial derivatives is called a Jacobian matrix of the
original multidimensional function F . It is a linear approximation of the nonlinear function
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Figure 5.14: Linearization of a multidimensional nonlinear function around an equilib-
rium point.
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around x = xeq, just like a regular derivative of a scalar function. Note that the orders of
rows and columns of a Jacobian matrix must match. Its i-th row must be a list of spatial
derivatives of Fi, i.e., a function that determines the behavior of xi, while xi must be used
to differentiate functions for the i-th column.

By combining the result above with Eq. (5.57), we obtain

∆xt ≈ J∆xt−1, (5.71)

where J is the Jacobian matrix of F at x = xeq. Look at how simple it can get! The
dynamics are approximated in a very simple linear form, which describes the behavior of
the small perturbations around xeq as the new origin.

Now we can calculate the eigenvalues of J to see if this system is stable or not, around
xeq. If the absolute value of the dominant eigenvalue λd is less than 1, the equilibrium point
is stable; even if a small perturbation is added to the system’s state, it asymptotically
goes back to the equilibrium point. If |λd| > 1, the equilibrium point is unstable; any small
perturbation added to the system’s state grows exponentially and, eventually, the system’s
state moves away from the equilibrium point. Sometimes, an unstable equilibrium point
may come with other eigenvalues that show stability. Such equilibrium points are called
saddle points, where nearby trajectories are attracted to the equilibrium point in some
directions but are repelled in other directions. If |λd| = 1, it indicates that the system may
be neutral (also called Lyapunov stable), which means that the system’s state neither
diverges away from nor converges to the equilibrium point. But actually, proving that
the point is truly neutral requires more advanced nonlinear analysis, which is beyond the
scope of this textbook. Finally, if the eigenvalues are complex conjugates, oscillatory
dynamics are going on around the equilibrium points. Such equilibrium points are called
a stable or unstable spiral focus or a neutral center, depending on their stabilities. Figure
5.15 shows a schematic summary of these classifications of equilibrium points for two-
dimensional cases.

Linear stability analysis of discrete-time nonlinear systems

1. Find an equilibrium point of the system you are interested in.

2. Calculate the Jacobian matrix of the system at the equilibrium point.

3. Calculate the eigenvalues of the Jacobian matrix.

4. If the absolute value of the dominant eigenvalue is:

• Greater than 1⇒ The equilibrium point is unstable.
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Figure 5.15: Schematic illustrations of several different types of equilibrium points
and their nearby trajectories in 2-D discrete-time dynamical systems. The absolute
value of the dominant eigenvalue |λd| determines the overall stability of the equilibrium
point (top), although it would generally require a nonlinear analysis to show that the
equilibrium point is truly neutral/Lyapunov stable (*).
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– If other eigenvalues have absolute values less than 1, the equilibrium
point is a saddle point.

• Less than 1⇒ The equilibrium point is stable.

• Equal to 1⇒ The equilibrium point may be neutral (Lyapunov stable).

5. In addition, if there are complex conjugate eigenvalues involved, oscillatory dy-
namics are going on around the equilibrium point. If those complex conjugate
eigenvalues are the dominant ones, the equilibrium point is called a stable or
unstable spiral focus (or a neutral center if the point is neutral).

Exercise 5.15 Consider the following iterative map (a > 0, b > 0):

xt = xt−1 + a sin(bxt−1) (5.72)

Conduct linear stability analysis to determine whether this model is stable or not at
its equilibrium point xeq = 0.

Exercise 5.16 Consider the following two-dimensional difference equation
model:

xt = xt−1 + 2xt−1(1− xt−1)− xt−1yt−1 (5.73)

yt = yt−1 + 2yt−1(1− yt−1)− xt−1yt−1 (5.74)

1. Find all of its equilibrium points.

2. Calculate the Jacobian matrix at the equilibrium point where x > 0 and y > 0.

3. Calculate the eigenvalues of the matrix obtained above.

4. Based on the result, classify the equilibrium point into one of the following:
stable point, unstable point, saddle point, stable spiral focus, unstable spiral
focus, or neutral center.

Exercise 5.17 Consider the following two-dimensional difference equation
model:

xt = xt−1yt−1 (5.75)

yt = yt−1(xt−1 − 1) (5.76)
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1. Find all equilibrium points (which you may have done already in Exercise 5.2).

2. Calculate the Jacobian matrix at each of the equilibrium points.

3. Calculate the eigenvalues of each of the matrices obtained above.

4. Based on the results, discuss the stability of each equilibrium point.





Chapter 6

Continuous-Time Models I: Modeling

6.1 Continuous-Time Models with Differential Equations

Continuous-time models are written in differential equations. They are probably more
mainstream in science and engineering, and studied more extensively, than discrete-time
models, because various natural phenomena (e.g., motion of objects, flow of electric cur-
rent) take place smoothly over continuous time.

A general mathematical formulation of a first-order continuous-time model is given by
this:

dx

dt
= F (x, t) (6.1)

Just like in discrete-time models, x is the state of a system (which may be a scalar or
vector variable). The left hand side is the time derivative of x, which is formally defined as

dx

dt
= lim

δt→0

x(t+ δt)− x(t)

δt
. (6.2)

Integrating a continuous-time model over t gives a trajectory of the system’s state over
time. While integration could be done algebraically in some cases, computational simula-
tion (= numerical integration) is always possible in general and often used as the primary
means of studying these models.

One fundamental assumption made in continuous-time models is that the trajectories
of the system’s state are smooth everywhere in the phase space, i.e., the limit in the
definition above always converges to a well-defined value. Therefore, continuous-time
models don’t show instantaneous abrupt changes, which could happen in discrete-time
models.

99
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6.2 Classifications of Model Equations

Distinctions between linear and nonlinear systems as well as autonomous and non-autonomous
systems, which we discussed in Section 4.2, still apply to continuous-time models. But
the distinction between first-order and higher-order systems are slightly different, as fol-
lows.

First-order system A differential equation that involves first-order derivatives of state

variables (
dx

dt
) only.

Higher-order system A differential equation that involves higher-order derivatives of

state variables (
d2x

dt2
,
d3x

dt3
, etc.).

Luckily, the following is still the case for continuous-time models as well:

Non-autonomous, higher-order differential equations can always be converted into
autonomous, first-order forms by introducing additional state variables.

Here is an example:

d2θ

dt2
= − g

L
sin θ (6.3)

This equation describes the swinging motion of a simple pendulum, which you might have
seen in an intro to physics course. θ is the angular position of the pendulum, g is the
gravitational acceleration, and L is the length of the string that ties the weight to the
pivot. This equation is obviously nonlinear and second-order. While we can’t remove
the nonlinearity from the model, we can convert the equation to a first-order form, by
introducing the following additional variable:

ω =
dθ

dt
(6.4)

Using this, the left hand side of Eq. (6.3) can be written as dω/dt, and therefore, the
equation can be turned into the following first-order form:

dθ

dt
= ω (6.5)

dω

dt
= − g

L
sin θ (6.6)
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This conversion technique works for third-order or any higher-order equations as well, as
long as the highest order remains finite.

Here is another example. This time it is a non-autonomous equation:

d2θ

dt2
= − g

L
sin θ + k sin(2πft+ φ) (6.7)

This is a differential equation of the behavior of a driven pendulum. The second term
on the right hand side represents a periodically varying force applied to the pendulum
by, e.g., an externally controlled electromagnet embedded in the floor. As we discussed
before, this equation can be converted to the following first-order form:

dθ

dt
= ω (6.8)

dω

dt
= − g

L
sin θ + k sin(2πft+ φ) (6.9)

Now we need to eliminate t inside the sin function. Just like we did for the discrete-time
cases, we can introduce a “clock” variable, say τ , as follows:

dτ

dt
= 1, τ(0) = 0 (6.10)

This definition guarantees τ(t) = t. Using this, the full model can be rewritten as follows:

dθ

dt
= ω (6.11)

dω

dt
= − g

L
sin θ + k sin(2πfτ + φ) (6.12)

dτ

dt
= 1, τ(0) = 0 (6.13)

This is now made of just autonomous, first-order differential equations. This conversion
technique always works, assuring us that autonomous, first-order equations can cover all
the dynamics of any non-autonomous, higher-order equations.

Exercise 6.1 Convert the following differential equation into first-order form.

d2x

dt2
− xdx

dt
+ x2 = 0 (6.14)
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Exercise 6.2 Convert the following differential equation into an autonomous, first-
order form.

d2x

dt2
− a cos(bt) = 0 (6.15)

For your information, the following facts are also applicable to differential equations,
as well as to difference equations:

Linear dynamical systems can show only exponential growth/decay, periodic oscilla-
tion, stationary states (no change), or their hybrids (e.g., exponentially growing oscil-
lation)a.

aSometimes they can also show behaviors that are represented by polynomials (or products of poly-
nomials and exponentials) of time. This occurs when their coefficient matrices are non-diagonalizable.

Linear equations are always analytically solvable, while nonlinear equations don’t
have analytical solutions in general.

6.3 Connecting Continuous-Time Models with Discrete-
Time Models

Continuous-time models and discrete-time models are different mathematical models with
different mathematical properties. But it is still possible to develop a “similar” continuous-
time model from a discrete-time model, and vice versa. Here we discuss how you can
jump across the border back and forth between the two time treatments.

Assume you already have an autonomous first-order discrete-time model

xt = F (xt−1), (6.16)

and you want to develop a continuous-time model analogous to it. You set up the following
“container” differential equation

dx

dt
= G(x), (6.17)

and try to find out how F and G are related to each other.
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Here, let me introduce a very simple yet useful analogy between continuous- and
discrete-time models:

dx

dt
≈ ∆x

∆t
(6.18)

This may look almost tautological. But the left hand side is a ratio between two infinitesi-
mally small quantities, while the right hand side is a ratio between two quantities that are
small yet have definite non-zero sizes. ∆x is the difference between x(t + ∆t) and x(t),
and ∆t is the finite time interval between two consecutive discrete time points. Using this
analogy, you can rewrite Eq. (6.17) as

∆x

∆t
=
x(t+ ∆t)− x(t)

∆t
≈ G(x(t)), (6.19)

x(t+ ∆t) ≈ x(t) +G(x(t))∆t. (6.20)

By comparing this with Eq. (6.16), we notice the following analogous relationship between
F and G:

F (x)⇔ x+G(x)∆t (6.21)

Or, equivalently:

G(x)⇔ F (x)− x
∆t

(6.22)

For linear systems in particular, F (x) and G(x) are just the product of a coefficient
matrix and a state vector. If F (x) = Ax and G(x) = Bx, then the analogous relationships
become

Ax⇔ x+Bx∆t, i.e., (6.23)

A⇔ I +B∆t, or (6.24)

B ⇔ A− I
∆t

. (6.25)

I should emphasize that these analogous relationships between discrete-time and
continuous-time models do not mean they are mathematically equivalent. They simply
mean that the models are constructed according to similar assumptions and thus they
may have similar properties. In fact, analogous models often share many identical math-
ematical properties, yet there are certain fundamental differences between them. For
example, one- or two-dimensional discrete-time iterative maps can show chaotic behav-
iors, but their continuous-time counterparts never show chaos. We will discuss this issue
in more detail later.
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Nonetheless, knowing these analogous relationships between discrete-time and con-
tinuous-time models is helpful in several ways. First, they can provide convenient path-
ways when you develop your own mathematical models. Some natural phenomena may
be conceived more easily as discrete-time, stepwise processes, while others may be bet-
ter conceived as continuous-time, smooth processes. You can start building your model in
either way, and when needed, convert the model from discrete-time to continuous-time or
vice versa. Second, Eq. (6.20) offers a simple method to numerically simulate continuous-
time models. While this method is rather crude and prone to accumulating numerical
errors, the meaning of the formula is quite straightforward, and the implementation of sim-
ulation is very easy, so we will use this method in the following section. Third, the relation-
ship between the coefficient matrices given in Eq. (6.25) is very helpful for understanding
mathematical differences of stability criteria between discrete-time and continuous-time
models. This will be detailed in the next chapter.

Exercise 6.3 Consider the dynamics of a system made of three parts, A, B, and
C. Each takes a real-valued state whose range is [−1, 1]. The system behaves
according to the following state transitions:

• A adopts B’s current state as its next state.

• B adopts C’s current state as its next state.

• C adopts the average of the current states of A and B as its next state.

First, create a discrete-time model of this system, and then convert it into a
continuous-time model using Eq. (6.25).

6.4 Simulating Continuous-Time Models

Simulation of a continuous-time model is equivalent to the numerical integration of differ-
ential equations, which, by itself, is a major research area in applied mathematics and
computational science with more than a century of history. There are a large number of
methodologies developed for how to accomplish accurate, fast, efficient numerical inte-
grations. It would easily take a few books and semesters to cover them, and this textbook
is not intended to do that.

Instead, here we focus on the simplest possible method for simulating a continuous-
time model, by using the following formula as an approximation of a differential equation
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dx/dt = G(x):

x(t+ ∆t) = x(t) +G(x(t))∆t (6.26)

This method is called the Euler forward method. Its basic idea is very straightforward;
you just keep accumulating small increases/decreases of x that is expected from the local
derivatives specified in the original differential equation. The sequence produced by this
discretized formula will approach the true solution of the original differential equation at the
limit ∆t→ 0, although in practice, this method is less accurate for finite-sized ∆t than other
more sophisticated methods (see Exercise 6.6). Having said that, its intuitiveness and
easiness of implementation have a merit, especially for those who are new to computer
simulation. So let’s stick to this method for now.

In nearly all aspects, simulation of continuous-time models using the Euler forward
method is identical to the simulation of discrete-time models we discussed in Chapter 4.
Probably the only technical difference is that we have ∆t as a step size for time, which may
not be 1, so we also need to keep track of the progress of time in addition to the progress
of the state variables. Let’s work on the following example to see how to implement the
Euler forward method.

Here we consider simulating the following continuous-time logistic growth model for
0 ≤ t < 50 in Python, with x(0) = 0.1, r = 0.2, K = 1 and ∆t = 0.01:

dx

dt
= rx

(
1− x

K

)
(6.27)

The first (and only) thing we need to do is to discretize time in the model above. Using
Eq. (6.26), the equation becomes

x(t+ ∆t) = x(t) + rx(t)

(
1− x(t)

K

)
∆t, (6.28)

which is nothing more than a typical difference equation. So, we can easily revise Code
4.10 to create a simulator of Eq. (6.27):

Code 6.1: logisticgrowth-continuous.py
from pylab import *

r = 0.2

K = 1.0

Dt = 0.01

http://bingweb.binghamton.edu/~sayama/textbook/code/logisticgrowth-continuous.py
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def initialize():

global x, result, t, timesteps

x = 0.1

result = [x]

t = 0.

timesteps = [t]

def observe():

global x, result, t, timesteps

result.append(x)

timesteps.append(t)

def update():

global x, result, t, timesteps

x = x + r * x * (1 - x / K) * Dt

t = t + Dt

initialize()

while t < 50.:

update()

observe()

plot(timesteps, result)

show()

Note that there really isn’t much difference between this and what we did previously. This
code will produce a nice, smooth curve as a result of the numerical integration, shown in
Fig. 6.1. If you choose even smaller values for ∆t, the curve will get closer to the true
solution of Eq. (6.27).

Exercise 6.4 Vary ∆t to have larger values in the previous example and see how
the simulation result is affected by such changes.

As the exercise above illustrates, numerical integration of differential equations in-
volves some technical issues, such as the stability and convergence of solutions and the
possibility of “artifacts” arising from discretization of time. You should always be attentive
to these issues and be careful when implementing simulation codes for continuous-time
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Figure 6.1: Visual output of Code 6.1.

models. I hope the following exercises will help you further investigate those subtleties of
the numerical integration of differential equations.

Exercise 6.5 Simulate the following continuous-time Lotka-Volterra (predator-
prey) model for 0 ≤ t < 50 in Python, with x(0) = y(0) = 0.1, a = b = c = d = 1 and
∆t = 0.01. Visualize the simulation results over time and also in a phase space.

dx

dt
= ax− bxy (6.29)

dy

dt
= −cy + dxy (6.30)

Then try to reduce the value of ∆t to even smaller values and see how the simu-
lation results are affected by such changes. Discuss what the overall results imply
about the Euler forward method.
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Exercise 6.6 There are many other more sophisticated methods for the numer-
ical integration of differential equations, such as the backward Euler method,
Heun’s method, the Runge-Kutta methods, etc. Investigate some of those methods
to see how they work and why their results are better than that of the Euler forward
method.

6.5 Building Your Own Model Equation

Principles and best practices of building your own equations for a continuous-time model
are very much the same as those we discussed for discrete-time models in Sections 4.5
and 4.6. The only difference is that, in differential equations, you need to describe time
derivatives, i.e., instantaneous rates of change of the system’s state variables, instead of
their actual values in the next time step.

Here are some modeling exercises. The first one is exactly the same as the one in
Section 4.6, except that you are now writing the model in differential equations, so that
you can see the differences between the two kinds of models. The other two are on new
topics, which are relevant to chemistry and social sciences. Work on these exercises to
get some experience writing continuous-time models!

Exercise 6.7 Develop a continuous-time mathematical model of two species
competing for the same resource, and simulate its behavior.

Exercise 6.8 Imagine two chemical species, S and E, interacting in a test tube.
Assume that E catalyzes the production of itself using S as a substrate in the
following chemical reaction:

S + E → 2E (6.31)

Develop a continuous-time mathematical model that describes the temporal
changes of the concentration of S and E and simulate its behavior.
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Exercise 6.9 When a new pop song is released, it sounds attractive to people
and its popularity increases. After people get used to the song, however, it begins
to sound boring to them, and its popularity goes down. Develop a continuous-time
mathematical model that captures such rise and fall in a typical pop song’s life, and
simulate its behavior.





Chapter 7

Continuous-Time Models II: Analysis

7.1 Finding Equilibrium Points

Finding equilibrium points of a continuous-time model dx/dt = G(x) can be done in the
same way as for a discrete-time model, i.e., by replacing all x’s with xeq’s (again, note that
these could be vectors). This actually makes the left hand side zero, because xeq is no
longer a dynamical variable but just a static constant. Therefore, things come down to just
solving the following equation

0 = G(xeq) (7.1)

with regard to xeq. For example, consider the following logistic growth model:

dx

dt
= rx

(
1− x

K

)
(7.2)

Replacing all the x’s with xeq’s, we obtain

0 = rxeq

(
1− xeq

K

)
(7.3)

xeq = 0, K (7.4)

It turns out that the result is the same as that of its discrete-time counterpart (see Eq. (5.6)).

Exercise 7.1 Find the equilibrium points of the following model:

dx

dt
= x2 − rx+ 1 (7.5)

111
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Exercise 7.2 Find the equilibrium points of the following model of a simple pen-
dulum:

d2θ

dt2
= − g

L
sin θ (7.6)

Exercise 7.3 The following model is called a Susceptible-Infected-Recovered
(SIR) model, a mathematical model of epidemiological dynamics. S is the number
of susceptible individuals, I is the number of infected ones, and R is the number of
recovered ones. Find the equilibrium points of this model.

dS

dt
= −aSI (7.7)

dI

dt
= aSI − bI (7.8)

dR

dt
= bI (7.9)

7.2 Phase Space Visualization

A phase space of a continuous-time model, once time is discretized, can be visualized
in the exact same way as it was in Chapter 5, using Codes 5.1 or 5.2. This is perfectly
fine. In the meantime, Python’s matplotlib has a specialized function called streamplot,
which is precisely designed for drawing phase spaces of continuous-time models. It works
only for two-dimensional phase space visualizations, but its output is quite neat and so-
phisticated. Here is how you can use this function:

Code 7.1: phasespace-drawing-streamplot.py
from pylab import *

xvalues, yvalues = meshgrid(arange(0, 3, 0.1), arange(0, 3, 0.1))

xdot = xvalues - xvalues * yvalues

ydot = - yvalues + xvalues * yvalues

http://bingweb.binghamton.edu/~sayama/textbook/code/phasespace-drawing-streamplot.py
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streamplot(xvalues, yvalues, xdot, ydot)

show()

The streamplot function takes four arguments. The first two (xvalues and yvalues) are
discretized x- and y-values in a phase space, each of which is given as a two-dimensional
array. The meshgrid function generates such array’s for this purpose. The 0.1 in arange

determines the resolution of the space. The last two arguments (xdot and ydot) describe
the values of dx/dt and dy/dt on each point. Each of xdot and ydot should also be
given as a two-dimensional array, but since xvalues and yvalues are already in the
array structure, you can conduct arithmetic operations directly on them, as shown in the
code above. In this case, the model being visualized is the following simple predator-prey
equations:

dx

dt
= x− xy (7.10)

dy

dt
= −y + xy (7.11)

The result is shown in Fig. 7.1. As you can see, the streamplot function automatically
adjusts the density of the sample curves to be drawn so that the phase space structure
is easily visible to the eye. It also adds arrow heads to the curves so we can understand
which way the system’s state is flowing.

One nice feature of a continuous-time model’s phase space is that, since the model is
described in continuous differential equations, their trajectories in the phase space are all
smooth with no abrupt jump or intersections between each other. This makes their phase
space structure generally more visible and understandable than those of discrete-time
models.

Exercise 7.4 Draw a phase space of the following differential equation (motion of
a simple pendulum) in Python:

d2θ

dt2
= − g

L
sin θ (7.12)

Moreover, such smoothness of continuous-time models allows us to analytically visu-
alize and examine the structure of their phase space. A typical starting point to do so
is to find the nullclines in a phase space. A nullcline is a set of points where at least
one of the time derivatives of the state variables becomes zero. These nullclines serve
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Figure 7.1: Phase space drawn with Code 7.1.

as “walls” that separate the phase space into multiple contiguous regions. Inside each
region, the signs of the time derivatives never change (if they did, they would be caught
in a nullcline), so just sampling one point in each region gives you a rough picture of how
the phase space looks.

Let’s learn how this analytical process works with the following Lotka-Volterra model:

dx

dt
= ax− bxy (7.13)

dy

dt
= −cy + dxy (7.14)

x ≥ 0, y ≥ 0, a > 0, b > 0, c > 0, d > 0 (7.15)

First, find the nullclines. This is a two-dimensional system with two time derivatives, so
there must be two sets of nullclines; one set is derived from dx/dt = 0, and another set is
derived from dy/dt = 0. They can be obtained by solving each of the following equations:

0 = ax− bxy (7.16)

0 = −cy + dxy (7.17)
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The first equation gives

x = 0, or y =
a

b
. (7.18)

These are two straight lines, which constitute one set of nullclines for dx/dt = 0 (i.e., you
could call each line a single nullcline). In the meantime, the second one gives

y = 0, or x =
c

d
. (7.19)

Again, these two lines constitute another set of nullclines for dy/dt = 0. These results can
be visualized manually as shown in Fig. 7.2. Equilibrium points exist where the two sets
of nullclines intersect.

x 

y 

a/b 

0 c/d 

Nullclines for 

dx/dt = 0 

Nullclines for 

dy/dt = 0 

Equilibrium 

points 

Figure 7.2: Drawing a phase space (1): Adding nullclines.

Everywhere on the first set of nullclines, dx/dt is zero, i.e., there is no “horizontal”
movement in the system’s state. This means that all local trajectories on and near those
nullclines must be flowing vertically. Similarly, everywhere on the second set of nullclines,
dy/dt is zero, therefore there is no “vertical” movement and all the local trajectories flow
horizontally. These facts can be indicated in the phase space by adding tiny line segments
onto each nullcline (Fig. 7.3).
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x 

y 

a/b 

0 c/d 

Figure 7.3: Drawing a phase space (2): Adding directions to the nullclines.

Now the phase space is divided into four regions. It is guaranteed that the trajectories
in each of those regions flow only in one of the following four directional categories:

• dx

dt
> 0,

dy

dt
> 0 (to “Northeast”)

• dx

dt
< 0,

dy

dt
> 0 (to “Northwest”)

• dx

dt
> 0,

dy

dt
< 0 (to “Southeast”)

• dx

dt
< 0,

dy

dt
< 0 (to “Southwest”)

Inside any region, a trajectory never switches between these four categories, because if it
did, such a switching point would have to have already appeared as part of the nullclines.
Therefore, sampling just one point from each region is sufficient to know which direction
the trajectories are flowing in. For example, you can pick (2c/d, 2a/b) as a sample point in
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the upper right region. You plug this coordinate into the model equations to obtain

dx

dt

∣∣∣∣
(x,y)=( 2c

d
, 2a
b )

= a
2c

d
− b2c

d

2a

b
= −2ac

d
< 0, (7.20)

dy

dt

∣∣∣∣
(x,y)=( 2c

d
, 2a
b )

= −c2a

b
+ d

2c

d

2a

b
=

2ac

b
> 0. (7.21)

Therefore, you can tell that the trajectories are flowing to “Northwest” in that region. If you
repeat the same testing for the three other regions, you obtain an outline of the phase
space of the model shown in Fig. 7.4, which shows a cyclic behavior caused by the
interaction between prey (x) and predator (y) populations.
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0 c/d 

Figure 7.4: Drawing a phase space (3): Adding directions of trajectories in each re-
gion.

This kind of manual reconstruction of phase space structure can’t tell you the exact
shape of a particular trajectory, which are typically obtained through numerical simulation.
For example, in the phase space manually drawn above, all we know is that the system’s
behavior is probably rotating around the equilibrium point at (x, y) = (c/d, a/b), but we
can’t tell if the trajectories are closed orbits, spiral into the equilibrium point, or spiral away
from the equilibrium point, until we numerically simulate the system’s behavior.
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Having said that, there is still merit in this analytical work. First, analytical calculations
of nullclines and directions of trajectories provide information about the underlying struc-
ture of the phase space, which is sometimes unclear in a numerically visualized phase
space. Second, analytical work may allow you to construct a phase space without spec-
ifying detailed parameter values (as we did in the example above), whose result is more
general with broader applicability to real-world systems than a phase space visualization
with specific parameter values.

Exercise 7.5 Draw an outline of the phase space of the following SIR model (vari-
able R is omitted here) by studying nullclines and estimating the directions of tra-
jectories within each region separated by those nullclines.

dS

dt
= −aSI (7.22)

dI

dt
= aSI − bI (7.23)

S ≥ 0, I ≥ 0, a > 0, b > 0 (7.24)

Exercise 7.6 Draw an outline of the phase space of the following equation by
studying nullclines and estimating the directions of trajectories within each region
separated by those nullclines.

d2x

dt2
− xdx

dt
+ x2 = 0 (7.25)

7.3 Variable Rescaling

Variable rescaling of continuous-time models has one distinct difference from that of
discrete-time models. That is, you get one more variable you can rescale: time. This
may allow you to eliminate one more parameter from your model compared to discrete-
time cases.

Here is an example: the logistic growth model. Remember that its discrete-time ver-
sion

xt = xt−1 + rxt−1

(
1− xt−1

K

)
(7.26)
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was simplified to the following form:

x′t = r′x′t−1(1− x′t−1) (7.27)

There was still one parameter (r′) remaining in the model even after rescaling.
In contrast, consider a continuous-time version of the same logistic growth model:

dx

dt
= rx

(
1− x

K

)
(7.28)

Here we can apply the following two rescaling rules to both state variable x and time t:

x→ αx′ (7.29)

t→ βt′ (7.30)

With these replacements, the model equation is simplified as

d(αx′)

d(βt′)
= rαx′

(
1− αx′

K

)
(7.31)

β

α
· d(αx′)

d(βt′)
=
β

α
· rαx′

(
1− αx′

K

)
(7.32)

dx′

dt′
= rβx′

(
1− αx′

K

)
(7.33)

dx′

dt′
= x′(1− x′) (7.34)

with α = K and β = 1/r. Note that the final result doesn’t contain any parameter left! This
means that, unlike its discrete-time counterpart, a continuous-time logistic growth model
doesn’t change its essential behavior when the model parameters (r, K) are varied. They
only change the scaling of trajectories along the t or x axis.

Exercise 7.7 Simplify the following differential equation by variable rescaling:

dx

dt
= ax2 + bx+ c (7.35)

Exercise 7.8 Simplify the following differential equation by variable rescaling:

dx

dt
=

a

x+ b
(7.36)

a > 0, b > 0 (7.37)
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Exercise 7.9 Simplify the following two-dimensional differential equation model
by variable rescaling:

dx

dt
= ax(1− x)− bxy (7.38)

dy

dt
= cy(1− y)− dxy (7.39)

7.4 Asymptotic Behavior of Continuous-Time Linear Dy-
namical Systems

A general formula for continuous-time linear dynamical systems is given by

dx

dt
= Ax, (7.40)

where x is the state vector of the system and A is the coefficient matrix. As discussed
before, you could add a constant vector a to the right hand side, but it can always be con-
verted into a constant-free form by increasing the dimensions of the system, as follows:

y =

 x

1

 (7.41)

dy

dt
=

 A a

0 0

 x

1

 = By (7.42)

Note that the last-row, last-column element of the expanded coefficient matrix is now 0,
not 1, because of Eq. (6.25). This result guarantees that the constant-free form given in
Eq. (7.40) is general enough to represent various dynamics of linear dynamical systems.

Now, what is the asymptotic behavior of Eq. (7.40)? This may not look so intuitive, but
it turns out that there is a closed-form solution available for this case as well. Here is the
solution, which is generally applicable for any square matrix A:

x(t) = eAtx(0) (7.43)

Here, eX is a matrix exponential for a square matrix X, which is defined as

eX =
∞∑
k=0

Xk

k!
, (7.44)
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with X0 = I. This is a Taylor series-based definition of a usual exponential, but now it is
generalized to accept a square matrix instead of a scalar number (which is a 1 x 1 square
matrix, by the way). It is known that this infinite series always converges to a well-defined
square matrix for any X. Note that eX is the same size as X.

Exercise 7.10 Confirm that the solution Eq. (7.43) satisfies Eq. (7.40).

The matrix exponential eX has some interesting properties. First, its eigenvalues are
the exponentials of X ’s eigenvalues. Second, its eigenvectors are the same as X ’s eigen-
vectors. That is:

Xv = λv ⇒ eXv = eλv (7.45)

Exercise 7.11 Confirm Eq. (7.45) using Eq. (7.44).

We can use these properties to study the asymptotic behavior of Eq. (7.43). As in
Chapter 5, we assume that A is diagonalizable and thus has as many linearly independent
eigenvectors as the dimensions of the state space. Then the initial state of the system
can be represented as

x(0) = b1v1 + b2v2 + . . .+ bnvn, (7.46)

where n is the dimension of the state space and vi are the eigenvectors of A (and of eA).
Applying this to Eq. (7.43) results in

x(t) = eAt(b1v1 + b2v2 + . . .+ bnvn) (7.47)

= b1e
Atv1 + b2e

Atv2 + . . .+ bne
Atvn (7.48)

= b1e
λ1tv1 + b2e

λ2tv2 + . . .+ bne
λntvn. (7.49)

This result shows that the asymptotic behavior of x(t) is given by a summation of multi-
ple exponential terms of eλi (note the difference—this was λi for discrete-time models).
Therefore, which term eventually dominates others is determined by the absolute value of
eλi. Because |eλi | = eRe(λi), this means that the eigenvalue that has the largest real part
is the dominant eigenvalue for continuous-time models. For example, if λ1 has the largest
real part (Re(λ1) > Re(λ2),Re(λ3), . . .Re(λn)), then

x(t) = eλ1t
(
b1v1 + b2e

(λ2−λ1)tv2 + . . .+ bne
(λn−λ1)tvn

)
, (7.50)

lim
t→∞

x(t) ≈ eλ1tb1v1. (7.51)
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Similar to discrete-time models, the dominant eigenvalues and eigenvectors tell us the
asymptotic behavior of continuous-time models, but with a little different stability criterion.
Namely, if the real part of the dominant eigenvalue is greater than 0, then the system
diverges to infinity, i.e., the system is unstable. If it is less than 0, the system eventually
shrinks to zero, i.e., the system is stable. If it is precisely 0, then the dominant eigenvector
component of the system’s state is conserved with neither divergence nor convergence,
and thus the system may converge to a non-zero equilibrium point. The same interpreta-
tion can be applied to non-dominant eigenvalues as well.

An eigenvalue tells us whether a particular component of a system’s state (given
by its corresponding eigenvector) grows or shrinks over time. For continuous-time
models:

• Re(λ) > 0 means that the component is growing.

• Re(λ) < 0 means that the component is shrinking.

• Re(λ) = 0 means that the component is conserved.

For continuous-time models, the real part of the dominant eigenvalue λd determines
the stability of the whole system as follows:

• Re(λd) > 0: The system is unstable, diverging to infinity.

• Re(λd) < 0: The system is stable, converging to the origin.

• Re(λd) = 0: The system is stable, but the dominant eigenvector component is
conserved, and therefore the system may converge to a non-zero equilibrium
point.

Here is an example of a general two-dimensional linear dynamical system in continu-
ous time (a.k.a. the “love affairs” model proposed by Strogatz [29]):

dx

dt
=

(
a b

c d

)
x = Ax (7.52)

The eigenvalues of the coefficient matrix can be obtained by solving the following equation
for λ:

det

(
a− λ b

c d− λ

)
= 0 (7.53)
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Or:

(a− λ)(d− λ)− bc = λ2 − (a+ d)λ+ ad− bc (7.54)

= λ2 − Tr(A)λ+ det(A) = 0 (7.55)

Here, Tr(A) is the trace of matrix A, i.e., the sum of its diagonal components. The solu-
tions of the equation above are

λ =
Tr(A)±

√
Tr(A)2 − 4 det(A)

2
. (7.56)

Between those two eigenvalues, which one is dominant? Since the radical on the numera-
tor gives either a non-negative real value or an imaginary value, the one with a “plus” sign
always has the greater real part. Now we can find the conditions for which this system is
stable. The real part of this dominant eigenvalue is given as follows:

Re(λd) =


Tr(A)

2
if Tr(A)2 < 4 det(A)

Tr(A) +
√

Tr(A)2 − 4 det(A)

2
if Tr(A)2 ≥ 4 det(A)

(7.57)

If Tr(A)2 < 4 det(A), the stability condition is simply

Tr(A) < 0. (7.58)

If Tr(A)2 ≥ 4 det(A), the stability condition is derived as follows:

Tr(A) +
√

Tr(A)2 − 4 det(A) < 0 (7.59)√
Tr(A)2 − 4 det(A) < −Tr(A) (7.60)

Since the radical on the left hand side must be non-negative, Tr(A) must be negative, at
least. Also, by squaring both sides, we obtain

Tr(A)2 − 4 det(A) < Tr(A)2, (7.61)

− 4 det(A) < 0, (7.62)

det(A) > 0. (7.63)

By combining all the results above, we can summarize how the two-dimensional linear
dynamical system’s stability depends on Tr(A) and det(A) in a simple diagram as shown
in Fig. 7.5. Note that this diagram is applicable only to two-dimensional systems, and it is
not generalizable for systems that involve three or more variables.
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Tr(A) 

det(A) 

0 

4 det(A) = Tr(A)2 4 det(A) > Tr(A)2 4 det(A) < Tr(A)2 

Stable 

spiral focus 
 

Re(ld) < 0 

Im(ld) ≠ 0 

Unstable 

spiral focus 
 

Re(ld) > 0 

Im(ld) ≠ 0 

Stable 

point 
 

Re(ld) < 0 

Im(ld) = 0 

Unstable 

point 
 

Re(ld) > 0 

Im(ld) = 0 

Figure 7.5: Overview of how the stability of a two-dimensional continuous-time linear
dynamical system depends on Tr(A) and det(A).
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Exercise 7.12 Show that the unstable points with det(A) < 0 are saddle points.

Exercise 7.13 Determine the stability of the following linear systems:

• dx

dt
=

(
−1 2

2 −2

)
x

• dx

dt
=

(
0.5 −1.5

1 −1

)
x

Exercise 7.14 Confirm the analytical result shown in Fig. 7.5 by conducting nu-
merical simulations in Python and by drawing phase spaces of the system for sev-
eral samples of A.

7.5 Linear Stability Analysis of Nonlinear Dynamical Sys-
tems

Finally, we can apply linear stability analysis to continuous-time nonlinear dynamical sys-
tems. Consider the dynamics of a nonlinear differential equation

dx

dt
= F (x) (7.64)

around its equilibrium point xeq. By definition, xeq satisfies

0 = F (xeq). (7.65)

To analyze the stability of the system around this equilibrium point, we do the same co-
ordinate switch as we did for discrete-time models. Specifically, we apply the following
replacement

x(t)⇒ xeq + ∆x(t) (7.66)

to Eq. (7.64), to obtain

d(xeq + ∆x)

dt
=
d∆x

dt
= F (xeq + ∆x). (7.67)
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Now that we know the nonlinear function F on the right hand side can be approximated
using the Jacobian matrix, the equation above is approximated as

d∆x

dt
≈ F (xeq) + J∆x, (7.68)

where J is the Jacobian matrix of F at x = xeq (if you forgot what the Jacobian matrix was,
see Eq. (5.70)). By combining the result above with Eq. (7.65), we obtain

d∆x

dt
≈ J∆x. (7.69)

Note that the final result is very similar to that of discrete-time models. The rest of the
process is something we are already familiar with: Calculate the eigenvalues of J and in-
terpret the results to determine the stability of equilibrium point xeq. The only differences
from discrete-time models are that you need to look at the real parts of the eigenvalues,
and then compare them with 0, not 1. Figure 7.6 shows a schematic summary of classifi-
cations of equilibrium points for two-dimensional continuous-time dynamical systems.

Linear stability analysis of continuous-time nonlinear systems

1. Find an equilibrium point of the system you are interested in.

2. Calculate the Jacobian matrix of the system at the equilibrium point.

3. Calculate the eigenvalues of the Jacobian matrix.

4. If the real part of the dominant eigenvalue is:

• Greater than 0⇒ The equilibrium point is unstable.

– If other eigenvalues have real parts less than 0, the equilibrium point
is a saddle point.

• Less than 0⇒ The equilibrium point is stable.

• Equal to 0⇒ The equilibrium point may be neutral (Lyapunov stable).

5. In addition, if there are complex conjugate eigenvalues involved, oscillatory dy-
namics are going on around the equilibrium point. If those complex conjugate
eigenvalues are the dominant ones, the equilibrium point is called a stable or
unstable spiral focus (or a neutral center if the point is neutral).
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Real 

eigenvalues 

Complex 

conjugate 

eigenvalues 

Stable point Neutral point Saddle point Unstable point 

Stable spiral 

focus 

Neutral 

center 

Unstable spiral 

focus 

Stable 

Re(ld) < 0 

Unstable 

Re(ld) > 0 

Lyapunov stable* 

Re(ld) = 0 

Re(l1) = 0, Re(l2) < 0 Re(l1) = 0, Re(l2) = 0 Re(l1) > 0, Re(l2) < 0 Re(l1) > 0, Re(l2) > 0 Re(l1) < 0, Re(l2) < 0 

Re(l1) = Re(l2) < 0 Re(l1) = Re(l2) = 0 Re(l1) = Re(l2) > 0 

Figure 7.6: Schematic illustrations of several different types of equilibrium points and
their nearby trajectories in 2-D continuous-time dynamical systems, shown in the same
format as in Fig. 5.15. The real part of the dominant eigenvalue Re(λd) determines
the overall stability of the equilibrium point (top), although it would generally require
nonlinear analysis to show that the equilibrium point is truly neutral/Lyapunov stable
(*).
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Exercise 7.15 Consider the logistic growth model (r > 0, K > 0):

dx

dt
= rx

(
1− x

K

)
(7.70)

Conduct a linear stability analysis to determine whether this model is stable or not
at each of its equilibrium points xeq = 0, K.

Exercise 7.16 Consider the following differential equations that describe the in-
teraction between two species called commensalism (species x benefits from the
presence of species y but doesn’t influence y):

dx

dt
= −x+ rxy − x2 (7.71)

dy

dt
= y(1− y) (7.72)

x ≥ 0, y ≥ 0, r > 1 (7.73)

1. Find all the equilibrium points.

2. Calculate the Jacobian matrix at the equilibrium point where x > 0 and y > 0.

3. Calculate the eigenvalues of the matrix obtained above.

4. Based on the result, classify the equilibrium point into one of the following:
Stable point, unstable point, saddle point, stable spiral focus, unstable spiral
focus, or neutral center.

Exercise 7.17 Consider the differential equations of the SIR model:

dS

dt
= −aSI (7.74)

dI

dt
= aSI − bI (7.75)

dR

dt
= bI (7.76)

As you see in the equations above, R doesn’t influence the behaviors of S and I,
so you can safely ignore the third equation to make the model two-dimensional.
Do the following:
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1. Find all the equilibrium points (which you may have done already in Exercise
7.3).

2. Calculate the Jacobian matrix at each of the equilibrium points.

3. Calculate the eigenvalues of each of the matrices obtained above.

4. Based on the results, discuss the stability of each equilibrium point.





Chapter 8

Bifurcations

8.1 What Are Bifurcations?

One of the important questions you can answer by mathematically analyzing a dynamical
system is how the system’s long-term behavior depends on its parameters. Most of the
time, you can assume that a slight change in parameter values causes only a slight quan-
titative change in the system’s behavior too, with the essential structure of the system’s
phase space unchanged. However, sometimes you may witness that a slight change in
parameter values causes a drastic, qualitative change in the system’s behavior, with the
structure of its phase space topologically altered. This is called a bifurcation, and the
parameter values at which a bifurcation occurs are called the critical thresholds.

Bifurcation is a qualitative, topological change of a system’s phase space that occurs
when some parameters are slightly varied across their critical thresholds.

Bifurcations play important roles in many real-world systems as a switching mechanism.
Examples include excitation of neurons, pattern formation in morphogenesis (this will
be discussed later), catastrophic transition of ecosystem states, and binary information
storage in computer memory, to name a few.

There are two categories of bifurcations. One is called a local bifurcation, which can be
characterized by a change in the stability of equilibrium points. It is called local because it
can be detected and analyzed only by using localized information around the equilibrium
point. The other category is called a global bifurcation, which occurs when non-local
features of the phase space, such as limit cycles (to be discussed later), collide with
equilibrium points in a phase space. This type of bifurcation can’t be characterized just by
using localized information around the equilibrium point. In this textbook, we focus only on

131
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the local bifurcations, as they can be easily analyzed using the concepts of linear stability
that we discussed in the previous chapters.

Local bifurcations occur when the stability of an equilibrium point changes between
stable and unstable. Mathematically, this condition can be written down as follows:

Local bifurcations occur when the eigenvalues λi of the Jacobian matrix at an equi-
librium point satisfy the following:

For discrete-time models: |λi| = 1 for some i, while |λi| < 1 for the rest.

For continuous-time models: Re(λi) = 0 for some i, while Re(λi) < 0 for the rest.

These conditions describe a critical situation when the equilibrium point is about to change
its stability. We can formulate these conditions in equations and then solve them in terms
of the parameters, in order to obtain their critical thresholds. Let’s see how this analysis
can be done through some examples below.

8.2 Bifurcations in 1-D Continuous-Time Models

For bifurcation analysis, continuous-time models are actually simpler than discrete-time
models (we will discuss the reasons for this later). So let’s begin with the simplest exam-
ple, a continuous-time, first-order, autonomous dynamical system with just one variable:

dx

dt
= F (x) (8.1)

In this case, the Jacobian matrix is a 1 × 1 matrix whose eigenvalue is its content itself
(because it is a scalar), which is given by dF/dx. Since this is a continuous-time model,
the critical condition at which a bifurcation occurs in this system is given by

Re

(
dF

dx

) ∣∣∣∣
x=xeq

=
dF

dx

∣∣∣∣
x=xeq

= 0. (8.2)

Let’s work on the following example:

dx

dt
= r − x2 (8.3)

The first thing we need to do is to find the equilibrium points, which is easy in this case.
Letting dx/dt = 0 immediately gives

xeq = ±
√
r, (8.4)
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which means that equilibrium points exist only for non-negative r. The critical condition
when a bifurcation occurs is given as follows:

dF

dx
= −2x (8.5)

dF

dx

∣∣∣∣
x=xeq

= ±2
√
r = 0 (8.6)

r = 0 (8.7)

Therefore, now we know a bifurcation occurs when r = 0. Moreover, by plugging each
solution of Eq. (8.4) into dF/dx = −2x, we know that one equilibrium point is stable while
the other is unstable. These results are summarized in Table 8.1.

Table 8.1: Summary of bifurcation analysis of dx/dt = r − x2.

Equilibrium point r < 0 0 < r

xeq =
√
r doesn’t exist stable

xeq = −
√
r doesn’t exist unstable

There is a more visual way to illustrate the results. It is called a bifurcation diagram.
This works only for systems with one variable and one parameter, but it is still conceptually
helpful in understanding the nature of bifurcations. A bifurcation diagram can be drawn
by using the parameter being varied as the horizontal axis, while using the location(s)
of the equilibrium point(s) of the system as the vertical axis. Then you draw how each
equilibrium point depends on the parameter, using different colors and/or line styles to
indicate the stability of the point. Here is an example of how to draw a bifurcation diagram
in Python:

Code 8.1: bifurcation-diagram.py
from pylab import *

def xeq1(r):

return sqrt(r)

def xeq2(r):

return -sqrt(r)

domain = linspace(0, 10)

plot(domain, xeq1(domain), ’b-’, linewidth = 3)

http://bingweb.binghamton.edu/~sayama/textbook/code/bifurcation-diagram.py
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plot(domain, xeq2(domain), ’r--’, linewidth = 3)

plot([0], [0], ’go’)

axis([-10, 10, -5, 5])

xlabel(’r’)

ylabel(’x_eq’)

show()

The result is shown in Fig. 8.1, where the blue solid curve indicates a stable equilibrium
point xeq =

√
r, and the red dashed curve indicates an unstable equilibrium point xeq =

−
√
r, with the green circle in the middle showing a neutral equilibrium point. This type of

bifurcation is called a saddle-node bifurcation, in which a pair of equilibrium points appear
(or collide and annihilate, depending on which way you vary r).

10 5 0 5 10
r

4

2

0

2

4

x
_e

q

Figure 8.1: Visual output of Code 8.1, showing a bifurcation diagram of a saddle-node
bifurcation, obtained from Eq (8.3).

Each vertical slice of the bifurcation diagram for a particular parameter value depicts
a phase space of the dynamical system we are studying. For example, for r = 5 in the
diagram above, there are two equilibrium points, one stable (blue/solid) and the other un-
stable (red/dashed). You can visualize flows of the system’s state by adding a downward
arrow above the stable equilibrium point, an upward arrow from the unstable one to the
stable one, and then another downward arrow below the unstable one. In this way, it is
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clear that the system’s state is converging to the stable equilibrium point while it is re-
pelling from the unstable one. If you do the same for several different values of r, you
obtain Fig. 8.2, which shows how to interpret this diagram.

Figure 8.2: How to interpret a bifurcation diagram. Each vertical slice of the diagram
depicts a phase space of the system for a particular parameter value.

There are other types of bifurcations. A transcritical bifurcation is a bifurcation where
one equilibrium point “passes through” another, exchanging their stabilities. For example:

dx

dt
= rx− x2 (8.8)

This dynamical system always has the following two equilibrium points

xeq = 0, r, (8.9)

with the exception that they collide when r = 0, which is when they swap their stabilities.
Its bifurcation diagram is shown in Fig. 8.3.

Another one is a pitchfork bifurcation, where an equilibrium point splits into three. Two
of these (the outermost two) have the same stability as the original equilibrium point,
while the one between them has a stability opposite to the original one’s stability. There
are two types of pitchfork bifurcations. A supercritical pitchfork bifurcation makes a stable
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Figure 8.3: Bifurcation diagram of a transcritical bifurcation, obtained from Eq (8.8).

equilibrium point split into three, two stable and one unstable. For example:

dx

dt
= rx− x3 (8.10)

This dynamical system has the following three equilibrium points

xeq = 0,±
√
r, (8.11)

but the last two exist only for r ≥ 0. You can show that xeq = 0 is stable for r < 0 and
unstable for r > 0, while xeq = ±

√
r are always stable if they exist. Its bifurcation diagram

is shown in Fig. 8.4.
In the meantime, a subcritical pitchfork bifurcation makes an unstable equilibrium point

split into three, two unstable and one stable. For example:

dx

dt
= rx+ x3 (8.12)

This dynamical system has the following three equilibrium points

xeq = 0,±
√
−r, (8.13)

but the last two exist only for r ≤ 0. Its bifurcation diagram is shown in Fig. 8.5.
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Figure 8.4: Bifurcation diagram of a supercritical pitchfork bifurcation, obtained from
Eq (8.10).
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Figure 8.5: Bifurcation diagram of a subcritical pitchfork bifurcation, obtained from
Eq (8.10).
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These bifurcations can arise in combined forms too. For example:

dx

dt
= r + x− x3 (8.14)

This dynamical system has three equilibrium points, which are rather complicated to cal-
culate in a straightforward way. However, if we solve dx/dt = 0 in terms of r, we can easily
obtain

r = −x+ x3, (8.15)

which is sufficient for drawing the bifurcation diagram. We can also know the stability of
each equilibrium point by calculating

Re

(
dF

dx

) ∣∣∣∣
x=xeq

= 1− 3x2, (8.16)

i.e., when x2 > 1/3, the equilibrium points are stable, otherwise they are unstable. The
bifurcation diagram of this system is shown in Fig. 8.6.

Figure 8.6: Bifurcation diagram showing hysteresis, obtained from Eq (8.14). Arrows
are added to help with interpretation.

This diagram is a combination of two saddle-node bifurcations, showing that this sys-
tem has hysteresis as its dynamical property. Hysteresis is the dependence of a system’s
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output (asymptotic state in this case) not only on the input (parameter r in this case) but
also on its history. To understand what this means, imagine that you are slowly changing
r from -1 upward. Initially, the system’s state stays at the stable equilibrium at the bottom
of the diagram, which continues until you reach a critical threshold at r ≈ 0.4. As soon as
you cross this threshold, the system’s state suddenly jumps up to another stable equilib-
rium point at the top of the diagram. Such a sudden jump in the system’s state is often
called a catastrophe. You get upset, and try to bring the system’s state back to where
it was, by reducing r. However, counter to your expectation, the system’s state remains
high even after you reduce r below 0.4. This is hysteresis; the system’s asymptotic state
depends not just on r, but also on where its state was in the immediate past. In other
words, the system’s state works as a memory of its history. In order to bring the system’s
state back down to the original value, you have to spend extra effort to reduce r all the
way below another critical threshold, r ≈ −0.4.

Such hysteresis could be useful; every bit (binary digit) of computer memory has this
kind of bifurcation dynamics, which is why we can store information in it. But in other con-
texts, hysteresis could be devastating—if an ecosystem’s state has this property (many
studies indicate it does), it takes a huge amount of effort and resources to revert a de-
serted ecosystem back to a habitat with vegetation, for example.

Exercise 8.1 Conduct a bifurcation analysis of the following dynamical system
with parameter r:

dx

dt
= rx(x+ 1)− x (8.17)

Find the critical threshold of r at which a bifurcation occurs. Draw a bifurcation
diagram and determine what kind of bifurcation it is.

Exercise 8.2 Assume that two companies, A and B, are competing against each
other for the market share in a local region. Let x and y be the market share of
A and B, respectively. Assuming that there are no other third-party competitors,
x + y = 1 (100%), and therefore this system can be understood as a one-variable
system. The growth/decay of A’s market share can thus be modeled as

dx

dt
= ax(1− x)(x− y), (8.18)

where x is the current market share of A, 1− x is the size of the available potential
customer base, and x − y is the relative competitive edge of A, which can be
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rewritten as x− (1− x) = 2x− 1. Obtain equilibrium points of this system and their
stabilities.

Then make an additional assumption that this regional market is connected to
and influenced by a much larger global market, where company A’s market share
is somehow kept at p (whose change is very slow so we can consider it constant):

dx

dt
= ax(1− x)(x− y) + r(p− x) (8.19)

Here r is the strength of influence from the global to the local market. Determine
a critical condition regarding r and p at which a bifurcation occurs in this system.
Draw its bifurcation diagram over varying r with a = 1 and p = 0.5, and determine
what kind of bifurcation it is.

Finally, using the results of the bifurcation analysis, discuss what kind of market-
ing strategy you would take if you were a director of a marketing department of a
company that is currently overwhelmed by its competitor in the local market. How
can you “flip” the market?

8.3 Hopf Bifurcations in 2-D Continuous-Time Models

For dynamical systems with two or more variables, the dominant eigenvalues of the Ja-
cobian matrix at an equilibrium point could be complex conjugates. If such an equilibrium
point, showing an oscillatory behavior around it, switches its stability, the resulting bifur-
cation is called a Hopf bifurcation. A Hopf bifurcation typically causes the appearance
(or disappearance) of a limit cycle around the equilibrium point. A limit cycle is a cyclic,
closed trajectory in the phase space that is defined as an asymptotic limit of other oscilla-
tory trajectories nearby. You can check whether the bifurcation is Hopf or not by looking at
the imaginary components of the dominant eigenvalues whose real parts are at a critical
value (zero); if there are non-zero imaginary components, it must be a Hopf bifurcation.

Here is an example, a dynamical model of a nonlinear oscillator, called the van der Pol
oscillator:

d2x

dt2
+ r(x2 − 1)

dx

dt
+ x = 0 (8.20)

This is a second-order differential equation, so we should introduce an additional variable
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y = dx/dt to make it into a 2-D first-order system, as follows:

dx

dt
= y (8.21)

dy

dt
= −r(x2 − 1)y − x (8.22)

From these, we can easily show that the origin, (x, y) = (0, 0), is the only equilibrium point
of this system. The Jacobian matrix of this system at the origin is given as follows:(

0 1

−2rxy − 1 −r(x2 − 1)

) ∣∣∣
(x,y)=(0,0)

=

(
0 1

−1 r

)
(8.23)

The eigenvalues of this matrix can be calculated as follows:∣∣∣∣ 0− λ 1

−1 r − λ

∣∣∣∣ = 0 (8.24)

− λ(r − λ) + 1 = λ2 − rλ+ 1 = 0 (8.25)

λ =
r ±
√
r2 − 4

2
(8.26)

The critical condition for a bifurcation to occur is

Re(λ) = 0, (8.27)

whose left hand side can be further detailed as

Re(λ) =


r ±
√
r2 − 4

2
if r2 ≥ 4, or

r

2
if r2 < 4.

(8.28)

The first case can’t be zero, so the only critical condition for a bifurcation to occur is the
second case, i.e.

r = 0, when Re(λ) = 0 and Im(λ) = ±i. (8.29)

This is a Hopf bifurcation because the eigenvalues have non-zero imaginary parts when
the stability change occurs. We can confirm this analytical prediction by numerical simu-
lations of the model with systematically varied r, as follows:

Code 8.2: van-del-pol-Hopf-bifurcation.py
from pylab import *

http://bingweb.binghamton.edu/~sayama/textbook/code/van-del-pol-Hopf-bifurcation.py
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Dt = 0.01

def initialize():

global x, xresult, y, yresult

x = y = 0.1

xresult = [x]

yresult = [y]

def observe():

global x, xresult, y, yresult

xresult.append(x)

yresult.append(y)

def update():

global x, xresult, y, yresult

nextx = x + y * Dt

nexty = y + (-r * (x**2 - 1) * y - x) * Dt

x, y = nextx, nexty

def plot_phase_space():

initialize()

for t in xrange(10000):

update()

observe()

plot(xresult, yresult)

axis(’image’)

axis([-3, 3, -3, 3])

title(’r = ’ + str(r))

rs = [-1, -0.1, 0, .1, 1]

for i in xrange(len(rs)):

subplot(1, len(rs), i + 1)

r = rs[i]

plot_phase_space()

show()
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Figure 8.7 shows the results where a clear transition from a stable spiral focus (for r < 0)
to an unstable spiral focus surrounded by a limit cycle (for r > 0) is observed.
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Figure 8.7: Visual output of Code 8.2.

Exercise 8.3 FitzHugh-Nagumo model The FitzHugh-Nagumo model [30, 31]
is a simplified model of neuronal dynamics that can demonstrate both excited and
resting behaviors of neurons. In a normal setting, this system’s state converges
and stays at a stable equilibrium point (resting), but when perturbed, the system’s
state moves through a large cyclic trajectory in the phase space before coming
back to the resting state, which is observed as a big pulse when plotted over time
(excitation). Moreover, under certain conditions, this system can show a nonlinear
oscillatory behavior that continuously produces a sequence of pulses. The behav-
ioral shift between convergence to the resting state and generation of a sequence
of pulses occurs as a Hopf bifurcation, where the external current is used as a
control parameter. Here are the model equations:

dx

dt
= c

(
x− x3

3
+ y + z

)
(8.30)

dy

dt
= −x− a+ by

c
(8.31)

z is the key parameter that represents the external current applied to the neuron.
Other parameters are typically constrained as follows:

1− 2

3
b < a < 1 (8.32)

0 < b < 1 (8.33)

b < c2 (8.34)
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With a = 0.7, b = 0.8, and c = 3, do the following:

• Numerically obtain the equilibrium point of this model for several values of z,
ranging between -2 and 0. There is only one real equilibrium point in this
system.

• Apply the result obtained above to the Jacobian matrix of the model, and
numerically evaluate the stability of that equilibrium point for each value of z.

• Estimate the critical thresholds of z at which a Hopf bifurcation occurs. There
are two such critical thresholds.

• Draw a series of its phase spaces with values of z varied from 0 to -2 to
confirm your analytical prediction.

8.4 Bifurcations in Discrete-Time Models

The bifurcations discussed above (saddle-node, transcritical, pitchfork, Hopf) are also
possible in discrete-time dynamical systems with one variable:

xt = F (xt−1) (8.35)

The Jacobian matrix of this system is, again, a 1×1 matrix whose eigenvalue is its content
itself, which is given by dF/dx. Since this is a discrete-time model, the critical condition at
which a bifurcation occurs is given by∣∣∣∣dFdx

∣∣∣∣
x=xeq

= 1. (8.36)

Let’s work on the following example:

xt = xt−1 + r − x2
t−1 (8.37)

This is a discrete-time analog of Eq. (8.3). Therefore, it has the same set of equilibrium
points:

xeq = ±
√
r (8.38)

Next, we calculate dF/dx as follows:

dF

dx
= (r + x− x2)′ = 1− 2x (8.39)∣∣∣∣dFdx
∣∣∣∣
x=±

√
r

= |1± 2
√
r| (8.40)
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To find out which value of r makes this 1, we consider the following four scenarios:

• 1 + 2
√
r = 1 ⇒ r = 0

• 1− 2
√
r = 1 ⇒ r = 0

• 1 + 2
√
r = −1 ⇒ (no real solution)

• 1− 2
√
r = −1 ⇒ r = 1

As you see, r = 0 appears as a critical threshold again, at which a saddle-node bifur-
cation occurs. But now we see another critical threshold, r = 1, also showing up, which
was not there in its continuous-time version. This is why I said before that continuous-
time models are simpler than discrete-time models for bifurcation analysis; discrete-time
models can show a new form of bifurcation that wasn’t possible in their continuous-time
counterparts. To learn more about this, we can study the stability of the two equilibrium
points by checking whether |dF/dx| is greater or less than 1 at each point. The result is
summarized in Table 8.2.

Table 8.2: Summary of bifurcation analysis of xt = xt−1 + r − x2
t−1.

Equilibrium point r < 0 0 < r < 1 1 < r

xeq =
√
r doesn’t exist stable unstable

xeq = −
√
r doesn’t exist unstable unstable

The result shown in the table is pretty much the same as before up to r = 1, but when
r > 1, both equilibrium points become unstable. This must mean that the system is not
allowed to converge toward either of them. Then what is going to happen to the system
in this parameter range? We can let the system show its actual behavior by numerical
simulations. Here is an example:

Code 8.3: period-doubling-bifurcation.py
from pylab import *

def initialize():

global x, result

x = 0.1

result = [x]

def observe():

http://bingweb.binghamton.edu/~sayama/textbook/code/period-doubling-bifurcation.py
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global x, result

result.append(x)

def update():

global x, result

x = x + r - x**2

def plot_phase_space():

initialize()

for t in xrange(30):

update()

observe()

plot(result)

ylim(0, 2)

title(’r = ’ + str(r))

rs = [0.1, 0.5, 1.0, 1.1, 1.5, 1.6]

for i in xrange(len(rs)):

subplot(2, 3, i + 1)

r = rs[i]

plot_phase_space()

show()

The results are shown in Fig. 8.8, visualizing actual trajectories of the system’s state
over time for several values of r. The cobweb plot version is also shown in Fig. 8.9 (the
code is not shown here; try implementing the code yourself!).

There are some new behaviors that were not seen in continuous-time versions of the
same model. For example, at r = 0.5, there was a signature of “overshooting” right be-
fore the system state converged to a stable equilibrium point. But more importantly, at
r = 1, the system began to fail to converge to a single stable point, and for r > 1, it
started oscillating between two distinct states. This is called a period-doubling bifurca-
tion. It is a bifurcation that typically occurs in discrete-time systems (but it is also possible
in continuous-time systems of higher dimensions), where the system loses stability of a
period T trajectory and begins to move in another trajectory with period 2T . The bifur-
cation observed for r = 1 was a transition from an equilibrium point (which is a periodic
trajectory with period T = 1, i.e., the system takes the same state value in each time step)
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Figure 8.8: Visual output of Code 8.3.
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Figure 8.9: Cobweb plot version of Fig. 8.8.
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to a trajectory with period 2T = 2. Interestingly, the period-doubling bifurcations happen
in a cascade if you keep increasing r. In this particular case, another period-doubling
bifurcation was observed at r = 1.5, where the period-2 trajectory lost its stability and the
system moved to a period-4 trajectory. This continues as you continue to increase r.

The first period-doubling bifurcation from period-1 to period-2 trajectories can still be
characterized as the loss of stability of an equilibrium point, but the dominant eigenvalue
destabilizing the equilibrium point must be negative in order to induce the flipping behav-
ior. This can be mathematically written as follows:

A first period-doubling bifurcation from period-1 to period-2 trajectories occurs in a
discrete-time model when the eigenvalues λi of the Jacobian matrix at an equilibrium
point satisfy the following:

λi = −1 for some i, while |λi| < 1 for the rest.

In the example above, dF/dx|xeq=
√
r = −1 when r = 1, which triggers the first period-

doubling bifurcation.

Exercise 8.4 Consider the following discrete-time dynamical system:

xt = (1− a)xt−1 + ax3
t−1 (8.41)

This equation has xeq = 0 as an equilibrium point. Obtain the value of a at which
this equilibrium point undergoes a first period-doubling bifurcation.

Once the system begins to show period-doubling bifurcations, its asymptotic states are
no longer captured by the locations of analytically obtained equilibrium points, as drawn
in bifurcation diagrams (e.g., Figs. 8.1, 8.3, etc.). However, there is still a way to visualize
bifurcation diagrams numerically by simulating the behavior of the system explicitly and
then collecting the actual states the system visits for a certain period of time. Then we can
plot their distributions in a diagram. The data points should be collected after a sufficiently
long initial transient time has passed in each simulation, so that the system’s trajectory is
already showing its “final” behavior. Here is a sample code showing how to draw such a
bifurcation diagram numerically:

Code 8.4: bifurcation-diagram-numerical.py
from pylab import *

http://bingweb.binghamton.edu/~sayama/textbook/code/bifurcation-diagram-numerical.py
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def initialize():

global x, result

x = 0.1

result = []

def observe():

global x, result

result.append(x)

def update():

global x, result

x = x + r - x**2

def plot_asymptotic_states():

initialize()

for t in xrange(100): # first 100 steps are discarded

update()

for t in xrange(100): # second 100 steps are collected

update()

observe()

plot([r] * 100, result, ’b.’, alpha = 0.3)

for r in arange(0, 2, 0.01):

plot_asymptotic_states()

xlabel(’r’)

ylabel(’x’)

show()

In this code, r is gradually varied from 0 to 2 at intervals of 0.01. For each value of r, the
model (Eq. (8.37)) is simulated for 200 steps, and only the second half of the state values
are recorded in result. Once the simulation is finished, the states stored in result

are plotted at a particular value of r in the plot (note that the expression [r] * 100 in
Python produces a list of one hundred r’s). The alpha option is used to make the markers
transparent so that the densities of markers are also visible.

The result is shown in Fig. 8.10. This bifurcation diagram still shows how the system’s
state depends on the parameter, but what is plotted here are no longer analytically ob-
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tained equilibrium points but numerically sampled sets of asymptotic states, i.e., where
the system is likely to be after a sufficiently long period of time. If the system is converging
to a stable equilibrium point, you see one curve in this diagram too. Unstable equilibrium
points never show up because they are never realized in numerical simulations. Once
the system undergoes period-doubling bifurcations, the states in a periodic trajectory are
all sampled during the sampling period, so they all appear in this diagram. The period-
doubling bifurcations are visually seen as the branching points of those curves.

But what are those noisy, crowded, random-looking parts at r > 1.7? That is chaos,
the hallmark of nonlinear dynamics. We will discuss what is going on there in the next
chapter.

Figure 8.10: Visual output of Code 8.4, showing the numerically constructed bifurca-
tion diagram of Eq. (8.37).
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Exercise 8.5 Logistic map Period-doubling bifurcations and chaos are not just
for abstract, contrived mathematical equations, but they can occur in various mod-
els of real-world biological, ecological, social, and engineering phenomena. The
simplest possible example would be the logistic map we introduced in Section 5.5:

xt = rxt−1(1− xt−1) (8.42)

This is a mathematical model of population dynamics, where xt represents the
population of a species that reproduce in discrete (non-overlapping) generations.
This model was used by British/Australian mathematical ecologist Robert May in
his influential 1976 Nature paper [32] to illustrate how a very simple mathematical
model could produce astonishingly complex behaviors.

• Conduct a bifurcation analysis of this model to find the critical thresholds of r
at which bifurcations occur.

• Study the stability of each equilibrium point in each parameter range and sum-
marize the results in a table.

• Simulate the model with several selected values of r to confirm the results of
analysis.

• Draw a bifurcation diagram of this model for 0 < r < 4.

Exercise 8.6 Stability analysis of periodic trajectories The stability of a
period-2 trajectory of a discrete-time model xt = F (xt−1) can be studied by the
stability analysis of another model made of a composite function of F :

yτ = G(yτ−1) = F (F (yτ−1)) (8.43)

This is because the period-2 trajectory in F corresponds to one of the equilibrium
points of G(◦) = F (F (◦)). If such an equilibrium point of G is being destabilized
so that dG/dx ≈ −1, it means that the period-2 trajectory in question is losing the
stability, and thus another period-doubling bifurcation into a period-4 trajectory is
about to occur. Using this technique, analytically obtain the critical threshold of r
in Eq. (8.37) at which the second period-doubling bifurcation occurs (from period 2
to period 4). Then, draw cobweb plots of yτ = G(yτ−1) for several values of r near
the critical threshold to see what is happening there.



Chapter 9

Chaos

9.1 Chaos in Discrete-Time Models

Figure 8.10 showed a cascade of period-doubling bifurcations, with the intervals be-
tween consecutive bifurcation thresholds getting shorter and shorter geometrically as r
increased. This cascade of period doubling eventually leads to the divergence of the pe-
riod to infinity at r ≈ 1.7 in this case, which indicates the onset of chaos. In this mysterious
parameter regime, the system loses any finite-length periodicity, and its behavior looks es-
sentially random. Figure 9.1 shows an example of such chaotic behavior of Eq. (8.37) with
r = 1.8.

So what is chaos anyway? It can be described in a number of different ways, as
follows:

Chaos—

• is a long-term behavior of a nonlinear dynamical system that never falls in any
static or periodic trajectories.

• looks like a random fluctuation, but still occurs in completely deterministic, sim-
ple dynamical systems.

• exhibits sensitivity to initial conditions.

• occurs when the period of the trajectory of the system’s state diverges to infinity.

• occurs when no periodic trajectories are stable.

153
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Figure 9.1: Example of chaotic behavior, generated using Eq. (8.37) with r = 1.8 and
the initial condition x0 = 0.1.

• is a prevalent phenomenon that can be found everywhere in nature, as well as
in social and engineered environments.

The sensitivity of chaotic systems to initial conditions is particularly well known under
the moniker of the “butterfly effect,” which is a metaphorical illustration of the chaotic
nature of the weather system in which “a flap of a butterfly’s wings in Brazil could set
off a tornado in Texas.” The meaning of this expression is that, in a chaotic system,
a small perturbation could eventually cause very large-scale difference in the long run.
Figure 9.2 shows two simulation runs of Eq. (8.37) with r = 1.8 and two slightly different
initial conditions, x0 = 0.1 and x0 = 0.100001. The two simulations are fairly similar
for the first several steps, because the system is fully deterministic (this is why weather
forecasts for just a few days work pretty well). But the “flap of the butterfly’s wings” (the
0.000001 difference) grows eventually so big that it separates the long-term fates of the
two simulation runs. Such extreme sensitivity of chaotic systems makes it practically
impossible for us to predict exactly their long-term behaviors (this is why there are no
two-month weather forecasts1).

1But this doesn’t necessarily mean we can’t predict climate change over longer time scales. What is not
possible with a chaotic system is the prediction of the exact long-term behavior, e.g., when, where, and how
much it will rain over the next 12 months. It is possible, though, to model and predict long-term changes
of a system’s statistical properties, e.g., the average temperature of the global climate, because it can be
described well in a much simpler, non-chaotic model. We shouldn’t use chaos as an excuse to avoid making
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Figure 9.2: Example of the “butterfly effect,” the extreme sensitivity of chaotic systems
to initial conditions. The two curves show time series generated using Eq. (8.37) with
r = 1.8; one with x0 = 0.1 and the other with x0 = 0.100001.

Exercise 9.1 There are many simple mathematical models that exhibit chaotic
behavior. Try simulating each of the following dynamical systems (shown in
Fig. 9.3). If needed, explore and find the parameter values with which the sys-
tem shows chaotic behaviors.

• Logistic map: xt = rxt−1(1− xt−1)

• Cubic map: xt = x3
t−1 − rxt−1

• Sinusoid map: xt = r sinxt−1

• Saw map: xt = fractional part of 2xt−1

Note: The saw map may not show chaos if simulated on a computer, but it will show
chaos if it is manually simulated on a cobweb plot. This issue will be discussed
later.

predictions for our future!



156 CHAPTER 9. CHAOS

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

Logistic map

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Cubic map

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

Sinusoid map

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Saw map

Figure 9.3: Simple maps that show chaotic behavior (for Exercise 9.1).

9.2 Characteristics of Chaos

It is helpful to realize that there are two dynamical processes always going on in any
kind of chaotic systems: stretching and folding [33]. Any chaotic system has a dynam-
ical mechanism to stretch, and then fold, its phase space, like kneading pastry dough
(Fig. 9.4). Imagine that you are keeping track of the location of a specific grain of flour
in the dough while a pastry chef kneads the dough for a long period of time. Stretching
the dough magnifies the tiny differences in position at microscopic scales to a larger, vis-
ible one, while folding the dough always keeps its extension within a finite, confined size.
Note that folding is the primary source of nonlinearity that makes long-term predictions so
hard—if the chef were simply stretching the dough all the time (which would look more like
making ramen), you would still have a pretty good idea about where your favorite grain of
flour would be after the stretching was completed.

This stretching-and-folding view allows us to make another interpretation of chaos:

Chaos can be understood as a dynamical process in which microscopic information
hidden in the details of a system’s state is dug out and expanded to a macroscopi-
cally visible scale (stretching), while the macroscopic information visible in the current
system’s state is continuously discarded (folding).

This kind of information flow-based explanation of chaos is quite helpful in understanding
the essence of chaos from a multiscale perspective. This is particularly clear when you
consider the saw map discussed in the previous exercise:

xt = fractional part of 2xt−1 (9.1)
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Figure 9.4: Schematic illustration of stretching and folding taking place in a chaotic
iterative map. The current phase space (right) is first stretched (middle right) and then
folded (middle left, left) to generate the next phase space in each iteration.

If you know binary notations of real numbers, it should be obvious that this iterative map is
simply shifting the bit string in x always to the left, while forgetting the bits that came before
the decimal point. And yet, such a simple arithmetic operation can still create chaos, if
the initial condition is an irrational number (Fig. 9.5)! This is because an irrational number
contains an infinite length of digits, and chaos continuously digs them out to produce a
fluctuating behavior at a visible scale.

Exercise 9.2 The saw map can also show chaos even from a rational initial con-
dition, if its behavior is manually simulated by hand on a cobweb plot. Explain
why.

9.3 Lyapunov Exponent

Finally, I would like to introduce one useful analytical metric that can help characterize
chaos. It is called the Lyapunov exponent, which measures how quickly an infinitesimally



158 CHAPTER 9. CHAOS

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 9.5: Cobweb plot of the saw map with π/4 as the initial condition.

small distance between two initially close states grows over time:

∣∣F t(x0 + ε)− F t(x0)
∣∣ ≈ εeλt (9.2)

The left hand side is the distance between two initially close states after t steps, and the
right hand side is the assumption that the distance grows exponentially over time. The
exponent λ measured for a long period of time (ideally t → ∞) is the Lyapunov expo-
nent. If λ > 0, small distances grow indefinitely over time, which means the stretching
mechanism is in effect. Or if λ < 0, small distances don’t grow indefinitely, i.e., the sys-
tem settles down into a periodic trajectory eventually. Note that the Lyapunov exponent
characterizes only stretching, but as we discussed before, stretching is not the only mech-
anism of chaos. You should keep in mind that the folding mechanism is not captured in
this Lyapunov exponent.

We can do a little bit of mathematical derivation to transform Eq. (9.2) into a more
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easily computable form:

eλt ≈
∣∣F t(x0 + ε)− F t(x0)

∣∣
ε

(9.3)

λ = lim
t→∞, ε→0

1

t
log

∣∣∣∣F t(x0 + ε)− F t(x0)

ε

∣∣∣∣ (9.4)

= lim
t→∞

1

t
log

∣∣∣∣dF t

dx

∣∣∣
x=x0

∣∣∣∣ (9.5)

(applying the chain rule of differentiation...)

= lim
t→∞

1

t
log

∣∣∣∣dFdx ∣∣∣x=F t−1(x0)=xt−1

· dF
dx

∣∣∣
x=F t−2(x0)=xt−2

· · · · dF
dx

∣∣∣
x=x0

∣∣∣∣ (9.6)

= lim
t→∞

1

t

t−1∑
i=0

log

∣∣∣∣dFdx ∣∣∣x=xi

∣∣∣∣ (9.7)

The final result is quite simple—the Lyapunov exponent is a time average of log |dF/dx|
at every state the system visits over the course of the simulation. This is very easy
to compute numerically. Here is an example of computing the Lyapunov exponent of
Eq. 8.37 over varying r:

Code 9.1: Lyapunov-exponent.py
from pylab import *

def initialize():

global x, result

x = 0.1

result = [logdFdx(x)]

def observe():

global x, result

result.append(logdFdx(x))

def update():

global x, result

x = x + r - x**2

def logdFdx(x):

http://bingweb.binghamton.edu/~sayama/textbook/code/Lyapunov-exponent.py
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return log(abs(1 - 2*x))

def lyapunov_exponent():

initialize()

for t in xrange(100):

update()

observe()

return mean(result)

rvalues = arange(0, 2, 0.01)

lambdas = [lyapunov_exponent() for r in rvalues]

plot(rvalues, lambdas)

plot([0, 2], [0, 0])

xlabel(’r’)

ylabel(’Lyapunov exponent’)

show()

Figure 9.6 shows the result. By comparing this figure with the bifurcation diagram (Fig. 8.10),
you will notice that the parameter range where the Lyapunov exponent takes positive val-
ues nicely matches the range where the system shows chaotic behavior. Also, whenever
a bifurcation occurs (e.g., r = 1, 1.5, etc.), the Lyapunov exponent touches the λ = 0 line,
indicating the criticality of those parameter values. Finally, there are several locations in
the plot where the Lyapunov exponent diverges to negative infinity (they may not look so,
but they are indeed going infinitely deep). Such values occur when the system converges
to an extremely stable equilibrium point with dF t/dx|x=x0 ≈ 0 for certain t. Since the defi-
nition of the Lyapunov exponent contains logarithms of this derivative, if it becomes zero,
the exponent diverges to negative infinity as well.

Exercise 9.3 Plot the Lyapunov exponent of the logistic map (Eq. (8.42)) for 0 <

r < 4, and compare the result with its bifurcation diagram.

Exercise 9.4 Plot the bifurcation diagram and the Lyapunov exponent of the fol-
lowing discrete-time dynamical system for r > 0:

xt = cos2(rxt−1) (9.8)
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Figure 9.6: Visual output of Code 9.1, showing the Lyapunov exponent of Eq. (8.37)
over varying r. Compare this with Fig. 8.10.
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Then explain in words how its dynamics change over r.

9.4 Chaos in Continuous-Time Models

As we reviewed above, chaos is really easy to show in discrete-time models. But the
discovery of chaos was originally made with continuous-time dynamical systems, i.e., dif-
ferential equations. Edward Lorenz, an American mathematician and meteorologist, and
one of the founders of chaos theory, accidentally found chaotic behavior in the following
model (called the Lorenz equations) that he developed to study the dynamics of atmo-
spheric convection in the early 1960s [5]:

dx

dt
= s(y − x) (9.9)

dy

dt
= rx− y − xz (9.10)

dz

dt
= xy − bz (9.11)

Here s, r, and b are positive parameters.This model is known to be one of the first that
can show chaos in continuous time. Let’s simulate this model with s = 10, r = 30, and
b = 3, for example:

Code 9.2: Lorenz-equations.py
from pylab import *

from mpl_toolkits.mplot3d import Axes3D

s = 10.

r = 30.

b = 3.

Dt = 0.01

def initialize():

global x, xresult, y, yresult, z, zresult, t, timesteps

x = y = z = 1.

xresult = [x]

yresult = [y]

zresult = [z]

http://bingweb.binghamton.edu/~sayama/textbook/code/Lorenz-equations.py
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t = 0.

timesteps = [t]

def observe():

global x, xresult, y, yresult, z, zresult, t, timesteps

xresult.append(x)

yresult.append(y)

zresult.append(z)

timesteps.append(t)

def update():

global x, xresult, y, yresult, z, zresult, t, timesteps

nextx = x + (s * (y - x)) * Dt

nexty = y + (r * x - y - x * z) * Dt

nextz = z + (x * y - b * z) * Dt

x, y, z = nextx, nexty, nextz

t = t + Dt

initialize()

while t < 30.:

update()

observe()

subplot(3, 1, 1)

plot(timesteps, xresult)

xlabel(’t’)

ylabel(’x’)

subplot(3, 1, 2)

plot(timesteps, yresult)

xlabel(’t’)

ylabel(’y’)

subplot(3, 1, 3)

plot(timesteps, zresult)

xlabel(’t’)

ylabel(’z’)
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figure()

ax = gca(projection=’3d’)

ax.plot(xresult, yresult, zresult, ’b’)

show()

This code produces two outputs: one is the time series plots of x, y, and z (Fig. 9.7), and
the other is the trajectory of the system’s state in a 3-D phase space (Fig. 9.8). As you can
see in Fig. 9.7, the behavior of the system is highly unpredictable, but there is definitely
some regularity in it too. x and y tend to stay on either the positive or negative side,
while showing some oscillations with growing amplitudes. When the oscillation becomes
too big, they are thrown to the other side. This continues indefinitely, with occasional
switching of sides at unpredictable moments. In the meantime, z remains positive all the
time, with similar oscillatory patterns.

Plotting these three variables together in a 3-D phase space reveals what is called the
Lorenz attractor (Fig. 9.8). It is probably the best-known example of strange attractors,
i.e., attractors that appear in phase spaces of chaotic systems.

Just like any other attractors, strange attractors are sets of states to which nearby
trajectories are attracted. But what makes them really “strange” is that, even if they look
like a bulky object, their “volume” is zero relative to that of the phase space, and thus
they have a fractal dimension, i.e., a dimension of an object that is not integer-valued.
For example, the Lorenz attractor’s fractal dimension is known to be about 2.06, i.e., it
is pretty close to a 2-D object but not quite. In fact, any chaotic system has a strange
attractor with fractal dimension in its phase space. For example, if you carefully look at
the intricate patterns in the chaotic regime of Fig. 8.10, you will see fractal patterns there
too.

Exercise 9.5 Draw trajectories of the states of the Lorenz equations in a 3-D
phase space for several different values of r while other parameters are kept con-
stant. See how the dynamics of the Lorenz equations change as you vary r.

Exercise 9.6 Obtain the equilibrium points of the Lorenz equations as a function
of r, while keeping s = 10 and b = 3. Then conduct a bifurcation analysis on each
equilibrium point to find the critical thresholds of r at which a bifurcation occurs.
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Figure 9.7: Visual output of Code 9.2 (1): Time series plots of x, y, and z.
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Figure 9.8: Visual output of Code 9.2 (2): Trajectory of the state of the Lorenz equa-
tions in a 3-D phase space.
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Compare your result with numerical simulation results obtained in the previous
exercise.

By the way, I said before that any chaotic system has two dynamical processes:
stretching and folding. Where do these processes occur in the Lorenz attractor? It is
not so straightforward to fully understand its structure, but the stretching occurs where
the trajectory is circling within one of the two “wings” of the attractor. The spirals seen
on those wings are unstable ones going outward, so the distance between initially close
states are expanded as they circle around the spiral focus. In the meantime, the folding
occurs at the center of the attractor, where two “sheets” of trajectories meet. Those two
sheets actually never cross each other, but they keep themselves separated from each
other, forming a “wafer sandwich” made of two thin layers, whose right half goes on to
circle in the right wing while the left half goes on to the left wing. In this way, the “dough”
is split into two, each of which is stretched, and then the two stretched doughs are stacked
on top of each other to form a new dough that is made of two layers again. As this pro-
cess continues, the final result, the Lorenz attractor, acquires infinitely many, recursively
formed layers in it, which give it the name of a “strange” attractor with a fractal dimension.

Exercise 9.7 Plot the Lorenz attractor in several different perspectives (the easi-
est choice would be to project it onto the x-y, y-z, and x-z planes) and observe its
structure. Interpret its shape and the flows of trajectories from a stretching-and-
folding viewpoint.

I would like to bring up one more important mathematical fact before we close this
chapter:

In order for continuous-time dynamical systems to be chaotic, the dimensions of the
system’s phase space must be at least 3-D. In contrast, discrete-time dynamical sys-
tems can be chaotic regardless of their dimensions.

The Lorenz equations involved three variables, so it was an example of continuous-time
chaotic systems with minimal dimensionality.

This fact is derived from the Poincaré-Bendixson theorem in mathematics, which states
that no strange attractor can arise in continuous 2-D phase space. An intuitive explanation
of this is that, in a 2-D phase space, every existing trajectory works as a “wall” that you
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can’t cross, which imposes limitations on where you can go in the future. In such an in-
creasingly constraining environment, it is not possible to maintain continuously exploring
dynamics for an indefinitely long period of time.

Exercise 9.8 Gather a pen and a piece of blank paper. Start drawing a continu-
ous curve on the paper that represents the trajectory of a hypothetical dynamical
system in a 2-D phase space. The shape of the curve you draw can be arbitrary,
but with the following limitations:

• You can’t let the pen go off the paper. The curve must be drawn in one con-
tinuous stroke.

• The curve can’t merge into or cross itself.

• You can’t draw curves flowing in opposing directions within a very tiny area
(this violates the assumption of phase space continuity).

Keep drawing the curve as long as you can, and see what happens. Discuss the
implications of the result for dynamical systems. Then consider what would happen
if you drew the curve in a 3-D space instead of 2-D.

Exercise 9.9 Let zi denote the value of the i-th peak of z(t) produced by the
Lorenz equations. Obtain time series data {z1, z2, z3, . . .} from numerical simulation
results. Plot zt against zt−1, like in a cobweb plot, and see what kind of structure
you find there. Do this visualization for various values of r, while keeping s = 10

and b = 3, and compare the results with the results of the bifurcation analysis
obtained in Exercise 9.6.

As reviewed through this and previous chapters, bifurcations and chaos are the most
distinctive characteristics of nonlinear systems. They can produce unexpected system
behaviors that are often counter-intuitive to our everyday understanding of nature. But
once you realize the possibility of such system behaviors and you know how and when
they can occur, your view of the world becomes a more informed, enriched one. After all,
bifurcations and chaos are playing important roles in our physical, biological, ecological,
and technological environments (as well as inside our bodies and brains). They should
thus deserve our appreciation.

This chapter concludes our journey through systems with a small number of variables.
We will shift gears and finally go into the realm of complex systems that are made of a
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large number of variables in the next chapter.





Part III

Systems with a Large Number of
Variables
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Chapter 10

Interactive Simulation of Complex
Systems

10.1 Simulation of Systems with a Large Number of Vari-
ables

We are finally moving into the modeling and analysis of complex systems. The number
of variables involved in a model will jump drastically from just a few to tens of thousands!
What happens if you have so many dynamical components, and moreover, if those com-
ponents interact with each other in nontrivial ways? This is the core question of complex
systems. Key concepts of complex systems, such as emergence and self-organization,
all stem from the fact that a system is made of a massive amount of interactive compo-
nents, which allows us to study its properties at various scales and how those properties
are linked across scales.

Modeling and simulating systems made of a large number of variables pose some
practical challenges. First, we need to know how to specify the dynamical states of so
many variables and their interaction pathways, and how those interactions affect the states
of the variables over time. If you have empirical data for all of these aspects, lucky you—
you could just use them to build a fairly detailed model (which might not be so useful
without proper abstraction, by the way). However, such detailed information may not be
readily available, and if that is the case, you have to come up with some reasonable
assumptions to make your modeling effort feasible. The modeling frameworks we will dis-
cuss in the following chapters (cellular automata, continuous field models, network mod-
els, and agent-based models) are, in some sense, the fruit that came out of researchers’
collective effort to come up with “best practices” in modeling complex systems, especially
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with the lack of detailed information available (at least at the time when those frameworks
were developed). It is therefore important for you to know explicit/implicit model assump-
tions and limitations of each modeling framework and how you can go beyond them to
develop your own modeling framework in both critical and creative ways.

Another practical challenge in complex systems modeling and simulation is visualiza-
tion of the simulation results. For systems made of a few variables, there are straightfor-
ward ways to visualize their dynamical behaviors, such as simple time series plots, phase
space plots, cobweb plots, etc., which we discussed in the earlier chapters. When the
number of variables is far greater, however, the same approaches won’t work. You can’t
discern thousands of time series plots, or you can’t draw a phase space of one thou-
sand dimensions. A typical way to address this difficulty is to define and use a metric of
some global characteristics of the system, such as the average state of the system, and
then plot its behavior. This is a reasonable approach by all means, but it loses a lot of
information about the system’s actual state.

An alternative approach is to visualize the system’s state at each time point in detail,
and then animate it over time, so that you can see the behavior of the system without
losing information about the details of its states. This approach is particularly effective
if the simulation is interactive, i.e., if the simulation results are visualized on the fly as
you operate the simulator. In fact, most complex systems simulation tools (e.g., NetLogo,
Repast) adopt such interactive simulation as their default mode of operation. It is a great
way to explore the system’s behaviors and become “experienced” with various dynamics
of complex systems.

10.2 Interactive Simulation with PyCX

We can build an interactive, dynamic simulation model in Python relatively easily, using
PyCX’s “pycxsimulator.py” file, which is available from http://sourceforge.net/projects/

pycx/files/ (it is also directly linked from the file name above if you are reading this
electronically). This file implements a simple interactive graphical user interface (GUI)
for your own dynamic simulation model, which is still structured in the three essential
components—initialization, observation, and updating—just like we did in the earlier chap-
ters.

To use pycxsimulator.py, you need to place that file in the directory where your simu-
lation code is located. Your simulation code should be structured as follows:

Code 10.1: interactive-template.py

http://bingweb.binghamton.edu/~sayama/textbook/code/pycxsimulator.py
http://sourceforge.net/projects/pycx/files/
http://sourceforge.net/projects/pycx/files/
http://bingweb.binghamton.edu/~sayama/textbook/code/pycxsimulator.py
http://bingweb.binghamton.edu/~sayama/textbook/code/interactive-template.py
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import matplotlib

matplotlib.use(’TkAgg’)

from pylab import *

# import necessary modules

# define model parameters

def initialize():

global # list global variables

# initialize system states

def observe():

global # list global variables

cla() # to clear the visualization space

# visualize system states

def update():

global # list global variables

# update system states for one discrete time step

import pycxsimulator

pycxsimulator.GUI().start(func=[initialize, observe, update])

The first three lines and the last two lines should always be in place; no modification is
needed.

Let’s work on some simple example to learn how to use pycxsimulator.py. Here
we build a model of a bunch of particles that are moving around randomly in a two-
dimensional space. We will go through the process of implementing this simulation model
step by step.

First, we need to import the necessary modules and define the parameters. In this
particular example, a Gaussian random number generator is useful to simulate the ran-
dom motion of the particles. It is available in the random module of Python. There are
various parameters that are conceivable for this example. As an example, let’s consider
the number of particles and the standard deviation of Gaussian noise used for random
motion of particles, as model parameters. We write these in the beginning of the code as
follows:

Code 10.2:

http://bingweb.binghamton.edu/~sayama/textbook/code/pycxsimulator.py
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import random as rd

n = 1000 # number of particles

sd = 0.1 # standard deviation of Gaussian noise

Next is the initialization function. In this model, the variables needed to describe the
state of the system are the positions of particles. We can store their x- and y-coordinates
in two separate lists, as follows:

Code 10.3:
def initialize():

global xlist, ylist

xlist = []

ylist = []

for i in xrange(n):

xlist.append(rd.gauss(0, 1))

ylist.append(rd.gauss(0, 1))

Here we generate n particles whose initial positions are sampled from a Gaussian distri-
bution with mean 0 and standard deviation 1.

Then visualization. This is fairly easy. We can simply plot the positions of the particles
as a scatter plot. Here is an example:

Code 10.4:
def observe():

global xlist, ylist

cla()

plot(xlist, ylist, ’.’)

The last option, ’.’, in the plot function specifies that it draws a scatter plot instead of a
curve.

Finally, we need to implement the updating function that simulates the random motion
of the particles. There is no interaction between the particles in this particular simulation
model, so we can directly update xlist and ylist without using things like nextxlist or
nextylist:

Code 10.5:
def update():

global xlist, ylist
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for i in xrange(n):

xlist[i] += rd.gauss(0, sd)

ylist[i] += rd.gauss(0, sd)

Here, a small Gaussian noise with mean 0 and standard deviation sd is added to the x-
and y-coordinates of each particle in every time step.

Combining these components, the completed code looks like this:

Code 10.6: random-walk-2D.py
import matplotlib

matplotlib.use(’TkAgg’)

from pylab import *

import random as rd

n = 1000 # number of particles

sd = 0.1 # standard deviation of Gaussian noise

def initialize():

global xlist, ylist

xlist = []

ylist = []

for i in xrange(n):

xlist.append(rd.gauss(0, 1))

ylist.append(rd.gauss(0, 1))

def observe():

global xlist, ylist

cla()

plot(xlist, ylist, ’.’)

def update():

global xlist, ylist

for i in xrange(n):

xlist[i] += rd.gauss(0, sd)

ylist[i] += rd.gauss(0, sd)

import pycxsimulator

pycxsimulator.GUI().start(func=[initialize, observe, update])

http://bingweb.binghamton.edu/~sayama/textbook/code/random-walk-2D.py
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Run this code, and you will find two windows popping up (Fig. 10.1; they may appear
overlapped or they may be hidden under other windows on your desktop)12.

Figure 10.1: Graphical user interface (GUI) generated by pycxsimulator.py. Left: Vi-
sualization window. Right: Control window.

This interface is very minimalistic compared to other software tools, but you can still do
basic interactive operations. Under the “Run” tab of the control window (which shows up
by default), there are three self-explanatory buttons to run/pause the simulation, update
the system just for one step, and reset the system’s state. When you run the simulation,
the system’s state will be updated dynamically and continuously in the other visualization
window. To close the simulator, close the control window.

1If you are using Anaconda Spyder, make sure you run the code in a plain Python console (not an
IPython console). You can open a plain Python console from the “Consoles” menu.

2If you are using Enthought Canopy and can’t run the simulation, try the following:

1. Go to “Edit”→ “Preferences”→ “Python” tab in Enthought Canopy.

2. Uncheck the “Use PyLab” check box, and click “OK.”

3. Choose “Run”→ “Restart kernel.”

4. Run your code. If it still doesn’t work, re-check the “Use PyLab” check box, and try again.

http://bingweb.binghamton.edu/~sayama/textbook/code/pycxsimulator.py
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Under the “Settings” tab of the control window, you can change how many times the
system is updated before each visualization (default = 1) and the length of waiting time
between the visualizations (default = 0 ms). The other two tabs (“Parameters” and “Info”)
are initially blank. You can include information to be displayed under the “Info” tab as a
“docstring” (string placed as a first statement) in the initialize function. For example:

Code 10.7:
def initialize():

’’’

This is my first PyCX simulator code.

It simulates random motion of n particles.

Copyright 2014 John Doe

’’’

global xlist, ylist

...

This additional docstring appears under the “Info” tab as shown in Fig. 10.2.

Figure 10.2: Information about the simulation added as a “docstring” in the initialization
function.
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Exercise 10.1 The animation generated by Code 10.6 frequently readjusts the
plot range so that the result is rather hard to watch. Also, the aspect ratio of
the plot is not 1, which makes it hard to see the actual shape of the particles’
distribution. Search matplotlib’s online documentation (http://matplotlib.org/)
to find out how to fix these problems.

10.3 Interactive Parameter Control in PyCX

In Code 10.6, the parameter values are all directly given in the code and are not change-
able from the control window. PyCX has a feature, however, by which you can create inter-
active parameter setters (thanks to Przemysław Szufel and Bogumił Kamiński at the War-
saw School of Economics who developed this nice feature!). A parameter setter should
be defined as a function in the following format:

Code 10.8:
def <parameter setter name> (val = <parameter name>):

’’’

<explanation of parameter>

<this part will be displayed when you mouse-over on parameter setter>

’’’

global <parameter name>

<parameter name> = int(val) # or float(val), str(val), etc.

return val

This may look a bit confusing, but all you need to do is to fill in the <...> parts. Note that
the int function in the code above may need to be changed according to the type of the
parameter (float for real-valued parameters, str for string-valued ones, etc.). Once you
define your own parameter setter functions, you can include them as an option when you
call the pycxsimulator.GUI() function as follows:

Code 10.9:
pycxsimulator.GUI(parameterSetters=<list of parameter setters>).start...

Here is an example of a parameter setter implementation that allows you to interactively
change the number of particles:

http://matplotlib.org/
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Code 10.10: random-walk-2D-pSetter.py
def num_particles (val = n):

’’’

Number of particles.

Make sure you change this parameter while the simulation is not running,

and reset the simulation before running it. Otherwise it causes an error!

’’’

global n

n = int(val)

return val

import pycxsimulator

pycxsimulator.GUI(parameterSetters = [num_particles]).start(func=[initialize

, observe, update])

Once you apply this modification to Code 10.6 and run it, the new parameter setter ap-
pears under the “Parameters” tab of the control window (Fig. 10.3). You can enter a new
value into the input box, and then click either “Save parameters to the running model”
or “Save parameters to the model and reset the model,” and the new parameter value is
reflected in the model immediately.

Exercise 10.2 To the code developed above, add one more parameter setter for
sd (standard deviation of Gaussian noise for random motion of particles).

10.4 Simulation without PyCX

Finally, I would like to emphasize an important fact: The PyCX simulator file used in this
chapter was used only for creating a GUI, while the core simulation model was still fully
implemented in your own code. This means that your simulation model is completely
independent of PyCX, and once the interactive exploration and model verification is over,
your simulator can “graduate” from PyCX and run on its own.

For example, here is a revised version of Code 10.6, which automatically generates
a series of image files without using PyCX at all. You can generate an animated movie
from the saved image files using, e.g., Windows Movie Maker. This is a nice example
that illustrates the main purpose of PyCX—to serve as a stepping stone for students and

http://bingweb.binghamton.edu/~sayama/textbook/code/random-walk-2D-pSetter.py
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Figure 10.3: New parameter setter for the number of particles implemented in Code
10.10.
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researchers in learning complex systems modeling and simulation, so that it eventually
becomes unnecessary once they have acquired sufficient programming skills.

Code 10.11: random-walk-2D-standalone.py
from pylab import *

import random as rd

n = 1000 # number of particles

sd = 0.1 # standard deviation of Gaussian noise

def initialize():

global xlist, ylist

xlist = []

ylist = []

for i in xrange(n):

xlist.append(rd.gauss(0, 1))

ylist.append(rd.gauss(0, 1))

def observe():

global xlist, ylist

cla()

plot(xlist, ylist, ’.’)

savefig(str(t) + ’.png’)

def update():

global xlist, ylist

for i in xrange(n):

xlist[i] += rd.gauss(0, sd)

ylist[i] += rd.gauss(0, sd)

t = 0

initialize()

observe()

for t in xrange(1, 100):

update()

observe()

http://bingweb.binghamton.edu/~sayama/textbook/code/random-walk-2D-standalone.py
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Exercise 10.3 Develop your own interactive simulation code. Explore various
features of the plotting functions and the PyCX simulator’s GUI. Then revise your
code so that it automatically generates a series of image files without using PyCX.
Finally, create an animated movie file using the image files generated by your own
code. Enjoy!



Chapter 11

Cellular Automata I: Modeling

11.1 Definition of Cellular Automata

“Automaton” (plural: “automata”) is a technical term used in computer science and math-
ematics for a theoretical machine that changes its internal state based on inputs and its
previous state. The state set is usually defined as finite and discrete, which often causes
nonlinearity in the system’s dynamics.

Cellular automata (CA) [18] are a set of such automata arranged along a regular spa-
tial grid, whose states are simultaneously updated by a uniformly applied state-transition
function that refers to the states of their neighbors. Such simultaneous updating is also
called synchronous updating (which could be loosened to be asynchronous; to be dis-
cussed later). The original idea of CA was invented in the 1940s and 1950s by John
von Neumann and his collaborator Stanisław Ulam. They invented this modeling frame-
work, which was among the very first to model complex systems, in order to describe
self-reproductive and evolvable behavior of living systems [11].

Because CA are very powerful in describing highly nonlinear spatio-temporal dynam-
ics in a simple, concise manner, they have been extensively utilized for modeling various
phenomena, such as molecular dynamics, hydrodynamics, physical properties of materi-
als, reaction-diffusion chemical processes, growth and morphogenesis of a living organ-
ism, ecological interaction and evolution of populations, propagation of traffic jams, social
and economical dynamics, and so forth. They have also been utilized for computational
applications such as image processing, random number generation, and cryptography.

There are some technical definitions and terminologies you need to know to discuss
CA models, so here comes a barrage of definitions.

Mathematically speaking, CA are defined as a spatially distributed dynamical system
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where both time and space are discrete. A CA model consists of identical automata (cells
or sites) uniformly arranged on lattice points in a D-dimensional discrete space (usually
D = 1, 2, or 3). Each automaton is a dynamical variable, and its temporal change is given
by

st+1(x) = F (st(x+ x0), st(x+ x1), . . . , st(x+ xn−1)) , (11.1)

where st(x) is the state of an automaton located at x at time t, F is the state-transition
function, and N = {x0, x1, . . . , xn−1} is the neighborhood. The idea that the same state-
transition function and the same neighborhood apply uniformly to all spatial locations is
the most characteristic assumption of CA. When von Neumann and Ulam developed this
modeling framework, researchers generally didn’t have explicit empirical data about how
things were connected in real-world complex systems. Therefore, it was a reasonable
first step to assume spatial regularity and homogeneity (which will be extended later in
network models).

st is a function that maps spatial locations to states, which is called a configuration of
the CA at time t. A configuration intuitively means the spatial pattern that the CA display
at that time. These definitions are illustrated in Fig. 11.1.

Neighborhood N is usually set up so that it is centered around the focal cell being
updated (x0 = 0) and spatially localized (|xi − x0| ≤ r for i = 1, 2, . . . , n − 1), where r is
called a radius of N . In other words, a cell’s next state is determined locally according
to its own current state and its local neighbors’ current states. A specific arrangement
of states within the neighborhood is called a situation here. Figure 11.2 shows typical
examples of neighborhoods often used for two-dimensional CA. In CA with von Neumann
neighborhoods (Fig. 11.2, left), each cell changes its state according to the states of its
upper, lower, right, and left neighbor cells as well as itself. With Moore neighborhoods
(Fig. 11.2, right), four diagonal cells are added to the neighborhood.

The state-transition function is applied uniformly and simultaneously to all cells in
the space. The function can be described in the form of a look-up table (as shown in
Fig. 11.1), some mathematical formula, or a more high-level algorithmic language.

If a state-transition function always gives an identical state to all the situations that are
identical to each other when rotated, then the CA model has rotational symmetry. Such
symmetry is often employed in CA with an aim to model physical phenomena. Rotational
symmetry is called strong if all the states of the CA are orientation-free and if the rotation
of a situation doesn’t involve any rotation of the states themselves (Fig. 11.3, left). Other-
wise, it is called weak (Fig. 11.3, right). In CA with weak rotational symmetry, some states
are oriented, and the rotation of a situation requires rotational adjustments of those states
as well. Von Neumann’s original CA model adopted weak rotational symmetry.
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Figure 11.1: Schematic illustration of how cellular automata work.

Figure 11.2: Examples of neighborhoods often used for two-dimensional CA. Left: von
Neumann neighborhood. Right: Moore neighborhood.
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Figure 11.3: Schematic illustration of rotational symmetry in two-dimensional CA with
von Neumann neighborhoods.
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If a state-transition function depends only on the sum of the states of cells within the
neighborhood, the CA is called totalistic. By definition, such state-transition functions are
rotationally symmetric. The totalistic assumption makes the design of CA models much
simpler, yet they can still produce a wide variety of complex dynamics [34].

The states of CA are usually categorized as either quiescent or non-quiescent. A
cell in a quiescent state remains in the same state if all of its neighbors are also in the
same quiescent state. Many CA models have at least one such quiescent state, often
represented by either “0” or “ ” (blank). This state symbolizes a “vacuum” in the CA
universe. Non-quiescent states are also called active states, because they can change
dynamically and interact with nearby states. Such active states usually play a primary role
in producing complex behaviors within CA.

Because CA models have a spatial extension as well as a temporal extension, you
need to specify spatial boundary conditions in addition to initial conditions in order to
study their behaviors. There are several commonly adopted boundary conditions:

No boundaries This assumes that the space is infinite and completely filled with the
quiescent state.

Periodic boundaries This assumes that the space is “wrapped around” each spatial
axis, i.e., the cells at one edge of a finite space are connected to the cells at the
opposite edge. Examples include a ring for 1-D CA and a torus for 2-D CA.

Cut-off boundaries This assumes that cells at the edge of a finite space don’t have
neighbors beyond the boundaries. This necessarily results in fewer numbers of
neighbors, and therefore, the state-transition function must be designed so that it
can handle such cases.

Fixed boundaries This assumes that cells at the edge of a finite space have fixed states
that will never change. This is often the easiest choice when you implement a sim-
ulation code of a CA model.

Exercise 11.1 Shown below is an example of a one-dimensional totalistic CA
model with radius 1 and a periodic boundary condition. White means 0, while
gray means 1. Each cell switches to round(S/3) in every time step, where S is the
local sum of states within its neighborhood. Complete the time evolution of this
CA.
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t = 0 

t = 1 

t = 2 

t = 3 

t = 4 

Exercise 11.2 Shown below is an example of a two-dimensional totalistic CA
model with von Neumann neighborhoods and with no boundary (infinite space)
conditions. White means 0 (= quiescent state), while gray means 1. Each cell
switches to round(S/5) in every time step, where S is the local sum of the states
within its neighborhood. Complete the time evolution of this CA.

t = 0 t = 1 t = 2 t = 3 

11.2 Examples of Simple Binary Cellular Automata Rules

Majority rule The two exercises in the previous section were actually examples of CA
with a state-transition function called the majority rule (a.k.a. voting rule). In this rule,
each cell switches its state to a local majority choice within its neighborhood. This rule is
so simple that it can be easily generalized to various settings, such as multi-dimensional
space, multiple states, larger neighborhood size, etc. Note that all states are quiescent
states in this CA. It is known that this CA model self-organizes into geographically sepa-
rated patches made of distinct states, depending on initial conditions. Figure 11.4 shows
an example of a majority rule-based 2-D CA with binary states (black and white), each of
which is present at equal probability in the initial condition.
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Figure 11.4: Typical behavior of binary CA with a Moore neighborhood governed by
the majority rule.

Parity rule The parity rule, also called the XOR (exclusive OR) rule, is another well-
known state-transition function for CA. Its state-transition function is defined mathemati-
cally as

st+1(x) =
n−1∑
i=0

st(x+ xi) (mod k), (11.2)

where k is the number of states (k = 2 for binary CA). It is known that, in this CA, any
arbitrary pattern embedded in the initial configuration replicates itself and propagates over
the space indefinitely. Figure 11.5 shows examples of such behaviors. In fact, this self-
replicative feature is universal for all CA with parity rules, regardless of the numbers of
states (k) or the neighborhood radius (r). This is because, under this rule, the growth
pattern created from a single active cell (Fig. 11.5, top row) doesn’t interact with other
growth patterns that are created from other active cells (i.e., they are “independent” from
each other). Any future pattern from any initial configuration can be predicted by a simple
superposition of such growth patterns.

Game of Life The final example is the most popular 2-D binary CA, named the “Game
of Life,” created by mathematician John Conway. Since its popularization by Martin Gard-
ner in Scientific American in the early 1970s [35, 36], the Game of Life has attracted a
lot of interest from researchers and mathematics/computer hobbyists all over the world,
because of its fascinating, highly nontrivial behaviors. Its state-transition function uses
the Moore neighborhood and is inspired by the birth and death of living organisms and
their dependency on population density, as follows:

• A dead (quiescent) cell will turn into a living (active) cell if and only if it is surrounded
by exactly three living cells.
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Figure 11.5: Typical behaviors of binary CA with a von Neumann neighborhood gov-
erned by the parity (XOR) rule.

• A living cell will remain alive if and only if it is surrounded by two or three other living
cells. Otherwise it will die.

The Game of Life shows quite dynamic, almost life-like behaviors (Fig. 11.6). Many in-
triguing characteristics have been discovered about this game, including its statistical
properties, computational universality, the possibility of the emergence of self-replicative
creatures within it, and so on. It is often considered one of the historical roots of Artificial
Life1, an interdisciplinary research area that aims to synthesize living systems using non-
living materials. The artificial life community emerged in the 1980s and grew together with
the complex systems community, and thus these two communities are closely related to
each other. Cellular automata have been a popular modeling framework used by artificial
life researchers to model self-replicative and evolutionary dynamics of artificial organisms
[37, 38, 39, 40].

11.3 Simulating Cellular Automata

Despite their capability to represent various complex nonlinear phenomena, CA are rel-
atively easy to implement and simulate because of their discreteness and homogeneity.

1http://alife.org/

http://alife.org/
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Figure 11.6: Typical behavior of the most well-known binary CA, the Game of Life.

There are existing software tools2 and online interactive demonstrations3 already available
for cellular automata simulation, but it is nonetheless helpful to learn how to develop a CA
simulator by yourself. Let’s do so in Python, by working through the following example
step by step.

The CA model we plan to implement here is a binary CA model with the droplet rule
[4]. Its state-transition function can be understood as a model of panic propagation among
individuals sitting in a gym after a fire alarm goes off. Here is the rule (which uses the
Moore neighborhoods):

• A normal individual will get panicky if he or she is surrounded by four or more panicky
individuals.

• A panicky individual will remain panicky if he or she is surrounded by three or more
panicky individuals. Otherwise he or she will revert back to normal.

Note that this rule can be further simplified to the following single rule:

• If there are four or more panicky individuals within the neighborhood, the central cell
will become panicky; otherwise it will become normal.

Here are other model assumptions:

• Space: 2-D, n× n (n = 100 for the time being)

• Boundary condition: periodic

2Most notable is Golly (http://golly.sourceforge.net/).
3For example, check out Wolfram Demonstrations Project (http://demonstrations.wolfram.com/) and

Shodor.org’s interactive activities (http://www.shodor.org/interactivate/activities/).

http://golly.sourceforge.net/
http://demonstrations.wolfram.com/
http://www.shodor.org/interactivate/activities/
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• Initial condition: Random (panicky individuals with probability p; normal ones with
probability 1− p)

We will use pycxsimulator.py for dynamic CA simulations. Just as before, we need
to design and implement the three essential components—initialization, observation, and
updating.

To implement the initialization part, we have to decide how we are going to represent
the states of the system. Since the configuration of this CA model is a regular two-
dimensional grid, it is natural to use Python’s array data structure. We can initialize it with
randomly assigned states with probability p. Moreover, we should actually prepare two
such arrays, one for the current time step and the other for the next time step, in order to
avoid any unwanted conflict during the state updating process. So here is an example of
how to implement the initialization part:

Code 11.1:
n = 100 # size of space: n x n

p = 0.1 # probability of initially panicky individuals

def initialize():

global config, nextconfig

config = zeros([n, n])

for x in xrange(n):

for y in xrange(n):

config[x, y] = 1 if random() < p else 0

nextconfig = zeros([n, n])

Here, zeros([a, b]) is a function that generates an all-zero array with a rows and b

columns. While config is initialized with randomly assigned states (1 for panicky individ-
uals, 0 for normal), nextconfig is not, because it will be populated with the next states at
the time of state updating.

The next thing is the observation. Fortunately, pylab has a built-in function imshow that
is perfect for our purpose to visualize the content of an array:

Code 11.2:
def observe():

global config, nextconfig

cla()

imshow(config, vmin = 0, vmax = 1, cmap = cm.binary)

http://bingweb.binghamton.edu/~sayama/textbook/code/pycxsimulator.py


11.3. SIMULATING CELLULAR AUTOMATA 195

Note that the cmap option in imshow is to specify the color scheme used in the plot. Without
it, pylab uses dark blue and red for binary values by default, which are rather hard to see.

The updating part requires some algorithmic thinking. The state-transition function
needs to count the number of panicky individuals within a neighborhood. How can we do
this? The positions of the neighbor cells within the Moore neighborhood around a position
(x, y) can be written as

{(x′, y′) | x− 1 ≤ x′ ≤ x+ 1, y − 1 ≤ y′ ≤ y + 1}. (11.3)

This suggests that the neighbor cells can be swept through using nested for loops for
relative coordinate variables, say, dx and dy, each ranging from −1 to +1. Counting
panicky individuals (1’s) using this idea can be implemented in Python as follows:

Code 11.3:
count = 0

for dx in [-1, 0, 1]:

for dy in [-1, 0, 1]:

count += config[(x + dx) % n, (y + dy) % n]

Here, dx and dy are relative coordinates around (x, y), each varying from −1 to +1. They
are added to x and y, respectively, to look up the current state of the cell located at
(x + dx, y + dy) in config. The expression (...) % n means that the value inside the
parentheses is contained inside the [0, n − 1] range by the mod operator (%). This is
a useful coding technique to implement periodic boundary conditions in a very simple
manner.

The counting code given above needs to be applied to all the cells in the space, so
it should be included in another set of nested loops for x and y to sweep over the entire
space. For each spatial location, the counting will be executed, and the next state of the
cell will be determined based on the result. Here is the completed code for the updating:

Code 11.4:
def update():

global config, nextconfig

for x in xrange(n):

for y in xrange(n):

count = 0

for dx in [-1, 0, 1]:

for dy in [-1, 0, 1]:

count += config[(x + dx) % n, (y + dy) % n]
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nextconfig[x, y] = 1 if count >= 4 else 0

config, nextconfig = nextconfig, config

Note the swapping of config and nextconfig at the end. This is precisely the same
technique that we did for the simulation of multi-variable dynamical systems in the earlier
chapters.

By putting all the above codes together, the completed simulator code in its entirety
looks like this:

Code 11.5: panic-ca.py
import matplotlib

matplotlib.use(’TkAgg’)

from pylab import *

n = 100 # size of space: n x n

p = 0.1 # probability of initially panicky individuals

def initialize():

global config, nextconfig

config = zeros([n, n])

for x in xrange(n):

for y in xrange(n):

config[x, y] = 1 if random() < p else 0

nextconfig = zeros([n, n])

def observe():

global config, nextconfig

cla()

imshow(config, vmin = 0, vmax = 1, cmap = cm.binary)

def update():

global config, nextconfig

for x in xrange(n):

for y in xrange(n):

count = 0

for dx in [-1, 0, 1]:

for dy in [-1, 0, 1]:

count += config[(x + dx) % n, (y + dy) % n]

http://bingweb.binghamton.edu/~sayama/textbook/code/panic-ca.py
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nextconfig[x, y] = 1 if count >= 4 else 0

config, nextconfig = nextconfig, config

import pycxsimulator

pycxsimulator.GUI().start(func=[initialize, observe, update])

When you run this code, you see the results like those shown in Fig. 11.7. As you
can see, with the initial configuration with p = 0.1, most of the panicky states disappear
quickly, leaving only a few self-sustaining clusters of panicky people. They may look like
condensed water droplets, hence the name of the model (droplet rule).

t = 0 t = 20

Figure 11.7: Visual output of Code 11.5. Left: Initial configuration with p = 0.1. Right:
Final configuration after 20 time steps.

Exercise 11.3 Modify Code 11.5 to implement a simulator of the Game of Life
CA. Simulate the dynamics from a random initial configuration. Measure the den-
sity of state 1’s in the configuration at each time step, and plot how the density
changes over time. This can be done by creating an empty list in the initialize

function, and then making the measurement and appending the result to the list in
the observe function. The results stored in the list can be plotted manually after the
simulation, or they could be plotted next to the visualization using pylab’s subplot

function during the simulation.
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Exercise 11.4 Modify Code 11.5 to implement a simulator of the majority rule CA
in a two-dimensional space. Then answer the following questions by conducting
simulations:

• What happens if you change the ratio of binary states in the initial condition?

• What happens if you increase the radius of the neighborhoods?

• What happens if you increase the number of states?

The second model revision in the previous exercise (increasing the radius of neigh-
borhoods) for the majority rule CA produces quite interesting spatial dynamics. Specifi-
cally, the boundaries between the two states tend to straighten out, and the characteristic
scale of spatial features continuously becomes larger and larger over time (Fig. 11.8).
This behavior is called coarsening (to be more specific, non-conserved coarsening). It
can be seen in many real-world contexts, such as geographical distributions of distinct
cultural/political/linguistic states in human populations, or incompatible genetic types in
animal/plant populations.

Figure 11.8: Coarsening behavior observed in a binary CA with the majority rule in
a 100 × 100 2-D spatial grid with periodic boundary conditions. The radius of the
neighborhoods was set to 5. Time flows from left to right.

What is most interesting about this coarsening behavior is that, once clear boundaries
are established between domains of different states, the system’s macroscopic behavior
can be described using emergent properties of those boundaries, such as their surface
tensions and direction of movement [41, 42]. The final fate of the system is determined not
by the relative frequencies of the two states in the space, but by the topological features of
the boundaries. For example, if a big “island” of white states is surrounded by a thin “ring”
of black states, the latter minority will eventually dominate, no matter how small its initial
proportion is (even though this is still driven by the majority rule!). This is an illustrative
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example that shows how important it is to consider emergent macroscopic properties of
complex systems, and how counter-intuitive their behaviors can be sometimes.

Here is one more interesting fact about CA dynamics. The droplet/panic model dis-
cussed above has an interesting property: When you increase the initial density of panicky
people (e.g., p = 0.3), the result changes dramatically. As seen in Fig. 11.9, the initially
formed clusters tend to attach to each other, which makes their growth unstoppable. The
whole space will eventually be filled up with all panicky people, which could be a disaster
if this was a real situation.

t = 0 t = 40

Figure 11.9: Another visual output of Code 11.5. Left: Initial configuration with p = 0.3.
Right: Configuration after 40 time steps.

You can explore the value of p to find out that the transition between these two distinct
behaviors takes place at a rather narrow range of p. This is an example of a phase
transition, which is defined informally as follows:

A phase transition is a transition of macroscopic properties of a collective system that
occurs when its environmental or internal conditions are varied.

A familiar example of phase transitions is the transition between different phases of mat-
ter, i.e., solid, liquid, and gas, which occur when temperature and/or pressure are varied.
Phase transitions can be characterized by measuring what physicists call order parame-
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ters4 that represent how ordered a macroscopic state of the system is. A phase transition
can be understood as a bifurcation observed in the macroscopic properties (i.e., order
parameters) of a collective system.

Exercise 11.5 Implement an interactive parameter setter for p in Code 11.5. Then
conduct systematic simulations with varying p, and identify its critical value below
which isolated clusters are formed but above which the whole space is filled with
panic.

11.4 Extensions of Cellular Automata

So far, we discussed CA models in their most conventional settings. But there are sev-
eral ways to “break” the modeling conventions, which could make CA more useful and
applicable to real-world phenomena. Here are some examples.

Stochastic cellular automata A state-transition function of CA doesn’t have to be a
rigorous mathematical function. It can be a computational process that produces the out-
put probabilistically. CA with such probabilistic state-transition rules are called stochastic
CA, which play an important role in mathematical modeling of various biological, social,
and physical phenomena. A good example is a CA model of epidemiological processes
where infection of a disease takes place stochastically (this will be discussed more in the
following section).

Multi-layer cellular automata States of cells don’t have to be scalar. Instead, each
spatial location can be associated with several variables (i.e., vectors). Such vector-
valued configurations can be considered a superposition of multiple layers, each having
a conventional scalar-valued CA model. Multi-layer CA models are useful when multiple
biological or chemical species are interacting with each other in a space-time. This is
particularly related to reaction-diffusion systems that will be discussed in later chapters.

Asynchronous cellular automata Synchronous updating is a signature of CA models,
but we can even break this convention to make the dynamics asynchronous. There are

4Note that the word “parameter” in this context means an outcome of a measurement, and not a condition
or input as in “model parameters.”
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several asynchronous updating mechanisms possible, such as random updating (a ran-
domly selected cell is updated at each time step), sequential updating (cells are updated
in a predetermined sequential order), state-triggered updating (certain states trigger up-
dating of nearby cells), etc. It is often argued that synchronous updating in conventional
CA models is too artificial and fragile against slight perturbations in updating orders, and
in this sense, the behaviors of asynchronous CA models are deemed more robust and ap-
plicable to real-world problems. Moreover, there is a procedure to create asynchronous
CA that can robustly emulate the behavior of any synchronous CA [43].

11.5 Examples of Biological Cellular Automata Models

In this final section, I provide more examples of cellular automata models, with a par-
ticular emphasis on biological systems. Nearly all biological phenomena involve some
kind of spatial extension, such as excitation patterns on neural or muscular tissue, cel-
lular arrangements in an individual organism’s body, and population distribution at eco-
logical levels. If a system has a spatial extension, nonlinear local interactions among its
components may cause spontaneous pattern formation, i.e., self-organization of static or
dynamic spatial patterns from initially uniform conditions. Such self-organizing dynamics
are quite counter-intuitive, yet they play essential roles in the structure and function of
biological systems.

In each of the following examples, I provide basic ideas of the state-transition rules
and what kind of patterns can arise if some conditions are met. I assume Moore neigh-
borhoods in these examples (unless noted otherwise), but the shape of the neighbor-
hoods is not so critically important. Completed Python simulator codes are available from
http://sourceforge.net/projects/pycx/files/, but you should try implementing your
own simulator codes first.

Turing patterns Animal skin patterns are a beautiful example of pattern formation in
biological systems. To provide a theoretical basis of this intriguing phenomenon, British
mathematician Alan Turing (who is best known for his fundamental work in theoretical
computer science and for his code-breaking work during World War II) developed a fam-
ily of models of spatio-temporal dynamics of chemical reaction and diffusion processes
[44]. His original model was first written in a set of coupled ordinary differential equations
on compartmentalized cellular structures, and then it was extended to partial differential
equations (PDEs) in a continuous space. Later, a much simpler CA version of the same
model was proposed by David Young [45]. We will discuss Young’s simpler model here.

http://sourceforge.net/projects/pycx/files/
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Assume a two-dimensional space made of cells where each cell can take either a pas-
sive (0) or active (1) state. A cell becomes activated if there are a sufficient number of
active cells within its local neighborhood. However, other active cells outside this neigh-
borhood try to suppress the activation of the focal cell with relatively weaker influences
than those from the active cells in its close vicinity. These dynamics are called short-
range activation and long-range inhibition. This model can be described mathematically
as follows:

Na =
{
x′
∣∣∣ |x′| ≤ Ra

}
(11.4)

Ni =
{
x′
∣∣∣ |x′| ≤ Ri

}
(11.5)

at(x) = wa
∑
x′∈Na

st(x+ x′)− wi
∑
x′∈Ni

st(x+ x′) (11.6)

st+1(x) =

{
1 if at(x) > 0,

0 otherwise.
(11.7)

Here, Ra and Ri are the radii of neighborhoods for activation (Na) and inhibition (Ni), re-
spectively (Ra < Ri), and wa and wi are the weights that represent their relative strengths.
at(x) is the result of two neighborhood countings, which tells you whether the short-range
activation wins (at(x) > 0) or the long-range inhibition wins (at(x) ≤ 0) at location x. Fig-
ure 11.10 shows the schematic illustration of this state-transition function, as well as a
sample simulation result you can get if you implement this model successfully.

Exercise 11.6 Implement a CA model of the Turing pattern formation in Python.
Then try the following:

• What happens if Ra and Ri are varied?

• What happens if wa and wi are varied?

Waves in excitable media Neural and muscle tissues made of animal cells can gener-
ate and propagate electrophysiological signals. These cells can get excited in response to
external stimuli coming from nearby cells, and they can generate action potential across
their cell membranes that will be transmitted as a stimulus to other nearby cells. Once
excited, the cell goes through a refractory period during which it doesn’t respond to any
further stimuli. This causes the directionality of signal propagation and the formation of
“traveling waves” on tissues.
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Ra 

Ri 

Figure 11.10: CA model of Turing patterns. Left: Schematic illustration of the model’s
state-transition function. Right: A sample simulation result.

This kind of spatial dynamics, driven by propagation of states between adjacent cells
that are physically touching each other, are called contact processes. This model and the
following two are all examples of contact processes.

A stylized CA model of this excitable media can be developed as follows. Assume a
two-dimensional space made of cells where each cell takes either a normal (0; quiescent),
excited (1), or refractory (2, 3, . . . k) state. A normal cell becomes excited stochastically
with a probability determined by a function of the number of excited cells in its neighbor-
hood. An excited cell becomes refractory (2) immediately, while a refractory cell remains
refractory for a while (but its state keeps counting up) and then it comes back to normal
after it reaches k. Figure 11.11 shows the schematic illustration of this state-transition
function, as well as a sample simulation result you can get if you implement this model
successfully. These kinds of uncoordinated traveling waves of excitation (including spirals)
are actually experimentally observable on the surface of a human heart under cardiac ar-
rhythmia.

Exercise 11.7 Implement a CA model of excitable media in Python. Then try the
following:
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Figure 11.11: CA model of excitable media. Left: Schematic illustration of the model’s
state-transition function. Right: A sample simulation result.

• What happens if the excitation probability is changed?

• What happens if the length of the refractory period is changed?

Host-pathogen model A spatially extended host-pathogen model, studied in theoret-
ical biology and epidemiology, is a nice example to demonstrate the subtle relationship
between these two antagonistic players. This model can also be viewed as a spatially
extended version of the Lotka-Volterra (predator-prey) model, where each cell at a par-
ticular location represents either an empty space or an individual organism, instead of
population densities that the variables in the Lotka-Volterra model represented.

Assume a two-dimensional space filled with empty sites (0; quiescent) in which a
small number of host organisms are initially populated. Some of them are “infected” by
pathogens. A healthy host (1; also quiescent) without pathogens will grow into nearby
empty sites stochastically. A healthy host may get infected by pathogens with a probability
determined by a function of the number of infected hosts (2) in its neighborhood. An
infected host will die immediately (or after some period of time). Figure 11.12 shows the
schematic illustration of this state-transition function, as well as a sample simulation result
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you could get if you implement this model successfully. Note that this model is similar to
the excitable media model discussed above, with the difference that the healthy host state
(which corresponds to the excited state in the previous example) is quiescent and thus
can remain in the space indefinitely.

The spatial patterns formed in this model are quite different from those in the previously
discussed models. Turing patterns and waves in excitable media have clear characteristic
length scales (i.e., size of spots or width of waves), but the dynamic patterns formed in
the host-pathogen model lacks such characteristic length scales. You will see a number
of dynamically forming patches of various sizes, from tiny ones to very large continents.
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Infection triggered 

by other infected 

hosts  
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hosts  

Figure 11.12: CA model of host-pathogen systems. Left: Schematic illustration of the
model’s state-transition function. Right: A sample simulation result.

Exercise 11.8 Implement a CA model of host-pathogen systems in Python. Then
try the following:

• What happens if the infection probability is changed?

• In what conditions will both hosts and pathogens co-exist? In what condi-
tions can hosts exterminate pathogens? In what conditions will both of them
become extinct?
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• Plot the populations of healthy/infected hosts over time, and see if there are
any temporal patterns you can observe.

Epidemic/forest fire model The final example, the epidemic model, is also about con-
tact processes similar to the previous two examples. One difference is that this model
focuses more on static spatial distributions of organisms and their influence on the prop-
agation of an infectious disease within a single epidemic event. This model is also known
as the “forest fire” model, so let’s use this analogy.

Assume there is a square-shaped geographical area, represented as a CA space, in
which trees (1) are distributed with some given probability, p. That is, p = 0 means there
are no trees in the space, whereas p = 1 means trees are everywhere with no open space
left in the area. Then, you set fire (2) to one of the trees in this forest to see if the fire you
started eventually destroys the entire forest (don’t do this in real life!!). A tree will catch
fire if there is at least one tree burning in its neighborhood, and the burning tree will be
charred (3) completely after one time step.

Figure 11.13 shows the schematic illustration of this state-transition function, as well
as a sample simulation result you could get if you implement this model successfully.
Note that this model doesn’t have cyclic local dynamics; possible state transitions are
always one way from a tree (1) to a burning tree (2) to being charred (3), which is different
from the previous two examples. So the whole system eventually falls into a static final
configuration with no further changes possible. But the total area burned in the final
configuration greatly depends on the density of trees p. If you start with a sufficiently
large value of p, you will see that a significant portion of the forest will be burned down
eventually. This phenomenon is called percolation in statistical physics, which intuitively
means that something found a way to go through a large portion of material from one side
to the other.

Exercise 11.9 Implement a CA model of epidemic/forest fire systems in Python.
Then try the following:

• Compare the final results for different values of p.

• Plot the total burned area as a function of p.

• Plot the time until the fire stops spreading as a function of p.

When you work on the above tasks, make sure to carry out multiple independent
simulation runs for each value of p and average the results to obtain statistically
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Figure 11.13: CA model of epidemic/forest fire systems. Left: Schematic illustration
of the model’s state-transition function. Right: A sample simulation result.

more reliable results. Such simulation methods based on random sampling are
generally called Monte Carlo simulations. In Monte Carlo simulations, you con-
duct many replications of independent simulation runs for the same experimental
settings, and measure the outcome variables from each run to obtain a statistical
distribution of the measurements. Using this distribution (e.g., by calculating its av-
erage value) will help you enhance the accuracy and reliability of the experimental
results.

If you have done the implementation and experiments correctly, you will probably see
another case of phase transition in the exercise above. The system’s response shows a
sharp transition at a critical value of p, above which percolation occurs but below which
it doesn’t occur. Near this critical value, the system is very sensitive to minor perturba-
tions, and a number of intriguing phenomena (such as the formation of self-similar fractal
patterns) are found to take place at or near this transition point, which are called critical
behaviors. Many complex systems, including biological and social ones, are considered to
be utilizing such critical behaviors for their self-organizing and information processing pur-
poses. For example, there is a conjecture that animal brains tend to dynamically maintain
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critical states in their neural dynamics in order to maximize their information processing
capabilities. Such self-organized criticality in natural systems has been a fundamental
research topic in complex systems science.



Chapter 12

Cellular Automata II: Analysis

12.1 Sizes of Rule Space and Phase Space

One of the unique features of typical CA models is that time, space, and states of cells
are all discrete. Because of such discreteness, the number of all possible state-transition
functions is finite, i.e., there are only a finite number of “universes” possible in a given CA
setting. Moreover, if the space is finite, all possible configurations of the entire system are
also enumerable. This means that, for reasonably small CA settings, one can conduct an
exhaustive search of the entire rule space or phase space to study the properties of all
the “parallel universes.” Stephen Wolfram did such an exhaustive search for a binary CA
rule space to illustrate the possible dynamics of CA [34, 46].

Let’s calculate how large a rule space/phase space of a given CA setting can be. Here
we assume the following:

• Dimension of space: D

• Length of space in each dimension: L

• Radius of neighborhood: r

• Number of states for each cell: k

To calculate the number of possible rules, we first need to know the size of the neigh-
borhood of each cell. For each dimension, the length of each side of a neighborhood is
given by 2r + 1, including the cell itself. In a D-dimensional space, this is raised to the
power of D, assuming that the neighborhood is a D-dimensional (hyper)cube. So, the
size (volume) of the neighborhood is given by

n = (2r + 1)D. (12.1)

209
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Each of the n cells in a neighborhood can take one of k states. Therefore, the total number
of local situations possible is given by

m = kn = k(2r+1)D . (12.2)

Now we can calculate the number of all possible state-transition functions. A function has
to map each of the m situations to one of the k states. Therefore, the number of possible
mappings is given by

R = km = kk
n

= kk
(2r+1)D

. (12.3)

For example, a one-dimensional (D = 1) binary (k = 2) CA model with radius 1 (r = 1)
has 2(2×1+1)1 = 23 = 8 different possible situations, and thus there are 28 = 256 state-
transition functions possible in this CA universe1. This seems reasonable, but be careful—
this number quickly explodes to astronomical scales for larger k, r, or D.

Exercise 12.1 Calculate the number of possible state-transition functions for a
two-dimensional CA model with two states and Moore neighborhoods (i.e., r = 1).

Exercise 12.2 Calculate the number of possible state-transition functions for a
three-dimensional CA model with three states and 3-D Moore neighborhoods (i.e.,
r = 1).

You must have faced some violently large numbers in these exercises. Various sym-
metry assumptions (e.g., rotational symmetries, reflectional symmetries, totalistic rules,
etc.) are often adopted to reduce the size of the rule spaces of CA models.

How about the size of the phase space? It can actually be much more manageable
compared to the size of rule spaces, depending on how big L is. The total number of cells
in the space (i.e., the volume of the space) is given by

V = LD. (12.4)

Each cell in this volume takes one of the k states, so the total number of possible config-
urations (i.e., the size of the phase space) is simply given by

S = kV = kL
D

. (12.5)
1There is a well-known rule-numbering scheme for this particular setting proposed by Wolfram, but we

don’t discuss it in detail in this textbook.
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For example, a one-dimensional binary CA model with L = 10 has 2101 = 1024 possible
configurations, a two-dimensional binary CA model with L = 10 has 2102 ≈ 1.27 × 1030

possible configurations. The latter is large, but it isn’t so huge compared to the size of the
rule spaces you saw in the exercises above.

Exercise 12.3 Calculate the number of all possible configurations of a two-
dimensional, three-state CA model with L = 100.

12.2 Phase Space Visualization

If the phase space of a CA model is not too large, you can visualize it using the technique
we discussed in Section 5.4. Such visualizations are helpful for understanding the overall
dynamics of the system, especially by measuring the number of separate basins of at-
traction, their sizes, and the properties of the attractors. For example, if you see only one
large basin of attraction, the system doesn’t depend on initial conditions and will always
fall into the same attractor. Or if you see multiple basins of attraction of about comparable
size, the system’s behavior is sensitive to the initial conditions. The attractors may be
made of a single state or multiple states forming a cycle, which determines whether the
system eventually becomes static or remains dynamic (cyclic) indefinitely.

Let’s work on an example. Consider a one-dimensional binary CA model with neigh-
borhood radius r = 2. We assume the space is made of nine cells with periodic boundary
conditions (i.e., the space is a ring made of nine cells). In this setting, the size of its phase
space is just 29 = 512, so this is still easy to visualize.

In order to enumerate all possible configurations, it is convenient to define functions
that map a specific configuration of the CA to a unique configuration ID number, and vice
versa. Here are examples of such functions:

Code 12.1:
def config(x):

return [1 if x & 2**i > 0 else 0 for i in range(L - 1, -1, -1)]

def cf_number(cf):

return sum(cf[L - 1 - i] * 2**i for i in range(L))

Here L and i are the size of the space and the spatial position of a cell, respectively.
These functions use a typical binary notation of an integer as a way to create mapping
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between a configuration and its unique ID number (from 0 to 2L − 1; 511 in our example),
arranging the bits in the order of their significance from left to right. For example, the
configuration [0, 1, 0, 1, 1, 0, 1, 0, 1] is mapped to 27 + 25 + 24 + 22 + 20 = 181. The
function config receives a non-negative integer x and returns a list made of 0 and 1, i.e.,
a configuration of the CA that corresponds to the given number. Note that “&” is a logical
AND operator, which is used to check if x’s i-th bit is 1 or not. The function cf_number

receives a configuration of the CA, cf, and returns its unique ID number (i.e., cf_number
is an inverse function of config).

Next, we need to define an updating function to construct a one-step trajectory of the
CA model. This is similar to what we usually do in the implementation of CA models:

Code 12.2:
def update(cf):

nextcf = [0] * L

for x in range(L):

count = 0

for dx in range(-r, r + 1):

count += cf[(x + dx) % L]

nextcf[x] = 1 if count > (2 * r + 1) * 0.5 else 0

return nextcf

In this example, we adopt the majority rule as the CA’s state-transition function, which
is written in the second-to-last line. Specifically, each cell turns to 1 if more than half of
its local neighbors (there are 2r + 1 such neighbors including itself) had state 1’s, or it
otherwise turns to 0. You can revise that line to implement different state-transition rules
as well.

Now we have all the necessary pieces for phase space visualization. By plugging the
above codes into Code 5.5 and making some edits, we get the following:

Code 12.3: ca-graph-based-phasespace.py
from pylab import *

import networkx as nx

g = nx.DiGraph()

r = 2

L = 9

http://bingweb.binghamton.edu/~sayama/textbook/code/ca-graph-based-phasespace.py
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def config(x):

return [1 if x & 2**i > 0 else 0 for i in range(L - 1, -1, -1)]

def cf_number(cf):

return sum(cf[L - 1 - i] * 2**i for i in range(L))

def update(cf):

nextcf = [0] * L

for x in range(L):

count = 0

for dx in range(-r, r + 1):

count += cf[(x + dx) % L]

nextcf[x] = 1 if count > (2 * r + 1) * 0.5 else 0

return nextcf

for x in xrange(2**L):

g.add_edge(x, cf_number(update(config(x))))

ccs = [cc for cc in nx.connected_components(g.to_undirected())]

n = len(ccs)

w = ceil(sqrt(n))

h = ceil(n / w)

for i in xrange(n):

subplot(h, w, i + 1)

nx.draw(nx.subgraph(g, ccs[i]), with_labels = True)

show()

The result is shown in Fig. 12.1. From this visualization, we learn that there are two
major basins of attraction with 36 other minor ones. The inside of those two major basins
of attraction is packed and quite hard to see, but if you zoom into their central parts using
pylab’s interactive zoom-in feature (available from the magnifying glass button on the plot
window), you will find that their attractors are “0” (= [0, 0, 0, 0, 0, 0, 0, 0, 0], all zero) and
“511” (= [1, 1, 1, 1, 1, 1, 1, 1, 1], all one). This means that this system has a tendency to
converge to a consensus state, either 0 or 1, sensitively depending on the initial condition.
Also, you can see that there are a number of states that don’t have any predecessors.
Those states that can’t be reached from any other states are called “Garden of Eden”
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states in CA terminology.
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Figure 12.1: Graph-based phase space of the 1-D binary CA model with the majority
rule (r = 2, L = 9) drawn with Code 12.3.

Exercise 12.4 Measure the number of states in each of the basins of attraction
shown in Fig. 12.1, and draw a pie chart to show the relative sizes of those basins.
Look up matplotlib’s online references to find out how to draw a pie chart. Then
discuss the findings.
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Exercise 12.5 Modify Code 12.3 to change the state-transition function to the
“minority” rule, so that each cell changes its state to a local minority state. Visualize
the phase space of this model and discuss the differences between this result and
Fig. 12.1

The technique we discussed in this section is still naı̈ve and may not work for more
complex CA models. If you want to do more advanced phase space visualizations of
CA and other discrete dynamical systems, there is a free software tool named “Discrete
Dynamics Lab” developed by Andrew Wuensche [47], which is available from http://

www.ddlab.com/.

12.3 Mean-Field Approximation

Behaviors of CA models are complex and highly nonlinear, so it isn’t easy to analyze their
dynamics in a mathematically elegant way. But still, there are some analytical methods
available. Mean-field approximation is one such analytical method. It is a powerful analyti-
cal method to make a rough prediction of the macroscopic behavior of a complex system.
It is widely used to study various kinds of large-scale dynamical systems, not just CA.
Having said that, it is often misleading for studying complex systems (this issue will be
discussed later), but as a first step of mathematical analysis, it isn’t so bad either.

In any case, the primary reason why it is so hard to analyze CA and other complex sys-
tems is that they have a large number of dynamical variables. Mean-field approximation
drastically reduces this high dimensionality down to just a few dimensions (!) by reformu-
lating the dynamics of the system in terms of the “average state” of the system (Fig. 12.2).
Then the dynamics are re-described in terms of how each individual cell interacts with this
average state and how the average state itself changes over time. In so doing, it is as-
sumed that every cell in the entire space chooses its next state independently, according
to the probabilities determined by the average state of the system. This hypothetical,
homogeneous, probabilistic space is called the mean field, from which the name of the
approximation method was derived. Averaging the whole system is equivalent to random-
izing or ignoring spatial relationships among components, so you can say that mean-field
approximation is a technique to approximate spatial dynamics by non-spatial ones.

Let’s work on an example. Consider applying the mean-field approximation to a 2-D
binary CA model with the majority rule on Moore neighborhoods. When we apply mean-
field approximation to this model, the size of the space no longer matters, because, no

http://www.ddlab.com/
http://www.ddlab.com/
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Figure 12.2: Basic idea of the mean-field approximation.

matter how large the space is, the system’s state is approximated just by one variable:
the density of 1’s, pt. This is the mean field, and now our task is to describe its dynamics
in a difference equation.

When we derive a new difference equation for the average state, we no longer have
any specific spatial configuration; everything takes place probabilistically. Therefore, we
need to enumerate all possible scenarios of an individual cell’s state transition, and then
calculate the probability for each scenario to occur.

Table 12.1 lists all possible scenarios for the binary CA with the majority rule. The
probability of each state transition event is calculated by (probability for the cell to take
the “Current state”) × (probability for the eight neighbors to be in any of the “Neighbors’
states”). The latter is the sum of (number of ways to arrange k 1’s in 8 cells) × (probability
for k cells to be 1) × (probability for 8−k cells to be 0) over the respective range of k. You
may have learned about this kind of combinatorial calculation of probabilities in discrete
mathematics and/or probability and statistics.

Exercise 12.6 Confirm that the probabilities listed in the last column of Table 12.1
are a valid probability distribution, i.e., that the sum of them is 1.

To write a difference equation of pt, there are only two scenarios we need to take
into account: the second and fourth ones in Table 12.1, whose next state is 1. This is
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Table 12.1: Possible scenarios of state transitions for binary CA with the majority rule.

Current state Neighbors’ states Next state Probability of this transition

0 Four 1’s or fewer 0 (1− p)
4∑

k=0

(
8

k

)
pk(1− p)(8−k)

0 Five 1’s or more 1 (1− p)
8∑

k=5

(
8

k

)
pk(1− p)(8−k)

1 Three 1’s or fewer 0 p
3∑

k=0

(
8

k

)
pk(1− p)(8−k)

1 Four 1’s or more 1 p
8∑

k=4

(
8

k

)
pk(1− p)(8−k)

because the next value of the average state, pt+1, is the probability for the next state to be
1. Therefore, we can write the following difference equation (the subscript of pt is omitted
on the right hand side for simplicity):

pt+1 = (1− p)
8∑

k=5

(
8

k

)
pk(1− p)(8−k) + p

8∑
k=4

(
8

k

)
pk(1− p)(8−k) (12.6)

=
8∑

k=5

(
8

k

)
pk(1− p)(8−k) + p

(
8

4

)
p4(1− p)4 (12.7)

=

(
8

5

)
p5(1− p)3 +

(
8

6

)
p6(1− p)2 +

(
8

7

)
p7(1− p) +

(
8

8

)
p8 + 70p5(1− p)4

(12.8)

= 56p5(1− p)3 + 28p6(1− p)2 + 8p7(1− p) + p8 + 70p5(1− p)4 (12.9)

= 70p9 − 315p8 + 540p7 − 420p6 + 126p5 (12.10)

This result may still seem rather complicated, but it is now nothing more than a one-
dimensional nonlinear iterative map, and we already learned how to analyze its dynamics
in Chapter 5. For example, we can draw a cobweb plot of this iterative map by replacing
the function f(x) in Code 5.4 with the following (you should also change xmin and xmax

to see the whole picture of the cobweb plot):

Code 12.4: cobweb-plot-for-mfa.py
def f(x):

return 70*x**9 - 315*x**8 + 540*x**7 - 420*x**6 + 126*x**5

http://bingweb.binghamton.edu/~sayama/textbook/code/cobweb-plot-for-mfa.py
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This produces the cobweb plot shown in Fig. 12.3. This plot clearly shows that there
are three equilibrium points (p = 0, 1/2, and 1), p = 0 and 1 are stable while p = 1/2 is
unstable, and the asymptotic state is determined by whether the initial value is below or
above 1/2. This prediction makes some sense in view of the nature of the state-transition
function (the majority rule); interaction with other individuals will bring the whole system
a little closer to the majority choice, and eventually everyone will agree on one of the two
choices.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 12.3: Cobweb plot of Eq. (12.10).

However, we should note that the prediction made using the mean-field approxima-
tion above doesn’t always match what actually happens in spatially explicit CA models.
In simulations, you often see clusters of cells with the minority state remaining in space,
making it impossible for the whole system to reach a unanimous consensus. This is be-
cause, after all, mean-field approximation is no more than an approximation. It produces
a prediction that holds only in an ideal scenario where the spatial locality can be ignored
and every component can be homogeneously represented by a global average, which,
unfortunately, doesn’t apply to most real-world spatial systems that tend to have non-
homogeneous states and/or interactions. So you should be aware of when you can apply
mean-field approximation, and what are its limitations, as summarized below:
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Mean-field approximation is a technique that ignores spatial relationships among
components. It works quite well for systems whose parts are fully connected or
randomly interacting with each other. It doesn’t work if the interactions are local or
non-homogeneous, and/or if the system has a non-uniform pattern of states. In such
cases, you could still use mean-field approximation as a preliminary, “zeroth-order”
approximation, but you should not derive a final conclusion from it.

In some sense, mean-field approximation can serve as a reference point to understand
the dynamics of your model system. If your model actually behaves the same way as
predicted by the mean-field approximation, that probably means that the system is not
quite complex and that its behavior can be understood using a simpler model.

Exercise 12.7 Apply mean-field approximation to the Game of Life 2-D CA
model. Derive a difference equation for the average state density pt, and predict
its asymptotic behavior. Then compare the result with the actual density obtained
from a simulation result. Do they match or not? Why?

12.4 Renormalization Group Analysis to Predict Percola-
tion Thresholds

The next analytical method is for studying critical thresholds for percolation to occur in
spatial contact processes, like those in the epidemic/forest fire CA model discussed in
Section 11.5. The percolation threshold may be estimated analytically by a method called
renormalization group analysis. This is a serious mathematical technique developed and
used in quantum and statistical physics, and covering it in depth is far beyond the scope
of this textbook (and beyond my ability anyway). Here, we specifically focus on the basic
idea of the analysis and how it can be applied to specific CA models.

In the previous section, we discussed mean-field approximation, which defines the
average property of a whole system and then describes how it changes over time. Renor-
malization group analysis can be understood in a similar lens—it defines a certain prop-
erty of a “portion” of the system and then describes how it changes over “scale,” not time.
We still end up creating an iterative map and then studying its asymptotic state to under-
stand macroscopic properties of the whole system, but the iterative map is iterated over
spatial scales.
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I am well aware that the explanation above is still vague and somewhat cryptic, so
let’s discuss the detailed steps of how this method works. Here are typical steps of how
renormalization group analysis is done:

1. Define a property of a “portion” of the system you are interested in. This property
must be definable and measurable for portions of any size, like a material property
of matter. For analyzing percolation, it is typically defined as the probability for a
portion to conduct a fire or a disease from one side to another side through it.

2. Calculate the property at the smallest scale, p1. This is usually at the single-cell
level, which should be immediately obtainable from a model parameter.

3. Derive a mathematical relationship between the property at the smallest scale, p1,
and the same property at a one-step larger scale, p2 = Φ(p1). This derivation is
done by using single cells as building blocks to describe the process at a larger
scale (e.g., two-by-two blocks)

4. Assume that the relationship derived above can be applied to predict the property
at even larger scales, and then study the asymptotic behavior of the iterative map
ps+1 = Φ(ps) when scale s goes to infinity.

Let’s see what these steps actually look like with a specific forest fire CA model with
Moore neighborhoods. The essential parameter of this model is, as discussed in Section
11.5, the density of trees in a space. This tree density was called p in the previous chapter,
but let’s rename it q here, in order to avoid confusion with the property to be studied in this
analysis. The key property we want to measure is whether a portion of the system (a block
of the forest in this context) can conduct fire from one side to another. This probability is
defined as a function of scale s, i.e., the length of an edge of the block (Fig. 12.4). Let’s
call this the conductance probability for now.

The conductance probability at the lowest level, p1, is simply the probability for a tree
to be present in a single cell (i.e., a 1×1 block). If there is a tree, the fire will be conducted,
but if not, it won’t. Therefore:

p1 = q (12.11)

Next, we calculate the conductance probability at a little larger scale, p2. In so doing,
we use p1 as the basic property of a smaller-sized building block and enumerate what are
their arrangements that conduct the fire across a two-cell gap (Fig. 12.5).

As you see in the figure, if all four cells are occupied by trees, the fire will definitely
reach the other end. Even if there are only three or two trees within the 4 area, there are
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? 

A portion of 

the forest 

Scale s 

Figure 12.4: Key property to be analyzed in the renormalization group analysis of the
epidemic/forest fire CA model, i.e., the probability for a portion of the forest (of scale
s) to conduct the fire from one side to another.
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Single cell level: 

p1 = q 

2x2 block level: 

p2 = F(p1) 

    = p1
4 + 4p1

3(1 – p1) 

       + 4p1
2(1 – p1)

2 

Figure 12.5: How to estimate the conductance probability p2 at scale s = 2 using p1.

four different ways to transmit the fire through the area. But if there is only one tree, there
is no way to transmit the fire, so there is no need to consider such cases. This is the
exhaustive list of possible situations where the fire will be conducted through a scale-2
block. We can calculate the probability for each situation and add them up, to obtain the
following relationship between p1 and p2:

p2 = Φ(p1) = p4
1 + 4p3

1(1− p1) + 4p2
1(1− p1)2 (12.12)

And this is the place where a very strong assumption/approximation comes in. Let’s
assume that the relationship above applies to 4 × 4 blocks (Fig. 12.6), 8 × 8 blocks, etc.,
all the way up to infinitely large portions of the forest, so that

ps+1 = Φ(ps) = p4
s + 4p3

s(1− ps) + 4p2
s(1− ps)2 for all s. (12.13)

Of course this is not correct, but some kind of approximation needs to be made in
order to study complex systems analytically.

Exercise 12.8 Why is it not correct to assume that the relationship between the
1×1 blocks and the 2×2 blocks can be applied to 2×2 and 4×4 (and larger)? Look at
Fig. 12.6 carefully and figure out some configurations that violate this assumption.
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2x2 block level: 

p2 = F(p1) 

4x4 block level: 

p4 = F(p2) 

     = F(F(p1)) 

Figure 12.6: How to estimate the conductance probability p4 at scale s = 4 using p2.

Anyway, now we have a relatively simple iterative map of ps, i.e., the conductance
probability for a portion of the forest at scale s. Its asymptotic value, p∞, tells us whether
the fire will propagate over indefinite lengths of distance. You can draw a cobweb plot of
Eq. (12.13) again using Code 5.4, by replacing the function f(x) with the following (again,
make sure to also change xmin and xmax to see the entire cobweb plot):

Code 12.5: cobweb-plot-for-rga.py
def f(x):

return x**4 + 4*x**3*(1-x) + 4*x**2*(1-x)**2

This will produce the cobweb plot shown in Fig. 12.7. This looks quite similar to what we
had from the mean-field approximation before, but note that this is not about dynamics
over time, but about relationships between scales. It is clearly observed in the figure that
there are two asymptotic states possible: p∞ = 0 and p∞ = 1. The former means that
the conductance probability is 0 at the macroscopic scale, i.e., percolation doesn’t occur,
while the latter means that the conductance probability is 1 at the macroscopic scale, i.e.,
percolation does occur.

Which way the system goes is determined by where you start plotting the cobweb plot,
i.e., p1 = q, which is the tree density in the forest. The critical percolation threshold, pc, is
seen in Fig. 12.7 as an unstable equilibrium point around p = 0.4. The exact value can be

http://bingweb.binghamton.edu/~sayama/textbook/code/cobweb-plot-for-rga.py
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Figure 12.7: Cobweb plot of Eq. (12.13).

obtained analytically as follows:

pc = Φ(pc) = p4
c + 4p3

c(1− pc) + 4p2
c(1− pc)2 (12.14)

0 = pc(p
3
c + 4p2

c(1− pc) + 4pc(1− pc)2 − 1) (12.15)

0 = pc(1− pc)(−p2
c − pc − 1 + 4p2

c + 4pc(1− pc)) (12.16)

0 = pc(1− pc)(−1 + 3pc − p2
c)) (12.17)

pc = 0, 1,
3±
√

5

2
(12.18)

Among those solutions, pc = (3−
√

5)/2 ≈ 0.382 is what we are looking for.
So, the bottom line is, if the tree density in the forest is below 38%, the burned area will

remain small, but if it is above 38%, almost the entire forest will be burned down. You can
check if this prediction made by the renormalization group analysis is accurate or not by
carrying out systematic simulations. You should be surprised that this prediction is pretty
good; the percolation indeed occurs for densities above about this threshold!
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Exercise 12.9 Estimate the critical percolation threshold for the same forest fire
model but with von Neumann neighborhoods. Confirm the analytical result by con-
ducting simulations.

Exercise 12.10 What would happen if the space of the forest fire propagation
were 1-D or 3-D? Conduct the renormalization group analysis to see what happens
in those cases.





Chapter 13

Continuous Field Models I: Modeling

13.1 Continuous Field Models with Partial Differential
Equations

Spatio-temporal dynamics of complex systems can also be modeled and analyzed using
partial differential equations (PDEs), i.e., differential equations whose independent vari-
ables include not just time, but also space. As a modeling framework, PDEs are much
older than CA. But interestingly, the applications of PDEs to describe self-organizing dy-
namics of spatially extended systems began about the same time as the studies of CA. As
discussed in Section 11.5, Turing’s monumental work on the chemical basis of morpho-
genesis [44] played an important role in igniting researchers’ attention to the PDE-based
continuous field models as a mathematical framework to study self-organization of com-
plex systems.

There are many different ways to formulate a PDE-based model, but here we stick to
the following simple first-order mathematical formulation:

∂f

∂t
= F

(
f,
∂f

∂x
,
∂2f

∂x2
, . . . , x, t

)
(13.1)

Now the partial derivatives (e.g., ∂f/∂t) have begun to show up in the equations, but
don’t be afraid; they are nothing different from ordinary derivatives (e.g., df/dt). Partial
derivatives simply mean that the function being differentiated has more than one indepen-
dent variable (e.g., x, t) and that the differentiation is being done while other independent
variables are kept as constants. The above formula is still about instantaneous change of
something over time (as seen on the left hand side), which is consistent with what we have
done so far, so you will find this formulation relatively easy to understand and simulate.

227
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Note that the variable x is no longer a state variable of the system, but instead, it
represents a position in a continuous space. In the meantime, the state of the system is
now represented by a function, or a field f(x, t), which is defined over a continuous space
as well as over time (see an example in Fig. 13.1). The value of function f could be scalar
or vector. Examples of such continuous fields include population density (scalar field) and
flows of ocean currents (vector field).

Figure 13.1: Example of a spatial function (field) defined over a two-dimensional
space. The function f(x, y) = e−(x2+y2) is shown here.

In Eq. (13.1), the right hand side may still contain space x and time t, which means
that this may be a non-autonomous equation. But as we already know, non-autonomous
equations can be converted into autonomous equations using the trick discussed in Sec-
tion 6.2. Therefore, we will focus on autonomous models in this chapter.

As you can see on the right hand side of Eq. (13.1), the model can now include spatial
derivatives of the field, which gives information about how the system’s state is shaped
spatially. The interaction between spatial derivatives (shape, structure) and temporal
derivatives (behavior, dynamics) makes continuous field models particularly interesting
and useful.

In a sense, using a continuous function as the system state means that the number
of variables (i.e., the degrees of freedom) in the system is now infinite. You must be
proud to see this milestone; we have come a long way to reach this point, starting from
a single variable dynamical equation, going through CA with thousands of variables, to
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finally facing systems with infinitely many variables!
But of course, we are not actually capable of modeling or analyzing systems made of

infinitely many variables. In order to bring these otherwise infinitely complex mathematical
models down to something manageable for us who have finite intelligence and lifespan,
we usually assume the smoothness of function f . This is why we can describe the shape
and behavior of the function using well-defined derivatives, which may still allow us to
study their properties using analytical means1.

13.2 Fundamentals of Vector Calculus

In order to develop continuous field models, you need to know some basic mathematical
concepts developed and used in vector calculus. A minimalistic quick review of those
concepts is given in the following.

Contour
A contour is a set of spatial positions x that satisfy

f(x) = C (13.2)

for a scalar field f , where C is a constant (see an example in Fig. 13.2). Contours
are also called level curves or surfaces.

Gradient
A gradient of a scalar field f is a vector locally defined as

∇f =



∂f

∂x1
∂f

∂x2...
∂f

∂xn


. (13.3)

1But we should also be aware that not all physically important, interesting systems can be represented by
smooth spatial functions. For example, electromagnetic and gravitational fields can have singularities where
smoothness is broken and state values and/or their derivatives diverge to infinity. While such singularities
do play an important role in nature, here we limit ourselves to continuous, smooth spatial functions only.
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Figure 13.2: Contour f(x, y) = 1/2 (blue solid circle) of a spatial function f(x, y) =

e−(x2+y2).

Here, n is the number of dimensions of the space. The symbol ∇ is called “del” or “nabla,”
which can be considered the following “vector” of differential operators:

∇ =



∂

∂x1
∂

∂x2...
∂

∂xn


(13.4)

A gradient of f at position x is a vector pointing toward the direction of the steepest
ascending slope of f at x. The length of the vector represents how steep the slope is. A
vector field of gradient ∇f defined over a scalar field f is often called a gradient field (See
an example in Fig. 13.3). The gradient is always perpendicular to the contour that goes
through x (unless the gradient is a zero vector; compare Figs. 13.2 and 13.3).
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Figure 13.3: Gradient field of a spatial function f(x, y) = e−(x2+y2).

Divergence
A divergence of a vector field v is a scalar field defined as

∇ · v =



∂

∂x1
∂

∂x2...
∂

∂xn



T 
v1

v2

...
vn

 =
∂v1

∂x1

+
∂v2

∂x2

+ . . .+
∂vn
∂xn

. (13.5)

Note the tiny dot between ∇ and v, which indicates that this is an “inner product” of them.
Don’t confuse this divergence with the gradient discussed above!

The physical meaning of divergence is not so straightforward to understand, but any-
way, it literally quantifies how much the vector field v is “diverging” from the location x.
Let’s go through an example for a 2-D space. Assume that v is representing flows of
some “stuff” moving around in a 2-D space. The stuff is made of a large number of parti-
cles (like a gas made of molecules), and the flow v = (vx, vy) means how many particles
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are going through a cross-section of the space per area per unit of time. In this 2-D exam-
ple, a cross-section means a line segment in the space, and the total area of the section
is just the length of the line segment.

A small spatial area 

around (x, y) 

2h 

Out In 

O
u

t 
In

 

2h × 

vx(x+h,y) 
2h × 

vx(x-h,y) 

2h × vy(x,y+h) 

2h × vy(x,y-h) 

Concentration of “stuff” 

=  # of particles / (2h)2 

2h 

Figure 13.4: Explanation of the physical meaning of divergence in a 2-D space.

Then, consider a temporal change of the number of particles, say N , within a very
small spatial area around (x, y) (Fig. 13.4). The temporal change of N can be calculated
by counting how many particles are coming into/going out of the area through each edge
per unit of time, as

∂N

∂t
= 2hvx(x− h, y) + 2hvy(x, y − h)− 2hvx(x+ h, y)− 2hvy(x, y + h), (13.6)

where h is the distance from (x, y) to each edge, and therefore the length of each edge is
2h.
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Actually, Fig. 13.4 may be a bit misleading; the particles can go in and out through any
edge in both directions. But we use the + sign for vx(x− h, y) and vy(x, y − h) and the −
sign for vx(x + h, y) and vy(x, y + h) in Eq. (13.6), because the velocities are measured
using the coordinate system where the rightward and upward directions are considered
positive.

Since N depends on the size of the area, we can divide it by the area ((2h)2 in this
case) to calculate the change in terms of the concentration of the particles, c = N/(2h)2,
which won’t depend on h:

∂c

∂t
=

2hvx(x− h, y) + 2hvy(x, y − h)− 2hvx(x+ h, y)− 2hvy(x, y + h)

(2h)2
(13.7)

=
vx(x− h, y) + vy(x, y − h)− vx(x+ h, y)− vy(x, y + h)

2h
(13.8)

If we make the size of the area really small (h→ 0), this becomes the following:

∂c

∂t
= lim

h→0

vx(x− h, y) + vy(x, y − h)− vx(x+ h, y)− vy(x, y + h)

2h
(13.9)

= lim
h→0

{(
−vx(x+ h, y)− vx(x− h, y)

2h

)
+

(
−vy(x, y + h)− vy(x, y − h)

2h

)}
(13.10)

= −∂vx
∂x
− ∂vy

∂y
(13.11)

= −∇ · v (13.12)

In natural words, this means that the temporal change of a concentration of the stuff
is given by a negative divergence of the vector field v that describes its movement. If
the divergence is positive, that means that the stuff is escaping from the local area. If the
divergence is negative, the stuff is flowing into the local area. The mathematical derivation
above confirms this intuitive understanding of divergence.

Exercise 13.1 Confirm that the interpretation of divergence above also applies to
3-D cases.
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Laplacian
A Laplacian of a scalar field f is a scalar field defined as

∇2f = ∇ · ∇f =



∂

∂x1
∂

∂x2...
∂

∂xn



T 

∂

∂x1
∂

∂x2...
∂

∂xn


f =

∂2f

∂x2
1

+
∂2f

∂x2
2

+ . . .+
∂2f

∂x2
n

. (13.13)

(See an example in Fig. 13.5)

Figure 13.5: Laplacian (i.e., divergence of a gradient field) of a spatial function
f(x, y) = e−(x2+y2). Compare this figure with Fig. 13.1.

Sometimes the Laplacian operator is denoted by a right side up triangle ∆ instead of
∇2. This is so confusing, I know, but blame the people who invented this notation. In
this textbook, we use ∇2 instead of ∆ to denote Laplacians, because ∇2 is more intuitive
to show it is a second-order differential operator, and also because ∆ is already used to
represent small quantities (e.g., ∆x).
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The gradient field of f shows a diverging pattern where the scalar field f is concave
like a dip or a valley, or a converging pattern where f is convex like a hump or a ridge.
Therefore, the Laplacian of f , which is the divergence of the gradient field of f , has a
positive value where f is concave, or a negative value where f is convex. This is similar
to the second-order derivative of a mathematical function; a concave function has a posi-
tive second-order derivative while a convex function has a negative one. The Laplacian is
a generalization of the same concept, applicable to functions defined over a multidimen-
sional domain.

Exercise 13.2 Which of the following surface plots correctly illustrates the shape
of a scalar field f(x, y) = xy(x− 1)?

Exercise 13.3 Which of the following vector field plots correctly illustrates the
flows given by a vector field v(x, y) = (−xy, x− y)?

Exercise 13.4 Calculate the gradient field and the Laplacian of each of the fol-
lowing:
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• f(x, y) = x2 + xy

• f(x, y) = ex+y

• f(x, y, z) =
x+ y

z

Exercise 13.5 Explain where in the x-y space the surface defined by f(x, y) =

3x2 − xy3 switches between concave and convex.

Exercise 13.6 So far, the gradient is defined only for a scalar field, but it is natural
to define a gradient for a vector field too. Propose a meaningful definition of ∇v
and discuss its physical meaning.

13.3 Visualizing Two-Dimensional Scalar and Vector
Fields

Plotting scalar and vector fields in Python is straightforward, as long as the space is two-
dimensional. Here is an example of how to plot a 3-D surface plot:

Code 13.1: plot-surface-3d.py
from pylab import *

from mpl_toolkits.mplot3d import Axes3D

xvalues, yvalues = meshgrid(arange(-5, 5.5, 0.05), arange(-5, 5.5, 0.05))

zvalues = sin(sqrt(xvalues**2 + yvalues**2))

ax = gca(projection=’3d’)

ax.plot_surface(xvalues, yvalues, zvalues)

show()

The scalar field f(x, y) = sin
√
x2 + y2 is given on the right hand side of the zvalues part.

The result is shown in Fig. 13.6.

http://bingweb.binghamton.edu/~sayama/textbook/code/plot-surface-3d.py
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Figure 13.6: Scalar field visualized as a 3-D surface using Code 13.1.
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And here is how to draw a contour plot of the same scalar field:

Code 13.2: plot-contour.py
from pylab import *

xvalues, yvalues = meshgrid(arange(-5, 5.5, 0.05), arange(-5, 5.5, 0.05))

zvalues = sin(sqrt(xvalues**2 + yvalues**2))

cp = contour(xvalues, yvalues, zvalues)

clabel(cp)

show()

The clabel command is used here to add labels to the contours. The result is shown in
Fig. 13.7.
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Figure 13.7: Scalar field visualized as a contour plot using Code 13.2.

If you want more color, you can use imshow, which we already used for CA:

Code 13.3: plot-imshow.py

http://bingweb.binghamton.edu/~sayama/textbook/code/plot-contour.py
http://bingweb.binghamton.edu/~sayama/textbook/code/plot-imshow.py
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from pylab import *

xvalues, yvalues = meshgrid(arange(-5, 5.5, 0.05), arange(-5, 5.5, 0.05))

zvalues = sin(sqrt(xvalues**2 + yvalues**2))

imshow(zvalues)

show()

The result is shown in Fig. 13.8. Colorful!
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Figure 13.8: Scalar field visualized as a color image using Code 13.3.

Finally, a two-dimensional vector field can be visualized using the streamplot function
that we used in Section 7.2. Here is an example of the visualization of a vector field
v = (vx, vy) = (2x, y − x), with the result shown in Fig. 13.9:

Code 13.4: plot-vector-field.py
from pylab import *

http://bingweb.binghamton.edu/~sayama/textbook/code/plot-vector-field.py
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xvalues, yvalues = meshgrid(arange(-3, 3.1, 0.1), arange(-3, 3.1, 0.1))

vx = 2 * xvalues

vy = yvalues - xvalues

streamplot(xvalues, yvalues, vx, vy)

show()
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Figure 13.9: Vector field visualized using Code 13.4.

Exercise 13.7 Plot the scalar field f(x, y) = sin(xy) for −4 ≤ x, y ≤ 4 using
Python.

Exercise 13.8 Plot the gradient field of f(x, y) = sin(xy) for −4 ≤ x, y ≤ 4 using
Python.
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Exercise 13.9 Plot the Laplacian of f(x, y) = sin(xy) for −4 ≤ x, y ≤ 4 using
Python. Compare the result with the outputs of the exercises above.

13.4 Modeling Spatial Movement

Now we will discuss how to write a PDE-based mathematical model for a dynamical pro-
cess that involves spatial movement of some stuff. There are many approaches to writing
PDEs, but here in this textbook, we will use only one “template,” called the transport
equation. Here is the equation:

∂c

∂t
= −∇ · J + s (13.14)

Here, c is the system’s state defined as a spatio-temporal function that represents the
concentration of the stuff moving in the space. J is a vector field called the flux of c.
The magnitude of the vector J at a particular location represents the number of particles
moving through a cross-section of the space per area per unit of time at that location.
Note that this is exactly the same as the vector field v we discussed when we tried to
understand the meaning of divergence. Therefore, the first term of Eq. (13.14) is coming
directly from Eq. (13.12). The second term, s, is often called a source/sink term, which
is a scalar field that represents any increase or decrease of c taking place locally. This
is often the result of influx or outflux of particles from/to the outside of the system. If
the system is closed and the total amount of the stuff is conserved, you don’t need the
source/sink term, and the transport equation becomes identical to Eq. (13.12).

There is another way of writing a transport equation. While Eq. (13.14) explicitly de-
scribes the amount of particles’ movement per area per unit of time in the form of flux
J , another convenient way of describing the movement is to specify the velocity of the
particles, and then assume that all the particles move at that velocity. Specifically:

∂c

∂t
= −∇ · (cw) + s (13.15)

Here, w is the vector field that represents the velocity of particles at each location. Since
all the particles are moving at this velocity, the flux is given by J = cw. Which formulation
you should use, Eq. (13.14) or Eq. (13.15), depends on the nature of the system you are
going to model.

As you can see above, the transport equation is very simple. But it is quite useful
as a starting point when you want to describe various kinds of spatial phenomena. One



242 CHAPTER 13. CONTINUOUS FIELD MODELS I: MODELING

example is to derive a diffusion equation. How can you write a PDE-based model of
diffusion dynamics by which the spatial distribution of things tends to smoothen over time
(Fig. 13.10)?

Figure 13.10: Schematic illustration of diffusion dynamics.

To develop a model of diffusion using the transport equation, we need to think about
the direction of the movement in this process. In diffusion, particles tend to move ran-
domly at microscopic scales, but macroscopically, they tend to “flow” from high to low,
bringing down the humps while filling up the dips (Fig. 13.10, left), eventually resulting
in a completely leveled surface. Therefore, a natural choice of the direction of particles’
movement is the opposite of the gradient of the distribution of the particles (−α∇c, where
α is a positive constant).

The next question you may want to ask is: Which formula should you use, Eq. (13.14)
or Eq. (13.15)? To make a decision, you should think about whether −α∇c only gives the
velocity of movement or it also determines the actual magnitude of the flux. If the former
is the case, all the particles at the same location will move toward that direction, so the
actual flux should be given by −c(α∇c). But this means that the speed of diffusion will
be faster if the whole system is “elevated” by adding 10 to c everywhere. In other words,
the speed of diffusion will depend on the elevation of the terrain! This doesn’t sound quite
right, because the diffusion is a smoothing process of the surface, which should depend
only on the shape of the surface and should not be affected by how high or low the overall
surface is elevated. Therefore, in this case, Eq. (13.14) is the right choice; we should
consider −α∇c the actual flux caused by the diffusion. This assumption is called Fick’s
first law of diffusion, as it was proposed by Adolf Fick in the 19th century.



13.4. MODELING SPATIAL MOVEMENT 243

Plugging J = −α∇c into Eq. (13.14), we obtain

∂c

∂t
= −∇ · (−α∇c) + s = ∇ · (α∇c) + s. (13.16)

If α is a homogeneous constant that doesn’t depend on spatial locations, then we can
take it out of the parentheses:

∂c

∂t
= α∇2c+ s (13.17)

Now we see the Laplacian coming out! This is called the diffusion equation, one of
the most fundamental PDEs that has been applied to many spatio-temporal dynamics
in physics, biology, ecology, engineering, social science, marketing science, and many
other disciplines. This equation is also called the heat equation or Fick’s second law of
diffusion. α is called the diffusion constant, which determines how fast the diffusion takes
place.

Exercise 13.10 We could still consider an alternative smoothing model in which
the flux is given by −c(α∇c), which makes the following model equation:

∂c

∂t
= α∇ · (c∇c) + s (13.18)

Explain what kind of behavior this equation is modeling. Discuss the difference
between this model and the diffusion equation (Eq. (13.17)).

Exercise 13.11 Develop a PDE model that describes a circular motion of parti-
cles around a certain point in space.

Exercise 13.12 Develop a PDE model that describes the attraction of particles to
each other.

We can develop more complex continuous field models by combining spatial move-
ment and local dynamics together, and also by including more than one state variable.
Let’s try developing a PDE-based model of interactions between two state variables: pop-
ulation distribution (p for “people”) and economic activity (m for “money”). Their local
(non-spatial) dynamics are assumed as follows:
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1. The population will never increase or decrease within the time scale being consid-
ered in this model.

2. The economy is activated by having more people in a region.

3. The economy diminishes without people.

In the meantime, their spatial dynamics (movements) are assumed as follows:

4. Both the population and the economic activity diffuse gradually.

5. People are attracted to the regions where economy is more active.

Our job is to translate these assumptions into mathematical equations by filling in the
boxes below.

∂p

∂t
=

∂m

∂t
=

First, give it a try by yourself! Then go on to the following.

Were you able to develop your own model? Let’s go over all the assumptions to see
how we can write each of them in mathematical form.

Assumption 1 says there is no change in the population by default. So, this can be
written simply as

∂p

∂t
= 0. (13.19)

Assumption 2 is about the increase of economy (m) caused by people (p). The sim-
plest possible expression to model this is

∂m

∂t
= αp, (13.20)

where α is a positive constant that determines the rate of production of the economy per
capita.

Assumption 3 tells that the economy should naturally decay if there is no influence from
people. The simplest model of such decay would be that of exponential decay, which can
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be represented by including a linear term of m with a negative coefficient in the equation
for m, so that:

∂m

∂t
= αp− βm. (13.21)

Again, β is a positive constant that determines the decay rate of the economy. This
equation correctly shows exponential decay if p = 0, which agrees with the assumption.
So far, all the assumptions implemented are about local, non-spatial dynamics. Therefore
we didn’t see any spatial derivatives.

Now, Assumption 4 says we should let people and money diffuse over space. This
is about spatial movement. It can be modeled using the diffusion equation we discussed
above (Eq. (13.17)). There is no need to add source/sink terms, so we just add Laplacian
terms to both equations:

∂p

∂t
= Dp∇2p (13.22)

∂m

∂t
= Dm∇2m+ αp− βm (13.23)

Here, Dp and Dm are the positive diffusion constants of people and money, respectively.
Finally, Assumption 5 says people can sense the “smell” of money and move toward

areas where there is more money. This is where we can use the transport equation. In
this case, we can use Eq. (13.15), because all the people at a certain location would be
sensing the same “smell” and thus be moving toward the same direction on average. We
can represent this movement in the following transport term

−∇ · (p γ∇m), (13.24)

where the gradient of m is used to obtain the average velocity of people’s movement (with
yet another positive constant γ). Adding this term to the equation for p represents people’s
movement toward money.

So, the completed model equations look like this:

∂p

∂t
= Dp∇2p− γ∇ · (p∇m) (13.25)

∂m

∂t
= Dm∇2m+ αp− βm (13.26)

How does this model compare to yours?
Interestingly, a mathematical model that was essentially identical to our equations

above was proposed nearly half a century ago by two physicists/applied mathematicians,
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Evelyn Keller and Lee Segel, to describe a completely different biological phenomenon
[48, 49]. The Keller-Segel model was developed to describe chemotaxis—movement
of organisms toward (or away from) certain chemical signals—of a cellular slime mold
species Dictyostelium discoideum. These slime mold cells normally behave as individual
amoebae and feed on bacteria, but when the food supply becomes low, they first spread
over the space and then aggregate to form “slugs” for long-distance migration (Fig. 13.11).
Keller and Segel developed a mathematical model of this aggregation process, where
chemotaxis plays a critical role in cellular self-organization.

Figure 13.11: Dictyostelium showing aggregation behavior. Image from Wikimedia
Commons (“Dictyostelium Aggregation” by Bruno in Columbus – Own work. Licensed
under Public domain via Wikimedia Commons – http://commons.wikimedia.org/

wiki/File:Dictyostelium_Aggregation.JPG)

Keller and Segel made the following assumptions based on what was already known
about these interesting cellular organisms:

• Cells are initially distributed over a space more or less homogeneously (with some
random fluctuations).

• Cells show chemotaxis toward a chemical signal called cAMP (cyclic adenosine
monophosphate).

• Cells produce cAMP molecules.

• Both cells and cAMP molecules diffuse over the space.

http://commons.wikimedia.org/wiki/File:Dictyostelium_Aggregation.JPG
http://commons.wikimedia.org/wiki/File:Dictyostelium_Aggregation.JPG
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• Cells neither die nor divide.

Did you notice the similarity between these assumptions and those we used for the
population-economy model? Indeed, they are identical, if you replace “cells” with “people”
and “cAMP” with “money.” We could use the word “moneytaxis” for people’s migration
toward economically active areas!

The actual Keller-Segel equations look like this:

∂a

∂t
= µ∇2a− χ∇ · (a∇c) (13.27)

∂c

∂t
= D∇2c+ fa− kc (13.28)

In fact, these equations are simplified ones given in [49], as the original equations were
rather complicated with more biological details. a and c are the state variables for cell
density and cAMP concentration, respectively. µ is the parameter for cell mobility, χ is
the parameter for cellular chemotaxis, D is the diffusion constant of cAMP, f is the rate of
cAMP secretion by the cells, and k is the rate of cAMP decay. Compare these equations
with Eqs. (13.25) and (13.26). They are the same! It is intriguing to see that completely
different phenomena at vastly distant spatio-temporal scales could be modeled in an iden-
tical mathematical formulation.

It is known that, for certain parameter settings (which will be discussed in the next
chapter), this model shows spontaneous pattern formation from almost homogeneous
initial conditions. A sample simulation result is shown in Fig. 13.12, where we see spots of
aggregated cell clusters forming spontaneously. You will learn how to conduct simulations
of continuous field models in the next section.

In Fig. 13.12, we can also observe that there is a characteristic distance between
nearby spots, which is determined by model parameters (especially diffusion constants).
The same observation applies to the formation of cities and towns at geographical scales.
When you see a map, you will probably notice that there is a typical distance between
major cities, which was probably determined by the human mobility centuries ago, among
other factors.

Exercise 13.13 Consider introducing to the Keller-Segel model a new variable b

that represents the concentration of a toxic waste chemical. Make the following
assumptions:

• cAMP gradually turns into the waste chemical (in addition to natural decay).

• The waste chemical diffuses over space.
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Figure 13.12: Simulation of the Keller-Segel model (= the population-economy model).
Cell densities are plotted in grayscale (darker = greater). Time flows from left to right.

• The waste chemical never decays naturally.

• Cells tend to avoid regions with high concentrations of the waste chemical.

Revise the Keller-Segel equations to develop your new model.

Exercise 13.14 Develop a PDE-based model that describes the dynamics of a
predator-prey ecosystem with the following assumptions:

• The prey population grows following the logistic growth model.

• The predator population tends to decay naturally without prey.

• Predation (i.e., encounter of prey and predator populations) increases the
predator population while it decreases the prey population.

• The predator population tends to move toward areas with high prey density.

• The prey population tends to move away from areas with high predator den-
sity.

• Both populations diffuse over space.



13.5. SIMULATION OF CONTINUOUS FIELD MODELS 249

13.5 Simulation of Continuous Field Models

Simulation of continuous field models written in PDEs is not an easy task, because it
easily involves an enormous amount of computation if you want to obtain fairly accurate
simulation results, and also because certain kinds of spatial dynamics may sometimes
cause highly sensitive behaviors. In fact, most “supercomputers” built for scientific com-
putation2 are used to solve large-scale PDE problems, e.g., to simulate global climate
systems, complex material properties, etc.

Covering all the advanced techniques of numerical simulations of PDEs is way beyond
the scope of this introductory textbook. Instead, we will try a much simpler approach. As
we already discussed cellular automata (CA), we will convert PDE-based models into
CA by discretizing space and time, and then simulate them simply as CA models with
continuous state variables.

Discretizing time in a PDE is nothing different from what we discussed in Section 6.3.
By replacing the time derivative by its discretized analog, the original PDE

∂f

∂t
= F

(
f,
∂f

∂x
,
∂2f

∂x2
, . . . , x, t

)
(13.29)

becomes

∆f

∆t
=
f(x, t+ ∆t)− f(x, t)

∆t
= F

(
f,
∂f

∂x
,
∂2f

∂x2
, . . . , x, t

)
, (13.30)

f(x, t+ ∆t) = f(x, t) + F

(
f,
∂f

∂x
,
∂2f

∂x2
, . . . , x, t

)
∆t, (13.31)

which is now a difference equation over time (note that ∆ above is not a Laplacian!).
We are not done yet, because the right hand side may still contain spatial derivatives

(∂f/∂x, ∂2f/∂x2, . . .). We need to discretize them over space too, in order to develop a
CA version of this PDE. Here is one way to discretize a first-order spatial derivative:

∂f

∂x
≈ ∆f

∆x
=
f(x+ ∆x, t)− f(x, t)

∆x
(13.32)

This is not incorrect mathematically, but there is one practical issue. This discretization
makes the space asymmetric along the x-axis, because the spatial derivative at x de-
pends on f(x + ∆x, t), but not on f(x − ∆x, t). Unlike time that has a clear asymmetric
direction from past to future, the spatial axis should better be modeled symmetrically be-
tween the left and the right (or up and down). Therefore, a better way of performing the

2If you are not clear on what I am talking about here, see http://top500.org/.

http://top500.org/
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spatial discretization is as follows:

∂f

∂x
≈ 2∆f

2∆x
=
f(x+ ∆x, t)− f(x−∆x, t)

2∆x
(13.33)

This version treats the left and the right symmetrically.
Similarly, we can derive the discretized version of a second-order spatial derivative, as

follows:

∂2f

∂x2
≈

∂f

∂x

∣∣∣∣
x+∆x

− ∂f

∂x

∣∣∣∣
x−∆x

2∆x

≈

f(x+ ∆x+ ∆x, t)

−f(x+ ∆x−∆x, t)

2∆x
−

f(x−∆x+ ∆x, t)

−f(x−∆x−∆x, t)

2∆x
2∆x

=
f(x+ 2∆x, t) + f(x− 2∆x, t)− 2f(x, t)

(2∆x)2

=
f(x+ ∆x, t) + f(x−∆x, t)− 2f(x, t)

∆x2
(by replacing 2∆x→ ∆x) (13.34)

Moreover, we can use this result to discretize a Laplacian as follows:

∇2f =
∂2f

∂x2
1

+
∂2f

∂x2
2

+ . . .+
∂2f

∂x2
n

≈ f(x1 + ∆x1, x2, . . . , xn, t) + f(x1 −∆x1, x2, . . . , xn, t)− 2f(x1, x2, . . . , xn, t)

∆x2
1

+
f(x1, x2 + ∆x2, . . . , xn, t) + f(x1, x2 −∆x2, . . . , xn, t)− 2f(x1, x2, . . . , xn, t)

∆x2
2

+ . . .

+
f(x1, x2, . . . , xn + ∆xn, t) + f(x1, x2, . . . , xn −∆xn, t)− 2f(x1, x2, . . . , xn, t)

∆x2
n

=
(
f(x1 + ∆x, x2, . . . , xn, t) + f(x1 −∆x, x2, . . . , xn, t)

+ f(x1, x2 + ∆x, . . . , xn, t) + f(x1, x2 −∆x, . . . , xn, t)

+ . . .

+ f(x1, x2, . . . , xn + ∆x, t) + f(x1, x2, . . . , xn −∆x, t)

− 2nf(x1, x2, . . . , xn, t)
)/

∆x2 (13.35)

(by replacing ∆xi → ∆x for all i)
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The numerator of the formula above has an intuitive interpretation: “Just add the values
of f in all of your nearest neighbors (e.g., top, bottom, left, and right for a 2-D space) and
then subtract your own value f(x, t) as many times as the number of those neighbors.”
Or, equivalently: “Measure the difference between your neighbor and yourself, and then
sum up all those differences.” It is interesting to see that a higher-order operator like
Laplacians can be approximated by such a simple set of arithmetic operations once the
space is discretized.

You can also derive higher-order spatial derivatives in a similar manner, but I don’t think
we need to cover those cases here. Anyway, now we have a basic set of mathematical
tools (Eqs. (13.31), (13.33), (13.34), (13.35)) to discretize PDE-based models so we can
simulate their behavior as CA models.

Let’s work on an example. Consider discretizing a simple transport equation without
source or sink in a 2-D space, where the velocity of particles is given by a constant vector:

∂c

∂t
= −∇ · (cw) (13.36)

w =

(
wx
wy

)
(13.37)

We can discretize this equation in both time and space, as follows:

c(x, y, t+ ∆t) ≈ c(x, y, t)−∇ · (c(x, y, t)w) ∆t (13.38)

= c(x, y, t)−

 ∂

∂x
∂

∂y


T (

c(x, y, t)

(
wx
wy

))
∆t (13.39)

= c(x, y, t)−
(
wx

∂c

∂x
+ wy

∂c

∂y

)
∆t (13.40)

≈ c(x, y, t)−
(
wx
c(x+ ∆h, y, t)− c(x−∆h, y, t)

2∆h

+wy
c(x, y + ∆h, t)− c(x, y −∆h, t)

2∆h

)
∆t (13.41)

= c(x, y, t)−
(
wxc(x+ ∆h, y, t)− wxc(x−∆h, y, t)

+ wyc(x, y + ∆h, t)− wyc(x, y −∆h, t)
) ∆t

2∆h
(13.42)

This is now fully discretized for both time and space, and thus it can be used as a
state-transition function of CA. We can implement this CA model in Python, using Code
11.5 as a template. Here is an example of implementation:
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Code 13.5: transport-ca.py
import matplotlib

matplotlib.use(’TkAgg’)

from pylab import *

from mpl_toolkits.mplot3d import Axes3D

n = 100 # size of grid: n * n

Dh = 1. / n # spatial resolution, assuming space is [0,1] * [0,1]

Dt = 0.01 # temporal resolution

wx, wy = -0.01, 0.03 # constant velocity of movement

xvalues, yvalues = meshgrid(arange(0, 1, Dh), arange(0, 1, Dh))

def initialize():

global config, nextconfig

# initial configuration

config = exp(-((xvalues - 0.5)**2 + (yvalues - 0.5)**2) / (0.2**2))

nextconfig = zeros([n, n])

def observe():

global config, nextconfig

ax = gca(projection = ’3d’)

ax.cla()

ax.plot_surface(xvalues, yvalues, config, rstride = 5, cstride = 5)

ax.grid(False)

ax.set_zlim(0, 1)

show() # <- this is needed to reflect changes made to 3-D axes above

def update():

global config, nextconfig

for x in xrange(n):

for y in xrange(n):

# state-transition function

nextconfig[x, y] = config[x, y] - ( wx * config[(x+1)%n, y]

- wx * config[(x-1)%n, y]

+ wy * config[x, (y+1)%n]

http://bingweb.binghamton.edu/~sayama/textbook/code/transport-ca.py
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- wy * config[x, (y-1)%n])\

* Dt/(2*Dh)

config, nextconfig = nextconfig, config

import pycxsimulator

pycxsimulator.GUI(stepSize = 50).start(func=[initialize, observe, update])

In this example, we simulate the transport equation with (wx, wy) = (0.01, 0.03) in a 2-D
[0, 1]× [0, 1] space with periodic boundary conditions, starting from an initial configuration
that has a peak in the middle of the space:

c(x, y, 0) = exp

(
−(x− 0.5)2 + (y − 0.5)2

0.22

)
(13.43)

The temporal and spatial resolutions are set to ∆t = 0.01 and ∆h = 0.01, respectively
(so that the size of the grid is 100 × 100). This is a very slow simulation process, so the
stepSize is set to 50 to skip unnecessary visualizations (see the last line). The surface
plot is used to visualize the configuration in 3-D axes. Note that you need to call the show

command at the end of the observe function, because changes made to 3-D axes are
not automatically reflected to the visualization (at least in the current implementation of
matplotlib).

The result of this simulation is shown in Fig. 13.13, where you can clearly see the peak
being transported to a direction given by (wx, wy). Moreover, thanks to the interactive
nature of pycxsimulator.py, this 3-D visualization is now interactively manipulatable even
if you are not running it from Anaconda Spyder, Enthought Canopy, or other interactive
environments. You can click and drag on it to rotate the surface to observe its 3-D structure
from various angles.

If you don’t need a 3-D surface plot, you can use imshow instead. This makes the code
a bit simpler, and yet the result can be as good as before (Fig. 13.14):

Code 13.6: transport-ca-imshow.py
import matplotlib

matplotlib.use(’TkAgg’)

from pylab import *

n = 100 # size of grid: n * n

Dh = 1. / n # spatial resolution, assuming space is [0,1] * [0,1]

Dt = 0.01 # temporal resolution

http://bingweb.binghamton.edu/~sayama/textbook/code/pycxsimulator.py
http://bingweb.binghamton.edu/~sayama/textbook/code/transport-ca-imshow.py
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Figure 13.13: Visual output of Code 13.5. Time flows from left to right.

wx, wy = -0.01, 0.03 # constant velocity of movement

xvalues, yvalues = meshgrid(arange(0, 1, Dh), arange(0, 1, Dh))

def initialize():

global config, nextconfig

# initial configuration

config = exp(-((xvalues - 0.5)**2 + (yvalues - 0.5)**2) / (0.2**2))

nextconfig = zeros([n, n])

def observe():

global config, nextconfig

cla()

imshow(config, vmin = 0, vmax = 1)

### (the rest is the same as before)

One thing I should warn you about is that the simulation method discussed above is still
based on the Euler forward method, so it easily accumulates numerical errors. This is the
same issue of the stability of solutions and the possibility of “artifacts” that we discussed
in Section 6.4, now arising from discretization of both space and time. In the example
of the transport equation above, such issues can occur if you choose a value that is too
large for ∆t or ∆h, relative to the spatial/temporal scale of the system’s behavior (which
is determined by w in this case). For example, if you increase ∆t to 0.1, you will get the
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Figure 13.14: Visual output of Code 13.6. Time flows from left to right.

result shown in Fig. 13.15. This may look cool, but it is actually an invalid result. You
can tell it is invalid if you understand the nature of the transport equation; it should only
transport the surface and not change its shape. But even if you are unsure if the result
you obtained is valid or not, you can try increasing the temporal/spatial resolutions (i.e.,
making ∆t and ∆h smaller) to see if the result varies. If the result remains unaffected by
this, then you know that the original spatial/temporal resolutions were already sufficient
and that the original result was thus valid. But if not, the original result probably contained
numerical errors, so you need to keep increasing the resolutions until the result becomes
consistent.
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Figure 13.15: Accumulation of numerical errors caused by increasing ∆t (Dt) to 0.1 in
Code 13.5. Time flows from left to right.

Before moving on to the next topic, I would like to point out that the discretization/sim-
ulation methods discussed above can be extended to PDEs that involve multiple state
variables. Here is such an example: interactions between two spatially distributed popu-
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lations, a escaping from diffusing b:

∂a

∂t
= −µa∇ · (a(−∇b)) (13.44)

∂b

∂t
= µb∇2b (13.45)

Here µa and µb are the parameters that determine the mobility of the two species. These
equations can be expanded and then discretized for a 2-D space, as follows (you should
also try doing this all by yourself!):

∂a

∂t
= −µa

 ∂

∂x
∂

∂y


T  −a ∂b∂x

−a∂b
∂y

 (13.46)

= µa

(
∂

∂x

(
a
∂b

∂x

)
+

∂

∂y

(
a
∂b

∂y

))
(13.47)

= µa

(
∂a

∂x

∂b

∂x
+ a

∂2b

∂x2
+
∂a

∂y

∂b

∂y
+ a

∂2b

∂y2

)
(13.48)

= µa

(
∂a

∂x

∂b

∂x
+
∂a

∂y

∂b

∂y
+ a∇2b

)
(13.49)

a(x, y, t+ ∆t) ≈ a(x, y, t)

+ µa

(
a(x+ ∆h, y, t)− a(x−∆h, y, t)

2∆h

b(x+ ∆h, y, t)− b(x−∆h, y, t)

2∆h
+

a(x, y + ∆h, t)− a(x, y −∆h, t)

2∆h

b(x, y + ∆h, t)− b(x, y −∆h, t)

2∆h
+ a(x, y, t)×

b(x+ ∆h, y, t) + b(x−∆h, y, t) + b(x, y + ∆h, t) + b(x, y −∆h, t)− 4b(x, y, t)

∆h2

)
∆t

(13.50)

a′C ≈ aC + µa

(
aR − aL

2∆h

bR − bL
2∆h

+
aU − aD

2∆h

bU − bD
2∆h

+ aC
bR + bL + bU + bD − 4bC

∆h2

)
∆t

(13.51)

Note that I used simpler notations in the last equation, where subscripts (C, R, L, U , D)
represent states of the central cell as well as its four neighbors, and a′C is the next value
of aC . In the meantime, the discretized equation for b is simply given by

b′C ≈ bC + µb
bR + bL + bU + bD − 4bC

∆h2
∆t. (13.52)
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Below is a sample code for simulating this PDE model starting with an initial configu-
ration with two peaks, one for a and the other for b:

Code 13.7: transport-ca-escaping.py
import matplotlib

matplotlib.use(’TkAgg’)

from pylab import *

n = 100 # size of grid: n * n

Dh = 1. / n # spatial resolution, assuming space is [0,1] * [0,1]

Dt = 0.01 # temporal resolution

mu_a = 0.001 # mobility of species a

mu_b = 0.001 # mobility of species b

xvalues, yvalues = meshgrid(arange(0, 1, Dh), arange(0, 1, Dh))

def initialize():

global a, b, nexta, nextb

# initial configuration

a = exp(-((xvalues - 0.45)**2 + (yvalues - 0.45)**2) / (0.3**2))

b = exp(-((xvalues - 0.55)**2 + (yvalues - 0.55)**2) / (0.1**2))

nexta = zeros([n, n])

nextb = zeros([n, n])

def observe():

global a, b, nexta, nextb

subplot(1, 2, 1)

cla()

imshow(a, vmin = 0, vmax = 1)

title(’a’)

subplot(1, 2, 2)

cla()

imshow(b, vmin = 0, vmax = 1)

title(’b’)

def update():

http://bingweb.binghamton.edu/~sayama/textbook/code/transport-ca-escaping.py
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global a, b, nexta, nextb

for x in xrange(n):

for y in xrange(n):

# state-transition function

aC, aR, aL, aU, aD = a[x,y], a[(x+1)%n,y], a[(x-1)%n,y], \

a[x,(y+1)%n], a[x,(y-1)%n]

bC, bR, bL, bU, bD = b[x,y], b[(x+1)%n,y], b[(x-1)%n,y], \

b[x,(y+1)%n], b[x,(y-1)%n]

bLapNum = bR + bL + bU + bD - 4 * bC

nexta[x,y] = aC + mu_a * ((aR-aL)*(bR-bL)+(aU-aD)*(bU-bD)

+4*aC*bLapNum) * Dt/(4*Dh**2)

nextb[x,y] = bC + mu_b * bLapNum * Dt/(Dh**2)

a, nexta = nexta, a

b, nextb = nextb, b

import pycxsimulator

pycxsimulator.GUI(stepSize = 50).start(func=[initialize, observe, update])

Note that the observe function now uses subplot to show two scalar fields for a and b.
The result is shown in Fig. 13.16.
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Figure 13.16: Visual output of Code 13.7. Time flows from left to right.

Exercise 13.15 Modify Code 13.7 so that both species diffuse and try to escape
from each other. Run simulations to see how the system behaves.
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13.6 Reaction-Diffusion Systems

Finally, I would like to introduce reaction-diffusion systems, a particular class of continuous
field models that have been studied extensively. They are continuous field models whose
equations are made of only reaction terms and diffusion terms, as shown below:

∂f1

∂t
= R1(f1, f2, . . . , fn) +D1∇2f1 (13.53)

∂f2

∂t
= R2(f1, f2, . . . , fn) +D2∇2f2 (13.54)

...
∂fn
∂t

= Rn(f1, f2, . . . , fn) +Dn∇2fn (13.55)

Reaction terms (Ri(. . .)) describe only local dynamics, without any spatial derivatives in-
volved. Diffusion terms (Di∇2fi) are strictly limited to the Laplacian of the state variable
itself. Therefore, any equations that involve non-diffusive spatial movement (e.g., chemo-
taxis) are not reaction-diffusion systems.

There are several reasons why reaction-diffusion systems have been a popular choice
among mathematical modelers of spatio-temporal phenomena. First, their clear sep-
aration between non-spatial and spatial dynamics makes the modeling and simulation
tasks really easy. Second, limiting the spatial movement to only diffusion makes it quite
straightforward to expand any existing non-spatial dynamical models into spatially dis-
tributed ones. Third, the particular structure of reaction-diffusion equations provides an
easy shortcut in the stability analysis (to be discussed in the next chapter). And finally,
despite the simplicity of their mathematical form, reaction-diffusion systems can show
strikingly rich, complex spatio-temporal dynamics. Because of these properties, reaction-
diffusion systems have been used extensively for modeling self-organization of spatial
patterns. There are even specialized software applications available exactly to simulate
reaction-diffusion systems3.

Exercise 13.16 Extend the following non-spatial models into spatially distributed
ones as reaction-diffusion systems by adding diffusion terms. Then simulate their
behaviors in Python.

• Motion of a pendulum (Eq. 6.3): This creates a spatial model of locally coupled
nonlinear oscillators.

3For example, check out Ready (https://code.google.com/p/reaction-diffusion/).

https://code.google.com/p/reaction-diffusion/
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• Susceptible-Infected-Recovered (SIR) model (Exercise 7.3): This creates a
spatial model of epidemiological dynamics.

In what follows, we will review a few well-known reaction-diffusion systems to get a
glimpse of the rich, diverse world of their dynamics.

Turing pattern formation As mentioned at the very beginning of this chapter, Alan
Turing’s PDE models were among the first reaction-diffusion systems developed in the
early 1950s [44]. A simple linear version of Turing’s equations is as follows:

∂u

∂t
= a(u− h) + b(v − k) +Du∇2u (13.56)

∂v

∂t
= c(u− h) + d(v − k) +Dv∇2v (13.57)

The state variables u and v represent concentrations of two chemical species. a, b, c, and
d are parameters that determine the behavior of the reaction terms, while h and k are
constants. Finally, Du and Dv are diffusion constants.

If the diffusion terms are ignored, it is easy to show that this system has only one
equilibrium point, (ueq, veq) = (h, k). This equilibrium point can be stable for many param-
eter values for a, b, c, and d. What was most surprising in Turing’s findings is that, even
for such stable equilibrium points, introducing spatial dimensions and diffusion terms to
the equations may destabilize the equilibrium, and thus the system may spontaneously
self-organize into a non-homogeneous pattern. This is called diffusion-induced instability
or Turing instability. A sample simulation result is shown in Fig. 13.17.

The idea of diffusion-induced instability is quite counter-intuitive. Diffusion is usually
considered a random force that destroys any structure into a homogenized mess, yet in
this particular model, diffusion is the key to self-organization! What is going on? The trick
is that this system has two different diffusion coefficients, Du and Dv, and their difference
plays a key role in determining the stability of the system’s state. This will be discussed in
more detail in the next chapter.

There is one thing that needs particular attention when you are about to simulate
Turing’s reaction-diffusion equations. The Turing pattern formation requires small ran-
dom perturbations (noise) to be present in the initial configuration of the system; oth-
erwise there would be no way for the dynamics to break spatial symmetry to create
non-homogeneous patterns. In the meantime, such initial perturbations should be small
enough so that they won’t immediately cause numerical instabilities in the simulation.
Here is a sample code for simulating Turing pattern formation with a suggested level of
initial perturbations, using the parameter settings shown in Fig. 13.17:
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Figure 13.17: Simulation of the Turing pattern formation model with (a, b, c, d) =

(1,−1, 2,−1.5) and (Du, Dv) = (10−4, 6× 10−4). Densities of u are plotted in grayscale
(darker = greater). Time flows from left to right.

Code 13.8: turing-pattern-PDE.py
import matplotlib

matplotlib.use(’TkAgg’)

from pylab import *

n = 100 # size of grid: n * n

Dh = 1. / n # spatial resolution, assuming space is [0,1] * [0,1]

Dt = 0.02 # temporal resolution

a, b, c, d, h, k = 1., -1., 2., -1.5, 1., 1. # parameter values

Du = 0.0001 # diffusion constant of u

Dv = 0.0006 # diffusion constant of v

def initialize():

global u, v, nextu, nextv

u = zeros([n, n])

v = zeros([n, n])

for x in xrange(n):

for y in xrange(n):

u[x, y] = 1. + uniform(-0.03, 0.03) # small noise is added

v[x, y] = 1. + uniform(-0.03, 0.03) # small noise is added

nextu = zeros([n, n])

http://bingweb.binghamton.edu/~sayama/textbook/code/turing-pattern-PDE.py
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nextv = zeros([n, n])

def observe():

global u, v, nextu, nextv

subplot(1, 2, 1)

cla()

imshow(u, vmin = 0, vmax = 2, cmap = cm.binary)

title(’u’)

subplot(1, 2, 2)

cla()

imshow(v, vmin = 0, vmax = 2, cmap = cm.binary)

title(’v’)

def update():

global u, v, nextu, nextv

for x in xrange(n):

for y in xrange(n):

# state-transition function

uC, uR, uL, uU, uD = u[x,y], u[(x+1)%n,y], u[(x-1)%n,y], \

u[x,(y+1)%n], u[x,(y-1)%n]

vC, vR, vL, vU, vD = v[x,y], v[(x+1)%n,y], v[(x-1)%n,y], \

v[x,(y+1)%n], v[x,(y-1)%n]

uLap = (uR + uL + uU + uD - 4 * uC) / (Dh**2)

vLap = (vR + vL + vU + vD - 4 * vC) / (Dh**2)

nextu[x,y] = uC + (a*(uC-h) + b*(vC-k) + Du * uLap) * Dt

nextv[x,y] = vC + (c*(uC-h) + d*(vC-k) + Dv * vLap) * Dt

u, nextu = nextu, u

v, nextv = nextv, v

import pycxsimulator

pycxsimulator.GUI(stepSize = 50).start(func=[initialize, observe, update])

This simulation starts from an initial configuration (u(x, y), v(x, y)) ≈ (1, 1) = (h, k), which
is the system’s homogeneous equilibrium state that would be stable without diffusion
terms. Run the simulation to see how patterns spontaneously self-organize!
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Exercise 13.17 Conduct simulations of the Turing pattern formation with several
different parameter settings, and discuss how the parameter variations (especially
for the diffusion constants) affect the resulting dynamics.

Exercise 13.18 Discretize the Keller-Segel slime mold aggregation model
(Eqs. (13.27) and (13.28)) (although this model is not a reaction-diffusion system,
this is the perfect time for you to work on this exercise because you can utilize
Code 13.8). Implement its simulation code in Python, and conduct simulations
with µ = 10−4, D = 10−4, f = 1, and k = 1, while varying χ as a control parameter
ranging from 0 to 10−3. Use a = 1 and c = 0 as initial conditions everywhere, with
small random perturbations added to them.

Belousov-Zhabotinsky reaction The Belousov-Zhabotinsky reaction, or BZ reaction
for short, is a family of oscillatory chemical reactions first discovered by Russian chemist
Boris Belousov in the 1950s and then later analyzed by Russian-American chemist Ana-
tol Zhabotinsky in the 1960s. One of the common variations of this reaction is essentially
an oxidation of malonic acid (CH2(COOH)2) by an acidified bromate solution, yet this pro-
cess shows nonlinear oscillatory behavior for a substantial length of time before eventually
reaching chemical equilibrium. The actual chemical mechanism is quite complex, involv-
ing about 30 different chemicals. Moreover, if this chemical solution is put into a shallow
petri dish, the chemical oscillation starts in different phases at different locations. Inter-
play between the reaction and the diffusion of the chemicals over the space will result in
the self-organization of dynamic traveling waves (Fig. 13.18), just like those seen in the
excitable media CA model in Section 11.5.

A simplified mathematical model called the “Oregonator” was among the first to de-
scribe the dynamics of the BZ reaction in a simple form [50]. It was originally proposed
as a non-spatial model with three state variables, but the model was later simplified to
have just two variables and then extended to spatial domains [51]. Here are the simplified
“Oregonator” equations:

ε
∂u

∂t
= u(1− u)− u− q

u+ q
fv +Du∇2u (13.58)

∂v

∂t
= u− v +Dv∇2v (13.59)
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Figure 13.18: Belousov-Zhabotinsky reaction taking place in a petri dish. Im-
age from Wikimedia Commons (“Reakcja Biełousowa-Żabotyńskiego zachodzaca w
szalce Petriego” by Ms 1001 – Own work. Trimmed to fit. Licensed under Pub-
lic domain via Wikimedia Commons – http://commons.wikimedia.org/wiki/File:

Zdj%C4%99cie012.jpg)

http://commons.wikimedia.org/wiki/File:Zdj%C4%99cie012.jpg
http://commons.wikimedia.org/wiki/File:Zdj%C4%99cie012.jpg
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Here, u and v represent the concentrations of two chemical species. If you carefully ex-
amine the reaction terms of these equations, you will notice that the presence of chemical
u has a positive effect on both u and v, while the presence of chemical v has a negative
effect on both. Therefore, these chemicals are called the “activator” and the “inhibitor,”
respectively. Similar interactions between the activator and the inhibitor were also seen
in the Turing pattern formation, but the BZ reaction system shows nonlinear chemical os-
cillation. This causes the formation of traveling waves. Sometimes those waves can form
spirals if spatial symmetry is broken by stochastic factors. A sample simulation result is
shown in Fig. 13.19.

Figure 13.19: Simulation of the “Oregonator” model of the BZ reaction with (ε, q, f) =

(0.2, 10−3, 1.0) and Du = Dv = 10−5, starting with a tongue-like initial configuration.
The concentration of chemical u is plotted in grayscale (darker = greater). Time flows
from left to right (the first row followed by the second row).

Exercise 13.19 Implement a simulator code of the “Oregonator” model of the BZ
reaction in Python. Then conduct simulations with several different parameter set-
tings, and discuss what kind of conditions would be needed to produce traveling
waves.
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Gray-Scott pattern formation The final example is the Gray-Scott model, another very
well-known reaction-diffusion system studied and popularized by John Pearson in the
1990s [52], based on a chemical reaction model developed by Peter Gray and Steve
Scott in the 1980s [53, 54, 55]. The model equations are as follows:

∂u

∂t
= F (1− u)− uv2 +Du∇2u (13.60)

∂v

∂t
= −(F + k)v + uv2 +Dv∇2v (13.61)

The reaction terms of this model assumes the following autocatalytic reaction (i.e., chem-
ical reaction for which the reactant itself serves as a catalyst):

u+ 2v → 3v (13.62)

This reaction takes one molecule of u and turns it into one molecule of v, with help of two
other molecules of v (hence, autocatalysis). This is represented by the second term in
each equation. In the meantime, u is continuously replenished from the external source
up to 1 (the first term of the first equation) at feed rate F , while v is continuously removed
from the system at a rate slightly faster than u’s replenishment (F +k seen in the first term
of the second equation). F and k are the key parameters of this model.

It is easy to show that, if the diffusion terms are ignored, this system always has an
equilibrium point at (ueq, veq) = (1, 0) (which is stable for any positive F and k). Surpris-
ingly, however, this model may show very exotic, biological-looking dynamics if certain
spatial patterns are placed into the above equilibrium. Its behaviors are astonishingly
rich, even including growth, division, and death of “cells” if the parameter values and ini-
tial conditions are appropriately chosen. See Fig. 13.20 to see only a few samples of its
wondrous dynamics!

Exercise 13.20 Implement a simulator code of the Gray-Scott model in Python.
Then conduct simulations with several different parameter settings and discuss
how the parameters affect the resulting patterns.
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Figure 13.20: (Next page) Samples of patterns generated by the Gray-Scott model
with Du = 2 × 10−5 and Dv = 10−5. The concentration of chemical u is plotted in
grayscale (brighter = greater, only in this figure). Time flows from left to right. The
parameter values of F and k are shown above each simulation result. The initial
conditions are the homogeneous equilibrium (u, v) = (1, 0) everywhere in the space,
except at the center where the local state is reversed such that (u, v) = (0, 1).
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Chapter 14

Continuous Field Models II: Analysis

14.1 Finding Equilibrium States

One nice thing about PDE-based continuous field models is that, unlike CA models, ev-
erything is still written in smooth differential equations so we may be able to conduct
systematic mathematical analysis to investigate their dynamics (especially their stability
or instability) using the same techniques as those we learned for non-spatial dynamical
systems in Chapter 7.

The first step is, as always, to find the system’s equilibrium states. Note that this is no
longer about equilibrium “points,” because the system’s state now has spatial extensions.
In this case, the equilibrium state of an autonomous continuous field model

∂f

∂t
= F

(
f,
∂f

∂x
,
∂2f

∂x2
, . . .

)
(14.1)

is given as a static spatial function feq(x), which satisfies

0 = F

(
feq,

∂feq

∂x
,
∂2feq

∂x2
, . . .

)
. (14.2)

For example, let’s obtain the equilibrium state of a diffusion equation in a 1-D space
with a simple sinusoidal source/sink term:

∂c

∂t
= D∇2c+ sinx (−π ≤ x ≤ π) (14.3)

The source/sink term sinx means that the “stuff” is being produced where 0 < x ≤ π,
while it is being drained where −π ≤ x < 0. Mathematically speaking, this is still a non-
autonomous system because the independent variable x appears explicitly on the right

269
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hand side. But this non-autonomy can be easily eliminated by replacing x with a new
state variable y that satisfies

∂y

∂t
= 0, (14.4)

y(x, 0) = x. (14.5)

In the following, we will continue to use x instead of y, just to make the discussion easier
and more intuitive.

To find an equilibrium state of this system, we need to solve the following:

0 = D∇2ceq + sinx (14.6)

= D
d2ceq

dx2
+ sinx (14.7)

This is a simple ordinary differential equation, because there are no time or additional
spatial dimensions in it. You can easily solve it by hand to obtain the solution

ceq(x) =
sinx

D
+ C1x+ C2, (14.8)

where C1 and C2 are the constants of integration. Any state that satisfies this formula
remains unchanged over time. Figure 14.1 shows such an example withD = C1 = C2 = 1.

Exercise 14.1 Obtain the equilibrium states of the following continuous field
model in a 1-D space:

∂c/∂t = D∇2c+ 1− x2 (14.9)

As we see above, equilibrium states of a continuous field model can be spatially het-
erogeneous. But it is often the case that researchers are more interested in homogeneous
equilibrium states, i.e., spatially “flat” states that can remain stationary over time. This is
because, by studying the stability of homogeneous equilibrium states, one may be able
to understand whether a spatially distributed system can remain homogeneous or self-
organize to form non-homogeneous patterns spontaneously.

Calculating homogeneous equilibrium states is much easier than calculating general
equilibrium states. You just need to substitute the system state functions with constants,
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Figure 14.1: Example of equilibrium states of the PDE model Eq. (14.3) with D =

C1 = C2 = 1. The black solid curve shows ceq(x), while the cyan (dotted) and pink
(dashed) curves represent the increase/decrease caused by the diffusion term and
the source/sink term, respectively. Those two terms are balanced perfectly in this
equilibrium state.
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which will make all the derivatives (both temporal and spatial ones) become zero. For ex-
ample, consider obtaining homogeneous equilibrium states of the following Turing pattern
formation model:

∂u

∂t
= a(u− h) + b(v − k) +Du∇2u (14.10)

∂v

∂t
= c(u− h) + d(v − k) +Dv∇2v (14.11)

The only thing you need to do is to replace the spatio-temporal functions u(x, t) and v(x, t)

with the constants ueq and veq, respectively:

∂ueq

∂t
= a(ueq − h) + b(veq − k) +Du∇2ueq (14.12)

∂veq

∂t
= c(ueq − h) + d(veq − k) +Dv∇2veq (14.13)

Note that, since ueq and veq no longer depend on either time or space, the temporal deriva-
tives on the left hand side and the Laplacians on the right hand side both go away. Then
we obtain the following:

0 = a(ueq − h) + b(veq − k) (14.14)

0 = c(ueq − h) + d(veq − k) (14.15)

By solving these equations, we get (ueq, veq) = (h, k), as we expected.
Note that we can now represent this equilibrium state as a “point” in a two-dimensional

(u, v) vector space. This is another reason why homogeneous equilibrium states are
worth considering; they provide a simpler, low-dimensional reference point to help us
understand the dynamics of otherwise complex spatial phenomena. Therefore, we will
also focus on the analysis of homogeneous equilibrium states for the remainder of this
chapter.

Exercise 14.2 Obtain homogeneous equilibrium states of the following “Orego-
nator” model:

ε
∂u

∂t
= u(1− u)− u− q

u+ q
fv +Du∇2u (14.16)

∂v

∂t
= u− v +Dv∇2v (14.17)
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Exercise 14.3 Obtain homogeneous equilibrium states of the following Keller-
Segel model:

∂a

∂t
= µ∇2a− χ∇ · (a∇c) (14.18)

∂c

∂t
= D∇2c+ fa− kc (14.19)

14.2 Variable Rescaling

Variable rescaling of continuous field models comes with yet another bonus variable, i.e.,
space, which you can rescale to potentially eliminate more parameters from the model.
In a 2-D or higher dimensional space, you can, theoretically, have two or more spatial
variables to rescale independently. But the space is usually assumed to be isotropic (i.e.,
there is no difference among the directions of space) in most spatial models, so it may not
be practically meaningful to use different rescaling factors for different spatial variables.

Anyway, here is an example. Let’s try to simplify the following spatial predator-prey
model, formulated as a reaction-diffusion system in a two-dimensional space:

∂r

∂t
= ar − brf +Dr∇2r = ar − brf +Dr

(
∂2r

∂x2
+
∂2r

∂y2

)
(14.20)

∂f

∂t
= −cf + drf +Df∇2f = −cf + drf +Df

(
∂2f

∂x2
+
∂2f

∂y2

)
(14.21)

Here we use r for prey (rabbits) and f for predators (foxes), since x and y are already
taken as the spatial coordinates. We can apply the following three rescaling rules to state
variables r and f , as well as time t and space x/y:

r → αr′ (14.22)

f → βf ′ (14.23)

t→ γt′ (14.24)

x, y → δx, δy (14.25)
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With these replacements, the model equation can be rewritten as follows:

∂(αr′)

∂(γt′)
= a(αr′)− b(αr′)(βf ′) +Dr

(
∂2(αr′)

∂(δx′)2
+
∂2(αr′)

∂(δy′)2

)
(14.26)

∂(βf ′)

∂(γt′)
= −c(βf ′) + d(αr′)(βf ′) +Df

(
∂2(βf ′)

∂(δx′)2
+
∂2(βf ′)

∂(δy′)2

)
(14.27)

We can collect parameters and rescaling factors together, as follows:

∂r′

∂t′
= aγr′ − bβγr′f ′ + Drγ

δ2

(
∂2r′

∂x′2
+
∂2r′

∂y′2

)
(14.28)

∂f ′

∂t′
= −cγf ′ + dαγr′f ′ +

Dfγ

δ2

(
∂2f ′

∂x′2
+
∂2f ′

∂y′2

)
(14.29)

Then we can apply, e.g., the following rescaling choices

(α, β, γ, δ) =

(
a

d
,
a

b
,

1

a
,

√
Dr

a

)
(14.30)

to simplify the model equations into

∂r′

∂t′
= r′ − r′f ′ +∇2r′, (14.31)

∂f ′

∂t′
= −eγf ′ + r′f ′ +Dratio∇2f ′, (14.32)

with e = c/a and Dratio = Df/Dr. The original model had six parameters (a, b, c, d, Dr,
and Df ), but we were able to reduce them into just two parameters (e and Dratio) with
a little additional help from spatial rescaling factor δ. This rescaling result also tells us
some important information about what matters in this system: It is the ratio between the
growth rate of the prey (a) and the decay rate of the predators (c) (i.e., e = c/a), as well as
the ratio between their diffusion speeds (Dratio = Df/Dr), which essentially determines
the dynamics of this system. Both of these new parameters make a lot of sense from an
ecological viewpoint too.

Exercise 14.4 Simplify the following Keller-Segel model by variable rescaling:

∂a

∂t
= µ∇2a− χ∇ · (a∇c) (14.33)

∂c

∂t
= D∇2c+ fa− kc (14.34)
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14.3 Linear Stability Analysis of Continuous Field Mod-
els

We can apply the linear stability analysis to continuous field models. This allows us to
analytically obtain the conditions for which a homogeneous equilibrium state of a spatial
system loses its stability and thereby the system spontaneously forms non-homogeneous
spatial patterns. Note again that the homogeneous equilibrium state discussed here is no
longer a single point, but it is a straight line (or a flat plane) that covers the entire spatial
domain.

Consider the dynamics of a nonlinear continuous field model

∂f

∂t
= F

(
f,
∂f

∂x
,
∂2f

∂x2
, . . .

)
(14.35)

around its homogeneous equilibrium state feq, which satisfies

0 = F (feq, 0, 0, . . .) . (14.36)

The basic approach of linear stability analysis is exactly the same as before. Namely,
we will represent the system’s state as a sum of the equilibrium state and a small perturba-
tion, and then we will determine whether this small perturbation added to the equilibrium
will grow or shrink over time. Using ∆f to represent the small perturbation, we apply the
following replacement

f(x, t)⇒ feq + ∆f(x, t) (14.37)

to Eq. (14.35), to obtain the following new continuous field model:

∂feq + ∆f

∂t
= F

(
feq + ∆f,

∂(feq + ∆f)

∂x
,
∂2(feq + ∆f)

∂x2
, . . .

)
(14.38)

∂∆f

∂t
= F

(
feq + ∆f,

∂∆f

∂x
,
∂2∆f

∂x2
, . . .

)
(14.39)

Now, look at the equation above. The key difference between this equation and the
previous examples of the non-spatial models (e.g., Eq. (7.67)) is that the right hand side of
Eq. (14.39) contains spatial derivatives. Without them, F would be just a nonlinear scalar
or vector function of f , so we could use its Jacobian matrix to obtain a linear approximation
of it. But we can’t do so because of those ∂’s! We need something different to eliminate
those nuisances.
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In fact, we saw a similar situation before. When we discussed how to obtain analytical
solutions for linear dynamical systems, the nuisances were the matrices that existed in
the equations. We “destroyed” those matrices by using their eigenvectors, i.e., vectors
that can turn the matrix into a scalar eigenvalue when applied to it. Can we do something
similar to destroy those annoying spatial derivatives?

The answer is, yes we can. While the obstacle we want to remove is no longer a simple
matrix but a linear differential operator, we can still use the same approach. Instead of
using eigenvectors, we will use so-called eigenfunctions. An eigenfunction of a linear
operator L is a function that satisfies

Lf = λf, (14.40)

where λ is (again) called an eigenvalue that corresponds to the eigenfunction f . Look at
the similarity between the definition above and the definition of eigenvectors (Eq. (5.37))!

This similarity is no surprise, because, after all, the linear operators and eigenfunctions
are straightforward generalizations of matrices and eigenvectors. They can be obtained
by increasing the dimensions of matrices/vectors (= number of rows/columns) to infinity.
Figure 14.2 gives a visual illustration of how these mathematical concepts are related to
each other, where the second-order spatial derivative of a spatial function f(x) in a [0, 1]

1-D space is shown as an example.
When the space is discretized into n compartments, the function f(x) is also defined

on a discrete spatial grid made of n cells, and the calculation of its second-order spatial
derivative (or, to be more precise, its discrete equivalent) can be achieved by adding its
two nearest neighbors’ values and then subtracting the cell’s own value twice, as shown
in Eq. (13.34). This operation can be represented as a matrix with three diagonal lines
of non-zero elements (Fig. 14.2, left and center). Because it is a square matrix, we can
calculate its eigenvalues and eigenvectors. And if the number of compartments n goes to
infinity, we eventually move into the realm of continuous field models, where what used to
be a matrix is now represented by a linear operator (∂2/∂x2, i.e., ∇2 in 1-D space), while
the eigenvector is now made of infinitely many numbers, which entitles it to a new name,
“eigenfunction.”

In fact, this is just one instance of how mathematical concepts for matrices and vectors
can be generalized to linear operators and functions in a continuous domain. Nearly all
the concepts developed in linear algebra can be seamlessly extended continuous linear
operators and functions, but we won’t go into details about this in this textbook.

Most linear operators we see in PDE-based continuous field models are the second-
order (and sometimes first-order) differential operators. So here are their eigenfunctions
(which are nothing more than general solutions of simple linear differential equations):
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f(x) 

1-D space 

-1 1 0 0 0 

1 -2 1 0 0 

0 1 -2 1 0 

0 0 1 -2 1 

0 0 0 1 -1 

-1 1 0 0 0 0 0 0 0 0 

1 -2 1 0 0 0 0 0 0 0 

0 1 -2 1 0 0 0 0 0 0 

0 0 1 -2 1 0 0 0 0 0 

0 0 0 1 -2 1 0 0 0 0 

0 0 0 0 1 -2 1 0 0 0 

0 0 0 0 0 1 -2 1 0 0 

0 0 0 0 0 0 1 -2 1 0 

0 0 0 0 0 0 0 1 -2 1 

0 0 0 0 0 0 0 0 1 -1 

Dh2 

1 

Dh2 

1 

Dh2 

f(x+Dh)+f(x–Dh)–2f(x) 

= l = l lim 
Dh → 0 

= l 

space discretization 

Dh = 1 / n n = 5 n = 10 
n → ∞ 

matrix matrix linear operator (   2) 

∆ 

eigenvector eigenvector eigen- 
function 

0 1 

Figure 14.2: Relationship between matrices/eigenvectors and linear operators/eigen-
functions.

• For L =
∂

∂x
:

f(x) = Ceλx (14.41)

• For L =
∂2

∂x2
:

f(x) = C1e
√
λx + C2e

−
√
λx (14.42)

Here, λ is the eigenvalue and C, C1, and C2 are the constants of integration. You can
confirm that these eigenfunctions satisfy Eq. (14.40) by applying L to it. So, if we use such
an eigenfunction of the spatial derivative remaining in Eq. (14.39) as a small perturbation
∆f , the equation could become very simple and amenable to mathematical analysis.

There is one potential problem, though. The eigenfunctions given above are all expo-
nential functions of x. This means that, for x with large magnitudes, these eigenfunctions
could explode literally exponentially! This is definitely not a good property for a perturba-
tion that is supposed to be “small.” What should we do? There are at least two solutions
for this problem. One way is to limit the scope of the analysis to a finite domain of x (and
λ, too) so that the eigenfunction remains finite without explosion. The other way is to
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further investigate those eigenfunctions to see if they can take a form that doesn’t show
exponential divergence. Is it possible?

For Eq. (14.41), a purely imaginary λ could make f(x) non-divergent for x→ ±∞, but
then f(x) itself would also show complex values. This wouldn’t be suitable as a candidate
of perturbations to be added to real-valued system states. But for Eq. (14.42), there are
such eigenfunctions that don’t explode exponentially and yet remain real. Try λ < 0 (i.e,√
λ = ai) with complex conjugates C1 and C2 (i.e., C1 = c + bi, C2 = c − bi), and you will

obtain

f(x) = (c+ bi)eiax + (c− bi)e−iax (14.43)

= c(eiax + e−iax) + bi(eiax − e−iax) (14.44)

= c(cos ax+ i sin ax+ cos(−ax) + i sin(−ax))

+ bi(cos ax+ i sin ax− cos(−ax)− i sin(−ax)) (14.45)

= 2c cos ax− 2b sin ax (14.46)

= A(sinφ cos ax− cosφ sin ax) (14.47)

= A sin(φ− ax), (14.48)

where φ = arctan(c/b) and A = 2c/ sinφ = 2b/ cosφ. This is just a normal, real-valued
sine wave that will remain within the range [−A,A] for any x! We can definitely use such
sine wave-shaped perturbations for ∆f to eliminate the second-order spatial derivatives.

Now that we have a basic set of tools for our analysis, we should do the same trick
as we did before: Represent the initial condition of the system as a linear combination of
eigen-(vector or function), and then study the dynamics of each eigen-(vector or function)
component separately. The sine waves derived above are particularly suitable for this
purpose, because, as some of you might know, the waves with different frequencies (a in
the above) are independent from each other, so they constitute a perfect set of bases to
represent any initial condition.

Let’s have a walk-through of a particular example to see how the whole process of
linear stability analysis works on a continuous field model. Consider our favorite Keller-
Segel model:

∂a

∂t
= µ∇2a− χ∇ · (a∇c) (14.49)

∂c

∂t
= D∇2c+ fa− kc (14.50)

The first thing we need to do is to find the model’s homogeneous equilibrium state which
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we will study. As you may have done this in Exercise 14.3, any aeq and ceq that satisfy

faeq = kceq (14.51)

can be a homogeneous equilibrium state of this model. Here we denote the equilibrium
state as

(aeq, ceq) =

(
aeq,

f

k
aeq

)
. (14.52)

Then we introduce small perturbations into this homogeneous equilibrium state, as fol-
lows:(

a(x, t)

c(x, t)

)
⇒
(

aeq
f
k
aeq

)
+

(
∆a(x, t)

∆c(x, t)

)
. (14.53)

Here, we assume that the space is just one-dimensional for simplicity (therefore no y’s
above). By applying these variable replacements to the Keller-Segel model, we obtain

∂∆a

∂t
= µ

∂2

∂x2
(aeq + ∆a)− χ ∂

∂x

(
(aeq + ∆a)

∂

∂x

(
f

k
aeq + ∆c

))
(14.54)

= µ
∂2∆a

∂x2
− χ ∂

∂x

(
aeq

∂∆c

∂x
+ ∆a

∂∆c

∂x

)
(14.55)

= µ
∂2∆a

∂x2
− χaeq

∂2∆c

∂x2
− χ ∂

∂x

(
∆a

∂∆c

∂x

)
(14.56)

= µ
∂2∆a

∂x2
− χaeq

∂2∆c

∂x2
− χ∂∆a

∂x

∂∆c

∂x
− χ∆a

∂2∆c

∂x2
, (14.57)

∂∆c

∂t
= D

∂2

∂x2

(
f

k
aeq + ∆c

)
+ f (aeq + ∆a)− k

(
f

k
aeq + ∆c

)
(14.58)

= D
∂2∆c

∂x2
+ f∆a− k∆c. (14.59)

In the equations above, both the second-order and first-order spatial derivatives remain.
We can’t find an eigenfunction that eliminates both simultaneously, so let’s adopt sine
waves, i.e., the eigenfunction for the second-order spatial derivatives that appear more
often in the equations above, and see how the product of two first-order spatial derivatives
in Eq. (14.57) responds to it. Hence, we will assume(

∆a(x, t)

∆c(x, t)

)
= sin(ωx+ φ)

(
∆a(t)

∆c(t)

)
, (14.60)

where ω and φ are parameters that determine the spatial frequency and phase offset
of the perturbation, respectively. ω/2π will give a spatial frequency (= how many waves
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there are per unit of length), which is called a wave number in physics. The phase offset
φ doesn’t really make any difference in this analysis, but we include it anyway for the
sake of generality. Note that, by adopting a particular shape of the perturbation above,
we have decoupled spatial structure and temporal dynamics in Eq. (14.60)1. Now the
only dynamical variables are ∆a(t) and ∆c(t), which are the amplitudes of the sine wave-
shaped perturbation added to the homogeneous equilibrium state.

By plugging Eq. (14.60) into Eqs. (14.57) and (14.59), we obtain the following:

sin(ωx+ φ)
∂∆a

∂t
= −µω2 sin(ωx+ φ)∆a+ χaeqω

2 sin(ωx+ φ)∆c

− χω2 cos2(ωx+ φ)∆a∆c+ χω2 sin(ωx+ φ)∆a∆c (14.61)

sin(ωx+ φ)
∂∆c

∂t
= −Dω2 sin(ωx+ φ)∆c+ f sin(ωx+ φ)∆a− k sin(ωx+ φ)∆c

(14.62)

Here, we see the product of two amplitudes (∆a∆c) in the last two terms of Eq. (14.61),
which is “infinitely smaller than infinitely small,” so we can safely ignore them to linearize
the equations. Note that one of them is actually the remnant of the product of the two
first-order spatial derivatives which we had no clue as to how to deal with. We should be
glad to see it exiting from the stage!

After ignoring those terms, every single term in the equations equally contains sin(ωx+

φ), so we can divide the entire equations by sin(ωx + φ) to obtain the following linear
ordinary differential equations:

d∆a

dt
= −µω2∆a+ χaeqω

2∆c (14.63)

d∆c

dt
= −Dω2∆c+ f∆a− k∆c (14.64)

Or, using a linear algebra notation:

d

dt

(
∆a

∆c

)
=

(
−µω2 χaeqω

2

f −Dω2 − k

)(
∆a

∆c

)
(14.65)

We are finally able to convert the spatial dynamics of the original Keller-Segel model
(only around its homogeneous equilibrium state) into a very simple, non-spatial linear

1In mathematical terms, this is an example of separation of variables—breaking down the original equa-
tions into a set of simpler components each of which has fewer independent variables than the original
ones. PDEs for which separation of variables is possible are called separable PDEs. Our original Keller-
Segel model equations are not separable PDEs, but we are trying to separate variables anyway by focusing
on the dynamics around the model’s homogeneous equilibrium state and using linear approximation.
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dynamical system. What we have done is to constrain the shape of the small perturba-
tions (i.e., deviations from the homogeneous equilibrium state) to a certain eigenfunction
to eliminate spatial effects, and then ignore any higher-order terms to linearize the dy-
namics. Each point in this new (∆a,∆c) phase space still represents a certain spatial
configuration of the original model, as illustrated in Fig. 14.3. Studying the stability of the
origin (∆a,∆c) = (0, 0) tells us if the Keller-Segel model can remain homogeneous or if it
undergoes a spontaneous pattern formation.

Da 

Dc 
aeq 

a 

x 

ceq 

c 

x 

aeq 

a 

x 

ceq 

c 

x 

aeq 

a 

x 

ceq 

c 

x 

aeq 

a 

x 

ceq 

c 

x 

homogeneous 

equilibrium state 

Figure 14.3: Visual illustration of how to interpret each point in the (∆a,∆c) phase
space. Each call-out shows the actual state of the system that corresponds to each
point in the phase space.

The only thing we need to do is to calculate the eigenvalues of the matrix in Eq. (14.65)
and check the signs of their real parts. This may be cumbersome, but let’s get it done.
Here is the calculation process, where λ is the eigenvalue of the matrix:
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∣∣∣∣ −µω2 − λ χaeqω
2

f −Dω2 − k − λ

∣∣∣∣ = 0 (14.66)

(−µω2 − λ)(−Dω2 − k − λ)− χaeqω
2f = 0 (14.67)

λ2 + (µω2 +Dω2 + k)λ+ µω2(Dω2 + k)− χaeqω
2f = 0 (14.68)

λ =
1

2

(
−(µω2 +Dω2 + k)±

√
(µω2 +Dω2 + k)2 − 4

(
µω2(Dω2 + k)− χaeqω2f

))
(14.69)

Now, the question is whether either eigenvalue’s real part could be positive. Since all the
parameters are non-negative in this model, the term before “±” can’t be positive by itself.
This means that the inside the radical must be positive and sufficiently large in order to
make the real part of the eigenvalue positive. Therefore, the condition for a positive real
part to arise is as follows:

(µω2 +Dω2 + k) <
√

(µω2 +Dω2 + k)2 − 4
(
µω2(Dω2 + k)− χaeqω2f

)
(14.70)

If this is the case, the first eigenvalue (with the “+” operator in the parentheses) is real
and positive, indicating that the homogeneous equilibrium state is unstable. Let’s simplify
the inequality above to get a more human-readable result:

(µω2 +Dω2 + k)2 < (µω2 +Dω2 + k)2 − 4
(
µω2(Dω2 + k)− χaeqω

2f
)

(14.71)

0 < −4
(
µω2(Dω2 + k)− χaeqω

2f
)

(14.72)

χaeqω
2f > µω2(Dω2 + k) (14.73)

χaeqf > µ(Dω2 + k) (14.74)

At last, we have obtained an elegant inequality that ties all the model parameters together
in a very concise mathematical expression. If this inequality is true, the homogeneous
equilibrium state of the Keller-Segel model is unstable, so it is expected that the system
will show a spontaneous pattern formation. One of the benefits of this kind of mathe-
matical analysis is that we can learn a lot about each model parameter’s effect on pattern
formation all at once. From inequality (14.74), for example, we can make the following pre-
dictions about the aggregation process of slime mold cells (and people too, if we consider
this a model of population-economy interaction):

• χ, aeq, and f on the left hand side indicate that the aggregation of cells (or the
concentration of population in major cities) is more likely to occur if
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– the cells’ chemotaxis (or people’s “moneytaxis”) is stronger (χ),

– there are more cells (or people) in the system (aeq), and/or

– the cells (or people) produce cAMP molecules (or economic values) at a faster
pace (f ).

• µ, D, and k on the right hand side indicate that the aggregation of cells (or the
concentration of population in major cities) is more likely to be suppressed if

– the cells and cAMP molecules (or people and economic values) diffuse faster
(µ and D), and/or

– the cAMP molecules (or economic values) decay more quickly (k).

It is quite intriguing that such an abstract mathematical model can provide such a detailed
set of insights into the problem of urbanization (shift of population and economy from rural
to urban areas), one of the critical socio-economical issues our modern society is facing
today. Isn’t it?

Moreover, solving inequality (14.74) in terms of ω2 gives us the critical condition be-
tween homogenization and aggregation:

χaeqf − µk
µD

> ω2 (14.75)

Note that ω can be any real number but ω2 has to be non-negative, so aggregation occurs
if and only if

χaeqf > µk. (14.76)

And if it does, the spatial frequencies of perturbations that are going to grow will be given
by

ω

2π
<

1

2π

√
χaeqf − µk

µD
. (14.77)

The wave length is the inverse of the spatial frequency, so we can estimate the length of
the growing perturbations as follows:

` =
2π

ω
> 2π

√
µD

χaeqf − µk
= `c (14.78)

This result means that spatial perturbations whose spatial length scales are greater than
`c are going to grow and become visible, while perturbations with length scales smaller
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than `c are going to shrink and disappear. This critical length scale tells us the characteris-
tic distance between aggregated points (or cities) spontaneously forming at the beginning
of the process.

We can confirm these analytical results with numerical simulations. Figure 14.4 shows
simulation results with µ = 10−4, D = 10−4, f = 1, k = 1, and aeq = 1, while χ is varied
as a control parameter. With these parameter values, inequality (14.76) predicts that the
critical value of χ above which aggregation occurs will be

χc =
µk

aeqf
= 10−4, (14.79)

which is confirmed in the simulation results perfectly.

χ = 5.0× 10−5 χ = 1.0× 10−4 χ = 1.5× 10−4 χ = 3.0× 10−4

Figure 14.4: Numerical simulation results of the Keller-Segel model with µ = 10−4,
D = 10−4, f = 1, k = 1, and aeq = 1. Cell densities are plotted in grayscale (darker =
greater). The value of χ is given below each result.

This concludes a guided tour of the linear stability analysis of continuous field models.
It may have looked rather complicated, but the key ideas are simple and almost identical
to those of linear stability analysis of non-spatial models. Here is a summary of the
procedure:

Linear stability analysis of continuous-field models

1. Find a homogeneous equilibrium state of the system you are interested in.

2. Represent the state of the system as a sum of the homogeneous equilibrium
state and a small perturbation function.

3. Represent the small perturbation function as a product of a dynamic amplitude
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and a static shape of the perturbation, which is chosen to be an eigenfunction of
the spatial linear operator remaining in the equation (most likely just sine waves
for ∇2).

4. Eliminate the spatial linear operator and ignore higher-order terms of small per-
turbations to simplify the equation into a linear non-spatial form.

5. Calculate the eigenvalues of the resulting coefficient matrix.

6. If the real part of the dominant eigenvalue is:

• Greater than 0⇒ The homogeneous equilibrium state is unstable.

• Less than 0⇒ The homogeneous equilibrium state is stable.

• Equal to 0 ⇒ The homogeneous equilibrium state may be neutral (Lya-
punov stable).

7. In addition, if there are complex conjugate eigenvalues involved, oscillatory dy-
namics are going on around the homogeneous equilibrium state.

Finally, we should also note that this eigenfunction-based linear stability analysis of
continuous-field models works only if the spatial dynamics are represented by a local lin-
ear differential operator (e.g., ∂f/∂x, Laplacian, etc.). Unfortunately, the same approach
wouldn’t be able to handle global or nonlinear operators, which often arise in mathematical
models of real-world phenomena. But this is beyond the scope of this textbook.

Exercise 14.5 Add terms for population growth and decay to the first equation of
the Keller-Segel model. Obtain a homogeneous equilibrium state of the revised
model, and then conduct a linear stability analysis. Find out the condition for which
spontaneous pattern formation occurs. Interpret the result and discuss its implica-
tions.

14.4 Linear Stability Analysis of Reaction-Diffusion Sys-
tems

You may have found that the linear stability analysis of continuous field models isn’t as
easy as that of non-spatial models. For the latter, we have a very convenient tool called
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the Jacobian matrices, and the stability analysis is just calculating a Jacobian matrix and
then investigating its eigenvalues. Everything is so mechanistic and automatic, compared
to what we went through in the previous section. You may wonder, aren’t there any easier
shortcuts in analyzing the stability of continuous field models?

Well, if you feel that way, you will become a big fan of the reaction-diffusion systems we
discussed in Section 13.6. Their linear stability analysis is much easier, because of the
clear separation of local reaction dynamics and spatial diffusion dynamics. To be more
specific, you can bring the Jacobian matrix back to the analysis! Here is how and why it
works.

Consider conducting a linear stability analysis to the following standard reaction-diffusion
system:

∂f1

∂t
= R1(f1, f2, . . . , fn) +D1∇2f1 (14.80)

∂f2

∂t
= R2(f1, f2, . . . , fn) +D2∇2f2 (14.81)

...
∂fn
∂t

= Rn(f1, f2, . . . , fn) +Dn∇2fn (14.82)

The homogeneous equilibrium state of this system, (f1eq, f2eq, . . . , fneq), is a solution of
the following equations:

0 = R1(f1eq, f2eq, . . . , fneq) (14.83)

0 = R2(f1eq, f2eq, . . . , fneq) (14.84)
...

0 = Rn(f1eq, f2eq, . . . , fneq) (14.85)

To conduct a linear stability analysis, we replace the original state variables as follows:

fi(x, t)⇒ fieq + ∆fi(x, t) = fieq + sin(ωx+ φ)∆fi(t) for all i (14.86)

This replacement turns the dynamical equations into the following form:

S
∂∆f1

∂t
= R1(f1eq + S∆f1, f2eq + S∆f2, . . . , fneq + S∆fn)−D1ω

2S∆f1 (14.87)

S
∂∆f2

∂t
= R2(f1eq + S∆f1, f2eq + S∆f2, . . . , fneq + S∆fn)−D2ω

2S∆f2 (14.88)

...

S
∂∆fn
∂t

= Rn(f1eq + S∆f1, f2eq + S∆f2, . . . , fneq + S∆fn)−Dnω
2S∆fn (14.89)
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Here I used S = sin(ωx + φ) only in the expressions above to shorten them. These
equations can be summarized in a single vector form about ∆f ,

sin(ωx+ φ)
∂∆f

∂t
= R(feq + sin(ωx+ φ)∆f)−Dω2 sin(ωx+ φ)∆f, (14.90)

where R is a vector function that represents all the reaction terms, and D is a diagonal
matrix whose diagonal components are Di for the i-th position. Now that all the diffusion
terms have been simplified, if we can also linearize the reaction terms, we can complete
the linearization task. And this is where the Jacobian matrix is brought back into the
spotlight. The reaction terms are all local without any spatial operators involved, and
therefore, from the discussion in Section 5.7, we know that the vector function R(feq +

sin(ωx+ φ)∆f) can be linearly approximated as follows:

R(feq + sin(ωx+ φ)∆f) ≈ R(feq) +


∂R1

∂f1

∂R1

∂f2
. . . ∂R1

∂fn
∂R2

∂f1

∂R2

∂f2
. . . ∂R2

∂fn
...

... . . . ...
∂Rn

∂f1
∂Rn

∂f2
. . . ∂Rn

∂fn


∣∣∣∣∣∣∣∣∣∣
f=feq

sin(ωx+ φ)∆f

(14.91)

= sin(ωx+ φ)


∂R1

∂f1

∂R1

∂f2
. . . ∂R1

∂fn
∂R2

∂f1

∂R2

∂f2
. . . ∂R2

∂fn
...

... . . . ...
∂Rn

∂f1
∂Rn

∂f2
. . . ∂Rn

∂fn


∣∣∣∣∣∣∣∣∣∣
f=feq

∆f (14.92)

Note that we can eliminate R(feq) because of Eqs. (14.83)–(14.85). By plugging this result
into Eq. (14.90), we obtain

sin(ωx+ φ)
∂∆f

∂t
= sin(ωx+ φ)J |f=feq∆f −Dω2 sin(ωx+ φ)∆f, (14.93)

∂∆f

∂t
=
(
J −Dω2

)
|f=feq∆f, (14.94)

where J is the Jacobian matrix of the reaction terms (R). Very simple! Now we just need
to calculate the eigenvalues of this coefficient matrix to study the stability of the system.

The stability of a reaction-diffusion system at its homogeneous equilibrium state feq

can be studied by calculating the eigenvalues of(
J −Dω2

)
|f=feq , (14.95)
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where J is the Jacobian matrix of the reaction terms, D is the diagonal matrix made
of diffusion constants, and w is a parameter that determines the spatial frequency of
perturbations.

This shortcut in linear stability analysis is made possible thanks to the clear separation
of reaction and diffusion terms in reaction-diffusion systems. I hope you now understand
part of the reasons why so many researchers are fond of this modeling framework.

Let’s apply this new knowledge to some example. Here is the Turing model we dis-
cussed before:

∂u

∂t
= a(u− h) + b(v − k) +Du∇2u (14.96)

∂v

∂t
= c(u− h) + d(v − k) +Dv∇2v (14.97)

Using Eq. (14.95), we can immediately calculate its coefficient matrix:((
a b

c d

)
−
(
Du 0

0 Dv

)
ω2

)∣∣∣∣
(u,v)=(h,k)

=

(
a−Duω

2 b

c d−Dvω
2

)
(14.98)

From the discussion in Section 7.4, we already know that, in order for this matrix
to show stability, its determinant must be positive and its trace must be negative (see
Fig. 7.5). Therefore, the condition for the homogeneous equilibrium state of this system
to be stable is that both of the following two inequalities must be true for all real values of
ω:

0 < (a−Duω
2)(d−Dvω

2)− bc (14.99)

0 > a−Duω
2 + d−Dvω

2 (14.100)

These inequalities can be rewritten using det(A) and Tr(A) of A =

(
a b

c d

)
, as follows:

aDvω
2 + dDuω

2 −DuDvω
4 < det(A) (14.101)

Duω
2 +Dvω

2 > Tr(A) (14.102)

Now, imagine that the original non-spatial model without diffusion terms was already
stable, i.e., det(A) > 0 and Tr(A) < 0. Is there any possibility that the introduction of
diffusion to the model could destabilize the system by itself? The second inequality is
always true for negative Tr(A), because its left hand side can’t be negative. But the first
inequality can be violated, if

g(z) = −DuDvz
2 + (aDv + dDu)z − det(A) (with z = ω2) (14.103)
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can take a positive value for some z > 0. g(z) can be rewritten as

g(z) = −DuDv

(
z − aDv + dDu

2DuDv

)2

+
(aDv + dDu)

2

4DuDv

− det(A). (14.104)

There are two potential scenarios in which this polynomial can be positive for some z > 0,
as shown in Fig. 14.5.

g(z) 

z 
0 

g(z) 

z 
0 

Figure 14.5: Two possible scenarios in which g(z) can take a positive value for some
z > 0. Left: When the peak exists on the positive side of z. Right: When the peak
exists on the negative side of z.

If the peak exists on the positive side of z (aDv + dDu > 0; Fig. 14.5 left), the only
condition is that the peak should stick out above the z-axis, i.e.

(aDv + dDu)
2

4DuDv

− det(A) > 0. (14.105)

Or, if the peak exists on the negative side z (aDv + dDu < 0; Fig. 14.5 right), the condition
is that the intercept of g(z) should be positive, i.e.,

g(0) = − det(A) > 0, (14.106)

but this can’t be true if the original non-spatial model is stable. Therefore, the only pos-
sibility for diffusion to destabilize the otherwise stable system is the first case, whose
condition can be simplified to

aDv + dDu > 2
√
DuDv det(A). (14.107)
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Let’s test how well this prediction applies to actual dynamics of Turing models. In the
previous chapter, we used (a, b, c, d) = (1,−1, 2,−1.5) and (Du, Dv) = (10−4, 6 × 10−4)

to generate the simulation result shown in Fig. 13.17. With these parameter settings,
det(A) = −1.5 − (−2) = 0.5 > 0 and Tr(A) = −0.5 < 0, so the system would be stable if
there were no diffusion terms. However,

aDv + dDu = 6× 10−4 − 1.5× 10−4 = 4.5× 10−4, (14.108)

2
√
DuDv det(A) = 2

√
10−4 × 6× 10−4 × 0.5 = 2× 10−4

√
3 ≈ 3.464× 10−4, (14.109)

therefore inequality (14.107) holds. This indicates that the homogeneous equilibrium state
must be unstable and non-homogeneous spatial patterns should arise, which you can
actually see in Fig. 13.17. As briefly mentioned in Section 13.6, this is called the diffusion-
induced instability. It is quite a counter-intuitive phenomenon, because diffusion is usually
considered a process where a non-homogeneous structure is being destroyed by random
motion. But here, the system is stable at its homogeneous state without diffusion, but
it can spontaneously create non-homogeneous structures with diffusion. This is a really
nice example of how mind-boggling the behavior of complex systems can be sometimes.

Exercise 14.6 Conduct a linear stability analysis of the spatially extended
predator-prey model, around its non-zero homogeneous equilibrium state, and dis-
cuss the results:

∂r

∂t
= ar − brf +Dr∇2r (14.110)

∂f

∂t
= −cf − drf +Df∇2f (14.111)

Assume that all model parameters are positive.

Exercise 14.7 Conduct a linear stability analysis of the Gray-Scott model, around
its homogeneous equilibrium state (ueq, veq) = (1, 0), and discuss the results:

∂u

∂t
= F (1− u)− uv2 +Du∇2u (14.112)

∂v

∂t
= −(F + k)v + uv2 +Dv∇2v (14.113)

Again, assume that all model parameters are positive.
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There are a few more useful predictions we can make about spontaneous pattern
formation in reaction-diffusion systems. Let’s continue to use the Turing model discussed
above as an example. We can calculate the actual eigenvalues of the coefficient matrix,
as follows:∣∣∣∣ 1− 10−4ω2 − λ −1

2 −1.5− 6× 10−4ω2 − λ

∣∣∣∣ = 0 (14.114)

(1− 10−4ω2 − λ)(−1.5− 6× 10−4ω2 − λ)− (−2) = 0 (14.115)

λ2 + (0.5 + 7× 10−4ω2)λ+ (1− 10−4ω2)(−1.5− 6× 10−4ω2) + 2 = 0 (14.116)

λ =
1

2

(
− (0.5 + 7× 10−4ω2)

±
√

(0.5 + 7× 10−4ω2)2 − 4(1− 10−4ω2)(−1.5− 6× 10−4ω2)− 8

)
(14.117)

=
1

2

(
− (0.5 + 7× 10−4ω2)±

√
2.5× 10−7w4 + 2.5× 10−3w2 − 1.75

)
(14.118)

Out of these two eigenvalues, the one that could have a positive real part is the one with
the “+” sign (let’s call it λ+).

Here, what we are going to do is to calculate the value of ω that attains the largest real
part of λ+. This is a meaningful question, because the largest real part of eigenvalues
corresponds to the dominant eigenfunction (sin(ωx+ φ)) that grows fastest, which should
be the most visible spatial pattern arising in the system’s state. If we find out such a value
of ω, then 2π/ω gives us the length scale of the dominant eigenfunction.

We can get an answer to this question by analyzing where the extremum of λ+ occurs.
To make analysis simpler, we let z = ω2 again and use z as an independent variable, as
follows:

dλ+

dz
=

1

2

(
− 7× 10−4 +

5× 10−7z + 2.5× 10−3

2
√

2.5× 10−7z2 + 2.5× 10−3z − 1.75

)
= 0 (14.119)

7× 10−4(2
√

2.5× 10−7z2 + 2.5× 10−3z − 1.75) = 5× 10−7z + 2.5× 10−3 (14.120)

1.96× 10−6(2.5× 10−7z2 + 2.5× 10−3z − 1.75)

= 2.5× 10−13z2 + 2.5× 10−9z + 6.25× 10−6 (14.121)

(. . . blah blah blah . . .)

2.4× 10−13z2 + 2.4× 10−9z − 9.68× 10−6 = 0 (14.122)

z = 3082.9, −13082.9 (14.123)

Phew. Exhausted. Anyway, since z = ω2, the value of ω that corresponds to the dominant
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eigenfunction is

ω =
√

3082.9 = 55.5239. (14.124)

Now we can calculate the length scale of the corresponding dominant eigenfunction,
which is

` =
2π

ω
≈ 0.113162. (14.125)

This number gives the characteristic distance between the ridges (or between the valleys)
in the dominant eigenfunction, which is measured in unit length. 0.11 means that there
are about nine ridges and valleys in one unit of length. In fact, the simulation shown in
Fig. 13.17 was conducted in a [0, 1] × [0, 1] unit square domain, so go ahead and count
how many waves are lined up along its x- or y-axis in its final configuration.

Have you finished counting them? Yes, the simulation result indeed showed about
nine waves across each axis! This is an example of how we can predict not only the
stability of the homogeneous equilibrium state, but also the characteristic length scale of
the spontaneously forming patterns if the equilibrium state turns out to be unstable.

Exercise 14.8 Estimate the length scale of patterns that form in the above Tur-
ing model with (a, b, c, d) = (0.5,−1, 0.75,−1) and (Du, Dv) = (10−4, 10−3). Then
confirm your prediction with numerical simulations.

Exercise 14.9 If both diffusion constants are multiplied by the same factor ψ, how
does that affect the length scale of the patterns?

Okay, let’s make just one more prediction, and we will be done. Here we predict the
critical ratio of the two diffusion constants, at which the system stands right at the thresh-
old between homogenization and pattern formation. Using a new parameter ρ = Dv/Du,
the condition for instability (inequality (14.107)) can be further simplified as follows:

aρDu + dDu > 2
√
ρD2

u det(A) (14.126)

aρ+ d > 2
√
ρ det(A) (14.127)

For the parameter values we used above, this inequality is solved as follows:

ρ− 1.5 > 2
√

0.5ρ (14.128)

ρ2 − 5ρ+ 2.25 > 0 (with ρ− 1.5 > 0) (14.129)

ρ > 4.5 (14.130)
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This means that the diffusion of v must be at least 4.5 times faster than u in order to cause
the diffusion instability. In other words, u acts more locally, while the effects of v reach

over longer spatial ranges. If you look back at the original coefficient matrix
(

1 −1

2 −1.5

)
,

you will realize that u tends to increase both u and v, while v tends to suppress u and
v. Therefore, this represents typical “short-range activation and long-range inhibition”
dynamics that we discussed in Section 11.5, which is essential in many pattern formation
processes.

Figure 14.6 shows the numerical simulation results with the ratio of the diffusion con-
stants systematically varied. Indeed, a sharp transition of the results across ρ = 4.5 is
actually observed! This kind of transition of a reaction-diffusion system’s behavior be-
tween homogenization and pattern formation is called a Turing bifurcation, which Turing
himself showed in his monumental paper in the 1950s [44].

Exercise 14.10 Below is a variant of the Turing pattern formation model:

∂u

∂t
= u(v − 1)− α +Du∇2u (14.131)

∂v

∂t
= β − uv +Dv∇2v (14.132)

Here α and β are positive parameters. Let (α, β) = (12, 16) throughout this exer-
cise. Do the following:

1. Find its homogeneous equilibrium state.

2. Examine the stability of the homogeneous equilibrium state without diffusion
terms.

3. With (Du, Dv) = (10−4, 10−3), conduct a linear stability analysis of this
model around the homogeneous equilibrium state to determine whether non-
homogeneous patterns form spontaneously. If they do, estimate the length
scale of the patterns.

4. Determine the critical ratio of the two diffusion constants.

5. Confirm your predictions with numerical simulations.
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ρ = 3 ρ = 4 ρ = 4.3

ρ = 4.7 ρ = 5 ρ = 6

Figure 14.6: Numerical simulation results of the Turing pattern formation model with
(a, b, c, d) = (1,−1, 2,−1.5), Du = 10−4, and Dv = ρDu. Densities of u are plotted in
grayscale (darker = greater). The value of ρ is given below each result.



Chapter 15

Basics of Networks

15.1 Network Models

We are now moving into one of the most recent developments of complex systems sci-
ence: networks. Stimulated by two seminal papers on small-world and scale-free net-
works published in the late 1990s [56, 57], the science of complex networks, or network
science for short, has been rapidly growing and producing novel perspectives, research
questions, and analytical tools to study various kinds of systems in a number of disci-
plines, including biology, ecology, sociology, economics, political science, management
science, engineering, medicine, and more [23, 24, 25].

The historical roots of network science can be sought in several disciplines. One is ob-
viously discrete mathematics, especially graph theory, where mathematicians study vari-
ous properties of abstract structures called graphs made of nodes (a.k.a. vertices—plural
of vertex) and edges (a.k.a. links, ties). Another theoretical root is statistical physics,
where properties of collective systems made of a large number of entities (such as phase
transitions) are studied using analytical means. A more applied root of network science
is in the social sciences, especially social network analysis [58, 59, 60]. Yet another
application-oriented root would be in dynamical systems, especially Boolean networks
discussed in theoretical and systems biology [22, 61] and artificial neural networks dis-
cussed in computer science [20, 21]. In all of those investigations, the research foci were
put on the connections and interactions among the components of a system, not just on
each individual component.

Network models are different from other more traditional dynamical models in some
fundamental aspects. First, the components of the system may not be connected uni-
formly and regularly, unlike cells in cellular automata that form regular homogeneous

295
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grids. This means that, in a single network, some components may be very well con-
nected while others may not. Such non-homogeneous connectivity makes it more difficult
to analyze the system’s properties mathematically (e.g., mean-field approximation may
not apply to networks so easily). In the meantime, it also gives the model greater power
to represent connections among system components more closely with reality. You can
represent any network topology (i.e., shape of a network) by explicitly specifying in detail
which components are connected to which other components, and how. This makes net-
work modeling necessarily data-intensive. No matter whether the network is generated
using some mathematical algorithm or reconstructed from real-world data, the created
network model will contain a good amount of detailed information about how exactly the
components are connected. We need to learn how to build, manage, and manipulate
these pieces of information in an efficient way.

Second, the number of components may dynamically increase or decrease over time
in certain dynamical network models. Such growth (or decay) of the system’s topology
is a common assumption typically made in generative network models that explain self-
organizing processes of particular network topologies. Note, however, that such a dy-
namic change of the number of components in a system realizes a huge leap from the
other more conventional dynamical systems models, including all the models we have dis-
cussed in the earlier chapters. This is because, when we consider states of the system
components, having one more (or less) component means that the system’s phase space
acquires one more (or less) dimensions! From a traditional dynamical systems point of
view, it sounds almost illegal to change the dimensions of a system’s phase space over
time, yet things like that do happen in many real-world complex systems. Network models
allow us to naturally describe such crazy processes.

15.2 Terminologies of Graph Theory

Before moving on to actual dynamical network modeling, we need to cover some basics
of graph theory, especially the definitions of technical terms used in this field. Let’s begin
with something we have already discussed above:

A network (or graph) consists of a set of nodes (or vertices, actors) and a set of edges
(or links, ties) that connect those nodes.

As indicated above, different disciplines use different terminologies to talk about networks;
mathematicians use “graph/vertex/edge,” physicists use “network/node/edge,” computer
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scientists use “network/node/link,” social scientists use “network/actor/tie,” etc. This is a
typical problem when you work in an interdisciplinary research area like network science.
We just need to get used to it. In this textbook, I mostly use “network/node/edge” or
“network/node/link,” but I may sometimes use other terms interchangeably as well.

By the way, some people ask what are the differences between a “network” and a
“graph.” I would say that a “network” implies it is a model of something real, while a
“graph” emphasizes more on the aspects as an abstract mathematical object (which can
also be used as a model of something real, of course). But this distinction isn’t so essential
either.

To represent a network, we need to specify its nodes and edges. One useful term is
neighbor, defined as follows:

Node j is called a neighbor of node i if (and only if) node i is connected to node j.

The idea of neighbors is particularly helpful when we attempt to relate network models
with more classical models such as CA (where neighborhood structures were assumed
regular and homogeneous). Using this term, we can say that the goal of network rep-
resentation is to represent neighborhood relationships among nodes. There are many
different ways of representing networks, but the following two are the most common:

Adjacency matrix A matrix with rows and columns labeled by nodes, whose i-th
row, j-th column component aij is 1 if node i is a neighbor of node j, or 0
otherwise.

Adjacency list A list of lists of nodes whose i-th component is the list of node i’s
neighbors.

Figure 15.1 shows an example of the adjacency matrix/list. As you can see, the adjacency
list offers a more compact, memory-efficient representation, especially if the network is
sparse (i.e., if the network density is low—which is often the case for most real-world
networks). In the meantime, the adjacency matrix also has some benefits, such as its
feasibility for mathematical analysis and easiness of having access to its specific compo-
nents.

Here are some more basic terminologies:

Degree The number of edges connected to a node. Node i’s degree is often written
as deg(i).
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1 

2 3 

4 

Network (graph) 

1 2 3 4 

0 1 1 0 

1 0 1 0 

1 1 0 1 

0 0 1 0 

1 

2 

3 

4 

1 → {2, 3} 

2 → {1, 3} 

3 → {1, 2, 4} 

4 → {3} 

i 
j  : 

: 

i 

: 

Figure 15.1: Examples of an adjacent matrix and an adjacent list.
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Walk A list of edges that are sequentially connected to form a continuous route on a
network. In particular:

Trail A walk that doesn’t go through any edge more than once.

Path A walk that doesn’t go through any node (and therefore any edge, too)
more than once.

Cycle A walk that starts and ends at the same node without going through any
node more than once on its way.

Subgraph Part of the graph.

Connected graph A graph in which a path exists between any pair of nodes.

Connected component A subgraph of a graph that is connected within itself but not
connected to the rest of the graph.

Exercise 15.1 See the following network and answer the following questions:

1

2

3

4

5

6

1. Represent the network in (a) an adjacency matrix, and (b) an adjacency list.

2. Determine the degree for each node.

3. Classify the following walks as trail, path, cycle, or other.

• 6→ 3→ 2→ 4→ 2→ 1

• 1→ 4→ 6→ 3→ 2

• 5→ 1→ 2→ 3→ 5

4. Identify all fully connected three-node subgraphs (i.e., triangles).
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5. Remove nodes 3 and 4 (and all edges connected to them). Then identify the
connected components in the resulting graph.

Some graphs with characteristic topological properties are given their own unique
names, as follows:

Complete graph A graph in which any pair of nodes are connected (Fig. 15.2A).

Regular graph A graph in which all nodes have the same degree (Fig. 15.2B). Every
complete graph is regular.

Bipartite (n-partite) graph A graph whose nodes can be divided into two (or n)
groups so that no edge connects nodes within each group (Fig. 15.2C).

Tree graph A graph in which there is no cycle (Fig. 15.2D). A graph made of multiple
trees is called a forest graph. Every tree or forest graph is bipartite.

Planar graph A graph that can be graphically drawn in a two-dimensional plane with
no edge crossings (Fig. 15.2E). Every tree or forest graph is planar.

Exercise 15.2 Calculate the following:

• The number of edges in a complete graph made of n nodes

• The number of edges in a regular graph made of n nodes each of which has
degree k

Exercise 15.3 Determine whether the following graphs are planar or not:

• A complete graph made of four nodes

• A complete graph made of five nodes

• A bipartite graph made of a two-node group and a three-node group in which
all possible inter-group edges are present

• A bipartite graph made of two three-node groups in which all possible inter-
group edges are present
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A B

C D

E

Figure 15.2: Examples of graphs with specific names. A: Complete graphs. B: Regular
graphs. C: Bipartite graphs (colors show groups). D: Tree graphs. E: Planar graphs.
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Exercise 15.4 Every connected tree graph made of n nodes has exactly n − 1

edges. Explain why.

There are also classifications of graphs according to the types of their edges:

Undirected edge A symmetric connection between nodes. If node i is connected
to node j by an undirected edge, then node j also recognizes node i as its
neighbor. A graph made of undirected edges is called an undirected graph.
The adjacency matrix of an undirected graph is always symmetric.

Directed edge An asymmetric connection from one node to another. Even if node
i is connected to node j by a directed edge, the connection isn’t necessarily
reciprocated from node j to node i. A graph made of directed edges is called
a directed graph. The adjacency matrix of a directed graph is generally asym-
metric.

Unweighted edge An edge without any weight value associated to it. There are only
two possibilities between a pair of nodes in a network with unweighted edges;
whether there is an edge between them or not. The adjacency matrix of such a
network is made of only 0’s and 1’s.

Weighted edge An edge with a weight value associated to it. A weight is usu-
ally given by a non-negative real number, which may represent a connection
strength or distance between nodes, depending on the nature of the system be-
ing modeled. The definition of the adjacency matrix can be extended to contain
those edge weight values for networks with weighted edges. The sum of the
weights of edges connected to a node is often called the node strength, which
corresponds to a node degree for unweighted graphs.

Multiple edges Edges that share the same origin and destination. Such multiple
edges connect two nodes more than once.

Self-loop An edge that originates and ends at the same node.

Simple graph A graph that doesn’t contain directed, weighted, or multiple edges, or
self-loops. Traditional graph theory mostly focuses on simple graphs.
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Multigraph A graph that may contain multiple edges. Many mathematicians also
allow multigraphs to contain self-loops. Multigraphs can be undirected or di-
rected.

Hyperedge A generalized concept of an edge that can connect any number of nodes
at once, not just two. A graph made of hyperedges is called a hypergraph (not
covered in this textbook).

According to these taxonomies, all the examples shown in Fig. 15.2 are simple graphs.
But many real-world networks can and should be modeled using directed, weighted,
and/or multiple edges.

Exercise 15.5 Discuss which type of graph should be used to model each of the
following networks. Make sure to consider (a) edge directedness, (b) presence of
edge weights, (c) possibility of multiple edges/self-loops, (d) possibility of connec-
tions among three or more nodes, and so on.

• Family trees/genealogies

• Food webs among species

• Roads and intersections

• Web pages and links among them

• Friendships among people

• Marriages/sexual relationships

• College applications submitted by high school students

• Email exchanges among coworkers

• Social media (Facebook, Twitter, Instagram, etc.)

15.3 Constructing Network Models with NetworkX

Now that we have finished the above crash course on graph theoretic terminologies, it is
time to begin with computational modeling of networks. As briefly previewed in Sections
5.4 and 12.2, there is a wonderful Python module called NetworkX [27] for network model-
ing and analysis. It is a free network analysis toolkit widely used by network researchers.
If you are using Anaconda, NetworkX is already installed. If you are using Enthought
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Canopy, you can still easily install NetworkX by using its Package Manager. You can find
the documentation for NetworkX online at http://networkx.github.io.

Perhaps it is worth mentioning why we are choosing NetworkX over other options.
First, its functions are all written in Python, and their source codes are all available on
the website above, so you can check the details of their algorithms and even modify the
codes if you want. Second, NetworkX uses Python’s plain “dictionaries” to store informa-
tion about networks, which are fully accessible and flexible to store additional information
you want to add. This property is particularly important when we implement simulation
models of dynamical networks. Specialized data structures implemented in other network
analysis tools may not have this flexibility.

So, let’s first talk about the data structure used in NetworkX. There are the following
four different data types (called “classes”) that NetworkX offers:

Graph For undirected simple graphs (self-loops are allowed)

DiGraph For directed simple graphs (self-loops are allowed)

MultiGraph For undirected multigraphs (self-loops and multiple edges are allowed)

MultiDiGraph For directed multigraphs (self-loops and multiple edges are allowed)

You can choose one of these four data types that suits your modeling purposes. In this
textbook, we will use Graph and DiGraph mostly.

You can construct a graph of your own manually. Here is an example:

Code 15.1: networkx-test.py
import networkx as nx

# creating a new empty Graph object

g = nx.Graph()

# adding a node named ’John’

g.add_node(’John’)

# adding a bunch of nodes at once

g.add_nodes_from([’Josh’, ’Jane’, ’Jess’, ’Jack’])

# adding an edge between ’John’ and ’Jane’

g.add_edge(’John’, ’Jane’)

http://networkx.github.io
http://bingweb.binghamton.edu/~sayama/textbook/code/networkx-test.py
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# adding a bunch of edges at once

g.add_edges_from([(’Jess’, ’Josh’), (’John’, ’Jack’), (’Jack’, ’Jane’)])

# adding more edges

# undefined nodes will be created automatically

g.add_edges_from([(’Jess’, ’Jill’), (’Jill’, ’Jeff’), (’Jeff’, ’Jane’)])

# removing the edge between ’John’ and ’Jane’

g.remove_edge(’John’, ’Jane’)

# removing the node ’John’

# all edges connected to that node will be removed too

g.remove_node(’John’)

Here I used strings for the names of the nodes, but a node’s name can be a number,
a string, a list, or any “hashable” object in Python. For example, in the phase space
visualization code in Section 5.4, we used a tuple for a name of each node.

I believe each command used above to add or remove nodes/edges is quite self-
explanatory. If not, you can always look at NetworkX’s online documentation to learn
more about how each command works. There are also several other ways to manipulate
a graph object, which are not detailed here.

Once this code is executed, you can see the results in the Python command line, like
this:

Code 15.2:
>>> g

<networkx.classes.graph.Graph object at 0x0000000002999860>

>>> g.nodes()

[’Jeff’, ’Josh’, ’Jess’, ’Jill’, ’Jack’, ’Jane’]

>>> g.edges()

[(’Jeff’, ’Jane’), (’Jeff’, ’Jill’), (’Josh’, ’Jess’), (’Jess’, ’Jill’),

(’Jack’, ’Jane’)]

>>>

The first output (“<networkx.classes. ... >”) shows that g is a Graph object. In order to
see the contents of the data in the object, we need to use some commands. g.nodes()

returns a list of all nodes in the network, while g.edges() returns a list of all edges.
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Compare these results with the commands we used above to check if the node/edge
additions/removals were conducted correctly.

Those nodes() and edges() are functions that read the raw data inside the Graph

object g and then produce a cleaned-up list of nodes or edges. But NetworkX also allows
you to have direct access to the Graph object’s internal raw data structure. The data about
nodes are stored in a dictionary called node right under g:

Code 15.3:
>>> g.node

{’Jeff’: {}, ’Josh’: {}, ’Jess’: {}, ’Jill’: {}, ’Jack’: {}, ’Jane’: {}}

This is a dictionary whose keys and values are the nodes’ names and their properties,
respectively. The properties of each node are also stored in a dictionary (initially they are
all empty, as shown above), so you can dynamically add or modify any node property as
follows:

Code 15.4:
>>> g.node[’Jeff’][’job’] = ’student’

>>> g.node[’Jeff’][’age’] = 20

>>> g.node[’Jeff’]

{’job’: ’student’, ’age’: 20}

We will use this method to add dynamic states to the nodes in Section 16.2.
Similarly, the data about the edges are also stored in a dictionary called edge under

g:

Code 15.5:
>>> g.edge

{’Jeff’: {’Jane’: {}, ’Jill’: {}}, ’Josh’: {’Jess’: {}}, ’Jess’: {’Jill’:

{}, ’Josh’: {}}, ’Jill’: {’Jess’: {}, ’Jeff’: {}}, ’Jack’: {’Jane’: {}},

’Jane’: {’Jack’: {}, ’Jeff’: {}}}

This is a little hard to read, so let me insert line breaks at the appropriate places so that
the structure of the data is clearer:

Code 15.6:
{

’Jeff’: {’Jane’: {}, ’Jill’: {}},

’Josh’: {’Jess’: {}},
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’Jess’: {’Jill’: {}, ’Josh’: {}},

’Jill’: {’Jess’: {}, ’Jeff’: {}},

’Jack’: {’Jane’: {}},

’Jane’: {’Jack’: {}, ’Jeff’: {}}

}

Now its structure is much clearer. g.edge is a dictionary that describes edges in the
network in the adjacency list format. Each entry of g.edge is a pair of the node’s name
and a dictionary that contains its neighbors. For example, the first entry says that Jeff
is connected to Jane and Jill. Note that the connections are perfectly symmetric; if Jeff
is connected to Jane, then the entry for Jane (in the last line) also contains Jeff as her
neighbor. Such symmetry is automatically maintained by NetworkX, because this Graph

object is for undirected graphs.
Moreover, each neighbor’s name works as a key associated with another dictionary

in which we can store properties of the connection (initially they are all empty, as shown
above). So you can dynamically add or modify any edge property as follows:

Code 15.7:
>>> g.edge[’Jeff’][’Jane’][’trust’] = 1.0

>>> g.edge[’Josh’][’Jess’][’love’] = True

>>> g.edge[’Jess’][’Josh’][’love’]

True

>>> g.edge

{

’Jeff’: {’Jane’: {’trust’: 1.0}, ’Jill’: {}},

’Josh’: {’Jess’: {’love’: True}},

’Jess’: {’Jill’: {}, ’Josh’: {’love’: True}},

’Jill’: {’Jess’: {}, ’Jeff’: {}},

’Jack’: {’Jane’: {}},

’Jane’: {’Jack’: {}, ’Jeff’: {’trust’: 1.0}}

}

Again, the output is reformatted to enhance the readability. Note that the new edge prop-
erties (’trust’ between Jeff and Jane; ’love’ between Josh and Jess) are correctly
inserted into the respective dictionaries, always maintaining symmetry between nodes.
I just added True ’love’ from Josh to Jess, which has been reciprocated from Jess to
Josh! What a beautiful world. This is all because we are using a Graph object.

The DiGraph object behaves differently. It is designed to represent directed graphs, so
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the edges are all considered one-way. Symmetries are not maintained automatically, as
illustrated in the following example:

Code 15.8:
>>> g = nx.DiGraph()

>>> g.add_edge(’Josh’, ’Jess’)

>>> g.edge[’Josh’][’Jess’][’love’] = True

>>> g.edge

{’Jess’: {}, ’Josh’: {’Jess’: {’love’: True}}}

>>> g.edge[’Jess’][’Josh’][’love’]

Traceback (most recent call last):

File "<pyshell#16>", line 1, in <module>

g.edge[’Jess’][’Josh’][’love’]

KeyError: ’Josh’

>>>

The last error message means that Jess doesn’t know a guy named Josh in this case,
because the graph is asymmetric. Life is hard.

Exercise 15.6 Represent the network shown in Exercise 15.1 as a Graph object
of NetworkX.

Exercise 15.7 Represent a small social network around you (say, 10 people) as
either Graph or DiGraph object of NetworkX. Then add properties to nodes and
edges, such as:

• Node properties: full name, age, job, address, etc.

• Edge properties: relationship, connection weight, etc.

In the examples above, we manually constructed network models by adding or remov-
ing nodes and edges. But NetworkX also has some built-in functions that can generate
networks of specific shapes more easily. Here are a few examples:

Code 15.9: networkx-test2.py
import networkx as nx

http://bingweb.binghamton.edu/~sayama/textbook/code/networkx-test2.py


15.3. CONSTRUCTING NETWORK MODELS WITH NETWORKX 309

# complete graph made of 5 nodes

g1 = nx.complete_graph(5)

# complete (fully connected) bipartite graph

# made of group of 3 nodes and group of 4 nodes

g2 = nx.complete_bipartite_graph(3, 4)

# Zachary’s Karate Club graph

g3 = nx.karate_club_graph()

The last example (Zachary’s Karate Club graph) is a famous classic example of social
networks reported by Wayne Zachary in the 1970s [59]. It is a network of friendships
among 34 members of a karate club at a U.S. university. The edge lists of these examples
are as follows:

Code 15.10:
>>> g1.edges()

[(0, 1), (0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (1, 4), (2, 3), (2, 4),

(3, 4)]

>>> g2.edges()

[(0, 3), (0, 4), (0, 5), (0, 6), (1, 3), (1, 4), (1, 5), (1, 6), (2, 3),

(2, 4), (2, 5), (2, 6)]

>>> g3.edges()

[(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7), (0, 8), (0, 10),

(0, 11), (0, 12), (0, 13), (0, 17), (0, 19), (0, 21), (0, 31), (1, 2),

(1, 3), (1, 7), (1, 13), (1, 17), (1, 19), (1, 21), (1, 30), (2, 3),

(2, 32), (2, 7), (2, 8), (2, 9), (2, 13), (2, 27), (2, 28), (3, 7),

(3, 12), (3, 13), (4, 10), (4, 6), (5, 16), (5, 10), (5, 6), (6, 16),

(8, 32), (8, 30), (8, 33), (9, 33), (13, 33), (14, 32), (14, 33),

(15, 32), (15, 33), (18, 32), (18, 33), (19, 33), (20, 32), (20, 33),

(22, 32), (22, 33), (23, 32), (23, 25), (23, 27), (23, 29), (23, 33),

(24, 25), (24, 27), (24, 31), (25, 31), (26, 33), (26, 29), (27, 33),

(28, 33), (28, 31), (29, 32), (29, 33), (30, 33), (30, 32), (31, 33),

(31, 32), (32, 33)]
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Exercise 15.8 Construct a graph by generating a complete graph made of 10
nodes, and then connect a new additional node to each of the 10 nodes, using one
edge each.

Exercise 15.9 Create Zachary’s Karate Club graph using NetworkX’s built-in
function, and inspect its nodes and edges to see if they have any non-topological
properties.

15.4 Visualizing Networks with NetworkX

NetworkX also provides functions for visualizing networks. They are not as powerful as
other more specialized software1, but still quite handy and useful, especially for small- to
mid-sized network visualization. Those visualization functions depend on the functions
defined in matplotlib (pylab), so we need to import it before visualizing networks.

The simplest way is to use NetworkX’s draw function:

Code 15.11: karate-club-visualization.py
from pylab import *

import networkx as nx

g = nx.karate_club_graph()

nx.draw(g)

show()

The result is shown in Fig. 15.3. Red circles represent the nodes, and the black lines
connecting them represent the edges. By default, the layout of the nodes and edges
is automatically determined by the Fruchterman-Reingold force-directed algorithm [62]
(called “spring layout” in NetworkX), which conducts a pseudo-physics simulation of the
movements of the nodes, assuming that each edge is a spring with a fixed equilibrium
distance. This heuristic algorithm tends to bring groups of well-connected nodes closer
to each other, making the result of visualization more meaningful and aesthetically more
pleasing.

1For example, Gephi (http://gephi.github.io/) can handle much larger networks, and it has many
more node-embedding algorithms than NetworkX.

http://bingweb.binghamton.edu/~sayama/textbook/code/karate-club-visualization.py
http://gephi.github.io/
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Figure 15.3: Visual output of Code 15.11. Zachary’s Karate Club graph is visualized.
Your result may not look like this because the spring layout algorithm uses random
initial positions by default.

There are several other layout algorithms, as shown in Code 15.12 and Fig. 15.4. Also,
there are many options you can use to customize visualization results (see Code 15.13
and Fig. 15.5 ). Check out NetworkX’s online documentation to learn more about what
you can do.

Code 15.12: network-layouts.py
from pylab import *

import networkx as nx

g = nx.karate_club_graph()

subplot(2, 2, 1)

nx.draw_random(g)

title(’random layout’)

subplot(2, 2, 2)

nx.draw_circular(g)

title(’circular layout’)

http://bingweb.binghamton.edu/~sayama/textbook/code/network-layouts.py
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subplot(2, 2, 3)

nx.draw_spectral(g)

title(’spectral layout’)

subplot(2, 2, 4)

shells = [[0, 1, 2, 32, 33],

[3, 5, 6, 7, 8, 13, 23, 27, 29, 30, 31],

[4, 9, 10, 11, 12, 14, 15, 16, 17, 18,

19, 20, 21, 22, 24, 25, 26, 28]]

nx.draw_shell(g, nlist = shells)

title(’shell layout’)

show()

Code 15.13: network-drawing-options.py
from pylab import *

import networkx as nx

g = nx.karate_club_graph()

positions = nx.spring_layout(g)

subplot(3, 2, 1)

nx.draw(g, positions, with_labels = True)

title(’showing node names’)

subplot(3, 2, 2)

nx.draw(g, positions, node_shape = ’>’)

title(’using different node shape’)

subplot(3, 2, 3)

nx.draw(g, positions,

node_size = [g.degree(i) * 50 for i in g.nodes()])

title(’changing node sizes’)

subplot(3, 2, 4)

nx.draw(g, positions, edge_color = ’pink’,

http://bingweb.binghamton.edu/~sayama/textbook/code/network-drawing-options.py
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random layout circular layout

spectral layout shell layout

Figure 15.4: Visual output of Code 15.12, showing examples of network layouts avail-
able in NetworkX.
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node_color = [’yellow’ if i < 17 else ’green’ for i in g.nodes()])

title(’coloring nodes and edges’)

subplot(3, 2, 5)

nx.draw_networkx_nodes(g, positions)

title(’nodes only’)

subplot(3, 2, 6)

nx.draw_networkx_edges(g, positions)

title(’edges only’)

show()

Exercise 15.10 Visualize the following graphs. Look them up in NetworkX’s on-
line documentation to learn how to generate them.

• A “hypercube graph” of four dimensions.

• A “ladder graph” of length 5.

• A “barbell graph” made of two 20-node complete graphs that are connected
by a single edge.

• A “wheel graph” made of 100 nodes.

Exercise 15.11 Visualize the social network you created in Exercise 15.7. Try
several options to customize the result to your preference.

15.5 Importing/Exporting Network Data

In most network studies, researchers need to model and analyze networks that exist in
the real world. To do so, we need to learn how to import (and export) network data from
outside Python/NetworkX. Fortunately, NetworkX can read and write network data from/to
files in a number of formats2.

2For more details, see https://networkx.github.io/documentation/latest/reference/readwrite.

html.

https://networkx.github.io/documentation/latest/reference/readwrite.html
https://networkx.github.io/documentation/latest/reference/readwrite.html
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Figure 15.5: Visual output of Code 15.13, showing examples of drawing options avail-
able in NetworkX. The same node positions are used in all panels. The last two ex-
amples show the axes because they are generated using different drawing functions.
To suppress the axes, use axis(’off’) right after the network drawing.
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Let’s work on a simple example. You can create your own adjacency list in a regular
spreadsheet (such as Microsoft Excel or Google Spreadsheet) and then save it in a “csv”
format file (Fig. 15.6). In this example, the adjacency list says that John is connected to
Jane and Jack; Jess is connected to Josh and Jill; and so on.

Figure 15.6: Creating an adjacency list in a spreadsheet.

You can read this file by using the read_adjlist command, as follows:

Code 15.14: read-adjlist.py
from pylab import *

import networkx as nx

g = nx.read_adjlist(’myNetworkData.csv’, delimiter = ’,’)

nx.draw(g, with_labels = True)

show()

The read_adjlist command generates a network by importing a text file that lists the
names of nodes in the adjacency list format. By default, it considers spaces (’ ’) a separa-
tor, so we need to specify the delimiter = ’,’ option to read the CSV (comma separated

http://bingweb.binghamton.edu/~sayama/textbook/code/read-adjlist.py
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values) file. Place this Python code in the same folder where the data file is located, run
it, and you will get a result like Fig. 15.73.

Jeff

Josh

Jess

Jill

Jack

Jane

John

Figure 15.7: Visual output of Code 15.14.

Looks good. No—wait—there is a problem here. For some reason, there is an extra
node without a name (at the top of the network in Fig. 15.7)! What happened? The reason
becomes clear if you open the CSV file in a text editor, which reveals that the file actually
looks like this:

Code 15.15:
John,Jane,Jack

Jess,Josh,Jill

Jack,Jane,

Jill,Jeff,

Jeff,Jane,

Note the commas at the end of the third, fourth, and fifth lines. Many spreadsheet appli-
cations tend to insert these extra commas in order to make the number of columns equal
for all rows. This is why NetworkX thought there would be another node whose name was
“” (blank). You can delete those unnecessary commas in the text editor and save the file.
Or you could modify the visualization code to remove the nameless node before drawing
the network. Either way, the updated result is shown in Fig. 15.8.

3If you can’t read the data file or get the correct result, it may be because your NetworkX did not recognize
operating system-specific newline characters in the file (this may occur particularly for Mac users). You can
avoid this issue by saving the CSV file in a different mode (e.g., “MS-DOS” mode in Microsoft Excel).
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Jeff

Josh

Jess

Jill

Jack

Jane

John

Figure 15.8: Visual output of Code 15.14 with a corrected CSV data file.

If you want to import the data as a directed graph, you can use the create_using

option in the read_adjlist command, as follows:

Code 15.16: read-adjlist-directed.py
from pylab import *

import networkx as nx

g = nx.read_adjlist(’myNetworkData.csv’, delimiter = ’,’,

create_using = nx.DiGraph())

nx.draw(g, with_labels = True)

show()

The result is shown in Fig. 15.9, in which arrowheads are indicated by thick line segments.

Another simple function for data importing is read_edgelist. This function reads an
edge list, i.e., a list of pairs of nodes, formatted as follows:

Code 15.17:
John Jane

John Jack

Jess Josh

Jess Jill

Jack Jane

http://bingweb.binghamton.edu/~sayama/textbook/code/read-adjlist-directed.py
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Jeff

Josh
Jess

Jill

Jack

Jane

John

Figure 15.9: Visual output of Code 15.16.

One useful feature of read_edgelist is that it can import not only edges but also their
properties, such as:

Code 15.18:
John Jane {’weight’: 0.8}

John Jack {’weight’: 0.8, ’trust’: 1.5}

Jess Josh {’weight’: 0.2}

Jess Jill {’trust’: 2.0}

Jack Jane {’weight’: 1.0}

The third column of this data file is structured as a Python dictionary, which will be im-
ported as the property of the edge.

Exercise 15.12 Create a data file of the social network you created in Exercise
15.7 using a spreadsheet application, and then read the file and visualize it using
NetworkX. You can use either the adjacency list format or the edge list format.

Exercise 15.13 Import network data of your choice from Mark Newman’s Net-
work Data website: http://www-personal.umich.edu/~mejn/netdata/ The data
on this website are all in GML format, so you need to figure out how to import them
into NetworkX. Then visualize the imported network.

http://www-personal.umich.edu/~mejn/netdata/
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Finally, NetworkX also has functions to write network data files from its graph objects,
such as write_adjlist and write_edgelist. Their usage is very straightforward. Here
is an example:

Code 15.19:
import networkx as nx

g = nx.complete_graph(5)

nx.write_adjlist(g, ’complete-graph.txt’)

Then a new text file named ’complete-graph.txt’ will appear in the same folder, which looks
like this:

Code 15.20:
#C:/Users/Hiroki/Desktop/test.py

# GMT Sat Nov 22 20:24:00 2014

# complete_graph(5)

0 1 2 3 4

1 2 3 4

2 3 4

3 4

4

Note that the adjacency list is optimized so that there is no redundant information included
in this output. For example, node 4 is connected to 0, 1, 2, and 3, but this information is
not included in the last line because it was already represented in the preceding lines.

Exercise 15.14 Write the network data of Zachary’s Karate Club graph into a file
in each of the following formats:

• Adjacency list

• Edge list

15.6 Generating Random Graphs

So far, we have been creating networks using deterministic methods, e.g., manually
adding nodes and edges, importing data files, etc. In the meantime, there are some occa-
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sions where you want to have a randomly generated network. Here are some examples
of NetworkX’s built-in functions that can generate random graph samples:

Code 15.21: random-graphs.py
from pylab import *

import networkx as nx

subplot(2, 2, 1)

nx.draw(nx.gnm_random_graph(10, 20))

title(’random graph with\n10 nodes, 20 edges’)

subplot(2, 2, 2)

nx.draw(nx.gnp_random_graph(20, 0.1))

title(’random graph with\n 20 nodes, 10% edge probability’)

subplot(2, 2, 3)

nx.draw(nx.random_regular_graph(3, 10))

title(’random regular graph with\n10 nodes of degree 3’)

subplot(2, 2, 4)

nx.draw(nx.random_degree_sequence_graph([3,3,3,3,4,4,4,4,5,5]))

title(’random graph with\n degree sequence\n[3,3,3,3,4,4,4,4,5,5]’)

show()

The output is shown in Fig. 15.10. The first example, gnm_random_graph(n, m), sim-
ply generates a random graph made of n nodes and m edges. The second example,
gnp_random_graph(n, p), generates a random graph made of n nodes, where each
node pair is connected to each other with probability p. These two types of random
graphs are called Erdős-Rényi random graphs after two Hungarian mathematicians Paul
Erdős and Alfréd Rényi who studied random graphs in the 1950s [63]. The third example,
random_regular_graph(k, n), generates a random regular graph made of n nodes that
all have the same degree k. The fourth example, random_degree_sequence_graph(list),
generates a random graph whose nodes have degrees specified in list. In this particular
example, four nodes have degree 3, four nodes have degree 4, and two nodes have de-
gree 5. Note that this function may not be able to generate a graph within a given number
of trials (which is set to 10 by default). You can increase the number of trials by specifying
the tries option in the function, e.g., tries = 100.

http://bingweb.binghamton.edu/~sayama/textbook/code/random-graphs.py
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random graph with
10 nodes, 20 edges

random graph with
 20 nodes, 10% edge probability

random regular graph with
10 nodes of degree 3

random graph with
 degree sequence

[3,3,3,3,4,4,4,4,5,5]

Figure 15.10: Visual output of Code 15.21.
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Random graphs can also be generated by randomizing existing graph topologies.
Such network randomization is particularly useful when you want to compare a certain
property of an observed network with that of a randomized “null” model. For example,
imagine you found that information spreading was very slow in the network you were
studying. Then you could test whether or not the network’s specific topology caused this
slowness by simulating information spreading on both your network and on its random-
ized counterparts, and then comparing the speed of information spreading between them.
There are several different ways to randomize network topologies. They differ regarding
which network properties are to be conserved during randomization. Some examples are
shown below (here we assume that g is the original network to be randomized):

• gnm_random_graph(g.number_of_nodes(), g.number_of_edges()) conserves the
numbers of nodes and edges, nothing else.

• random_degree_sequence_graph(g.degree().values()) conserves the sequence
of node degrees, in addition to the numbers of nodes and edges. As noted above,
this function may not generate a graph within a given number of trials.

• expected_degree_graph(g.degree().values()) conserves the number of nodes
and the sequence of “expected” node degrees. This function can always generate a
graph very quickly using the efficient Miller-Hagberg algorithm [64]. While the gener-
ated network’s degree sequence doesn’t exactly match that of the input (especially
if the network is dense), this method is often a practical, reasonable approach for
the randomization of large real-world networks.

• double_edge_swap(g) conserves the numbers of nodes and edges and the se-
quence of node degrees. Unlike the previous three functions, this is not a graph-
generating function, but it directly modifies the topology of graph g. It conducts what
is called a double edge swap, i.e., randomly selecting two edges a − b and c − d,
removing those edges, and then creating new edges a − c and b − d (if either pair
is already connected, another swap will be attempted). This operation realizes a
slight randomization of the topology of g, and by repeating it many times, you can
gradually randomize the topology from the original g to a completely randomized
network. double_edge_swap(g, k) conducts k double edge swaps. There is also
connected_double_edge_swap available, which guarantees that the resulting graph
remains connected.
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Exercise 15.15 Randomize the topology of Zachary’s Karate Club graph by using
each of the following functions and visualize the results:

• gnm_random_graph

• random_degree_sequence_graph

• expected_degree_graph

• double_edge_swap (5 times)

• double_edge_swap (50 times)



Chapter 16

Dynamical Networks I: Modeling

16.1 Dynamical Network Models

There are several different classes of dynamical network models. In this chapter, we will
discuss the following three, in this particular order:

Models for “dynamics on networks” These models are the most natural extension of
traditional dynamical systems models. They consider how the states of components, or
nodes, change over time through their interactions with other nodes that are connected
to them. The connections are represented by links of a network, where the network
topology is fixed throughout time. Cellular automata, Boolean networks, and artificial
neural networks (without learning) all belong to this class.

Models for “dynamics of networks” These are the models that consider dynamical
changes of network topology itself over time, for various purposes: to understand mecha-
nisms that bring particular network topologies, to evaluate robustness and vulnerability of
networks, to design procedures for improving certain properties of networks, etc. The dy-
namics of networks are a particularly hot topic in network science nowadays (as of 2015)
because of the increasing availability of temporal network data [65].

Models for “adaptive networks” I must admit that I am not 100% objective when it
comes to this class of models, because I am one of the researchers who have been ac-
tively promoting it [66]. Anyway, the adaptive network models are models that describe the
co-evolution of dynamics on and of networks, where node states and network topologies
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dynamically change adaptively to each other. Adaptive network models try to unify differ-
ent dynamical network models to provide a generalized modeling framework for complex
systems, since many real-world systems show such adaptive network behaviors [67].

16.2 Simulating Dynamics on Networks

Because NetworkX adopts plain dictionaries as their main data structure, we can easily
add states to nodes (and edges) and dynamically update those states iteratively. This is
a simulation of dynamics on networks. This class of dynamical network models describes
dynamic state changes taking place on a static network topology. Many real-world dy-
namical networks fall into this category, including:

• Regulatory relationships among genes and proteins within a cell, where nodes are
genes and/or proteins and the node states are their expression levels.

• Ecological interactions among species in an ecosystem, where nodes are species
and the node states are their populations.

• Disease infection on social networks, where nodes are individuals and the node
states are their epidemiological states (e.g., susceptible, infected, recovered, immu-
nized, etc.).

• Information/culture propagation on organizational/social networks, where nodes are
individuals or communities and the node states are their informational/cultural states.

The implementation of simulation models for dynamics on networks is strikingly similar
to that of CA. You may find it even easier on networks, because of the straightforward
definition of “neighbors” on networks. Here, we will work on a simple local majority rule
on a social network, with the following assumptions:

• Nodes represent individuals, and edges represent their symmetric connections for
information sharing.

• Each individual takes either 0 or 1 as his or her state.

• Each individual changes his or her state to a majority choice within his or her local
neighborhood (i.e., the individual him- or herself and the neighbors connected to
him or her). This neighborhood is also called the ego network of the focal individual
in social sciences.
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• State updating takes place simultaneously on all individuals in the network.

• Individuals’ states are initially random.

Let’s continue to use pycxsimulator.py and implement the simulator code by defining
three essential components—initialization, observation, and updating.

The initialization part is to create a model of social network and then assign random
states to all the nodes. Here I propose to perform the simulation on our favorite Karate
Club graph. Just like the CA simulation, we need to prepare two network objects, one
for the current time step and the other for the next time step, to avoid conflicts during the
state updating process. Here is an example of the initialization part:

Code 16.1:
def initialize():

global g, nextg

g = nx.karate_club_graph()

g.pos = nx.spring_layout(g)

for i in g.nodes_iter():

g.node[i][’state’] = 1 if random() < .5 else 0

nextg = g.copy()

Here, we pre-calculate node positions using spring_layout and store the results under g
as an attribute g.pos. Python is so flexible that you can dynamically add any attribute to
an object without declaring it beforehand; we will utilize this trick later in the agent-based
modeling as well. g.pos will be used in the visualization so that nodes won’t jump around
every time you draw the network.

The g.nodes_iter() command used in the for loop above works essentially the same
way as g.nodes() in this context, but it is much more memory efficient because it doesn’t
generate an actual fully spelled-out list, but instead it generates a much more compact
representation called an iterator, an object that can return next values iteratively. There
is also g.edges_iter() for similar purposes for edges. It is generally a good idea to use
nodes_iter() and edges_iter() in loops, especially if your network is large. Finally, in
the last line, the copy command is used to create a duplicate copy of the network.

The observation part is about drawing the network. We have already done this many
times, but there is a new challenge here: We need to visualize the node states in addition
to the network topology. We can use the node_color option for this purpose:

Code 16.2:
def observe():

http://bingweb.binghamton.edu/~sayama/textbook/code/pycxsimulator.py
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global g, nextg

cla()

nx.draw(g, cmap = cm.binary, vmin = 0, vmax = 1,

node_color = [g.node[i][’state’] for i in g.nodes_iter()],

pos = g.pos)

The vmin/vmax options are to use a fixed range of state values; otherwise matplotlib would
automatically adjust the color mappings, which sometimes causes misleading visualiza-
tion. Also note that we are using g.pos to keep the nodes in pre-calculated positions.

The updating part is pretty similar to what we did for CA. You just need to sweep all
the nodes, and for each node, you sweep its neighbors, counting how many 1’s you have
in the local neighborhood. Here is a sample code:

Code 16.3:
def update():

global g, nextg

for i in g.nodes_iter():

count = g.node[i][’state’]

for j in g.neighbors(i):

count += g.node[j][’state’]

ratio = count / (g.degree(i) + 1.0)

nextg.node[i][’state’] = 1 if ratio > .5 \

else 0 if ratio < .5 \

else 1 if random() < .5 else 0

g, nextg = nextg, g

I believe this part deserves some in-depth explanation. The first for loop for i is to sweep
the space, i.e., the whole network. For each node, i, the variable count is first initialized
with node i’s own state. This is because, unlike in the previous CA implementations,
the node i itself is not included in its neighbors, so we have to manually count it first.
The second for loop for j is to sweep node i’s neighbors. NetworkX’s g.neighbors(i)

function gives a list of i’s neighbors, which is a lot simpler than the neighborhood sweep
in CA; we don’t have to write nested for loops for dx and dy, and we don’t have to worry
about boundary conditions at all. Neighbors are neighbors, period.

Once the local neighborhood sweep is done, the state ratio is calculated by dividing
count by the number of nodes counted (= the degree of node i plus 1 for itself). If the
state ratio is above 0.5, the local majority is 1, so the next state of node i will be 1. If
it is below 0.5, the local majority is 0, so the next state will be 0. Moreover, since this
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dynamic is taking place on a network, there is a chance for a tie (which never occurs on
CA with von Neumann or Moore neighborhoods). In the example above, I just included
a tie-breaker coin toss, to be fair. And the last swap of g and nextg is something we are
already familiar with.

The entire simulation code looks like this:

Code 16.4: net-majority.py
import matplotlib

matplotlib.use(’TkAgg’)

from pylab import *

import networkx as nx

def initialize():

global g, nextg

g = nx.karate_club_graph()

g.pos = nx.spring_layout(g)

for i in g.nodes_iter():

g.node[i][’state’] = 1 if random() < .5 else 0

nextg = g.copy()

def observe():

global g, nextg

cla()

nx.draw(g, cmap = cm.binary, vmin = 0, vmax = 1,

node_color = [g.node[i][’state’] for i in g.nodes_iter()],

pos = g.pos)

def update():

global g, nextg

for i in g.nodes_iter():

count = g.node[i][’state’]

for j in g.neighbors(i):

count += g.node[j][’state’]

ratio = count / (g.degree(i) + 1.0)

nextg.node[i][’state’] = 1 if ratio > .5 \

else 0 if ratio < .5 \

else 1 if random() < .5 else 0

http://bingweb.binghamton.edu/~sayama/textbook/code/net-majority.py


330 CHAPTER 16. DYNAMICAL NETWORKS I: MODELING

g, nextg = nextg, g

import pycxsimulator

pycxsimulator.GUI().start(func=[initialize, observe, update])

Run this code and enjoy your first dynamical network simulation. You will notice that the
network sometimes converges to a homogeneous state, while at other times it remains in
a divided condition (Fig. 16.1). Can you identify the areas where the boundaries between
the different states tend to form?

Figure 16.1: Visual output of Code 16.4. In this example, two groups of different states
have formed.

Exercise 16.1 Revise the majority rule dynamical network model developed
above so that each node stochastically flips its state with some probability. Then
simulate the model and see how its behavior is affected.

In what follows, we will see some more examples of two categories of dynamics on
networks models: discrete state/time models and continuous state/time models. We will
discuss two exemplar models in each category.
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Discrete state/time models (1): Voter model The first example is a revision of the
majority rule dynamical network model developed above. A very similar model of abstract
opinion dynamics has been studied in statistical physics, which is called the voter model.
Just like in the previous model, each node (“voter”) takes one of the finite discrete states
(say, black and white, or red and blue—you could view it as a political opinion), but the up-
dating rule is different. Instead of having all the nodes update their states simultaneously
based on local majority choices, the voter model considers only one opinion transfer event
at a time between a pair of connected nodes that are randomly chosen from the network
(Fig. 16.2). In this sense, it is an asynchronous dynamical network model.

Figure 16.2: Schematic illustration of the voter model. Each time a pair of connected
nodes are randomly selected (light green circle), the state of the speaker node (left) is
copied to the listener node (right).

There are three minor variations of how those nodes are chosen:

Original (“pull”) version: First, a “listener” node is randomly chosen from the network, and
then a “speaker” node is randomly chosen from the listener’s neighbors.

Reversed (“push”) version: First, a “speaker” node is randomly chosen from the network,
and then a “listener” node is randomly chosen from the speaker’s neighbors.

Edge-based (symmetric) version: First, an edge is randomly chosen from the network,
and then the two endpoints (nodes) of the edge are randomly assigned to be a
“speaker” and a “listener.”

In either case, the “listener” node copies the state of the “speaker” node. This is repeated
a number of times until the entire network reaches a consensus with a homogenized state.

If you think through these model assumptions carefully, you may notice that the first
two assumptions are not symmetric regarding the probability for a node to be chosen



332 CHAPTER 16. DYNAMICAL NETWORKS I: MODELING

as a “speaker” or a “listener.” The probability actually depends on how popular a node
is. Specifically, the original version tends to choose higher-degree nodes as a speaker
more often, while the reversed version tends to choose higher-degree nodes as a listener
more often. This is because of the famous friendship paradox, a counter-intuitive fact
first reported by sociologist Scott Feld in the 1990s [68], which is that a randomly se-
lected neighbor of a randomly selected node tends to have a larger-than-average degree.
Therefore, it is expected that the original version of the voter model would promote ho-
mogenization of opinions as it gives more speaking time to the popular nodes, while the
reversed version would give an equal chance of speech to everyone so the opinion ho-
mogenization would be much slower, and the edge-based version would be somewhere
in between. We can check these predictions by computer simulations.

The good news is that the simulation code of the voter model is much simpler than that
of the majority rule network model, because of the asynchrony of state updating. We no
longer need to use two separate data structures; we can keep modifying just one Graph

object directly. Here is a sample code for the original “pull” version of the voter model,
again on the Karate Club graph:

Code 16.5: voter-model.py
import matplotlib

matplotlib.use(’TkAgg’)

from pylab import *

import networkx as nx

import random as rd

def initialize():

global g

g = nx.karate_club_graph()

g.pos = nx.spring_layout(g)

for i in g.nodes_iter():

g.node[i][’state’] = 1 if random() < .5 else 0

def observe():

global g

cla()

nx.draw(g, cmap = cm.binary, vmin = 0, vmax = 1,

node_color = [g.node[i][’state’] for i in g.nodes_iter()],

pos = g.pos)

http://bingweb.binghamton.edu/~sayama/textbook/code/voter-model.py
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def update():

global g

listener = rd.choice(g.nodes())

speaker = rd.choice(g.neighbors(listener))

g.node[listener][’state’] = g.node[speaker][’state’]

import pycxsimulator

pycxsimulator.GUI().start(func=[initialize, observe, update])

See how simple the update function is! This simulation takes a lot more steps for the
system to reach a homogeneous state, because each step involves only two nodes. It is
probably a good idea to set the step size to 50 under the “Settings” tab to speed up the
simulations.

Exercise 16.2 Revise the code above so that you can measure how many steps
it will take until the system reaches a consensus (i.e., homogenized state). Then
run multiple simulations (Monte Carlo simulations) to calculate the average time
length needed for consensus formation in the original voter model.

Exercise 16.3 Revise the code further to implement (1) the reversed and (2) the
edge-based voter models. Then conduct Monte Carlo simulations to measure the
average time length needed for consensus formation in each case. Compare the
results among the three versions.

Discrete state/time models (2): Epidemic model The second example of discrete
state/time dynamical network models is the epidemic model on a network. Here we con-
sider the Susceptible-Infected-Susceptible (SIS) model, which is even simpler than the
SIR model we discussed in Exercise 7.3. In the SIS model, there are only two states:
Susceptible and Infected. A susceptible node can get infected from an infected neighbor
node with infection probability pi (per infected neighbor), while an infected node can re-
cover back to a susceptible node (i.e., no immunity acquired) with recovery probability pr
(Fig. 16.3). This setting still puts everything in binary states like in the earlier examples,
so we can recycle their codes developed above.
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Figure 16.3: Schematic illustration of the state-transition rule of the SIS model.

Regarding the updating scheme, I think you probably liked the simplicity of the asyn-
chronous updating we used for the voter model, so let’s adopt it for this SIS model too.
We will first choose a node randomly, and if it is susceptible, then we will randomly choose
one of its neighbors; this is similar to the original “pull” version of the voter model. All you
need is to revise just the updating function as follows:

Code 16.6: SIS-model.py
p_i = 0.5 # infection probability

p_r = 0.5 # recovery probability

def update():

global g

a = rd.choice(g.nodes())

if g.node[a][’state’] == 0: # if susceptible

b = rd.choice(g.neighbors(a))

if g.node[b][’state’] == 1: # if neighbor b is infected

g.node[a][’state’] = 1 if random() < p_i else 0

else: # if infected

http://bingweb.binghamton.edu/~sayama/textbook/code/SIS-model.py
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g.node[a][’state’] = 0 if random() < p_r else 1

Again, you should set the step size to 50 to speed up the simulations. With these param-
eter settings (pi = pr = 0.5), you will probably find that the disease (state 1 = black nodes)
quickly dies off and disappears from the network, even though half of the initial population
is infected at the beginning. This means that for these particular parameter values and
network topology, the system can successfully suppress a pandemic without taking any
special action.

Exercise 16.4 Conduct simulations of the SIS model with either pi or pr varied
systematically, while the other one is fixed at 0.5. Determine the condition in which
a pandemic occurs (i.e., the disease persists for an indefinitely long period of time).
Is the transition gradual or sharp? Once you get the results, try varying the other
parameter as well.

Exercise 16.5 Generate a much larger random network of your choice and con-
duct the same SIS model simulation on it. See how the dynamics are affected by
the change of network size and/or topology. Will the disease continue to persist on
the network?

Continuous state/time models (1): Diffusion model So far, we haven’t seen any
equation in this chapter, because all the models discussed above were described in al-
gorithmic rules with stochastic factors involved. But if they are deterministic, dynamical
network models are not fundamentally different from other conventional dynamical sys-
tems. In fact, any deterministic dynamical model of a network made of n nodes can be
described in one of the following standard formulations using an n-dimensional vector
state x,

xt = F (xt−1, t) (for discrete-time models), or (16.1)
dx

dt
= F (x, t) (for continuous-time models), (16.2)

if function F correctly represents the interrelationships between the different components
of x. For example, the local majority rule network model we discussed earlier in this
chapter is fully deterministic, so its behavior can be captured entirely in a set of difference
equations in the form of Eq. (16.1). In this and next subsections, we will discuss two
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illustrative examples of the differential equation version of dynamics on networks models,
i.e., the diffusion model and the coupled oscillator model. They are both extensively
studied in network science.

Diffusion on a network can be a generalization of spatial diffusion models into non-
regular, non-homogeneous spatial topologies. Each node represents a local site where
some “stuff” can be accumulated, and each symmetric edge represents a channel through
which the stuff can be transported, one way or the other, driven by the gradient of its con-
centration. This can be a useful model of the migration of species between geographically
semi-isolated habitats, flow of currency between cities across a nation, dissemination of
organizational culture within a firm, and so on. The basic assumption is that the flow of
the stuff is determined by the difference in its concentration across the edge:

dci
dt

= α
∑
j∈Ni

(cj − ci) (16.3)

Here ci is the concentration of the stuff on node i, α is the diffusion constant, and Ni is
the set of node i’s neighbors. Inside the parentheses (cj − ci) represents the difference
in the concentration between node j and node i across the edge (i, j). If neighbor j has
more stuff than node i, there is an influx from j to i, causing a positive effect on dci/dt. Or
if neighbor j has less than node i, there is an outflux from i to j, causing a negative effect
on dci/dt. This makes sense.

Note that the equation above is a linear dynamical system. So, if we represent the
entire list of node states by a state vector c = (c1 c2 . . . cn)T , Eq. (16.3) can be written as

dc

dt
= −αLc, (16.4)

where L is what is called a Laplacian matrix of the network, which is defined as

L = D − A, (16.5)

where A is the adjacency matrix of the network, and D is the degree matrix of the net-
work, i.e., a matrix whose i-th diagonal component is the degree of node i while all other
components are 0. An example of those matrices is shown in Fig. 16.4.

Wait a minute. We already heard “Laplacian” many times when we discussed PDEs.
The Laplacian operator (∇2) appeared in spatial diffusion equations, while this new Lapla-
cian matrix thing also appears in a network-based diffusion equation. Are they related?
The answer is yes. In fact, they are (almost) identical linear operators in terms of their
role. Remember that when we discretized Laplacian operators in PDEs to simulate using
CA (Eq. (13.35)), we learned that a discrete version of a Laplacian can be calculated by
the following principle:
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Figure 16.4: Relationship among a degree matrix, an adjacent matrix, and a Laplacian
matrix.
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“Measure the difference between your neighbor and yourself, and then sum up
all those differences.”

Note that this is exactly what we did on a network in Eq. (16.3)! So, essentially, the Lapla-
cian matrix of a graph is a discrete equivalent of the Laplacian operator for continuous
space. The only difference, which is quite unfortunate in my opinion, is that they are de-
fined with opposite signs for historical reasons; compare the first term of Eq. (13.17) and
Eq.(16.4), and you will see that the Laplacian matrix did not absorb the minus sign inside
it. So, conceptually,

∇2 ⇔ −L. (16.6)

I have always thought that this mismatch of signs was so confusing, but both of these
“Laplacians” are already fully established in their respective fields. So, we just have to live
with these inconsistent definitions of “Laplacians.”

Now that we have the mathematical equations for diffusion on a network, we can
discretize time to simulate their dynamics in Python. Eq. (16.3) becomes

ci(t+ ∆t) = ci(t) +

[
α
∑
j∈Ni

(
cj(t)− ci(t)

)]
∆t (16.7)

= ci(t) + α

[(∑
j∈Ni

cj(t)

)
− ci(t) deg(i)

]
∆t. (16.8)

Or, equivalently, we can also discretize time in Eq. (16.4), i.e.,

c(t+ ∆t) = c(t)− αLc(t)∆t (16.9)

= (I − αL∆t) c(t), (16.10)

where c is now the state vector for the entire network, and I is the identity matrix. Eqs. (16.8)
and (16.10) represent exactly the same diffusion dynamics, but we will use Eq. (16.8) for
the simulation in the following, because it won’t require matrix representation (which could
be inefficient in terms of memory use if the network is large and sparse).

We can reuse Code 16.4 for this simulation. We just need to replace the update

function with the following:

Code 16.7: net-diffusion.py
alpha = 1 # diffusion constant

Dt = 0.01 # Delta t

http://bingweb.binghamton.edu/~sayama/textbook/code/net-diffusion.py
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def update():

global g, nextg

for i in g.nodes_iter():

ci = g.node[i][’state’]

nextg.node[i][’state’] = ci + alpha * ( \

sum(g.node[j][’state’] for j in g.neighbors(i)) \

- ci * g.degree(i)) * Dt

g, nextg = nextg, g

And then we can simulate a nice smooth diffusion process on a network, as shown in
Fig. 16.5, where continuous node states are represented by shades of gray. You can see
that the diffusion makes the entire network converge to a homogeneous configuration with
the average node state (around 0.5, or half gray) everywhere.

Figure 16.5: Visual output of Code 16.7. Time flows from left to right.

Exercise 16.6 This diffusion model conserves the sum of the node states. Con-
firm this by revising the code to measure the sum of the node states during the
simulation.

Exercise 16.7 Simulate a diffusion process on each of the following network
topologies, and then discuss how the network topology affects the diffusion on
it. For example, does it make diffusion faster or slower?

• random graph
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• barbell graph

• ring-shaped graph (i.e., degree-2 regular graph)

Continuous state/time models (2): Coupled oscillator model Now that we have a
diffusion model on a network, we can naturally extend it to reaction-diffusion dynamics as
well, just like we did with PDEs. Its mathematical formulation is quite straightforward; you
just need to add a local reaction term to Eq. (16.3), to obtain

dci
dt

= Ri(ci) + α
∑
j∈Ni

(cj − ci). (16.11)

You can throw in any local dynamics to the reaction term Ri. If each node takes vector-
valued states (like PDE-based reaction-diffusion systems), then you may also have dif-
ferent diffusion constants (α1, α2, . . .) that correspond to multiple dimensions of the state
space. Some researchers even consider different network topologies for different dimen-
sions of the state space. Such networks made of superposed network topologies are
called multiplex networks, which is a very hot topic actively studied right now (as of 2015),
but we don’t cover it in this textbook.

For simplicity, here we limit our consideration to scalar-valued node states only. Even
with scalar-valued states, there are some very interesting dynamical network models. A
classic example is coupled oscillators. Assume you have a bunch of oscillators, each of
which tends to oscillate at its own inherent frequency in isolation. This inherent frequency
is slightly different from oscillator to oscillator. But when connected together in a certain
network topology, the oscillators begin to influence each other’s oscillation phases. A
key question that can be answered using this model is: When and how do these oscilla-
tors synchronize? This problem about synchronization of the collective is an interesting
problem that arises in many areas of complex systems [69]: firing patterns of spatially
distributed fireflies, excitation patterns of neurons, and behavior of traders in financial
markets. In each of those systems, individual behaviors naturally have some inherent
variations. Yet if the connections among them are strong enough and meet certain con-
ditions, those individuals begin to orchestrate their behaviors and may show a globally
synchronized behavior (Fig.16.6), which may be good or bad, depending on the context.
This problem can be studied using network models. In fact, addressing this problem was
part of the original motivation for Duncan Watts’ and Steven Strogatz’s “small-world” pa-
per published in the late 1990s [56], one of the landmark papers that helped create the
field of network science.
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Figure 16.6: Schematic illustration of coupled oscillators. Light bulbs that change
light intensity periodically at different frequencies (left) may synchronize globally if
connected (right).
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Representing oscillatory behavior naturally requires two or more dynamical variables,
as we learned earlier. But purely harmonic oscillation can be reduced to a simple linear
motion with constant velocity, if the behavior is interpreted as a projection of uniform cir-
cular motion and if the state is described in terms of angle θ. This turns the reaction term
in Eq. (16.11) into just a constant angular velocity ωi. In the meantime, this representa-
tion also affects the diffusion term, because the difference between two θ’s is no longer
computable by simple arithmetic subtraction like θj − θi, because there are infinitely many
θ’s that are equivalent (e.g., 0, 2π, −2π, 4π, −4π, etc.). So, the difference between the two
states in the diffusion term has to be modified to focus only on the actual “phase differ-
ence” between the two nodes. You can imagine marching soldiers on a circular track as a
visual example of this model (Fig. 16.7). Two soldiers who are far apart in θ may actually
be close to each other in physical space (i.e., oscillation phase). The model should be set
up in such a way that they try to come closer to each other in the physical space, not in
the angular space.

To represent this type of phase-based interaction among coupled oscillators, a Japanese
physicist Yoshiki Kuramoto proposed the following very simple, elegant mathematical
model in the 1970s [70]:

dθi
dt

= ωi + α

∑
j∈Ni

sin(θj − θi)
|Ni|

(16.12)

The angular difference part was replaced by a sine function of angular difference, which
becomes positive if j is physically ahead of i, or negative if j is physically behind i on
the circular track (because adding or subtracting 2π inside sin won’t affect the result).
These forces that soldier i receives from his or her neighbors will be averaged and used
to determine the adjustment of his or her movement. The parameter α determines the
strength of the couplings among the soldiers. Note that the original Kuramoto model used
a fully connected network topology, but here we are considering the same dynamics on a
network of a nontrivial topology.

Let’s do some simulations to see if our networked soldiers can self-organize to march
in sync. We can take the previous code for network diffusion (Code 16.7) and revise it
for this Kuramoto model. There are several changes we need to implement. First, each
node needs not only its dynamic state (θi) but also its static preferred velocity (ωi), the
latter of which should be initialized so that there are some variations among the nodes.
Second, the visualization function should convert the states into some bounded values,
since angular position θi continuously increases toward infinity. We can use sin(θi) for
this visualization purpose. Third, the updating rule needs to be revised, of course, to
implement Eq. (16.12).
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Figure 16.7: Marching soldiers on a circular track, as a visual representation of cou-
pled oscillators described in angular space, where soldier 1 and his or her neighbors
on the network (2, 3, 4) are illustrated. Each soldier has his or her own preferred speed
(ωi). The neighbors’ physical proximity (not necessarily their angular proximity; see θ1

and θ4) should be used to determine in which direction soldier 1’s angular velocity is
adjusted.
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Here is an example of the revised code, where I also changed the color map to cm.hsv

so that the state can be visualized in a more cyclic manner:

Code 16.8: net-kuramoto.py
import matplotlib

matplotlib.use(’TkAgg’)

from pylab import *

import networkx as nx

def initialize():

global g, nextg

g = nx.karate_club_graph()

g.pos = nx.spring_layout(g)

for i in g.nodes_iter():

g.node[i][’theta’] = 2 * pi * random()

g.node[i][’omega’] = 1. + uniform(-0.05, 0.05)

nextg = g.copy()

def observe():

global g, nextg

cla()

nx.draw(g, cmap = cm.hsv, vmin = -1, vmax = 1,

node_color = [sin(g.node[i][’theta’]) for i in g.nodes_iter()],

pos = g.pos)

alpha = 1 # coupling strength

Dt = 0.01 # Delta t

def update():

global g, nextg

for i in g.nodes_iter():

theta_i = g.node[i][’theta’]

nextg.node[i][’theta’] = theta_i + (g.node[i][’omega’] + alpha * ( \

sum(sin(g.node[j][’theta’] - theta_i) for j in g.neighbors(i)) \

/ g.degree(i))) * Dt

g, nextg = nextg, g

http://bingweb.binghamton.edu/~sayama/textbook/code/net-kuramoto.py
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import pycxsimulator

pycxsimulator.GUI().start(func=[initialize, observe, update])

Figure 16.8 shows a typical simulation run. The dynamics of this simulation can be better
visualized if you increase the step size to 50. Run it yourself, and see how the inherently
diverse nodes get self-organized to start a synchronized marching. Do you see any spatial
patterns there?

Figure 16.8: Visual output of Code 16.8. Time flows from left to right.

Exercise 16.8 It is known that the level of synchronization in the Kuramoto model
(and many other coupled oscillator models) can be characterized by the following
measurement (called phase coherence):

r =

∣∣∣∣∣ 1n∑
i

eiθi

∣∣∣∣∣ (16.13)

Here n is the number of nodes, θi is the state of node i, and i is the imaginary
unit (to avoid confusion with node index i). This measurement becomes 1 if all the
nodes are in perfect synchronization, or 0 if their phases are completely random
and uniformly distributed in the angular space. Revise the simulation code so
that you can measure and monitor how this phase coherence changes during the
simulation.

Exercise 16.9 Simulate the Kuramoto model on each of the following network
topologies:
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• random graph

• barbell graph

• ring-shaped graph (i.e., degree-2 regular graph)

Discuss how the network topology affects the synchronization. Will it make syn-
chronization easier or more difficult?

Exercise 16.10 Conduct simulations of the Kuramoto model by systematically in-
creasing the amount of variations of ωi (currently set to 0.05 in the initialize

function) and see when/how the transition of the system behavior occurs.

Here are some more exercises of dynamics on networks models. Have fun!

Exercise 16.11 Hopfield network (a.k.a. attractor network) John Hopfield pro-
posed a discrete state/time dynamical network model that can recover memorized
arrangements of states from incomplete initial conditions [20, 21]. This was one of
the pioneering works of artificial neural network research, and its basic principles
are still actively used today in various computational intelligence applications.

Here are the typical assumptions made in the Hopfield network model:

• The nodes represent artificial neurons, which take either -1 or 1 as dynamic
states.

• Their network is fully connected (i.e., a complete graph).

• The edges are weighted and symmetric.

• The node states will update synchronously in discrete time steps according to
the following rule:

si(t+ 1) = sign

(∑
j

wijsj(t)

)
(16.14)

Here, si(t) is the state of node i at time t, wij is the edge weight between
nodes i and j (wij = wji because of symmetry), and sign(x) is a function that
gives 1 if x > 0, -1 if x < 0, or 0 if x = 0.

• There are no self-loops (wii = 0 for all i).
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What Hopfield showed is that one can “imprint” a finite number of pre-determined
patterns into this network by carefully designing the edge weights using the follow-
ing simple encoding formula:

wij =
∑
k

si,ksj,k (16.15)

Here si,k is the state of node i in the k-th pattern to be imprinted in the network. Im-
plement a simulator of the Hopfield network model, and construct the edge weights
wij from a few state patterns of your choice. Then simulate the dynamics of the
network from a random initial condition and see how the network behaves. Once
your model successfully demonstrates the recovery of imprinted patterns, try in-
creasing the number of patterns to be imprinted, and see when/how the network
loses the capability to memorize all of those patterns.

Exercise 16.12 Cascading failure This model is a continuous-state, discrete-
time dynamical network model that represents how a functional failure of a com-
ponent in an infrastructure network can trigger subsequent failures and cause a
large-scale systemic failure of the whole network. It is often used as a stylized
model of massive power blackouts, financial catastrophe, and other (undesirable)
socio-technological and socio-economical events.

Here are the typical assumptions made in the cascading failure model:

• The nodes represent a component of an infrastructure network, such as
power transmitters, or financial institutions. The nodes take non-negative real
numbers as their dynamic states, which represent the amount of load or bur-
den they are handling. The nodes can also take a specially designated “dead”
state.

• Each node also has its own capacity as a static property.

• Their network can be in any topology.

• The edges can be directed or undirected.

• The node states will update either synchronously or asynchronously in dis-
crete time steps, according to the following simple rules:

– If the node is dead, nothing happens.
– If the node is not dead but its load exceeds its capacity, it will turn to a

dead state, and the load it was handling will be evenly distributed to its
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neighbors that are still alive.

Implement a simulator of the cascading failure model, and simulate the dynamics
of the network from an initial condition that is constructed with randomly assigned
loads and capacities, with one initially overloaded node. Try increasing the average
load level relative to the average capacity level, and see when/how the network
begins to show a cascading failure. Investigate which node has the most significant
impact when it is overloaded. Also try several different network topologies to see if
topology affects the resilience of the networks.

Exercise 16.13 Create a continuous state/time network model of coupled oscil-
lators where each oscillator tries to desynchronize from its neighbors. You can
modify the Kuramoto model to develop such a model. Then simulate the network
from an initial condition where the nodes’ phases are almost the same, and demon-
strate that the network can spontaneously diversify node phases. Discuss potential
application areas for such a model.

16.3 Simulating Dynamics of Networks

Dynamics of networks models capture completely different kinds of network dynamics,
i.e., changes in network topologies. This includes the addition and removal of nodes and
edges over time. As discussed in the previous chapter, such dynamic changes of the
system’s topology itself are quite unusual from a traditional dynamical systems viewpoint,
because they would make it impossible to assume a well-defined static phase space of the
system. But permitting such topological changes opens up a whole new set of possibilities
to model various natural and social phenomena that were hard to capture in conventional
dynamical systems frameworks, such as:

• Evolutionary changes of gene regulatory and metabolic networks

• Self-organization and adaptation of food webs

• Social network formation and evolution

• Growth of infrastructure networks (e.g., traffic networks, power grids, the Internet,
WWW)
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• Growth of scientific citation networks

As seen above, growth and evolution of networks in society are particularly well stud-
ied using dynamics of network models. This is partly because their temporal changes
take place much faster than other natural networks that change at ecological/evolutionary
time scales, and thus researchers can compile a large amount of temporal network data
relatively easily.

One iconic problem that has been discussed about social networks is this: Why is our
world so “small” even though there are millions of people in it? This was called the “small-
world” problem by social psychologist Stanley Milgram, who experimentally demonstrated
this through his famous “six degrees of separation” experiment in the 1960s [71]. This
empirical fact, that any pair of human individuals in our society is likely to be connected
through a path made of only a small number of social ties, has been puzzling many people,
including researchers. This problem doesn’t sound trivial, because we usually have only
the information about local social connections around ourselves, without knowing much
about how each one of our acquaintances is connected to the rest of the world. But it is
probably true that you are connected to, say, the President of the United States by fewer
than ten social links.

This small-world problem already had a classic mathematical explanation. If the net-
work is purely random, then the average distance between pairs of nodes are extremely
small. In this sense, Erdős-Rényi random graph models were already able to explain the
small-world problem beautifully. However, there is an issue with this explanation: How
come a person who has local information only can get connected to individuals randomly
chosen from the entire society, who might be living on the opposite side of the globe?
This is a legitimate concern because, after all, most of our social connections are within a
close circle of people around us. Most social connections are very local in both geograph-
ical and social senses, and there is no way we can create a truly random network in the
real world. Therefore, we need different kinds of mechanisms by which social networks
change their topologies to acquire the “small-world” property.

In the following, we will discuss two dynamics of networks models that can nicely
explain the small-world problem in more realistic scenarios. Interestingly, these models
were published at about the same time, in the late 1990s, and both contributed greatly to
the establishment of the new field of network science.

Small-world networks by random edge rewiring In 1998, Duncan Watts and Steven
Strogatz addressed this paradox, that social networks are “small” yet highly clustered
locally, by introducing the small-world network model [56]. The Watts-Strogatz model is



350 CHAPTER 16. DYNAMICAL NETWORKS I: MODELING

based on a random edge rewiring procedure to gradually modify network topology from a
completely regular, local, clustered topology to a completely random, global, unclustered
one. In the middle of this random rewiring process, they found networks that had the
“small-world” property yet still maintained locally clustered topologies. They named these
networks “small-world” networks. Note that having the “small-world” property is not a
sufficient condition for a network to be called “small-world” in Watts-Strogatz sense. The
network should also have high local clustering.

Watts and Strogatz didn’t propose their random edge rewiring procedure as a dynami-
cal process over time, but we can still simulate it as a dynamics on networks model. Here
are their original model assumptions:

1. The initial network topology is a ring-shaped network made of n nodes. Each node
is connected to k nearest neighbors (i.e., k/2 nearest neighbors clockwise and k/2
nearest neighbors counterclockwise) by undirected edges.

2. Each edge is subject to random rewiring with probability p. If selected for random
rewiring, one of the two ends of the edge is reconnected to a node that is randomly
chosen from the whole network. If this rewiring causes duplicate edges, the rewiring
is canceled.

Watts and Strogatz’s original model did the random edge rewiring (step 2 above) by se-
quentially visiting each node clockwise. But here, we can make a minor revision to the
model so that the edge rewiring represents a more realistic social event, such as a ran-
dom encounter at the airport of two individuals who live far apart from each other, etc.
Here are the new, revised model assumptions:

1. The initial network topology is the same as described above.

2. In each edge rewiring event, a node is randomly selected from the whole network.
The node drops one of its edges randomly, and then creates a new edge to a new
node that is randomly chosen from the whole network (excluding those to which the
node is already connected).

This model captures essentially the same procedure as Watts and Strogatz’s, but the
rewiring probability p is now represented implicitly by the length of the simulation. If the
simulation continues indefinitely, then the network will eventually become completely ran-
dom. Such a dynamical process can be interpreted as a model of social evolution in
which an initially locally clustered society gradually accumulates more and more global
connections that are caused by rare, random long-range encounters among people.
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Let’s simulate this model using Python. When you simulate the dynamics of networks,
one practical challenge is how to visualize topological changes of the network. Unlike
node states that can be easily visualized using colors, network topology is the shape of
the network itself, and if the shape of the network is changing dynamically, we also need
to simulate the physical movement of nodes in the visualization space as well. This is just
for aesthetic visualization only, which has nothing to do with the real science going on in
the network. But an effective visualization often helps us better understand what is going
on in the simulation, so let’s try some fancy animation here. Fortunately, NetworkX’s
spring_layout function can be used to update the current node positions slightly. For
example:

Code 16.9:
g.pos = nx.spring_layout(g, pos = g.pos, iterations = 5)

This code calculates a new set of node positions by using g.pos as the initial positions
and by applying the Fruchterman-Reingold force-directed algorithm to them for just five
steps. This will effectively simulate a slight movement of the nodes from their current
positions, which can be utilized to animate the topological changes smoothly.

Here is an example of the completed simulation code for the small-world network for-
mation by random edge rewiring:

Code 16.10: small-world.py
import matplotlib

matplotlib.use(’TkAgg’)

from pylab import *

import networkx as nx

import random as rd

n = 30 # number of nodes

k = 4 # number of neighbors of each node

def initialize():

global g

g = nx.Graph()

for i in xrange(n):

for j in range(1, k/2 + 1):

g.add_edge(i, (i + j) % n)

g.add_edge(i, (i - j) % n)

http://bingweb.binghamton.edu/~sayama/textbook/code/small-world.py
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g.pos = nx.spring_layout(g)

g.count = 0

def observe():

global g

cla()

nx.draw(g, pos = g.pos)

def update():

global g

g.count += 1

if g.count % 20 == 0: # rewiring once in every 20 steps

nds = g.nodes()

i = rd.choice(nds)

if g.degree(i) > 0:

g.remove_edge(i, rd.choice(g.neighbors(i)))

nds.remove(i)

for j in g.neighbors(i):

nds.remove(j)

g.add_edge(i, rd.choice(nds))

# simulation of node movement

g.pos = nx.spring_layout(g, pos = g.pos, iterations = 5)

import pycxsimulator

pycxsimulator.GUI().start(func=[initialize, observe, update])

The initialize function creates a ring-shaped network topology by connecting each
node to its k nearest neighbors (j ∈ {1, . . . , k/2}). “% n” is used to confine the names
of nodes to the domain [0,n−1] with periodic boundary conditions. An additional at-
tribute g.count is also created in order to count time steps between events of topological
changes. In the update function, g.count is incremented by one, and the random edge
rewiring is simulated in every 20 steps as follows: First, node i is randomly chosen, and
then one of its connections is removed. Then node i itself and its neighbors are removed
from the candidate node list. A new edge is then created between i and a node randomly
chosen from the remaining candidate nodes. Finally, regardless of whether a random
edge rewiring occurred or not, node movement is simulated using the spring_layout
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function.
Running this code will give you an animated process of random edge rewiring, which

gradually turns a regular, local, clustered network to a random, global, unclustered one
(Fig. 16.9). Somewhere in this network dynamics, you will see the Watts-Strogatz small-
world network arise, but just temporarily (which will be discussed further in the next chap-
ter).

Figure 16.9: Visual output of Code 16.10. Time flows from left to right.

Exercise 16.14 Revise the small-world network formation model above so that
the network is initially a two-dimensional grid in which each node is connected to its
four neighbors (north, south, east, and west; except for those on the boundaries of
the space). Then run the simulations, and see how random edge rewiring changes
the topology of the network.

For your information, NetworkX already has a built-in graph generator function for
Watts-Strogatz small-world networks, watts_strogatz_graph(n, k, p). Here, n is the
number of nodes, k is the degree of each node, and p is the edge rewiring probability. If
you don’t need to simulate the formation of small-world networks iteratively, you should
just use this function instead.

Scale-free networks by preferential attachment The Watts-Strogatz small-world net-
work model brought about a major breakthrough in explaining properties of real-world
networks using abstract network models. But of course, it was not free from limitations.
First, their model required a “Goldilocks” rewiring probability p (or such a simulation length
in our revised model) in order to obtain a small-world network. This means that their model
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couldn’t explain how such an appropriate p would be maintained in real social networks.
Second, the small-world networks generated by their model didn’t capture one important
aspect of real-world networks: heterogeneity of connectivities. In every level of society, we
often find a few very popular people as well as many other less-popular, “ordinary” peo-
ple. In other words, there is always great variation in node degrees. However, since the
Watts-Strogatz model modifies an initially regular graph by a series of random rewirings,
the resulting networks are still quite close to regular, where each node has more or less
the same number of connections. This is quite different from what we usually see in
reality.

Just one year after the publication of Watts and Strogatz’s paper, Albert-László Barabási
and Réka Albert published another very influential paper [57] about a new model that
could explain both the small-world property and large variations of node degrees in a
network. The Barabási-Albert model described self-organization of networks over time
caused by a series of network growth events with preferential attachment. Their model
assumptions were as follows:

1. The initial network topology is an arbitrary graph made of m0 nodes. There is no
specific requirement for its shape, as long as each node has at least one connection
(so its degree is positive).

2. In each network growth event, a newcomer node is attached to the network by m
edges (m ≤ m0). The destination of each edge is selected from the network of
existing nodes using the following selection probabilities:

p(i) =
deg(i)∑
j deg(j)

(16.16)

Here p(i) is the probability for an existing node i to be connected by a newcomer
node, which is proportional to its degree (preferential attachment).

This preferential attachment mechanism captures “the rich get richer” effect in the growth
of systems, which is often seen in many socio-economical, ecological, and physical pro-
cesses. Such cumulative advantage is also called the “Matthew effect” in sociology. What
Barabási and Albert found was that the network growing with this simple dynamical rule
will eventually form a certain type of topology in which the distribution of the node degrees
follows a power law

P (k) ∼ k−γ, (16.17)
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where P (k) is the probability for a node to have degree k, and −γ is the scaling expo-
nent (γ = 3 in the Barabási-Albert model). Since the exponent is negative, this distri-
bution means that most nodes have very small k, while only a few nodes have large k

(Fig. 16.10). But the key implication is that such super-popular “hub” nodes do exist in
this distribution, which wouldn’t be possible if the distribution was a normal distribution,
for example. This is because a power law distribution has a long tail (also called a fat tail,
heavy tail, etc.), in which the probability goes down much more slowly than in the tail of
a normal distribution as k gets larger. Barabási and Albert called networks whose degree
distributions follow a power law scale-free networks, because there is no characteristic
“scale” that stands out in their degree distributions.
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Figure 16.10: Plots of the power law distribution P (k) ∼ k−γ with γ = 3. Left: In linear
scales. Right: In log-log scales.

The network growth with preferential attachments is an interesting, fun process to
simulate. We can reuse most of Code 16.10 for this purpose as well. One critical compo-
nent we will need to newly define is the preferential node selection function that randomly
chooses a node based on node degrees. This can be accomplished by roulette selec-
tion, i.e., creating a “roulette” from the node degrees and then deciding which bin in the
roulette a randomly generated number falls into. In Python, this preferential node selection
function can be written as follows:

Code 16.11:
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def pref_select(nds):

global g

r = uniform(0, sum(g.degree(i) for i in nds))

x = 0

for i in nds:

x += g.degree(i)

if r <= x:

return i

Here, nds is the list of node IDs, r is a randomly generated number, and x is the position of
the boundary between the currently considered bin and the next one. The for loop moves
the value of x from the beginning of the roulette (0) to each boundary of bins sequentially,
and returns the node ID (i) as soon as it detects that the current bin contains r (i.e.,
r <= x). See Fig. 16.11 for a visual illustration of this process.
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Figure 16.11: Schematic illustration of the roulette selection implemented in Code
16.11.
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With this preferential node selection function, the completed simulation code looks like
this:

Code 16.12: barabasi-albert.py
import matplotlib

matplotlib.use(’TkAgg’)

from pylab import *

import networkx as nx

m0 = 5 # number of nodes in initial condition

m = 2 # number of edges per new node

def initialize():

global g

g = nx.complete_graph(m0)

g.pos = nx.spring_layout(g)

g.count = 0

def observe():

global g

cla()

nx.draw(g, pos = g.pos)

def pref_select(nds):

global g

r = uniform(0, sum(g.degree(i) for i in nds))

x = 0

for i in nds:

x += g.degree(i)

if r <= x:

return i

def update():

global g

g.count += 1

if g.count % 20 == 0: # network growth once in every 20 steps

nds = g.nodes()

http://bingweb.binghamton.edu/~sayama/textbook/code/barabasi-albert.py
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newcomer = max(nds) + 1

for i in range(m):

j = pref_select(nds)

g.add_edge(newcomer, j)

nds.remove(j)

g.pos[newcomer] = (0, 0)

# simulation of node movement

g.pos = nx.spring_layout(g, pos = g.pos, iterations = 5)

import pycxsimulator

pycxsimulator.GUI().start(func=[initialize, observe, update])

In this sample code, the network growth starts with a five-node complete graph. Each
time a newcomer node is added to the network, two new edges are established. Note
that every time an edge is created between the newcomer and an existing node j, node j

is removed from the candidate list nds so that no duplicate edges will be created. Finally,
a new position (0, 0) for the newcomer is added to g.pos. Since g.pos is a Python
dictionary, a new entry can be inserted just by using newcomer as a key.

Figure 16.12 shows a typical simulation result in which you see highly connected hub
nodes spontaneously arise. When you continue this simulation long enough, the resulting
distribution of node degrees comes closer to a power law distribution with γ = 3.

Figure 16.12: Visual output of Code 16.12. Time flows from left to right.
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Exercise 16.15 Simulate the Barabási-Albert network growth model with m = 1,
m = 3, and m = 5, and see how the growth process may be affected by the
variation of this parameter.

Exercise 16.16 Modify the preferential node selection function so that the node
selection probability p(i) is each of the following:

• independent of the node degree (random attachment)

• proportional to the square of the node degree (strong preferential attachment)

• inversely proportional to the node degree (negative preferential attachment)

Conduct simulations for these cases and compare the resulting network topologies.

Note that NetworkX has a built-in graph generator function for the Barabási-Albert
scale-free networks too, called barabasi_albert_graph(n, m). Here, n is the number of
nodes, and m the number of edges by which each newcomer node is connected to the
network.

Here are some more exercises of dynamics of networks models, for your further ex-
ploration:

Exercise 16.17 Closing triangles This example is a somewhat reversed ver-
sion of the Watts-Strogatz small-world network model. Instead of making a local,
clustered network to a global, unclustered network, we can consider a dynamical
process that makes an unclustered network more clustered over time. Here are
the rules:

• The network is initially random, e.g., an Erdős-Rényi random graph.

• In each iteration, a two-edge path (A-B-C) is randomly selected from the net-
work.

• If there is no edge between A and C, one of them loses one of its edges (but
not the one that connects to B), and A and C are connected to each other
instead.

This is an edge rewiring process that closes a triangle among A, B, and C, pro-
moting what is called a triadic closure in sociology. Implement this edge rewiring
model, conduct simulations, and see what kind of network topology results from
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this triadic closure rule. You can also combine this rule with the random edge
rewiring used in the Watts-Strogatz model, to explore various balances between
these two competing rules (globalization and localization) that shape the self-
organization of the network topology.

Exercise 16.18 Preferential attachment with node division We can consider
a modification of the Barabási-Albert model where each node has a capacity limit
in terms of the number of connections it can hold. Assume that if a node’s degree
exceeds its predefined capacity, the node splits into two, and each node inherits
about half of the connections the original node had. This kind of node division
can be considered a representation of a split-up of a company or an organization,
or the evolution of different specialized genes from a single gene that had many
functions. Implement this modified network growth model, conduct simulations,
and see how the node division influences the resulting network topology.

16.4 Simulating Adaptive Networks

The final class of dynamical network models is that of adaptive networks. It is a hybrid of
dynamics on and of networks, where states and topologies “co-evolve,” i.e., they interact
with each other and keep changing, often over the same time scales. The word “adaptive”
comes from the concept that states and topologies can adapt to each other in a co-
evolutionary manner, although adaptation or co-evolution doesn’t have to be biological in
this context. Adaptive networks have been much less explored compared to the other
two classes of models discussed above, but you can find many real-world examples of
adaptive networks [67], such as:

• Development of an organism. The nodes are the cells and the edges are cell-
cell adhesions and intercellular communications. The node states include intra-
cellular gene regulatory and metabolic activities, which are coupled with topological
changes caused by cell division, death, and migration.

• Self-organization of ecological communities. The nodes are the species and the
edges are the ecological relationships (predation, symbiosis, etc.) among them. The
node states include population levels and within-species genetic diversities, which
are coupled with topological changes caused by invasion, extinction, adaptation,
and speciation.
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• Epidemiological networks. The nodes are the individuals and the edges are the
physical contacts among them. The node states include their pathologic states
(healthy or sick, infectious or not, etc.), which are coupled with topological changes
caused by death, quarantine, and behavioral changes of those individuals.

• Evolution of social communities. The nodes are the individuals and the edges are
social relationships, conversations, and/or collaborations. The node states include
socio-cultural states, political opinions, wealth, and other social properties of those
individuals, which are coupled with topological changes caused by the people’s entry
into or withdrawal from the community, as well as their behavioral changes.

In these adaptive networks, state transitions of each node and topological transforma-
tion of networks are deeply coupled with each other, which could produce characteristic
behaviors that are not found in other forms of dynamical network models. As I men-
tioned earlier in this chapter, I am one of the proponents of this topic [66], so you should
probably take what I say with a pinch of salt. But I firmly believe that modeling and pre-
dicting state-topology co-evolution of adaptive networks has become one of the major
critical challenges in complex network research, especially because of the continual flood
of temporal network data [65] that researchers are facing today.

The field of adaptive network research is still very young, and thus it is a bit challeng-
ing to select “well established” models as classic foundations of this research yet. So
instead, I would like to show, with some concrete examples, how you can revise tradi-
tional dynamical network models into adaptive ones. You will probably find it very easy
and straightforward to introduce adaptive network dynamics. There is nothing difficult in
simulating adaptive network models, and yet the resulting behaviors may be quite unique
and different from those of traditional models. This is definitely one of those unexplored
research areas where your open-minded creativity in model development will yield you
much fruit.

Adaptive epidemic model When you find out that one of your friends has caught a
flu, you will probably not visit his or her room until he or she recovers from the illness.
This means that human behavior, in response to the spread of illnesses, can change the
topology of social ties, which in turn will influence the pathways of disease propagation.
This is an illustrative example of adaptive network dynamics, which we can implement
into the SIS model (Code 16.6) very easily. Here is the additional assumption we will add
to the model:

• When a susceptible node finds its neighbor is infected by the disease, it will sever
the edge to the infected node with severance probability ps.
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This new assumption is inspired by a pioneering adaptive network model of epidemic dy-
namics proposed by my collaborator Thilo Gross and his colleagues in 2006 [72]. They
assumed that the edge from the susceptible to the infected nodes would be rewired to
another susceptible node in order to keep the number of edges constant. But here, we
assume that such edges can just be removed for simplicity. For your convenience, Code
16.6 for the SIS model is shown below again. Can you see where you can/should imple-
ment this new edge removal assumption in this code?

Code 16.13:
p_i = 0.5 # infection probability

p_r = 0.5 # recovery probability

def update():

global g

a = rd.choice(g.nodes())

if g.node[a][’state’] == 0: # if susceptible

b = rd.choice(g.neighbors(a))

if g.node[b][’state’] == 1: # if neighbor b is infected

g.node[a][’state’] = 1 if random() < p_i else 0

else: # if infected

g.node[a][’state’] = 0 if random() < p_r else 1

There are several different ways to implement adaptive edge removal in this code. An
easy option would be just to insert another if statement to decide whether to cut the edge
right before simulating the infection of the disease (third-to-last line). For example:

Code 16.14:
p_i = 0.5 # infection probability

p_r = 0.5 # recovery probability

p_s = 0.5 # severance probability

def update():

global g

a = rd.choice(g.nodes())

if g.node[a][’state’] == 0: # if susceptible

b = rd.choice(g.neighbors(a))

if g.node[b][’state’] == 1: # if neighbor b is infected

if random() < p_s:
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g.remove_edge(a, b)

else:

g.node[a][’state’] = 1 if random() < p_i else 0

else: # if infected

g.node[a][’state’] = 0 if random() < p_r else 1

Note that we now have one more probability, p_s, with which the susceptible node can
sever the edge connecting itself to an infected neighbor. Since this simulation is imple-
mented using an asynchronous state updating scheme, we can directly remove the edge
(a, b) from the network as soon as node a decides to cut it. Such asynchronous updating
is particularly suitable for simulating adaptive network dynamics in general.

By the way, there is a minor bug in the code above. Because there is a possibility for
the edges to be removed from the network, some nodes may eventually lose all of their
neighbors. If this happens, the rd.choice(g.neighbors(a)) function causes an error. To
avoid this problem, we need to check if node a’s degree is positive. Below is a slightly
corrected code:

Code 16.15: SIS-model-adaptive.py
p_i = 0.5 # infection probability

p_r = 0.5 # recovery probability

p_s = 0.5 # severance probability

def update():

global g

a = rd.choice(g.nodes())

if g.node[a][’state’] == 0: # if susceptible

if g.degree(a) > 0:

b = rd.choice(g.neighbors(a))

if g.node[b][’state’] == 1: # if neighbor b is infected

if random() < p_s:

g.remove_edge(a, b)

else:

g.node[a][’state’] = 1 if random() < p_i else 0

else: # if infected

g.node[a][’state’] = 0 if random() < p_r else 1

If you run this code, the result will probably look quite similar to the original SIS model,
because the parameter settings used in this code (pi = pr = 0.5) don’t cause a pandemic.

http://bingweb.binghamton.edu/~sayama/textbook/code/SIS-model-adaptive.py


364 CHAPTER 16. DYNAMICAL NETWORKS I: MODELING

But if you try different parameter settings that would cause a pandemic in the original
SIS model (say, pi = 0.5, pr = 0.2), the effect of the adaptive edge removal is much
more salient. Figure 16.13 shows a sample simulation result, where pandemic-causing
parameter values (pi = 0.5, pr = 0.2) were used, but the edge severance probability ps
was also set to 0.5. Initially, the disease spreads throughout the network, but adaptive
edge removal gradually removes edges from the network as an adaptive response to the
pandemic, lowering the edge density and thus making it more and more difficult for the
disease to spread. Eventually, the disease is eradicated when the edge density of the
network hits a critical value below which the disease can no longer survive.

Figure 16.13: Visual output of Code 16.15, with varied parameter settings (pi = 0.5,
pr = 0.2, ps = 0.5). Time flows from left to right.

Exercise 16.19 Conduct simulations of the adaptive SIS model on a random net-
work of a larger size with pi = 0.5 and pr = 0.2, while varying ps systematically.
Determine the condition in which a pandemic will eventually be eradicated. Then
try the same simulation on different network topologies (e.g, small-world, scale-
free networks) and compare the results.

Exercise 16.20 Implement a similar edge removal rule in the voter model so that
an edge between two nodes that have opposite opinions can be removed prob-
abilistically. Then conduct simulations with various edge severance probabilities
to see how the consensus formation process is affected by the adaptive edge re-
moval.
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Adaptive diffusion model The final example in this chapter is the adaptive network ver-
sion of the continuous state/time diffusion model, where the weight of a social tie can be
strengthened or weakened according to the difference of the node states across the edge.
This new assumption represents a simplified form of homophily, an empirically observed
sociological fact that people tend to connect those who are similar to themselves. In con-
trast, the diffusion of node states can be considered a model of social contagion, another
empirically observed sociological fact that people tend to become more similar to their
social neighbors over time. There has been a lot of debate going on about which mecha-
nism, homophily or social contagion, is more dominant in shaping the structure of social
networks. This adaptive diffusion model attempts to combine these two mechanisms to
investigate their subtle balance via computer simulations.

This example is actually inspired by an adaptive network model of a corporate merger
that my collaborator Junichi Yamanoi and I presented recently [73]. We studied the con-
ditions for two firms that recently underwent a merger to successfully assimilate and in-
tegrate their corporate cultures into a single, unified identity. The original model was a
bit complex agent-based model that involved asymmetric edges, multi-dimensional state
space, and stochastic decision making, so here we use a more simplified, deterministic,
differential equation-based version. Here are the model assumptions:

• The network is initially made of two groups of nodes with two distinct cultural/ideo-
logical states.

• Each edge is undirected and has a weight, w ∈ [0, 1], which represents the strength
of the connection. Weights are initially set to 0.5 for all the edges.

• The diffusion of the node states occurs according to the following equation:

dci
dt

= α
∑
j∈Ni

(cj − ci)wij (16.18)

Here α is the diffusion constant and wij is the weight of the edge between node i

and node j. The inclusion of wij signifies that diffusion takes place faster through
edges with greater weights.

• In the meantime, each edge also changes its weight dynamically, according to the
following equation:

dwij
dt

= βwij(1− wij)(1− γ |ci − cj| ) (16.19)
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Here β is the rate of adaptive edge weight change, and γ is a parameter that de-
termines how intolerant, or “picky,” each node is regarding cultural difference. For
example, if γ = 0, wij always converges and stays at 1. But if γ is large (typically
much larger than 1), the two nodes need to have very similar cultural states in order
to maintain an edge between them, or otherwise the edge weight decreases. The
inclusion of wij(1−wij) is to confine the weight values to the range [0, 1] dynamically.

So, to simulate this model, we need a network made of two distinct groups. And this is
the perfect moment to disclose a little more secrets about our favorite Karate Club graph
(unless you have found it yourself already)! See the node attribute of the Karate Club
graph, and you will find the following:

Code 16.16:
>>> nx.karate_club_graph().node

{0: {’club’: ’Mr. Hi’}, 1: {’club’: ’Mr. Hi’}, 2: {’club’: ’Mr. Hi’},

3: {’club’: ’Mr. Hi’}, 4: {’club’: ’Mr. Hi’}, 5: {’club’: ’Mr. Hi’},

6: {’club’: ’Mr. Hi’}, 7: {’club’: ’Mr. Hi’}, 8: {’club’: ’Mr. Hi’},

9: {’club’: ’Officer’}, 10: {’club’: ’Mr. Hi’}, 11: {’club’: ’Mr. Hi’},

12: {’club’: ’Mr. Hi’}, 13: {’club’: ’Mr. Hi’}, 14: {’club’: ’Officer’},

15: {’club’: ’Officer’}, 16: {’club’: ’Mr. Hi’}, 17: {’club’: ’Mr. Hi’},

18: {’club’: ’Officer’}, 19: {’club’: ’Mr. Hi’}, 20: {’club’: ’Officer’},

21: {’club’: ’Mr. Hi’}, 22: {’club’: ’Officer’}, 23: {’club’: ’Officer’},

24: {’club’: ’Officer’}, 25: {’club’: ’Officer’}, 26: {’club’: ’Officer’},

27: {’club’: ’Officer’}, 28: {’club’: ’Officer’}, 29: {’club’: ’Officer’},

30: {’club’: ’Officer’}, 31: {’club’: ’Officer’}, 32: {’club’: ’Officer’},

33: {’club’: ’Officer’}}

Each node has an additional property, called ’club’, and its values are either ’Mr. Hi’

or ’Officer’! What are these?
The truth is, when Wayne Zachary studied this Karate Club, there was an intense

political/ideological conflict between two factions. One was Mr. Hi, a part-time karate
instructor hired by the club, and his supporters, while the other was the club president
(Officer) John A., other officers, and their followers. They were in sharp conflict over the
price of karate lessons. Mr. Hi wanted to raise the price, while the club president wanted
to keep the price as it was. The conflict was so intense that the club eventually fired Mr. Hi,
resulting in a fission of the club into two. The Karate Club graph is a snapshot of the club
members’ friendship network right before this fission, and therefore, each node comes
with an attribute showing whether he or she was in Mr. Hi’s camp or the Officer’s camp. If
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you are interested in more details of this, you should read Zachary’s original paper [59],
which contains some more interesting stories.

This data looks perfect for our modeling purpose. We can set up the initialize func-
tion using this ’club’ property to assign binary states to the nodes. The implementation
of dynamical equations are straightforward; we just need to discretize time and simulate
them just as a discrete-time model, as we did before. Here is a completed code:

Code 16.17: net-diffusion-adaptive.py
import matplotlib

matplotlib.use(’TkAgg’)

from pylab import *

import networkx as nx

def initialize():

global g, nextg

g = nx.karate_club_graph()

for i, j in g.edges_iter():

g.edge[i][j][’weight’] = 0.5

g.pos = nx.spring_layout(g)

for i in g.nodes_iter():

g.node[i][’state’] = 1 if g.node[i][’club’] == ’Mr. Hi’ else 0

nextg = g.copy()

def observe():

global g, nextg

cla()

nx.draw(g, cmap = cm.binary, vmin = 0, vmax = 1,

node_color = [g.node[i][’state’] for i in g.nodes_iter()],

edge_cmap = cm.binary, edge_vmin = 0, edge_vmax = 1,

edge_color = [g.edge[i][j][’weight’] for i, j in g.edges_iter()],

pos = g.pos)

alpha = 1 # diffusion constant

beta = 3 # rate of adaptive edge weight change

gamma = 3 # pickiness of nodes

Dt = 0.01 # Delta t

http://bingweb.binghamton.edu/~sayama/textbook/code/net-diffusion-adaptive.py
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def update():

global g, nextg

for i in g.nodes_iter():

ci = g.node[i][’state’]

nextg.node[i][’state’] = ci + alpha * ( \

sum((g.node[j][’state’] - ci) * g.edge[i][j][’weight’]

for j in g.neighbors(i))) * Dt

for i, j in g.edges_iter():

wij = g.edge[i][j][’weight’]

nextg.edge[i][j][’weight’] = wij + beta * wij * (1 - wij) * ( \

1 - gamma * abs(g.node[i][’state’] - g.node[j][’state’])

) * Dt

nextg.pos = nx.spring_layout(nextg, pos = g.pos, iterations = 5)

g, nextg = nextg, g

import pycxsimulator

pycxsimulator.GUI().start(func=[initialize, observe, update])

In the initialize function, the edge weights are all initialized as 0.5, while node states
are set to 1 if the node belongs to Mr. Hi’s faction, or 0 otherwise. There are also
some modifications made to the observe function. Since the edges carry weights, we
should color each edge in a different gray level. Therefore additional options (edge_color,
edge_cmap, edge_vmin, and edge_vmax) were used to draw the edges in different colors.
The update function is pretty straightforward, I hope.

Figure 16.14 shows the simulation result with α = 1, β = 3, γ = 3. With this setting,
unfortunately, the edge weights became weaker and weaker between the two political
factions (while they became stronger within each), and the Karate Club was eventually
split into two, which was what actually happened. In the meantime, we can also see
that there were some cultural/ideological diffusion taking place across the two factions,
because their colors became a little more gray-ish than at the beginning. So, there was
apparently a competition not just between the two factions, but also between the two
different dynamics: social assimilation and fragmentation. History has shown that the
fragmentation won in the actual Karate Club case, but we can explore the parameter
space of this model to see if there was any alternative future possible for the Karate Club!

Exercise 16.21 Examine, by simulations, the sensitivity of the Karate Club adap-
tive diffusion model on the initial node state assignments. Can a different node
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Figure 16.14: Visual output of Code 16.17. Time flows from left to right.

state assignment (with the same numbers of 0’s and 1’s) prevent the fission of the
Club? If so, what are the effective strategies to assign the node states?

Exercise 16.22 Conduct simulations of the Karate Club adaptive diffusion model
(with the original node state assignment) by systematically varying α, β, and γ, to
find the parameter settings with which homogenization of the node states can be
achieved. Then think about what kind of actions the members of the Karate Club
could have taken to achieve those parameter values in a real-world setting, in order
to avoid the fragmentation of the Club.





Chapter 17

Dynamical Networks II: Analysis of
Network Topologies

17.1 Network Size, Density, and Percolation

Networks can be analyzed in several different ways. One way is to analyze their structural
features, such as size, density, topology, and statistical properties.

Let me first begin with the most basic structural properties, i.e., the size and density
of a network. These properties are conceptually similar to the mass and composition of
matter—they just tell us how much stuff is in it, but they don’t tell us anything about how
the matter is organized internally. Nonetheless, they are still the most fundamental char-
acteristics, which are particularly important when you want to compare multiple networks.
You should compare properties of two networks of the same size and density, just like
chemists who compare properties of gold and copper of the same mass.

The size of a network is characterized by the numbers of nodes and edges in it.

NetworkX’s Graph objects have functions dedicated for measuring those properties:

Code 17.1:
>>> g = nx.karate_club_graph()

>>> g.number_of_nodes()

34

>>> g.number_of_edges()

78

371
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The density of a network is the fraction between 0 and 1 that tells us what portion of
all possible edges are actually realized in the network. For a network G made of n
nodes and m edges, the density ρ(G) is given by

ρ(G) =
m

n(n−1)
2

=
2m

n(n− 1)
(17.1)

for an undirected network, or

ρ(G) =
m

n(n− 1)
(17.2)

for a directed network.

NetworkX has a built-in function to calculate network density:

Code 17.2:
>>> g = nx.karate_club_graph()

>>> nx.density(g)

0.13903743315508021

Note that the size and density of a network don’t specify much about the network’s actual
topology (i.e., shape). There are many networks with different topologies that have exactly
the same size and density.

But there are some things the size and density can still predict about networks. One
such example is network percolation, i.e., whether or not the nodes are sufficiently con-
nected to each other so that they form a giant component that is visible at macroscopic
scales. I can show you an example. In the code below, we generate Erdős-Rényi random
graphs made of 100 nodes with different connection probabilities:

Code 17.3: net-percolation.py
from pylab import *

import networkx as nx

for i, p in [(1, 0.0001), (2, 0.001), (3, 0.01), (4, 0.1)]:

subplot(1, 4, i)

title(’p = ’ + str(p))

g = nx.erdos_renyi_graph(100, p)

nx.draw(g, node_size = 10)

http://bingweb.binghamton.edu/~sayama/textbook/code/net-percolation.py
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show()

The result is shown in Fig. 17.1, where we can clearly see a transition from a completely
disconnected set of nodes to a single giant network that includes all nodes.

p = 0.0001 p = 0.001 p = 0.01 p = 0.1

Figure 17.1: Visual output of Code 17.3.

The following code conducts a more systematic parameter sweep of the connection
probability:

Code 17.4: net-percolation-plot.py
from pylab import *

import networkx as nx

p = 0.0001

pdata = []

gdata = []

while p < 0.1:

pdata.append(p)

g = nx.erdos_renyi_graph(100, p)

ccs = nx.connected_components(g)

gdata.append(max(len(cc) for cc in ccs))

p *= 1.1

loglog(pdata, gdata)

xlabel(’p’)

ylabel(’size of largest connected component’)

show()

http://bingweb.binghamton.edu/~sayama/textbook/code/net-percolation-plot.py


374CHAPTER 17. DYNAMICAL NETWORKS II: ANALYSIS OF NETWORK TOPOLOGIES

In this code, we measure the size of the largest connected component in an Erdős-Rényi
graph with connection probability p, while geometrically increasing p. The result shown in
Fig. 17.2 indicates that a percolation transition happened at around p = 10−2.
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Figure 17.2: Visual output of Code 17.4.

Giant components are a special name given to the largest connected components that
appear above this percolation threshold (they are seen in the third and fourth panels of
Fig. 17.1), because their sizes are on the same order of magnitude as the size of the
whole network. Mathematically speaking, they are defined as the connected components
whose size s(n) has the following property

lim
n→∞

s(n)

n
= c > 0, (17.3)

where n is the number of nodes. This limit would go to zero for all other non-giant com-
ponents, so at macroscopic scales, we can only see giant components in large networks.

Exercise 17.1 Revise Code 17.4 so that you generate multiple random graphs
for each p, and calculate the average size of the largest connected components.
Then run the revised code for larger network sizes (say, 1,000) to obtain a smoother
curve.
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We can calculate the network percolation threshold for random graphs as follows. Let
q be the probability for a randomly selected node to not belong to the largest connected
component (LCC) of a network. If q < 1, then there is a giant component in the network. In
order for a randomly selected node to be disconnected from the LCC, all of its neighbors
must be disconnected from the LCC too. Therefore, somewhat tautologically

q = qk, (17.4)

where k is the degree of the node in question. But in general, degree k is not uniquely de-
termined in a random network, so the right hand side should be rewritten as an expected
value, as

q =
∞∑
k=0

P (k)qk, (17.5)

where P (k) is the probability for the node to have degree k (called the degree distribu-
tion; this will be discussed in more detail later). In an Erdős-Rényi random graph, this
probability can be calculated by the following binomial distribution

P (k) =


(
n− 1

k

)
pk(1− p)n−1−k for 0 ≤ k ≤ n− 1,

0 for k ≥ n,
(17.6)

because each node has n − 1 potential neighbors and k out of n − 1 neighbors need to
be connected to the node (and the rest need to be disconnected from it) in order for it to
have degree k. By plugging Eq. (17.6) into Eq. (17.5), we obtain

q =
n−1∑
k=0

(
n− 1

k

)
pk(1− p)n−1−kqk (17.7)

=
n−1∑
k=0

(
n− 1

k

)
(pq)k(1− p)n−1−k (17.8)

= (pq + 1− p)n−1 (17.9)

= (1 + p(q − 1))n−1. (17.10)

We can rewrite this as

q =

(
1 +
〈k〉(q − 1)

n

)n−1

, (17.11)

because the average degree 〈k〉 of an Erdős-Rényi graph for a large n is given by

〈k〉 = np. (17.12)
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Since limn→∞(1 + x/n)n = ex, Eq. (17.11) can be further simplified for large n to

q = e〈k〉(q−1). (17.13)

Apparently, q = 1 satisfies this equation. If this equation also has another solution in
0 < q < 1, then that means a giant component is possible in the network. Figure 17.3
shows the plots of y = q and y = e〈k〉(q−1) for 0 < q < 1 for several values of 〈k〉.
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Figure 17.3: Plots of y = q and y = e〈k〉(q−1) for several values of 〈k〉.

These plots indicate that if the derivative of the right hand side of Eq. (17.13) (i.e., the
slope of the curve) at q = 1 is greater than 1, then the equation has a solution in q < 1.
Therefore,

d

dq
e〈k〉(q−1)

∣∣∣
q=1

= 〈k〉e〈k〉(q−1)|q=1 = 〈k〉 > 1, (17.14)

i.e., if the average degree is greater than 1, then network percolation occurs.

A giant component is a connected component whose size is on the same order of
magnitude as the size of the whole network. Network percolation is the appearance
of such a giant component in a random graph, which occurs when the average node
degree is above 1.

Exercise 17.2 If Eq. (17.13) has a solution in q < 1/n, that means that all the
nodes are essentially included in the giant component, and thus the network is
made of a single connected component. Obtain the threshold of 〈k〉 above which
this occurs.
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17.2 Shortest Path Length

Network analysis can measure and characterize various features of network topologies
that go beyond size and density. Many of the tools used here are actually borrowed from
social network analysis developed and used in sociology [60].

The first measurement we are going to discuss is the shortest path length from one
node to another node, also called geodesic distance in a graph. If the network is undi-
rected, the distance between two nodes is the same, regardless of which node is the
starting point and which is the end point. But if the network is directed, this is no longer
the case in general.

The shortest path length is easily measurable using NetworkX:

Code 17.5:
>>> g = nx.karate_club_graph()

>>> nx.shortest_path_length(g, 16, 25)

4

The actual path can also be obtained as follows:

Code 17.6:
>>> nx.shortest_path(g, 16, 25)

[16, 5, 0, 31, 25]

The output above is a list of nodes on the shortest path from node 16 to node 25. This
can be visualized using draw_networkx_edges as follows:

Code 17.7: shortest-path.py
from pylab import *

import networkx as nx

g = nx.karate_club_graph()

positions = nx.spring_layout(g)

path = nx.shortest_path(g, 16, 25)

edges = [(path[i], path[i+1]) for i in xrange(len(path) - 1)]

nx.draw_networkx_edges(g, positions, edgelist = edges,

edge_color = ’r’, width = 10)

http://bingweb.binghamton.edu/~sayama/textbook/code/shortest-path.py
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nx.draw(g, positions, with_labels = True)

show()

The result is shown in Fig. 17.4.
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Figure 17.4: Visual output of Code 17.7.

We can use this shortest path length to define several useful metrics to characterize
the network’s topological properties. Let’s denote a shortest path length from node i to
node j as d(i → j). Clearly, d(i → i) = 0 for all i. Then we can construct the following
metrics:

Characteristic path length

L =

∑
i,j d(i→ j)

n(n− 1)
(17.15)

where n is the number of nodes. This formula works for both undirected and
directed networks. It calculates the average length of shortest paths for all
possible node pairs in the network, giving an expected distance between two
randomly chosen nodes. This is an intuitive characterization of how big (or
small) the world represented by the network is.
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Eccentricity

ε(i) = max
j
d(i→ j) (17.16)

This metric is defined for each node and gives the maximal shortest path length
a node can have with any other node in the network. This tells how far the node
is to the farthest point in the network.

Diameter

D = max
i
ε(i) (17.17)

This metric gives the maximal eccentricity in the network. Intuitively, it tells us
how far any two nodes can get from one another within the network. Nodes
whose eccentricity is D are called peripheries.

Radius

R = min
i
ε(i) (17.18)

This metric gives the minimal eccentricity in the network. Intuitively, it tells us the
smallest number of steps you will need to reach every node if you can choose
an optimal node as a starting point. Nodes whose eccentricity is R are called
centers.

In NetworkX, these metrics can be calculated as follows:

Code 17.8:
>>> import networkx as nx

>>> g = nx.karate_club_graph()

>>> nx.average_shortest_path_length(g)

2.408199643493761

>>> nx.eccentricity(g)

{0: 3, 1: 3, 2: 3, 3: 3, 4: 4, 5: 4, 6: 4, 7: 4, 8: 3, 9: 4, 10: 4,

11: 4, 12: 4, 13: 3, 14: 5, 15: 5, 16: 5, 17: 4, 18: 5, 19: 3, 20: 5,

21: 4, 22: 5, 23: 5, 24: 4, 25: 4, 26: 5, 27: 4, 28: 4, 29: 5, 30: 4,

31: 3, 32: 4, 33: 4}

>>> nx.diameter(g)

5

>>> nx.periphery(g)
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[14, 15, 16, 18, 20, 22, 23, 26, 29]

>>> nx.radius(g)

3

>>> nx.center(g)

[0, 1, 2, 3, 8, 13, 19, 31]

Exercise 17.3 Visualize the Karate Club graph using the eccentricities of its
nodes to color them.

Exercise 17.4 Randomize the topology of the Karate Club graph while keeping its
size and density, and then measure the characteristic path length, diameter, and
radius of the randomized graph. Repeat this many times to obtain distributions
of those metrics for randomized graphs. Then compare the distributions with the
metrics of the original Karate Club graph. Discuss which metric is more sensitive
to topological variations.

Note: Randomized graphs may be disconnected. If so, all of the metrics dis-
cussed above will be infinite, and NetworkX will give you an error. In order to avoid
this, you should check whether the randomized network is connected or not before
calculating its metrics. NetworkX has a function nx.is_connected for this purpose.

17.3 Centralities and Coreness

The eccentricity of nodes discussed above can be used to detect which nodes are most
central in a network. This can be useful because, for example, if you send out a message
from one of the center nodes with minimal eccentricity, the message will reach every
single node in the network in the shortest period of time.

In the meantime, there are several other more statistically based measurements of
node centralities, each of which has some benefits, depending on the question you want
to study. Here is a summary of some of those centrality measures:

Degree centrality

cD(i) =
deg(i)

n− 1
(17.19)
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Degree centrality is simply a normalized node degree, i.e., the actual degree
divided by the maximal degree possible (n− 1). For directed networks, you can
define in-degree centrality and out-degree centrality separately.

Betweenness centrality

cB(i) =
1

(n− 1)(n− 2)

∑
j 6=i,k 6=i,j 6=k

Nsp(j
i−→ k)

Nsp(j → k)
(17.20)

where Nsp(j → k) is the number of shortest paths from node j to node k, and
Nsp(j

i−→ k) is the number of the shortest paths from node j to node k that
go through node i. Betweenness centrality of a node is the probability for the
shortest path between two randomly chosen nodes to go through that node.
This metric can also be defined for edges in a similar way, which is called edge
betweenness.

Closeness centrality

cC(i) =

(∑
j d(i→ j)

n− 1

)−1

(17.21)

This is an inverse of the average distance from node i to all other nodes. If
cC(i) = 1, that means you can reach any other node from node i in just one
step. For directed networks, you can also define another closeness centrality
by swapping i and j in the formula above to measure how accessible node i is
from other nodes.

Eigenvector centrality

cE(i) = vi (i-th element of the dominant eigenvector v of the

network’s adjacency matrix) (17.22)

Eigenvector centrality measures the “importance” of each node by consider-
ing each incoming edge to the node an “endorsement” from its neighbor. This
differs from degree centrality because, in the calculation of eigenvector central-
ity, endorsements coming from more important nodes count as more. Another
completely different, but mathematically equivalent, interpretation of eigenvec-
tor centrality is that it counts the number of walks from any node in the network
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that reach node i in t steps, with t taken to infinity. Eigenvector v is usually
chosen to be a non-negative unit vector (vi ≥ 0, |v| = 1).

PageRank

cP (i) = vi (i-th element of the dominant eigenvector v of the

following transition probability matrix) (17.23)

T = αAD−1 + (1− α)
J

n
(17.24)

where A is the adjacency matrix of the network, D−1 is a diagonal matrix whose
i-th diagonal component is 1/deg(i), J is an n × n all-one matrix, and α is the
damping parameter (α = 0.85 is commonly used by default).

PageRank is a variation of eigenvector centrality that was originally developed
by Larry Page and Sergey Brin, the founders of Google, in the late 1990s [74,
75] to rank web pages. PageRank measures the asymptotic probability for a
random walker on the network to be standing on node i, assuming that the
walker moves to a randomly chosen neighbor with probability α, or jumps to
any node in the network with probability 1− α, in each time step. Eigenvector v
is usually chosen to be a probability distribution, i.e.,

∑
i vi = 1.

Note that all of these centrality measures give a normalized value between 0 and 1,
where 1 means perfectly central while 0 means completely peripheral. In most cases, the
values are somewhere in between. Functions to calculate these centrality measures are
also available in NetworkX (outputs are omitted in the code below to save space):

Code 17.9:
>>> import networkx as nx

>>> g = nx.karate_club_graph()

>>> nx.degree_centrality(g)

>>> nx.betweenness_centrality(g)

>>> nx.closeness_centrality(g)

>>> nx.eigenvector_centrality(g)

>>> nx.pagerank(g)

While those centrality measures are often correlated, they capture different properties
of each node. Which centrality should be used depends on the problem you are address-
ing. For example, if you just want to find the most popular person in a social network,
you can just use degree centrality. But if you want to find the most efficient person to
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disseminate a rumor to the entire network, closeness centrality would probably be a more
appropriate metric to use. Or, if you want to find the most effective person to monitor and
manipulate information flowing within the network, betweenness centrality would be more
appropriate, assuming that information travels through the shortest paths between peo-
ple. Eigenvector centrality and PageRank are useful for generating a reasonable ranking
of nodes in a complex network made of directed edges.

Exercise 17.5 Visualize the Karate Club graph using each of the above centrality
measures to color the nodes, and then compare the visualizations to see how
those centralities are correlated.

Exercise 17.6 Generate (1) an Erdős-Rényi random network, (2) a Watts-
Strogatz small-world network, and (3) a Barabási-Albert scale-free network of com-
parable size and density, and obtain the distribution of node centralities of your
choice for each network. Then compare those centrality distributions to find which
one is most/least heterogeneous.

Exercise 17.7 Prove that PageRank with α = 1 is essentially the same as the
degree centrality for undirected networks.

A little different approach to characterize the centrality of nodes is to calculate their
coreness. This can be achieved by the following simple algorithm:

1. Let k = 0.

2. Repeatedly delete all nodes whose degree is k or less, until no such nodes exist.
Those removed nodes are given a coreness k.

3. If there are still nodes remaining in the network, increase k by 1, and then go back
to the previous step.

Figure 17.5 shows an example of this calculation. At the very end of the process, we see
a cluster of nodes whose degrees are at least the final value of k. This cluster is called a
k-core, which can be considered the central part of the network.

In NetworkX, you can calculate the corenesses of nodes using the core_number func-
tion. Also, the k-core of the network can be obtained by using the k_core function. Here
is an example:
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k = 2 

Original network k = 0 

k = 1 

k = 3 k = 4 
k-core 

Coreness          : 0          : 1          : 2          : 3          : 4 

Figure 17.5: Example of how coreness is calculated.
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Code 17.10:
>>> from pylab import *

>>> import networkx as nx

>>> g = nx.karate_club_graph()

>>> nx.core_number(g)

{0: 4, 1: 4, 2: 4, 3: 4, 4: 3, 5: 3, 6: 3, 7: 4, 8: 4, 9: 2, 10: 3,

11: 1, 12: 2, 13: 4, 14: 2, 15: 2, 16: 2, 17: 2, 18: 2, 19: 3,

20: 2, 21: 2, 22: 2, 23: 3, 24: 3, 25: 3, 26: 2, 27: 3, 28: 3,

29: 3, 30: 4, 31: 3, 32: 4, 33: 4}

>>> nx.draw(nx.k_core(g), with_labels = True)

>>> show()

The resulting k-core of the Karate Club graph is shown in Fig. 17.6.
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Figure 17.6: Visual output of Code 17.10, showing the k-core of the Karate Club graph,
with k = 4.

One advantage of using coreness over other centrality measures is its scalability. Be-
cause the algorithm to compute it is so simple, the calculation of coreness of nodes in
a very large network is much faster than other centrality measures (except for degree
centrality, which is obviously very fast too).

Exercise 17.8 Import a large network data set of your choice from Mark New-
man’s Network Data website: http://www-personal.umich.edu/~mejn/netdata/

http://www-personal.umich.edu/~mejn/netdata/
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Calculate the coreness of all of its nodes and draw their histogram. Compare the
speed of calculation with, say, the calculation of betweenness centrality. Also visu-
alize the k-core of the network.

17.4 Clustering

Eccentricity, centralities, and coreness introduced above all depend on the whole network
topology (except for degree centrality). In this sense, they capture some macroscopic
aspects of the network, even though we are calculating those metrics for each node. In
contrast, there are other kinds of metrics that only capture local topological properties.
This includes metrics of clustering, i.e., how densely connected the nodes are to each
other in a localized area in a network. There are two widely used metrics for this:

Clustering coefficient

C(i) =

∣∣ { {j, k} | d(i, j) = d(i, k) = d(j, k) = 1 }
∣∣

deg(i)(deg(i)− 1)/2
(17.25)

The denominator is the total number of possible node pairs within node i’s
neighborhood, while the numerator is the number of actually connected node
pairs among them. Therefore, the clustering coefficient of node i calculates the
probability for its neighbors to be each other’s neighbors as well. Note that this
metric assumes that the network is undirected. The following average clustering
coefficient is often used to measure the level of clustering in the entire network:

C =

∑
iC(i)

n
(17.26)

Transitivity

CT =

∣∣ { (i, j, k) | d(i, j) = d(i, k) = d(j, k) = 1 }
∣∣∣∣ { (i, j, k) | d(i, j) = d(i, k) = 1 }

∣∣ (17.27)

This is very similar to clustering coefficients, but it is defined by counting con-
nected node triplets over the entire network. The denominator is the number
of connected node triplets (i.e., a node, i, and two of its neighbors, j and k),
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while the numerator is the number of such triplets where j is also connected
to k. This essentially captures the same aspect of the network as the average
clustering coefficient, i.e., how locally clustered the network is, but the transitiv-
ity can be calculated on directed networks too. It also treats each triangle more
evenly, unlike the average clustering coefficient that tends to underestimate the
contribution of triplets that involve highly connected nodes.

Again, calculating these clustering metrics is very easy in NetworkX:

Code 17.11:
>>> import networkx as nx

>>> g = nx.karate_club_graph()

>>> nx.clustering(g)

{0: 0.15, 1: 0.3333333333333333, 2: 0.24444444444444444, 3:

0.6666666666666666, 4: 0.6666666666666666, 5: 0.5, 6: 0.5, 7: 1.0,

8: 0.5, 9: 0.0, 10: 0.6666666666666666, 11: 0.0, 12: 1.0, 13: 0.6,

14: 1.0, 15: 1.0, 16: 1.0, 17: 1.0, 18: 1.0, 19: 0.3333333333333333,

20: 1.0, 21: 1.0, 22: 1.0, 23: 0.4, 24: 0.3333333333333333, 25:

0.3333333333333333, 26: 1.0, 27: 0.16666666666666666, 28:

0.3333333333333333, 29: 0.6666666666666666, 30: 0.5, 31: 0.2, 32:

0.19696969696969696, 33: 0.11029411764705882}

>>> nx.average_clustering(g)

0.5706384782076823

>>> nx.transitivity(g)

0.2556818181818182

Exercise 17.9 Generate (1) an Erdős-Rényi random network, (2) a Watts-
Strogatz small-world network, and (3) a Barabási-Albert scale-free network of com-
parable size and density, and compare them with regard to how locally clustered
they are.

The clustering coefficient was first introduced by Watts and Strogatz [56], where they
showed that their small-world networks tend to have very high clustering compared to
their random counterparts. The following code replicates their computational experiment,
varying the rewiring probability p:

Code 17.12: small-world-experiment.py

http://bingweb.binghamton.edu/~sayama/textbook/code/small-world-experiment.py
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from pylab import *

import networkx as nx

pdata = []

Ldata = []

Cdata = []

g0 = nx.watts_strogatz_graph(1000, 10, 0)

L0 = nx.average_shortest_path_length(g0)

C0 = nx.average_clustering(g0)

p = 0.0001

while p < 1.0:

g = nx.watts_strogatz_graph(1000, 10, p)

pdata.append(p)

Ldata.append(nx.average_shortest_path_length(g) / L0)

Cdata.append(nx.average_clustering(g) / C0)

p *= 1.5

semilogx(pdata, Ldata, label = ’L / L0’)

semilogx(pdata, Cdata, label = ’C / C0’)

xlabel(’p’)

legend()

show()

The result is shown in Fig. 17.7, where the characteristic path length (L) and the aver-
age clustering coefficient (C) are plotted as their fractions to the baseline values (L0, C0)
obtained from a purely regular network g0. As you can see in the figure, the network
becomes very small (low L) yet remains highly clustered (high C) at the intermediate value
of p around 10−2. This is the parameter regime where the Watts-Strogatz small-world
networks arise.

Exercise 17.10 Revise Code 17.12 so that you generate multiple Watts-Strogatz
networks for each p and calculate the averages of characteristic path lengths and
average clustering coefficients. Then run the revised code to obtain a smoother
curve.
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Figure 17.7: Visual output of Code 17.12.

17.5 Degree Distribution

Another local topological property that can be measured locally is, as we discussed al-
ready, the degree of a node. But if we collect them all for the whole network and represent
them as a distribution, it will give us another important piece of information about how the
network is structured:

A degree distribution of a network is a probability distribution

P (k) =

∣∣ { i | deg(i) = k}
∣∣

n
, (17.28)

i.e., the probability for a node to have degree k.

The degree distribution of a network can be obtained and visualized as follows:

Code 17.13:
>>> from pylab import *

>>> import networkx as nx

>>> g = nx.karate_club_graph()

>>> hist(g.degree().values(), bins = 20)
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(array([ 1., 11., 6., 6., 0., 3., 2., 0., 0., 0., 1., 1., 0., 1., 0.,

0., 0., 0., 1., 1.]), array([ 1. , 1.8, 2.6, 3.4, 4.2, 5. , 5.8,

6.6, 7.4, 8.2, 9. , 9.8, 10.6, 11.4, 12.2, 13. , 13.8, 14.6, 15.4,

16.2, 17. ]), <a list of 20 Patch objects>)

>>> show()

The result is shown in Fig. 17.8.
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Figure 17.8: Visual output of Code 17.13.

You can also obtain the actual degree distribution P (k) as follows:

Code 17.14:
>>> nx.degree_histogram(g)

[0, 1, 11, 6, 6, 3, 2, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1]

This list contains the value of (unnormalized) P (k) for k = 0, 1, . . . , kmax, in this order. For
larger networks, it is often more useful to plot a normalized degree histogram list in a
log-log scale:

Code 17.15: degree-distributions-loglog.py
from pylab import *

import networkx as nx

n = 1000

http://bingweb.binghamton.edu/~sayama/textbook/code/degree-distributions-loglog.py
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er = nx.erdos_renyi_graph(n, 0.01)

ws = nx.watts_strogatz_graph(n, 10, 0.01)

ba = nx.barabasi_albert_graph(n, 5)

Pk = [float(x) / n for x in nx.degree_histogram(er)]

domain = range(len(Pk))

loglog(domain, Pk, ’-’, label = ’Erdos-Renyi’)

Pk = [float(x) / n for x in nx.degree_histogram(ws)]

domain = range(len(Pk))

loglog(domain, Pk, ’--’, label = ’Watts-Strogatz’)

Pk = [float(x) / n for x in nx.degree_histogram(ba)]

domain = range(len(Pk))

loglog(domain, Pk, ’:’, label = ’Barabasi-Albert’)

xlabel(’k’)

ylabel(’P(k)’)

legend()

show()

The result is shown in Fig. 17.9, which clearly illustrates differences between the three
network models used in this example. The Erdős-Rényi random network model has a
bell-curved degree distribution, which appears as a skewed mountain in the log-log scale
(blue solid line). The Watts-Strogatz model is nearly regular, and thus it has a very sharp
peak at the average degree (green dashed line; k = 10 in this case). The Barabási-Albert
model has a power-law degree distribution, which looks like a straight line with a negative
slope in the log-log scale (red dotted line).

Moreover, it is often visually more meaningful to plot not the degree distribution itself
but its complementary cumulative distribution function (CCDF), defined as follows:

F (k) =
∞∑
k′=k

P (k′) (17.29)

This is a probability for a node to have a degree k or higher. By definition, F (0) = 1 and
F (kmax + 1) = 0, and the function decreases monotonically along k. We can revise Code
17.15 to draw CCDFs:

Code 17.16: ccdfs-loglog.py

http://bingweb.binghamton.edu/~sayama/textbook/code/ccdfs-loglog.py
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Figure 17.9: Visual output of Code 17.15.

from pylab import *

import networkx as nx

n = 1000

er = nx.erdos_renyi_graph(n, 0.01)

ws = nx.watts_strogatz_graph(n, 10, 0.01)

ba = nx.barabasi_albert_graph(n, 5)

Pk = [float(x) / n for x in nx.degree_histogram(er)]

domain = range(len(Pk))

ccdf = [sum(Pk[k:]) for k in domain]

loglog(domain, ccdf, ’-’, label = ’Erdos-Renyi’)

Pk = [float(x) / n for x in nx.degree_histogram(ws)]

domain = range(len(Pk))

ccdf = [sum(Pk[k:]) for k in domain]

loglog(domain, ccdf, ’--’, label = ’Watts-Strogatz’)
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Pk = [float(x) / n for x in nx.degree_histogram(ba)]

domain = range(len(Pk))

ccdf = [sum(Pk[k:]) for k in domain]

loglog(domain, ccdf, ’:’, label = ’Barabasi-Albert’)

xlabel(’k’)

ylabel(’F(k)’)

legend()

show()

In this code, we generate ccdf’s from Pk by calculating the sum of Pk after dropping its
first k entries. The result is shown in Fig. 17.10.

100 101 102 103

k

10-3

10-2

10-1

100

F(
k)

Erdos-Renyi
Watts-Strogatz
Barabasi-Albert

Figure 17.10: Visual output of Code 17.16.
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As you can see in the figure, the power law degree distribution remains as a straight
line in the CCDF plot too, because F (k) will still be a power function of k, as shown below:

F (k) =
∞∑
k′=k

P (k′) =
∞∑
k′=k

ak′−γ (17.30)

≈
∫ ∞
k

ak′−γdk′ =

[
ak′−γ+1

−γ + 1

]∞
k

=
0− ak−γ+1

−γ + 1
(17.31)

=
a

γ − 1
k−(γ−1) (17.32)

This result shows that the scaling exponent of F (k) for a power law degree distribution is
less than that of the original distribution by 1, which can be visually seen by comparing
their slopes between Figs. 17.9 and 17.10.

Exercise 17.11 Import a large network data set of your choice from Mark New-
man’s Network Data website: http://www-personal.umich.edu/~mejn/netdata/
Plot the degree distribution of the network, as well as its CCDF. Determine whether
the network is more similar to a random, a small-world, or a scale-free network
model.

If the network’s degree distribution shows a power law behavior, you can estimate
its scaling exponent from the distribution by simple linear regression. You should use a
CCDF of the degree distribution for this purpose, because CCDFs are less noisy than the
original degree distributions. Here is an example of scaling exponent estimation applied
to a Barabási-Albert network, where the linregress function in SciPy’s stats module is
used for linear regression:

Code 17.17: exponent-estimation.py
from pylab import *

import networkx as nx

from scipy import stats as st

n = 10000

ba = nx.barabasi_albert_graph(n, 5)

Pk = [float(x) / n for x in nx.degree_histogram(ba)]

domain = range(len(Pk))

ccdf = [sum(Pk[k:]) for k in domain]

http://www-personal.umich.edu/~mejn/netdata/
http://bingweb.binghamton.edu/~sayama/textbook/code/exponent-estimation.py
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logkdata = []

logFdata = []

prevF = ccdf[0]

for k in domain:

F = ccdf[k]

if F != prevF:

logkdata.append(log(k))

logFdata.append(log(F))

prevF = F

a, b, r, p, err = st.linregress(logkdata, logFdata)

print ’Estimated CCDF: F(k) =’, exp(b), ’* k^’, a

print ’r =’, r

print ’p-value =’, p

plot(logkdata, logFdata, ’o’)

kmin, kmax = xlim()

plot([kmin, kmax],[a * kmin + b, a * kmax + b])

xlabel(’log k’)

ylabel(’log F(k)’)

show()

In the second code block, the domain and ccdf were converted to log scales for linear
fitting. Also, note that the original ccdf contained values for all k’s, even for those for
which P (k) = 0. This would cause unnecessary biases in the linear regression toward the
higher k end where actual samples were very sparse. To avoid this, only the data points
where the value of F changed (i.e., where there were actual nodes with degree k) are
collected in the logkdata and logFdata lists.

The result is shown in Fig. 17.11, and also the following output comes out to the
terminal, which indicates that this was a pretty good fit:

Code 17.18:
Estimated CCDF: F(k) = 27.7963518947 * k^ -1.97465957944

r = -0.997324657337

p-value = 8.16476416778e-127
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Figure 17.11: Visual output of Code 17.17.

According to this result, the CCDF had a negative exponent of about -1.97. Since this
value corresponds to −(γ−1), the actual scaling exponent γ is about 2.97, which is pretty
close to its theoretical value, 3.

Exercise 17.12 Obtain a large network data set whose degree distribution ap-
pears to follow a power law, from any source (there are tons available online, in-
cluding Mark Newman’s that was introduced before). Then estimate its scaling
exponent using linear regression.

17.6 Assortativity

Degrees are a metric measured on individual nodes. But when we focus on the edges,
there are always two degrees associated with each edge, one for the node where the edge
originates and the other for the node to where the edge points. So if we take the former
for x and the latter for y from all the edges in the network, we can produce a scatter plot
that visualizes a possible degree correlation between the nodes across the edges. Such
correlations of node properties across edges can be generally described with the concept
of assortativity:
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Assortativity (positive assortativity) The tendency for nodes to connect to other
nodes with similar properties within a network.

Disassortativity (negative assortativity) The tendency for nodes to connect to other
nodes with dissimilar properties within a network.

Assortativity coefficient

r =

∑
(i,j)∈E (f(i)− f̄1)(f(j)− f̄2)√∑

(i,j)∈E (f(i)− f̄1)2
√∑

(i,j)∈E (f(j)− f̄2)2
(17.33)

where E is the set of directed edges (undirected edges should appear twice in
E in two directions), and

f̄1 =

∑
(i,j)∈E f(i)

|E|
, f̄2 =

∑
(i,j)∈E f(j)

|E|
. (17.34)

The assortativity coefficient is a Pearson correlation coefficient of some node
property f between pairs of connected nodes. Positive coefficients imply assor-
tativity, while negative ones imply disassortativity.

If the measured property is a node degree (i.e., f = deg), this is called the
degree assortativity coefficient. For directed networks, each of f̄1 and f̄2 can be
either in-degree or out-degree, so there are four different degree assortativities
you can measure: in-in, in-out, out-in, and out-out.

Let’s look at some example. Here is how to draw a degree-degree scatter plot:

Code 17.19: degree-correlation.py
from pylab import *

import networkx as nx

n = 1000

ba = nx.barabasi_albert_graph(n, 5)

xdata = []

ydata = []

for i, j in ba.edges_iter():

xdata.append(ba.degree(i)); ydata.append(ba.degree(j))

http://bingweb.binghamton.edu/~sayama/textbook/code/degree-correlation.py
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xdata.append(ba.degree(j)); ydata.append(ba.degree(i))

plot(xdata, ydata, ’o’, alpha = 0.05)

show()

In this example, we draw a degree-degree scatter plot for a Barabási-Albert network with
1,000 nodes. For each edge, the degrees of its two ends are stored in xdata and ydata

twice in different orders, because an undirected edge can be counted in two directions.
The markers in the plot are made transparent using the alpha option so that we can see
the density variations in the plot.

The result is shown in Fig. 17.12, where each dot represents one directed edge in the
network (so, an undirected edge is represented by two dots symmetrically placed across
a diagonal mirror line). It can be seen that most edges connect low-degree nodes to each
other, with some edges connecting low-degree and high-degree nodes, but it is quite rare
that high-degree nodes are connected to each other. Therefore, there is a mild negative
degree correlation in this case.

Figure 17.12: Visual output of Code 17.19.

We can confirm this observation by calculating the degree assortativity coefficient as
follows:

Code 17.20:
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>>> nx.degree_assortativity_coefficient(ba)

-0.058427968508962938

This function also has options x (for f̄1) and y (for f̄2) to specify which degrees you use in
calculating coefficients for directed networks:

Code 17.21:
>>> import networkx as nx

>>> g = nx.DiGraph()

>>> g.add_edges_from([(0,1), (0,2), (0,3), (1,2), (2,3), (3,0)])

>>> nx.degree_assortativity_coefficient(g, x = ’in’, y = ’in’)

-0.250000000000001

>>> nx.degree_assortativity_coefficient(g, x = ’in’, y = ’out’)

0.63245553203367555

>>> nx.degree_assortativity_coefficient(g, x = ’out’, y = ’in’)

0.0

>>> nx.degree_assortativity_coefficient(g, x = ’out’, y = ’out’)

-0.44721359549995793

There are also other functions that can calculate assortativities of node properties other
than degrees. Check out NetworkX’s online documentation for more details.

Exercise 17.13 Measure the degree assortativity coefficient of the Karate Club
graph. Explain the result in view of the actual topology of the graph.

It is known that real-world networks show a variety of assortativity. In general, so-
cial networks of human individuals, such as collaborative relationships among scientists
or corporate directors, tend to show positive assortativity, while technological networks
(power grid, the Internet, etc.) and biological networks (protein interactions, neural net-
works, food webs, etc.) tend to show negative assortativity [76].

In the meantime, it is also known that scale-free networks of a finite size (which many
real-world networks are) naturally show negative disassortativity purely because of in-
herent structural limitations, which is called a structural cutoff [25]. Such disassortativity
arises because there are simply not enough hub nodes available for themselves to con-
nect to each other to maintain assortativity. This means that the positive assortativities
found in human social networks indicate there is definitely some assortative mechanism
driving their self-organization, while the negative assortativities found in technological
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and biological networks may be explained by this simple structural reason. In order to
determine whether or not a network showing negative assortativity is fundamentally dis-
assortative for non-structural reasons, you will need to conduct a control experiment by
randomizing its topology and measuring assortativity while keeping the same degree dis-
tribution.

Exercise 17.14 Randomize the topology of the Karate Club graph while keep-
ing its degree sequence, and then measure the degree assortativity coefficient of
the randomized graph. Repeat this many times to obtain a distribution of the co-
efficients for randomized graphs. Then compare the distribution with the actual
assortativity of the original Karate Club graph. Based on the result, determine
whether or not the Karate Club graph is truly assortative or disassortative.

17.7 Community Structure and Modularity

The final topics of this chapter are the community structure and modularity of a network.
These topics have been studied very actively in network science for the last several years.
These are typical mesoscopic properties of a network; neither microscopic (e.g., degrees
or clustering coefficients) nor macroscopic (e.g., density, characteristic path length) prop-
erties can tell us how a network is organized at spatial scales intermediate between those
two extremes, and therefore, these concepts are highly relevant to the modeling and un-
derstanding of complex systems too.

Community A set of nodes that are connected more densely to each other than to
the rest of the network. Communities may or may not overlap with each other,
depending on their definitions.

Modularity The extent to which a network is organized into multiple communities.

Figure 17.13 shows an example of communities in a network.
There are literally dozens of different ways to define and detect communities in a

network. But here, we will discuss just one method that is now widely used by network
science researchers: the Louvain method, proposed by Vincent Blondel et al. in 2008
[77]. It is a very fast, efficient heuristic algorithm that maximizes the modularity of non-
overlapping community structure through an iterative, hierarchical optimization process.
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Figure 17.13: Example of communities in a network.
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The modularity of a given set of communities in a network is defined as follows [78]:

Q =
|Ein| − 〈|Ein|〉

|E|
(17.35)

Here, |E| is the number of edges, |Ein| is the number of within-community edges (i.e.,
those that don’t cross boundaries between communities), and 〈|Ein|〉 is the expected
number of within-community edges if the topology were purely random. The subtrac-
tion of 〈|Ein|〉 on the numerator penalizes trivial community structure, such as considering
the entire network a single community that would trivially maximize |Ein|.

The Louvain method finds the optimal community structure that maximizes the modu-
larity in the following steps:

1. Initially, each node is assigned to its own community where the node itself is the
only community member. Therefore the number of initial communities equals the
number of nodes.

2. Each node considers each of its neighbors and evaluates whether joining to the
neighbor’s community would increase the modularity of the community structure.
After evaluating all the neighbors, it will join the community of the neighbor that
achieves the maximal modularity increase (only if the change is positive; otherwise
the node will remain in its own community). This will be repeatedly applied for all
nodes until no more positive gain is achievable.

3. The result of Step 2 is converted to a new meta-network at a higher level, by aggre-
gating nodes that belonged to a single community into a meta-node, representing
edges that existed within each community as the weight of a self-loop attached to
the meta-node, and representing edges that existed between communities as the
weights of meta-edges that connect meta-nodes.

4. The above two steps are repeated until no more modularity improvement is possible.

One nice thing about this method is that it is parameter-free; you don’t have to specify
the number of communities or the criteria to stop the algorithm. All you need is to provide
network topology data, and the algorithm heuristically finds the community structure that
is close to optimal in achieving the highest modularity.

Unfortunately, NetworkX doesn’t have this Louvain method as a built-in function, but
its Python implementation has been developed and released freely by Thomas Aynaud,
which is available from http://perso.crans.org/aynaud/communities/. Once you in-
stall it, a new community module becomes available in Python. Here is an example:

http://perso.crans.org/aynaud/communities/


17.7. COMMUNITY STRUCTURE AND MODULARITY 403

Code 17.22:
>>> import networkx as nx

>>> import community as comm

>>> g = nx.karate_club_graph()

>>> bp = comm.best_partition(g)

>>> bp

{0: 0, 1: 0, 2: 0, 3: 0, 4: 1, 5: 1, 6: 1, 7: 0, 8: 2, 9: 0, 10: 1,

11: 0, 12: 0, 13: 0, 14: 2, 15: 2, 16: 1, 17: 0, 18: 2, 19: 0,

20: 2, 21: 0, 22: 2, 23: 3, 24: 3, 25: 3, 26: 2, 27: 3, 28: 3,

29: 2, 30: 2, 31: 3, 32: 2, 33: 2}

>>> comm.modularity(bp, g)

0.4188034188034188

Here, the two important functions in the community module are tested. The first one is
best_partition, which generates community structure using the Louvain method. The
result is given as a dictionary where keys and values are node IDs and community IDs,
respectively. The second function shown above is modularity, which receives community
structure and a network and returns the modularity value achieved by the given commu-
nities.

Exercise 17.15 Visualize the community structure in the Karate Club graph using
the community IDs as the colors of the nodes.

Exercise 17.16 Import a large network data set of your choice from Mark New-
man’s Network Data website: http://www-personal.umich.edu/~mejn/netdata/
Detect its community structure using the Louvain method and visualize it if possi-
ble.

Exercise 17.17 Do a quick online literature search for other community detection
algorithms (e.g., Girvan-Newman method, k-clique percolation method, random
walk method, etc.). Choose one of them and read the literature to learn how it
works. If the software is available, try it yourself on the Karate Club graph or any
other network and see how the result differs from that of the Louvain method.

http://www-personal.umich.edu/~mejn/netdata/




Chapter 18

Dynamical Networks III: Analysis of
Network Dynamics

18.1 Dynamics of Continuous-State Networks

We will now switch gears to the analysis of dynamical properties of networks. We will
first discuss how some of the analytical techniques we already covered in earlier chapters
can be applied to dynamical network models, and then we will move onto some additional
topics that are specific to networks.

First of all, I would like to make it clear that we were already discussing dynamical
network models in earlier chapters. A typical autonomous discrete-time dynamical system

xt = F (xt−1), (18.1)

or a continuous-time one

dx

dt
= F (x), (18.2)

can be considered a dynamical network if the state space is multidimensional. For exam-
ple, a system with a five-dimensional state space can be viewed as a dynamical network
made of five nodes, each having a scalar state that changes dynamically based on the
mathematical rule determined in function F (Fig. 18.1). More specifically, the dynamics of
node i’s state is determined by the i-th dimensional part of F , and if that part refers to the
state vector’s j-th component, then node j is connected to node i, and so on.

This means that dynamical networks are not fundamentally different from other dy-
namical systems. Therefore, if the node states are continuous, then all the analytical

405
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Figure 18.1: Schematic illustration of how a multidimensional dynamical system can
be viewed as a dynamical network. Left: Actual dynamical equations. Right: Interde-
pendent relationships among variables, represented as a dynamical network.

techniques we discussed before—finding equilibrium points, linearizing dynamics around
an equilibrium point, analyzing the stability of the system’s state using eigenvalues of a
Jacobian matrix, etc.—will apply to dynamical network models without any modification.

Analysis of dynamical networks is easiest when the model is linear, i.e.,

xt = Axt−1, (18.3)

or

dx

dt
= Ax. (18.4)

If this is the case, all you need to do is to find eigenvalues of the coefficient matrix A,
identify the dominant eigenvalue(s) λd (with the largest absolute value for discrete-time
cases, or the largest real part for continuous-time cases), and then determine the stability
of the system’s state around the origin by comparing |λd| with 1 for discrete-time cases,
or Re(λd) with 0 for continuous-time cases. The dominant eigenvector(s) that correspond
to λd also tell us the asymptotic state of the network. While this methodology doesn’t
apply to other more general nonlinear network models, it is still quite useful, because
many important network dynamics can be written as linear models. One such example is
diffusion, which we will discuss in the following section in more detail.
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18.2 Diffusion on Networks

Many important dynamical network models can be formulated as a linear dynamical sys-
tem. The first example is the diffusion equation on a network that we discussed in Chapter
16:

dc

dt
= −αLc (18.5)

This is a continuous-time version, but you can also write a discrete-time equivalent. As
we discussed before, L = D − A is the Laplacian matrix of the network. It is a symmetric
matrix in which diagonal components are all non-negative (representing node degrees)
while other components are all non-positive. This matrix has some interesting, useful
dynamical properties:

A Laplacian matrix of an undirected network has the following properties:

1. At least one of its eigenvalues is zero.

2. All the other eigenvalues are either zero or positive.

3. The number of its zero eigenvalues corresponds to the number of connected
components in the network.

4. If the network is connected, the dominant eigenvector is a homogeneity vector
h = (1 1 . . . 1)T a.

5. The smallest non-zero eigenvalue is called the spectral gap of the network,
which determines how quickly the diffusion takes place on the network.

aEven if the network is not connected, you can still take the homogeneity vector as one of the bases
of its dominant eigenspace.

The first property is easy to show, because Lh = (D − A)h = d − d = 0, where d is the
vector made of node degrees. This means that h can be taken as the eigenvector that
corresponds to eigenvalue 0. The second property comes from the fact that the Laplacian
matrix is positive-semidefinite, because it can be obtained by L = MTM where M is the
signed incidence matrix of the network (not detailed in this textbook).

To understand the rest of the properties, we need to consider how to interpret the
eigenvalues of the Laplacian matrix. The actual coefficient matrix of the diffusion equation
is −αL, and its eigenvalues are {−αλi}, where {λi} are L’s eigenvalues. According to
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the first two properties discussed above, the coefficient matrix of the equation has at
least one eigenvalue 0, and all the eigenvalues are 0 or negative. This means that the
zero eigenvalue is actually the dominant one in this case, and its corresponding dominant
eigenvector (h, or eigenspace, if the network is not connected) will tell us the asymptotic
state of the network.

Let’s review the other properties. The third property arises intuitively because, if
the network is made of multiple connected components, each of those components be-
haves as a separate network and shows diffusion independently, converging to a different
asymptotic value, and therefore, the asymptotic state of the whole network should have as
many degrees of freedom as the connected components. This requires that the dominant
eigenspace have as many dimensions, which is why there should be as many degener-
ate dominant eigenvalue 0’s as the connected components in the network. The fourth
property can be derived by combining this with the argument on property 1 above.

And finally, the spectral gap. It is so called because the list of eigenvalues of a matrix
is called a matrix spectrum in mathematics. The spectral gap is the smallest non-zero
eigenvalue of L, which corresponds to the largest non-zero eigenvalue of −αL and thus
to the mode of the network state that shows the slowest exponential decay over time. If the
spectral gap is close to zero, this decay takes a very long time, resulting in slow diffusion.
Or if the spectral gap is far above zero, the decay occurs quickly, and so does the diffusion.
In this sense, the spectral gap of the Laplacian matrix captures some topological aspects
of the network, i.e., how well the nodes are connected to each other from a dynamical
viewpoint. The spectral gap of a connected graph (or, the second smallest eigenvalue of
a Laplacian matrix in general) is called the algebraic connectivity of a network.

Here is how to obtain a Laplacian matrix and a spectral gap in NetworkX:

Code 18.1:
>>> import networkx as nx

>>> g = nx.karate_club_graph()

>>> nx.laplacian_matrix(g)

<34x34 sparse matrix of type ’<type ’numpy.int32’>’

with 190 stored elements in Compressed Sparse Row format>

>>> nx.laplacian_spectrum(g)

array([ 2.84494649e-15, 4.68525227e-01, 9.09247664e-01,

1.12501072e+00, 1.25940411e+00, 1.59928308e+00,

1.76189862e+00, 1.82605521e+00, 1.95505045e+00,

2.00000000e+00, 2.00000000e+00, 2.00000000e+00,

2.00000000e+00, 2.00000000e+00, 2.48709173e+00,
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2.74915718e+00, 3.01396297e+00, 3.24206748e+00,

3.37615409e+00, 3.38196601e+00, 3.47218740e+00,

4.27587682e+00, 4.48000767e+00, 4.58079267e+00,

5.37859508e+00, 5.61803399e+00, 6.33159222e+00,

6.51554463e+00, 6.99619703e+00, 9.77724095e+00,

1.09210675e+01, 1.33061223e+01, 1.70551712e+01,

1.81366960e+01])

>>> sorted(nx.laplacian_spectrum(g))[1]

0.46852522670139884

So, the spectral gap (= algebraic connectivity in this case) of the Karate Club graph is
about 0.4685. This value doesn’t tell us much about the speed of the diffusion on that
network. We will need to compare spectral gaps between different network topologies.

Exercise 18.1 Randomize the topology of the Karate Club graph several times
and measure their spectral gaps. Compare the result with the original value ob-
tained above and discuss what it means in terms of the speed of diffusion.

Exercise 18.2 Generate the following network topologies with comparable size
and density:

• random graph

• barbell graph

• ring-shaped graph (i.e., degree-2 regular graph)

Measure their spectral gaps and see how topologies quantitatively affect the speed
of diffusion.

18.3 Synchronizability

An interesting application of the spectral gap/algebraic connectivity is to determine the
synchronizability of linearly coupled dynamical nodes, which can be formulated as follows:

dxi
dt

= R(xi) + α
∑
j∈Ni

(H(xj)−H(xi)) (18.6)
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Here xi is the state of node i, R is the local reaction term that produces the inherent
dynamical behavior of individual nodes, andNi is the neighborhood of node i. We assume
that R is identical for all nodes, and it produces a particular trajectory xs(t) if there is no
interaction with other nodes. Namely, xs(t) is given as the solution of the differential
equation dx/dt = R(x). H is called the output function that homogeneously applies to all
nodes. The output function is used to generalize interaction and diffusion among nodes;
instead of assuming that the node states themselves are directly visible to others, we
assume that a certain aspect of node states (represented by H(x)) is visible and diffusing
to other nodes.

Eq. (18.6) can be further simplified by using the Laplacian matrix, as follows:

dxi
dt

= R(xi)− αL


H(x1)

H(x2)
...

H(xn)

 (18.7)

Now we want to study whether this network of coupled dynamical nodes can synchro-
nize or not. Synchronization is possible if and only if the trajectory xi(t) = xs(t) for all i is
stable. This is a new concept, i.e., to study the stability of a dynamic trajectory, not of a
static equilibrium state. But we can still adopt the same basic procedure of linear stability
analysis: represent the system’s state as the sum of the target state and a small pertur-
bation, and then check if the perturbation grows or shrinks over time. Here we represent
the state of each node as follows:

xi(t) = xs(t) + ∆xi(t) (18.8)

By plugging this new expression into Eq. (18.7), we obtain

d(xs + ∆xi)

dt
= R(xs + ∆xi)− αL


H(xs + ∆x1)

H(xs + ∆x2)
...

H(xs + ∆xn)

 (18.9)

Since ∆xi are very small, we can linearly approximate R and H as follows:

dxs
dt

+
d∆xi
dt

= R(xs) +R′(xs)∆xi − αL


H(xs) +H ′(xs)∆x1

H(xs) +H ′(xs)∆x2

...
H(xs) +H ′(xs)∆xn

 (18.10)
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The first terms on both sides cancel out each other because xs is the solution of dx/dt =

R(x) by definition. But what about those annoying H(xs)’s included in the vector in the
last term? Is there any way to eliminate them? Well, the answer is that we don’t have to
do anything, because the Laplacian matrix will eat them all. Remember that a Laplacian
matrix always satisfies Lh = 0. In this case, those H(xs)’s constitute a homogeneous
vector H(xs)h altogether. Therefore, L(H(xs)h) = H(xs)Lh vanishes immediately, and
we obtain

d∆xi
dt

= R′(xs)∆xi − αH ′(xs)L


∆x1

∆x2

...
∆xn

 , (18.11)

or, by collecting all the ∆xi’s into a new perturbation vector ∆x,

d∆x

dt
= (R′(xs)I − αH ′(xs)L) ∆x, (18.12)

as the final result of linearization. Note that xs still changes over time, so in order for
this trajectory to be stable, all the eigenvalues of this rather complicated coefficient matrix
(R′(xs)I − αH ′(xs)L) should always indicate stability at any point in time.

We can go even further. It is known that the eigenvalues of a matrix aX+bI are aλi+b,
where λi are the eigenvalues of X. So, the eigenvalues of (R′(xs)I − αH ′(xs)L) are

−αλiH ′(xs) +R′(xs), (18.13)

where λi are L’s eigenvalues. The eigenvalue that corresponds to the smallest eigenvalue
of L, 0, is just R′(xs), which is determined solely by the inherent dynamics of R(x) (and
thus the nature of xs(t)), so we can’t do anything about that. But all the other n − 1

eigenvalues must be negative all the time, in order for the target trajectory xs(t) to be
stable. So, if we represent the second smallest eigenvalue (the spectral gap for connected
networks) and the largest eigenvalue of L by λ2 and λn, respectively, then the stability
criteria can be written as

αλ2H
′(xs(t)) > R′(xs(t)) for all t, and (18.14)

αλnH
′(xs(t)) > R′(xs(t)) for all t, (18.15)

because all other intermediate eigenvalues are “sandwiched” by λ2 and λn. These in-
equalities provide us with a nice intuitive interpretation of the stability condition: the in-
fluence of diffusion of node outputs (left hand side) should be stronger than the internal
dynamical drive (right hand side) all the time.
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Note that, although α and λi are both non-negative,H ′(xs(t)) could be either positive or
negative, so which inequality is more important depends on the nature of the output func-
tion H and the trajectory xs(t) (which is determined by the reaction term R). If H ′(xs(t))
always stays non-negative, then the first inequality is sufficient (since the second inequal-
ity naturally follows as λ2 ≤ λn), and thus the spectral gap is the only relevant information
to determine the synchronizability of the network. But if not, we need to consider both the
spectral gap and the largest eigenvalue of the Laplacian matrix.

Here is a simple example. Assume that a bunch of nodes are oscillating in an expo-
nentially accelerating pace:

dθi
dt

= βθi + α
∑
j∈Ni

(θj − θi) (18.16)

Here, θi is the phase of node i, and β is the rate of exponential acceleration that homoge-
neously applies to all nodes. We also assume that the actual values of θi diffuse to and
from neighbor nodes through edges. Therefore, R(θ) = βθ and H(θ) = θ in this model.

We can analyze the synchronizability of this model as follows. Since H ′(θ) = 1 > 0,
we immediately know that the inequality (18.14) is the only requirement in this case. Also,
R′(θ) = β, so the condition for synchronization is given by

αλ2 > β, or λ2 >
β

α
. (18.17)

Very easy. Let’s check this analytical result with numerical simulations on the Karate Club
graph. We know that its spectral gap is 0.4685, so if β/α is below (or above) this value,
the synchronization should (or should not) occur. Here is the code for such simulations:

Code 18.2: net-sync-analysis.py
import matplotlib

matplotlib.use(’TkAgg’)

from pylab import *

import networkx as nx

def initialize():

global g, nextg

g = nx.karate_club_graph()

g.pos = nx.spring_layout(g)

for i in g.nodes_iter():

g.node[i][’theta’] = random()

http://bingweb.binghamton.edu/~sayama/textbook/code/net-sync-analysis.py
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nextg = g.copy()

def observe():

global g, nextg

subplot(1, 2, 1)

cla()

nx.draw(g, cmap = cm.hsv, vmin = -1, vmax = 1,

node_color = [sin(g.node[i][’theta’]) for i in g.nodes_iter()],

pos = g.pos)

axis(’image’)

subplot(1, 2, 2)

cla()

plot([cos(g.node[i][’theta’]) for i in g.nodes_iter()],

[sin(g.node[i][’theta’]) for i in g.nodes_iter()], ’.’)

axis(’image’)

axis([-1.1, 1.1, -1.1, 1.1])

alpha = 2 # coupling strength

beta = 1 # acceleration rate

Dt = 0.01 # Delta t

def update():

global g, nextg

for i in g.nodes_iter():

theta_i = g.node[i][’theta’]

nextg.node[i][’theta’] = theta_i + (beta * theta_i + alpha * \

sum(sin(g.node[j][’theta’] - theta_i) for j in g.neighbors(i)) \

) * Dt

g, nextg = nextg, g

import pycxsimulator

pycxsimulator.GUI().start(func=[initialize, observe, update])

Here I added a second plot that shows the phase distribution in a (x, y) = (cos θ, sin θ)

space, just to aid visual understanding.
In the code above, the parameter values are set to alpha = 2 and beta = 1, so λ2 =
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0.4685 < β/α = 0.5. Therefore, it is predicted that the nodes won’t get synchronized.
And, indeed, the simulation result confirms this prediction (Fig. 18.2(a)), where the nodes
initially came close to each other in their phases but, as their oscillation speed became
faster and faster, they eventually got dispersed again and the network failed to achieve
synchronization. However, if beta is slightly lowered to 0.9 so that λ2 = 0.4685 > β/α =

0.45, the synchronized state becomes stable, which is confirmed again in the numerical
simulation (Fig. 18.2(b)). It is interesting that such a slight change in the parameter value
can cause a major difference in the global dynamics of the network. Also, it is rather
surprising that the linear stability analysis can predict this shift so precisely. Mathematical
analysis rocks!

Exercise 18.3 Randomize the topology of the Karate Club graph and measure
its spectral gap. Analytically determine the synchronizability of the accelerating
oscillators model discussed above with α = 2, β = 1 on the randomized network.
Then confirm your prediction by numerical simulations. You can also try several
other network topologies.

Exercise 18.4 The following is a model of coupled harmonic oscillators where
complex node states are used to represent harmonic oscillation in a single-variable
differential equation:

dxi
dt

= iωxi + α
∑
j∈Ni

(
xγj − x

γ
i

)
(18.18)

Here i is used to denote the imaginary unit to avoid confusion with node index
i. Since the states are complex, you will need to use Re(·) on both sides of the
inequalities (18.14) and (18.15) to determine the stability.

Analyze the synchnonizability of this model on the Karate Club graph, and obtain
the condition for synchronization regarding the output exponent γ. Then confirm
your prediction by numerical simulations.

You may have noticed the synchronizability analysis discussed above is somewhat
similar to the stability analysis of the continuous field models discussed in Chapter 14.
Indeed, they are essentially the same analytical technique (although we didn’t cover sta-
bility analysis of dynamic trajectories back then). The only difference is whether the space
is represented as a continuous field or as a discrete network. For the former, the diffusion
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Figure 18.2: Visual outputs of Code 18.2. Time flows from top to bottom. (a) Result
with α = 2, β = 1 (λ2 < β/α.). (b) Result with α = 2, β = 0.9 (λ2 > β/α.).
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is represented by the Laplacian operator ∇2, while for the latter, it is represented by the
Laplacian matrix L (note again that their signs are opposite for historical misfortune!). Net-
work models allows us to study more complicated, nontrivial spatial structures, but there
aren’t any fundamentally different aspects between these two modeling frameworks. This
is why the same analytical approach works for both.

Note that the synchronizability analysis we covered in this section is still quite limited
in its applicability to more complex dynamical network models. It relies on the assumption
that dynamical nodes are homogeneous and that they are linearly coupled, so the analysis
can’t generalize to the behaviors of heterogeneous dynamical networks with nonlinear
couplings, such as the Kuramoto model discussed in Section 16.2 in which nodes oscillate
in different frequencies and their couplings are nonlinear. Analysis of such networks will
need more advanced nonlinear analytical techniques, which is beyond the scope of this
textbook.

18.4 Mean-Field Approximation of Discrete-State Net-
works

Analyzing the dynamics of discrete-state network models requires a different approach,
because the assumption of smooth, continuous state space, on which the linear stability
analysis is based on, no longer applies. This difference is similar to the difference between
continuous field models and cellular automata (CA). In Section 12.3, we analyzed CA
models using mean-field approximation. Since CA are just a special case of discrete-
state dynamical networks, we should be able to apply the same analysis to dynamical
networks as well.

In fact, mean-field approximation works on dynamical networks almost in the same
way as on CA. But one important issue we need to consider is how to deal with heteroge-
neous sizes of the neighborhoods. In CA, every cell has the same number of neighbors,
so the mean-field approximation is very easy. But this is no longer the case on networks
in which nodes can have any number of neighbors. There are a few different ways to deal
with this issue.

In what follows, we will work on a simple binary-state example, the Susceptible-Infected-
Susceptible (SIS) model, which we discussed in Section 16.2. As you may remember, the
state transition rules of this model are fairly simple: A susceptible node can get infected
by an infected neighbor node with infection probability pi (per infected neighbor), while
an infected node can recover to a susceptible node with recovery probability pr. In the
previous chapter, we used asynchronous updating in simulations of the SIS model, but
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here we assume synchronous, simultaneous updating, in order to make the mean-field
approximation more similar to the approximation we applied to CA.

For the mean-field approximation, we need to represent the state of the system by a
macroscopic variable, i.e., the probability (= density, fraction) of the infected nodes in the
network (say, q) in this case, and then describe the temporal dynamics of this variable
by assuming that this probability applies to everywhere in the network homogeneously
(i.e., the “mean field”). In the following sections, we will discuss how to apply the mean-
field approximation to two different network topologies: random networks and scale-free
networks.

18.5 Mean-Field Approximation on Random Networks

If we can assume that the network topology is random with connection probability pe,
then infection occurs with a joint probability of three events: that a node is connected to
another neighbor node (pe), that the neighbor node is infected by the disease (q), and that
the disease is actually transmitted to the node (pi). Therefore, 1 − peqpi is the probability
that the node is not infected by another node. In order for a susceptible node to remain
susceptible to the next time step, it must avoid infection in this way n − 1 times, i.e., for
all other nodes in the network. The probability for this to occur is thus (1 − peqpi)

n−1.
Using this result, all possible scenarios of state transitions can be summarized as shown
in Table 18.1.

Table 18.1: Possible scenarios of state transitions in the network SIS model.

Current state Next state Probability of this transition
0 (susceptible) 0 (susceptible) (1− q)(1− peqpi)n−1

0 (susceptible) 1 (infected) (1− q) (1− (1− peqpi)n−1)

1 (infected) 0 (susceptible) qpr
1 (infected) 1 (infected) q(1− pr)

We can combine the probabilities of the transitions that turn the next state into 1, to
write the following difference equation for qt (whose subscript is omitted on the right hand
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side for simplicity):

qt+1 = (1− q)
(
1− (1− peqpi)n−1

)
+ q(1− pr) (18.19)

= 1− q − (1− q)(1− peqpi)n−1 + q − qpr (18.20)

≈ 1− (1− q)(1− (n− 1)peqpi)− qpr (because peqpi is small) (18.21)

= q ((1− q)(n− 1)pepi + 1− pr) (18.22)

= q ((1− q)s+ 1− pr) = f(q) (with s = (n− 1)pepi ) (18.23)

Now this is a simple iterative map about qt, which we already know how to study. By
solving f(qeq) = qeq, we can easily find that there are the following two equilibrium points:

qeq = 0, 1− pr
s

(18.24)

And the stability of each of these points can be studied by calculating the derivative of
f(q):

df(q)

dq
= 1− pr + (1− 2q)s (18.25)

df(q)

dq

∣∣∣∣
q=0

= 1− pr + s (18.26)

df(q)

dq

∣∣∣∣
q=1−pr/s

= 1 + pr − s (18.27)

So, it looks like pr − s is playing an important role here. Note that 0 ≤ pr ≤ 1 because it
is a probability, and also 0 ≤ s ≤ 1 because (1− s) is an approximation of (1− peqpi)n−1,
which is also a probability. Therefore, the valid range of pr − s is between -1 and 1. By
comparing the absolute values of Eqs. (18.26) and (18.27) to 1 within this range, we find
the stabilities of those two equilibrium points as summarized in Table 18.2.

Table 18.2: Stabilities of the two equilibrium points in the network SIS model.

Equilibrium point −1 ≤ pr − s < 0 0 < pr − s ≤ 1

q = 0 unstable stable
q = 1− pr

s
stable unstable

Now we know that there is a critical epidemic threshold between the two regimes. If
pr > s = (n− 1)pepi, the equilibrium point qeq = 0 becomes stable, so the disease should
go away quickly. But otherwise, the other equilibrium point becomes stable instead, which
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means that the disease will never go away from the network. This epidemic threshold is
often written in terms of the infection probability, as

pi >
pr

(n− 1)pe
=

pr
〈k〉

, (18.28)

as a condition for the disease to persist, where 〈k〉 is the average degree. It is an important
characteristic of epidemic models on random networks that there is a positive lower bound
for the disease’s infection probability. In other words, a disease needs to be “contagious
enough” in order to survive in a randomly connected social network.

Exercise 18.5 Modify Code 16.6 to implement a synchronous, simultaneous up-
dating version of the network SIS model. Then simulate its dynamics on an Erdős-
Rényi random network for the following parameter settings:

• n = 100, pe = 0.1, pi = 0.5, pr = 0.5 (pr < (n− 1)pepi)

• n = 100, pe = 0.1, pi = 0.04, pr = 0.5 (pr > (n− 1)pepi)

• n = 200, pe = 0.1, pi = 0.04, pr = 0.5 (pr < (n− 1)pepi)

• n = 200, pe = 0.05, pi = 0.04, pr = 0.5 (pr > (n− 1)pepi)

Discuss how the results compare to the predictions made by the mean-field ap-
proximation.

As you can see in the exercise above, the mean-field approximation works much better
on random networks than on CA. This is because the topologies of random networks are
not locally clustered. Edges connect nodes that are randomly chosen from the entire net-
work, so each edge serves as a global bridge to mix the states of the system, effectively
bringing the system closer to the “mean-field” state. This, of course, will break down if the
network topology is not random but locally clustered, such as that of the Watts-Strogatz
small-world networks. You should keep this limitation in mind when you apply mean-field
approximation.

Exercise 18.6 If you run the simulation using the original Code 16.6 with asyn-
chronous updating, the result may be different from the one obtained with syn-
chronous updating. Conduct simulations using the original code for the same pa-
rameter settings as those used in the previous exercise. Compare the results ob-
tained using the two versions of the model, and discuss why they are so different.
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18.6 Mean-Field Approximation on Scale-Free Networks

What if the network topology is highly heterogeneous, like in scale-free networks, so
that the random network assumption is no longer applicable? A natural way to reconcile
such heterogeneous topology and mean-field approximation is to adopt a specific degree
distribution P (k). It is still a non-spatial summary of connectivities within the network, but
you can capture some heterogeneous aspects of the topology in P (k).

One additional complication the degree distribution brings in is that, because the
nodes are now different from each other regarding their degrees, they can also be dif-
ferent from each other regarding their state distributions too. In other words, it is no
longer reasonable to assume that we can represent the global state of the network by a
single “mean field” q. Instead, we will need to represent q as a function of degree k (i.e.,
a bunch of mean fields, each for a specific k), because heavily connected nodes may
become infected more often than poorly connected nodes do. So, here is the summary of
the new quantities that we need to include in the approximation:

• P (k): Probability of nodes with degree k

• q(k): Probability for a node with degree k to be infected

Let’s consider how to revise Table 18.1 using P (k) and q(k). It is obvious that all the q’s
should be replaced by q(k). It is also apparent that the third and fourth row (probabilities
of transitions for currently infected states) won’t change, because they are simply based
on the recovery probability pr. And the second row can be easily obtained once the first
row is obtained. So, we can just focus on calculating the probability in the first row: What
is the probability for a susceptible node with degree k to remain susceptible in the next
time step?

We can use the same strategy as what we did for the random network case. That
is, we calculate the probability for the node to get infected from another node, and then
calculate one minus that probability raised to the power of the number of neighbors, to
obtain the probability for the node to avoid any infection. For random networks, all other
nodes were potential neighbors, so we had to raise (1− peqpi) to the power of n− 1. But
this is no longer necessary, because we are now calculating the probability for a node
with the specific degree k. So, the probability that goes to the first row of the table should
look like:

(1− q(k)) (1− something)k (18.29)

Here, “something” is the joint probability of two events, that the neighbor node is infected
by the disease and that the disease is actually transmitted to the node in question. The
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latter is still pi, but the former is no longer represented by a single mean field. We need
to consider all possible degrees that the neighbor might have, and then aggregate them
all to obtain an overall average probability for the neighbor to be in the infected state. So,
here is a more elaborated probability:

(1− q(k))

(
1−

∑
k′

Pn(k′|k)q(k′)pi

)k

(18.30)

Here, k′ is the neighbor’s degree, and the summation is to be conducted for all possible
values of k′. Pn(k′|k) is the conditional probability for a neighbor of a node with degree
k to have degree k′. This could be any probability distribution, which could represent as-
sortative or disassortative network topology. But if we assume that the network is neither
assortative nor disassortative, then Pn(k′|k) doesn’t depend on k at all, so it becomes just
Pn(k′): the neighbor degree distribution.

Wait a minute. Do we really need such a special distribution for neighbors’ degrees?
The neighbors are just ordinary nodes, after all, so can’t we use the original degree distri-
bution P (k′) instead of Pn(k′)? As strange as it may sound, the answer is an astonishing
NO. This is one of the most puzzling phenomena on networks, but your neighbors are
not quite ordinary people. The average degree of neighbors is actually higher than the
average degree of all nodes, which is often phrased as “your friends have more friends
than you do.” As briefly discussed in Section 16.2, this is called the friendship paradox,
first reported by sociologist Scott Feld in the early 1990s [68].

We can analytically obtain the neighbor degree distribution for non-assortative net-
works. Imagine that you randomly pick one edge from a network, trace it to one of its end
nodes, and measure its degree. If you repeat this many times, then the distribution you
get is the neighbor degree distribution. This operation is essentially to randomly choose
one “hand,” i.e, half of an edge, from the entire network. The total number of hands at-
tached to the nodes with degree k′ is given by k′nP (k′), and if you sum this over all k′, you
will obtain the total number of hands in the network. Therefore, if the sampling is purely
random, the probability for a neighbor (i.e., a node attached to a randomly chosen hand)
to have degree k′ is given by

Pn(k′) =
k′nP (k′)∑
k′ k
′nP (k′)

=
k′P (k′)∑
k′ k
′P (k′)

=
k′

〈k〉
P (k′), (18.31)

where 〈k〉 is the average degree. As you can clearly see in this result, the neighbor degree
distribution is a modified degree distribution so that it is proportional to degree k′. This
shows that higher-degree nodes have a greater chance to appear as neighbors. If we
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calculate the average neighbor degree 〈kn〉, we obtain

〈kn〉 =
∑
k′

k′Pn(k′) =
∑
k′

k′2P (k′)

〈k〉
=
〈k2〉
〈k〉

=
〈k〉2 + σ(k)2

〈k〉
= 〈k〉+

σ(k)2

〈k〉
, (18.32)

where σ(k)2 is the variance of the degree distribution. This mathematically shows that,
if there is any variance in the degree distribution (which is true for virtually all real-world
networks), your friends have more friends than you do, on average. This may be a bit
depressing, but true. Just face it.

Okay, enough on the friendship paradox. Let’s plug Eq. (18.31) back into Eq. (18.30),
which gives

(1− q(k))

(
1−

∑
k′

k′

〈k〉
P (k′)q(k′)pi

)k

. (18.33)

With this, we can finally complete the state transition probability table as shown in Table
18.3.

Table 18.3: Possible scenarios of state transitions in the network SIS model, with degree
distribution P (k) and degree-dependent infection probability q(k).

Current state Next state Probability of this transition

0 (susceptible) 0 (susceptible) (1− q(k))
(

1−
∑

k′
k′

〈k〉P (k′)q(k′)pi

)k
0 (susceptible) 1 (infected) (1− q(k))

(
1−

(
1−

∑
k′

k′

〈k〉P (k′)q(k′)pi

)k)
1 (infected) 0 (susceptible) q(k)pr
1 (infected) 1 (infected) q(k)(1− pr)

We can add probabilities of state transitions that turn the next state into 1, to obtain
a difference equation for qt(k) (again, the subscripts are omitted on the right hand side),
i.e.,

qt+1(k) = (1− q(k))

1−

(
1−

∑
k′

k′

〈k〉
P (k′)q(k′)pi

)k
+ q(k)(1− pr) (18.34)

= (1− q(k))
(

1− (1− qnpi)k
)

+ q(k)(1− pr), (18.35)

with

qn =

∑
k′ k
′P (k′)q(k′)

〈k〉
. (18.36)



18.6. MEAN-FIELD APPROXIMATION ON SCALE-FREE NETWORKS 423

qn is the probability that a neighbor node is infected by the disease. Thus qnpi corresponds
to the “something” part in Eq. (18.29). It can take any value between 0 and 1, but for our
purpose of studying the epidemic threshold of infection probability, we can assume that
qnpi is small. Therefore, using the approximation (1 − x)k ≈ 1 − kx for small x again, the
iterative map above becomes

qt+1(k) = (1− q(k)) (1− (1− kqnpi)) + q(k)(1− pr) (18.37)

= (1− q(k))kqnpi + q(k)− q(k)pr = f(q(k)). (18.38)

Then we can calculate the equilibrium state of the nodes with degree k as follows:

qeq(k) = (1− qeq(k))kqnpi + qeq(k)− qeq(k)pr (18.39)

qeq(k)pr = kqnpi − kqnpiqeq(k) (18.40)

qeq(k) =
kqnpi

kqnpi + pr
(18.41)

We can apply this back to the definition of qn to find the actual equilibrium state:

qn =
1

〈k〉
∑
k′

k′P (k′)
k′qnpi

k′qnpi + pr
(18.42)

Clearly, qn = 0 (i.e., qeq(k) = 0 for all k) satisfies this equation, so the extinction of the
disease is still an equilibrium state of this system. But what we are interested in is the
equilibrium with qn 6= 0 (i.e., qeq(k) > 0 for some k), where the disease continues to exist,
and we want to know whether such a state is stable. To solve Eq. (18.42), we will need to
assume a certain degree distribution P (k).

For example, if we assume that the network is large and random, we can use the
following crude approximate degree distribution:

P (k) ≈
{

1 if k = 〈k〉
0 otherwise

(18.43)

We can use this approximation because, as the network size increases, the degree distri-
bution of a random graph becomes more and more concentrated at the average degree
(relative to the network size), due to the law of large numbers well known in statistics.
Then Eq. (18.42) is solved as follows:

qn =
〈k〉qnpi

〈k〉qnpi + pr
(18.44)

〈k〉qnpi + pr = 〈k〉pi (18.45)

qn = 1− pr
〈k〉pi

(18.46)
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We can check the stability of this equilibrium state by differentiating Eq. (18.38) by q(k)

and then applying the results above. In so doing, we should keep in mind that qn contains
q(k) within it (see Eq. (18.36)). So the result should look like this:

df(q(k))

dq(k)
= −kqnpi + (1− q(k))kpi

dqn
dq(k)

+ 1− pr (18.47)

= −kqnpi + (1− q(k))
k2P (k)pi
〈k〉

+ 1− pr (18.48)

At the equilibrium state Eq. (18.41), this becomes

df(q(k))

dq(k)

∣∣∣∣
q(k)=

kqnpi
kqnpi+pr

= −kqnpi +
pr

kqnpi + pr

k2P (k)pi
〈k〉

+ 1− pr = r(k). (18.49)

Then, by applying P (k) and qn with a constraint k → 〈k〉 for large random networks, we
obtain

r(〈k〉) = −〈k〉
(

1− pr
〈k〉pi

)
pi +

pr

〈k〉
(

1− pr
〈k〉pi

)
pi + pr

〈k〉2pi
〈k〉

+ 1− pr (18.50)

= −〈k〉pi + pr + pr + 1− pr (18.51)

= −〈k〉pi + pr + 1. (18.52)

In order for the non-zero equilibrium state to be stable:

− 1 < −〈k〉pi + pr + 1 < 1 (18.53)
pr
〈k〉

< pi <
pr + 2

〈k〉
(18.54)

Note that the lower bound indicated above is the same as the epidemic threshold we
obtained on random networks before (Eq. (18.28)). So, it seems our analysis is consis-
tent so far. And for your information, the upper bound indicated above is another critical
threshold at which this non-zero equilibrium state loses stability and the system begins to
oscillate.

What happens if the network is scale-free? Here, let’s assume that the network is
a Barabási-Albert scale-free network, whose degree distribution is known to be P (k) =

2m2k−3 where m is the number of edges by which each newcomer node is attached to
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the network, and thus 〈k〉 = 2m and kmin = m [57]. Then, from Eq. (18.42)1, we obtain

qn =
1

2m

∞∑
k′=m

k′ · 2m2k′−3 k′qnpi
k′qnpi + pr

, (18.55)

1 = mpi

∞∑
k′=m

1

k′(k′qnpi + pr)
. (18.56)

The summation can be approximated by a continuous integral, which results in

1 ≈ mpi

∫ ∞
m

dk′

k′(k′qnpi + pr)
(18.57)

=
mpi
pr

∫ ∞
m

(
1

k′
− 1

k′ + pr/(qnpi)

)
dk′ (18.58)

=
mpi
pr

[
log

(
k′

k′ + pr/(qnpi)

)]∞
m

(18.59)

=
mpi
pr

log

(
1 +

pr
mqnpi

)
, (18.60)

qn ≈
pr

(e
pr
mpi − 1)mpi

. (18.61)

We can apply this result (together with P (k) = 2m2k−3) to r(k) in Eq. (18.49) to check the
stability of this non-zero equilibrium state:

r(k) = −k pr

(e
pr
mpi − 1)mpi

pi +
pr

k pr

(e
pr
mpi −1)mpi

pi + pr

k2 · 2m2k−3pi
2m

+ 1− pr (18.62)

= − kpr

(e
pr
mpi − 1)m

+
mpi
k2

(e
pr
mpi −1)m

+ k
+ 1− pr (18.63)

This is rather complex, and it would be difficult to solve it in terms of pi. But still, we can
show something very interesting using this formula. If we lower the infection probability pi
down to zero, this occurs asymptotically:

lim
pi→0

r(k) = − kpr([
e

pr
mpi →∞

]
− 1
)
m

+
m [pi → 0]

k2([
e

pr
mpi→∞

]
−1

)
m

+ k
+ 1− pr (18.64)

= 1− pr (18.65)

1Here we assume that Barabási-Albert networks are non-assortative.
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This shows 0 < limpi→0 r(k) < 1, i.e., the non-zero equilibrium state remains stable even
if pi approaches to zero. In other words, there is no epidemic threshold if the network is
scale-free! This profound result was discovered by statistical physicists Romualdo Pastor-
Satorras and Alessandro Vespignani in the early 2000s [79], which illustrates an important
fact that, on networks whose topologies are scale-free, diseases can linger around indef-
initely, no matter how weak their infectivity is. This is a great example of how complex
network topologies can fundamentally change the dynamics of a system, and it also il-
lustrates how misleading the predictions made using random models can be sometimes.
This finding and other related theories have lots of real-world applications, such as un-
derstanding, modeling, and prevention of epidemics of contagious diseases in society as
well as those of computer viruses on the Internet.

Exercise 18.7 Simulate the dynamics of the network SIS model on Barabási-
Albert scale-free networks to check if there is indeed no epidemic threshold as
the theory predicts. In simulations on any finite-sized networks, there is always
the possibility of accidental extinction of diseases, so you will need to make the
network size as large as possible to minimize this “finite size” effect. You should
compare the results with those obtained from control experiments that use random
networks.

Finally, I should mention that all the analytical methods discussed above are still quite
limited, because we didn’t consider any degree assortativity or disassortativity, any pos-
sible state correlations across edges, or any coevolutionary dynamics that couple state
changes and topological changes. Real-world networks often involve such higher-order
complexities. In order to better capture them, there are more advanced analytical tech-
niques available, such as pair approximation and moment closure. If you want to learn
more about these techniques, there are some more detailed technical references avail-
able [80, 81, 82, 83].

Exercise 18.8 Consider a network with extremely strong assortativity, so that

P (k′|k) ≈
{

1 if k′ = k,

0 otherwise.
(18.66)

Use this new definition of P (k′|k) in Eq. (18.30) to conduct a mean-field approxi-
mation, and determine whether this strongly assortative network has an epidemic
threshold or not.



Chapter 19

Agent-Based Models

19.1 What Are Agent-Based Models?

At last, we have reached the very final chapter, on agent-based models (ABMs). ABMs
are arguably the most generalized framework for modeling and simulation of complex
systems, which actually include both cellular automata and dynamical networks as special
cases. ABMs are widely used in a variety of disciplines to simulate dynamical behaviors
of systems made of a large number of entities, such as traders’ behaviors in a market (in
economics), migration of people (in social sciences), interaction among employees and
their performance improvement (in organizational science), flocking/schooling behavior
of birds/fish (in behavioral ecology), cell growth and morphogenesis (in developmental
biology), and collective behavior of granular materials (in physics). Figure 19.1 shows a
schematic illustration of an ABM.

It is a little challenging to define precisely what an agent-based model is, because its
modeling assumptions are wide open, and thus there aren’t many fundamental constraints
that characterize ABMs. But here is what I hope to be a minimalistic definition of them:

Agent-based models are computational simulation models that involve many discrete
agents.

There are a few keywords in this definition that are important to understand ABMs.
The first keyword is “computational.” ABMs are usually implemented as simulation

models in a computer, where each agent’s behavioral rules are described in an algorith-
mic fashion rather than a purely mathematical way. This allows modelers to implement
complex internal properties of agents and their nontrivial behavioral rules. Such represen-
tations of complex individual traits are highly valued especially in social, organizational

427
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Agents 

Environment 

Agent’s attributes 

• position 

• age 

• gender 

• knowledge 

• memory 

• experience 

• emotion 

      etc… 

Figure 19.1: Schematic illustration of what an agent-based model (ABM) looks like.
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and management sciences, where the modelers need to capture complex, realistic be-
haviors of human individuals. This is why ABMs are particularly popular in those research
areas.

This, of course, comes at the cost of analytical tractability. Since agents can have any
number of complex properties and behavioral rules, it is generally not easy to conduct an
elegant mathematical analysis of an ABM (which is why there is no “Analysis” chapter on
ABMs after this one). Therefore, the analysis of ABMs and their simulation results are
usually carried out using more conventional statistical analysis commonly used in social
sciences, e.g., by running Monte Carlo simulations to obtain distributions of outcome
measurements under multiple experimental conditions, and then conducting statistical
hypothesis testing to see if there was any significant difference between the different
experimental conditions. In this sense, ABMs could serve as a virtual replacement of
experimental fields for researchers.

The second keyword in the definition above is “many.” Although it is technically pos-
sible to create an ABM made of just a few agents, there would be little need for such a
model, because the typical context in which an ABM is needed is when researchers want
to study the collective behavior of a large number of agents (otherwise it would be suffi-
cient to use a more conventional equation-based model with a small number of variables).
Therefore, typical ABMs contain a population of agents, just like cells in CA or nodes in
dynamical networks, and their dynamical behaviors are studied using computational sim-
ulations.

The third keyword is “discrete.” While there are some ambiguities about how to rigor-
ously define an agent, what is commonly accepted is that an agent should be a discrete
individual entity, which has a clear boundary between self and the outside. CA and net-
work models are made of discrete components, so they qualify as special cases of ABMs.
In the meantime, continuous field models adopt continuous spatial functions as a repre-
sentation of the system’s state, so they are not considered ABMs.

There are certain properties that are generally assumed in agents and ABMs, which
collectively define the “agent-ness” of the entities in a model. Here is a list of such prop-
erties:

Typical properties generally assumed in agents and ABMs

• Agents are discrete entities.

• Agents may have internal states.

• Agents may be spatially localized.
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• Agents may perceive and interact with the environment.

• Agents may behave based on predefined rules.

• Agents may be able to learn and adapt.

• Agents may interact with other agents.

• ABMs often lack central supervisors/controllers.

• ABMs may produce nontrivial “collective behavior” as a whole.

Note that these are not strict requirements for ABMs (perhaps except for the first one).
Some ABMs don’t have internal states of agents; some don’t have space or environment;
and some do have central controllers as special kinds of agents. Therefore, which model
properties should be incorporated into an ABM is really up to the objective of your model.

Before we move on to actual ABM building, I would like to point out that there are a
few things we need to be particularly careful about when we build ABMs. One is about
coding. Implementing an ABM is usually much more coding-intense than implementing
other simpler models, partly because the ABM framework is so open-ended. The fact that
there aren’t many constraints on ABMs also means that you have to take care of all the
details of the simulation yourself. This naturally increases the amount of coding you will
need to do. And, the more you code, the more likely an unexpected bug or two will sneak
into your code. It is thus very important to keep your code simple and organized, and
to use the best practices in computer programming (e.g., modularizing sections, adding
plenty of comments, implementing systematic tests, etc.), in order to minimize the risks of
having bugs in your simulation. If possible, it is desirable to have multiple people test and
thoroughly check your code.

Another issue we should be aware of is that, since ABMs are so open-ended and
flexible, modelers are tempted to add more and more complex settings and assumptions
into their ABMs. This is understandable, as ABMs are such nice playgrounds to try testing
“what-if” scenarios in a virtual world, and the results can be obtained quickly. I have seen
many people who became fascinated by such an interactive modeling experience and
tried adding more and more details into their own ABMs to make them more “realistic.”
But beware—the increased model complexity means the increased difficulty of analyzing
and justifying the model and its results. If we want to derive a useful, reliable conclusion
from our model, we should resist the temptation to unnecessarily add complexity to our
ABMs. We need to strike the right balance between simplicity, validity, and robustness, as
discussed in Section 2.4.
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Exercise 19.1 Do a quick online literature search to learn how ABMs are used
in various scientific disciplines. Choose a few examples of your interest and learn
more about how researchers developed and used their ABMs for their research.

19.2 Building an Agent-Based Model

Let’s get started with agent-based modeling. In fact, there are many great tutorials already
out there about how to build an ABM, especially those by Charles Macal and Michael
North, renowned agent-based modelers at Argonne National Laboratory [84]. Macal and
North suggest considering the following aspects when you design an agent-based model:

1. Specific problem to be solved by the ABM

2. Design of agents and their static/dynamic attributes

3. Design of an environment and the way agents interact with it

4. Design of agents’ behaviors

5. Design of agents’ mutual interactions

6. Availability of data

7. Method of model validation

Among those points, 1, 6, and 7 are about fundamental scientific methodologies. It
is important to keep in mind that just building an arbitrary ABM and obtaining results by
simulation wouldn’t produce any scientifically meaningful conclusion. In order for an ABM
to be scientifically meaningful, it has to be built and used in either of the following two
complementary approaches:

A. Build an ABM using model assumptions that are derived from empirically observed
phenomena, and then produce previously unknown collective behaviors by simula-
tion.

B. Build an ABM using hypothetical model assumptions, and then reproduce empiri-
cally observed collective phenomena by simulation.
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The former is to use ABMs to make predictions using validated theories of agent behav-
iors, while the latter is to explore and develop new explanations of empirically observed
phenomena. These two approaches are different in terms of the scales of the known
and the unknown (A uses micro-known to produce macro-unknown, while B uses micro-
unknown to reproduce macro-known), but the important thing is that one of those scales
should be grounded on well-established empirical knowledge. Otherwise, the simulation
results would have no implications for the real-world system being modeled. Of course,
a free exploration of various collective dynamics by testing hypothetical agent behaviors
to generate hypothetical outcomes is quite fun and educational, with lots of intellectual
benefits of its own. My point is that we shouldn’t misinterpret outcomes obtained from
such exploratory ABMs as a validated prediction of reality.

In the meantime, items 2, 3, 4, and 5 in Macal and North’s list above are more focused
on the technical aspects of modeling. They can be translated into the following design
tasks in actual coding using a programming language like Python:

Design tasks you need to do when you implement an ABM

1. Design the data structure to store the attributes of the agents.

2. Design the data structure to store the states of the environment.

3. Describe the rules for how the environment behaves on its own.

4. Describe the rules for how agents interact with the environment.

5. Describe the rules for how agents behave on their own.

6. Describe the rules for how agents interact with each other.

Representation of agents in Python It is often convenient and customary to define
both agents’ attributes and behaviors using a class in object-oriented programming lan-
guages, but in this textbook, we won’t cover object-oriented programming in much detail.
Instead, we will use Python’s dynamic class as a pure data structure to store agents’
attributes in a concise manner. For example, we can define an empty agent class as
follows:

Code 19.1:
class agent:

pass
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The class command defines a new class under which you can define various attributes
(variables, properties) and methods (functions, actions). In conventional object-oriented
programming, you need to give more specific definitions of attributes and methods avail-
able under this class. But in this textbook, we will be a bit lazy and exploit the dynamic,
flexible nature of Python’s classes. Therefore, we just threw pass into the class definition
above. pass is a dummy keyword that doesn’t do anything, but we still need something
there just for syntactic reasons.

Anyway, once this agent class is defined, you can create a new empty agent object as
follows:

Code 19.2:
>>> a = agent()

Then you can dynamically add various attributes to this agent object a:

Code 19.3:
>>> a.x = 2

>>> a.y = 8

>>> a.name = ’John’

>>> a.age = 21

>>> a.x

2

>>> a.name

’John’

This flexibility is very similar to the flexibility of Python’s dictionary. You don’t have to
predefine attributes of a Python object. As you assign a value to an attribute (written
as “object’s name”.“attribute”), Python automatically generates a new attribute if it hasn’t
been defined before. If you want to know what kinds of attributes are available under an
object, you can use the dir command:

Code 19.4:
>>> dir(a)

[’__doc__’, ’__module__’, ’age’, ’name’, ’x’, ’y’]

The first two attributes are Python’s default attributes that are available for any objects
(you can ignore them for now). Aside from those, we see there are four attributes defined
for this object a.
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In the rest of this chapter, we will use this class-based agent representation. The
technical architecture of simulator codes is still the same as before, made of three com-
ponents: initialization, visualization, and updating functions. Let’s work on some examples
to see how you can build an ABM in Python.

Example: Schelling’s segregation model There is a perfect model for our first ABM
exercise. It is called Schelling’s segregation model, widely known as the very first ABM
proposed in the early 1970s by Thomas Schelling, the 2005 Nobel Laureate in Economics
[85]. Schelling created this model in order to provide an explanation for why people with
different ethnic backgrounds tend to segregate geographically. Therefore, this model was
developed in approach B discussed above, reproducing the macro-known by using hypo-
thetical micro-unknowns. The model assumptions Schelling used were the following:

• Two different types of agents are distributed in a finite 2-D space.

• In each iteration, a randomly chosen agent looks around its neighborhood, and if
the fraction of agents of the same type among its neighbors is below a threshold, it
jumps to another location randomly chosen in the space.

As you can see, the rule of this model is extremely simple. The main question Schelling
addressed with this model was how high the threshold had to be in order for segrega-
tion to occur. It may sound reasonable to assume that segregation would require highly
homophilic agents, so the critical threshold might be relatively high, say 80% or so. But
what Schelling actually showed was that the critical threshold can be much lower than one
would expect. This means that segregation can occur even if people aren’t so homophilic.
In the meantime, quite contrary to our intuition, a high level of homophily can actually
result in a mixed state of the society because agents keep moving without reaching a
stationary state. We can observe these emergent behaviors in simulations.

Back in the early 1970s, Schelling simulated his model on graph paper using pennies
and nickels as two types of agents (this was still a perfectly computational simulation!).
But here, we can loosen the spatial constraints and simulate this model in a continuous
space. Let’s design the simulation model step by step, going through the design tasks
listed above.

1. Design the data structure to store the attributes of the agents. In this model, each
agent has a type attribute as well as a position in the 2-D space. The two types can be
represented by 0 and 1, and the spatial position can be anywhere within a unit square.
Therefore we can generate each agent as follows:
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Code 19.5:
class agent:

pass

ag = agent()

ag.type = randint(2)

ag.x = random()

ag.y = random()

To generate a population of agents, we can write something like:

Code 19.6:
n = 1000 # number of agents

class agent:

pass

def initialize():

global agents

agents = []

for i in xrange(n):

ag = agent()

ag.type = randint(2)

ag.x = random()

ag.y = random()

agents.append(ag)

2. Design the data structure to store the states of the environment, 3. Describe the
rules for how the environment behaves on its own, & 4. Describe the rules for how agents
interact with the environment. Schelling’s model doesn’t have a separate environment
that interacts with agents, so we can skip these design tasks.

5. Describe the rules for how agents behave on their own. We assume that agents
don’t do anything by themselves, because their actions (movements) are triggered only
by interactions with other agents. So we can ignore this design task too.

6. Describe the rules for how agents interact with each other. Finally, there is some-
thing we need to implement. The model assumption says each agent checks who are in
its neighborhood, and if the fraction of the other agents of the same type is less than a
threshold, it jumps to another randomly selected location. This requires neighbor detec-
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tion, which was easy in CA and networks because the neighborhood relationships were
explicitly modeled in those modeling frameworks. But in ABM, neighborhood relationships
may be implicit, which is the case for our model. Therefore we need to implement a code
that allows each agent to find who is nearby.

There are several computationally efficient algorithms available for neighbor detection,
but here we use the simplest possible method: Exhaustive search. You literally check all
the agents, one by one, to see if they are close enough to the focal agent. This is not
computationally efficient (its computational amount increases quadratically as the number
of agents increases), but is very straightforward and extremely easy to implement. You
can write such exhaustive neighbor detection using Python’s list comprehension, e.g.:

Code 19.7:
neighbors = [nb for nb in agents

if (ag.x - nb.x)**2 + (ag.y - nb.y)**2 < r**2 and nb != ag]

Here ag is the focal agent whose neighbors are searched for. The if part in the list
comprehension measures the distance squared between ag and nb, and if it is less than
r squared (r is the neighborhood radius, which must be defined earlier in the code) nb is
included in the result. Also note that an additional condition nb != ag is given in the if

part. This is because if nb == ag, the distance is always 0 so ag itself would be mistakenly
included as a neighbor of ag.

Once we obtain neighbors for ag, we can calculate the fraction of the other agents
whose type is the same as ag’s, and if it is less than a given threshold, ag’s position is
randomly reset. Below is the completed simulator code, with the visualization function
also implemented using the simple plot function:

Code 19.8: segregation.py
import matplotlib

matplotlib.use(’TkAgg’)

from pylab import *

n = 1000 # number of agents

r = 0.1 # neighborhood radius

th = 0.5 # threshold for moving

class agent:

pass

http://bingweb.binghamton.edu/~sayama/textbook/code/segregation.py
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def initialize():

global agents

agents = []

for i in xrange(n):

ag = agent()

ag.type = randint(2)

ag.x = random()

ag.y = random()

agents.append(ag)

def observe():

global agents

cla()

white = [ag for ag in agents if ag.type == 0]

black = [ag for ag in agents if ag.type == 1]

plot([ag.x for ag in white], [ag.y for ag in white], ’wo’)

plot([ag.x for ag in black], [ag.y for ag in black], ’ko’)

axis(’image’)

axis([0, 1, 0, 1])

def update():

global agents

ag = agents[randint(n)]

neighbors = [nb for nb in agents

if (ag.x - nb.x)**2 + (ag.y - nb.y)**2 < r**2 and nb != ag]

if len(neighbors) > 0:

q = len([nb for nb in neighbors if nb.type == ag.type]) \

/ float(len(neighbors))

if q < th:

ag.x, ag.y = random(), random()

import pycxsimulator

pycxsimulator.GUI().start(func=[initialize, observe, update])

When you run this code, you should set the step size to 50 under the “Settings” tab to
speed up the simulations.
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Figure 19.2 shows the result with the neighborhood radius r=0.1 and the threshold
for moving th = 0.5. It is clearly observed that the agents self-organize from an initially
random distribution to a patchy pattern where the two types are clearly segregated from
each other.
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Figure 19.2: Visual output of Code 19.8. Time flows from left to right.

Exercise 19.2 Conduct simulations of Schelling’s segregation model with th

(threshold for moving), r (neighborhood radius), and/or n (population size = den-
sity) varied systematically. Determine the condition in which segregation occurs.
Is the transition gradual or sharp?

Exercise 19.3 Develop a metric that characterizes the level of segregation from
the positions of the two types of agents. Then plot how this metric changes as
parameter values are varied.

Here are some other well-known models that show quite unique emergent patterns
or dynamic behaviors. They can be implemented as an ABM by modifying the code for
Schelling’s segregation model. Have fun!

Exercise 19.4 Diffusion-limited aggregation Diffusion-limited aggregation
(DLA) is a growth process of clusters of aggregated particles driven by their ran-
dom diffusion. There are two types of particles, like in Schelling’s segregation



19.2. BUILDING AN AGENT-BASED MODEL 439

model, but only one of them can move freely. The movable particles diffuse in a
2-D space by random walk, while the immovable particles do nothing; they just
remain where they are. If a movable particle “collides” with an immovable parti-
cle (i.e., if they come close enough to each other), the movable particle becomes
immovable and stays there forever. This is the only rule for the agents’ interaction.

Implement the simulator code of the DLA model. Conduct a simulation with
all particles initially movable, except for one immovable “seed” particle placed at
the center of the space, and observe what kind of spatial pattern emerges. Also
carry out the simulations with multiple immovable seeds randomly positioned in the
space, and observe how multiple clusters interact with each other at macroscopic
scales.

For your information, a completed Python simulator code of the DLA model is
available from http://sourceforge.net/projects/pycx/files/, but you should
try implementing your own simulator code first.

Exercise 19.5 Boids This is a fairly advanced, challenging exercise about the
collective behavior of animal groups, such as bird flocks, fish schools, and insect
swarms, which is a popular subject of research that has been extensively modeled
and studied with ABMs. One of the earliest computational models of such col-
lective behaviors was proposed by computer scientist Craig Reynolds in the late
1980s [86]. Reynolds came up with a set of simple behavioral rules for agents mov-
ing in a continuous space that can reproduce an amazingly natural-looking flock
behavior of birds. His model was called bird-oids, or “Boids” for short. Algorithms
used in Boids has been utilized extensively in the computer graphics industry to
automatically generate animations of natural movements of animals in flocks (e.g.,
bats in the Batman movies). Boids’ dynamics are generated by the following three
essential behavioral rules (Fig. 19.3):

Cohesion Agents tend to steer toward the center of mass of local neighbors.

Alignment Agents tend to steer to align their directions with the average velocity of
local neighbors.

Separation Agents try to avoid collisions with local neighbors.

Design an ABM of collective behavior with these three rules, and implement its
simulator code. Conduct simulations by systematically varying relative strengths
of the three rules above, and see how the collective behavior changes.

http://sourceforge.net/projects/pycx/files/
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You can also simulate the collective behavior of a population in which multiple
types of agents are mixed together. It is known that interactions among kinetically
distinct types of swarming agents can produce various nontrivial dynamic patterns
[87].

(a) (b) (c) 

Figure 19.3: Three essential behavioral rules of Boids. (a) Cohesion. (b) Alignment.
(c) Separation.

19.3 Agent-Environment Interaction

One important component you should consider adding to your ABM is the interaction
between agents and their environment. The environmental state is still part of the sys-
tem’s overall state, but it is defined over space, and not associated with specific agents.
The environmental state dynamically changes either spontaneously or by agents’ actions
(or both). The examples discussed so far (Schelling’s segregation model, DLA, Boids)
did not include such an environment, but many ABMs explicitly represent environments
that agents act on and interact with. The importance of agent-environment interaction is
well illustrated by the fact that NetLogo [13], a popular ABM platform, uses “turtles” and
“patches” by default, to represent agents and the environment, respectively. We can do
the same in Python.

A good example of such agent-environment interaction is in the Keller-Segel slime
mold aggregation model we discussed in Section 13.4, where slime mold cells behave as
agents and interact with an environment made of cAMP molecules. The concentration of
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cAMP is defined everywhere in the space, and it changes by its own inherent dynamics
(natural decay) and by the actions of agents (secretion of cAMP molecules by agents).
This model can be implemented as an ABM, designed step by step as follows:

1. Design the data structure to store the attributes of the agents. If the slime mold
cells are represented by individual agents, their concentration in the original Keller-Segel
model is represented by the density of agents, so they will no longer have any attributes
other than spatial position in the 2-D space. Therefore x and y are the only attributes of
agents in this model.

2. Design the data structure to store the states of the environment. The environment
in this model is the spatial function that represents the concentration of cAMP molecules
at each location. We can represent this environment by discretizing space and assigning
a value to each discrete spatial cell, just like we did for numerical simulations of PDEs.
We can use the array data structure for this purpose.

Here is a sample initialize part that sets up the data structures for both agents and
the environment. Note that we prepare two arrays, env and nextenv, for simulating the
dynamics of the environment.

Code 19.9:
n = 1000 # number of agents

w = 100 # number of rows/columns in spatial array

class agent:

pass

def initialize():

global agents, env, nextenv

agents = []

for i in xrange(n):

ag = agent()

ag.x = randint(w)

ag.y = randint(w)

agents.append(ag)

env = zeros([w, w])

nextenv = zeros([w, w])
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3. Describe the rules for how the environment behaves on its own. The inherent
dynamics of the environment in this model are the diffusion and spontaneous decay of
the cAMP concentration. These can be modeled by using the discrete version of the
Laplacian operator, as well as an exponential decay factor, applied to the environmental
states everywhere in the space in every iteration. This is no different from what we did for
the numerical simulations of PDEs. We can implement them in the code as follows:

Code 19.10:
k = 1 # rate of cAMP decay

Dc = 0.001 # diffusion constant of cAMP

Dh = 0.01 # spatial resolution for cAMP simulation

Dt = 0.01 # time resolution for cAMP simulation

def update():

global agents, env, nextenv

# simulating diffusion and evaporation of cAMP

for x in xrange(w):

for y in xrange(w):

C, R, L, U, D = env[x,y], env[(x+1)%w,y], env[(x-1)%w,y], \

env[x,(y+1)%w], env[x,(y-1)%w]

lap = (R + L + U + D - 4 * C)/(Dh**2)

nextenv[x,y] = env[x,y] + (- k * C + Dc * lap) * Dt

env, nextenv = nextenv, env

Here we adopt periodic boundary conditions for simplicity.
4. Describe the rules for how agents interact with the environment. In this model,

agents interact with the environment in two different ways. One way is the secretion of
cAMP by the agents, which can be implemented by letting each agent increase the cAMP
concentration in a discrete cell where it is located. To do this, we can add the following to
the update function:

Code 19.11:
f = 1 # rate of cAMP secretion by an agent

# simulating secretion of cAMP by agents

for ag in agents:

env[ag.x, ag.y] += f * Dt
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The other way is the chemotaxis, which can be implemented in several different ways. For
example, we can have each agent look at a cell randomly chosen from its neighborhood,
and move there with a probability determined by the difference in cAMP concentration
(∆c) between the neighbor cell and the cell where the agent is currently located. A sig-
moid function

P (∆c) =
e∆c/c0

1 + e∆c/c0
(19.1)

would be suitable for this purpose, where c0 is a parameter that determines how sensitive
this probability is to ∆c. P (∆c) approaches 1 with ∆c → ∞, or 0 with ∆c → −∞. This
part can be implemented in the update function as follows:

Code 19.12:
# simulating chemotaxis of agents

for ag in agents:

newx, newy = (ag.x + randint(-1, 2)) % w, (ag.y + randint(-1, 2)) % w

diff = (env[newx, newy] - env[ag.x, ag.y]) / 0.1

if random() < exp(diff) / (1 + exp(diff)):

ag.x, ag.y = newx, newy

Here diff corresponds to ∆c, and we used c0 = 0.1.
5. Describe the rules for how agents behave on their own. All the actions taken by

the agents in this model are interactions with the environment, so we can skip this design
task.

6. Describe the rules for how agents interact with each other. In this model, agents
don’t interact with each other directly; all interactions among them are indirect, mediated
by environmental variables (cAMP concentration in this case), so there is no need to
implement anything for the agents’ direct interaction with each other. Indirect agent-agent
interaction through informational signals written in the environment is called stigmergy,
which is an essential coordination mechanism used by many social organisms [88].

By putting everything together, and adding the observe function for visualization, the
entire simulator code looks like this:

Code 19.13: keller-segel-abm.py
import matplotlib

matplotlib.use(’TkAgg’)

from pylab import *

http://bingweb.binghamton.edu/~sayama/textbook/code/keller-segel-abm.py
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n = 1000 # number of agents

w = 100 # number of rows/columns in spatial array

k = 1 # rate of cAMP decay

Dc = 0.001 # diffusion constant of cAMP

Dh = 0.01 # spatial resolution for cAMP simulation

Dt = 0.01 # time resolution for cAMP simulation

f = 1 # rate of cAMP secretion by an agent

class agent:

pass

def initialize():

global agents, env, nextenv

agents = []

for i in xrange(n):

ag = agent()

ag.x = randint(w)

ag.y = randint(w)

agents.append(ag)

env = zeros([w, w])

nextenv = zeros([w, w])

def observe():

global agents, env, nextenv

cla()

imshow(env, cmap = cm.binary, vmin = 0, vmax = 1)

axis(’image’)

x = [ag.x for ag in agents]

y = [ag.y for ag in agents]

plot(y, x, ’b.’) # x and y are swapped to match the orientation of env

def update():

global agents, env, nextenv
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# simulating diffusion and evaporation of cAMP

for x in xrange(w):

for y in xrange(w):

C, R, L, U, D = env[x,y], env[(x+1)%w,y], env[(x-1)%w,y], \

env[x,(y+1)%w], env[x,(y-1)%w]

lap = (R + L + U + D - 4 * C)/(Dh**2)

nextenv[x,y] = env[x,y] + (- k * C + Dc * lap) * Dt

env, nextenv = nextenv, env

# simulating secretion of cAMP by agents

for ag in agents:

env[ag.x, ag.y] += f * Dt

# simulating chemotaxis of agents

for ag in agents:

newx, newy = (ag.x + randint(-1, 2)) % w, (ag.y + randint(-1, 2)) % w

diff = (env[newx, newy] - env[ag.x, ag.y]) / 0.1

if random() < exp(diff) / (1 + exp(diff)):

ag.x, ag.y = newx, newy

import pycxsimulator

pycxsimulator.GUI().start(func=[initialize, observe, update])

As you see, the code is getting longer and more complicated than before, which is a
typical consequence when you implement an ABM.

Figure 19.4 shows a typical simulation result. The tiny blue dots represent individual
cells (agents), while the grayscale shades on the background show the cAMP concen-
tration (environment). As time goes by, the slightly more populated areas produce more
cAMP, attracting more cells. Eventually, several distinct peaks of agent populations are
spontaneously formed, reproducing self-organizing patterns that are similar to what the
PDE-based model produced.

What is unique about this ABM version of the Keller-Segel model, compared to its
original PDE-based version, is that the simulation result looks more “natural”—the forma-
tion of the population peaks are not simultaneous, but they gradually appear one after
another, and the spatial arrangements of those peaks are not regular. In contrast, in
the PDE-based version, the spots are formed simultaneously at regular intervals (see



446 CHAPTER 19. AGENT-BASED MODELS

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

Figure 19.4: Visual output of Code 19.13. Time flows from left to right, then from top
to bottom.
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Fig. 13.12). Such “natural-lookingness” of the results obtained with ABMs comes from
the fact that ABMs are based on the behaviors of discrete individual agents, which often
involve a lot of realistic uncertainty.

Exercise 19.6 Conduct simulations of the ABM version of the Keller-Segel model
with k, Dc, and f varied systematically. Are the effects of those parameters on
pattern formation similar to those in the PDE version of the same model (see
Eq. (14.74))?

Exercise 19.7 Implement an additional mechanism into the ABM above to pre-
vent agents from aggregating too densely at a single location, so that the popu-
lation density doesn’t exceed a predetermined upper limit anywhere in the space.
Conduct simulations to see what kind of effect this additional model assumption
has on pattern formation.

Exercise 19.8 Garbage collection by ants This is another interesting ABM with
an agent-environment interaction, which was first presented by Mitchel Resnick in
his famous book “Turtles, Termites and Traffic Jams” [89]. Assume there are many
tiny pieces of garbage scattered in a 2-D space, where many ants are wandering
randomly. When an ant comes to a place where there is some garbage, it behaves
according to the following very simple rules:

1. If the ant is holding a piece of garbage, it drops the piece.

2. If the ant isn’t holding any garbage, it picks up a piece of garbage.

What would result from these rules? Are the garbage pieces going to be scattered
more and more due to these brainless insects? Implement an ABM of this model
and conduct simulations to find out what kind of collective behavior emerges.

If you implement the model right, you will see that these very simple behavioral
rules let the ants spontaneously collect and pile up garbage and clear up the space
in the long run. This model tells us how such emergent behavior of the collective
is sometimes counter to our natural intuition.
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19.4 Ecological and Evolutionary Models

In this very final section of this textbook, we will discuss ABMs of ecological and evolution-
ary dynamics. Such ABMs are different from the other examples discussed so far in this
chapter regarding one important aspect: Agents can be born and can die during a sim-
ulation. This means that the number of state variables involved in a system can change
dynamically over time, so the traditional concepts of dynamical systems don’t apply easily
to those systems. You may remember that we saw a similar challenge when we made a
transition from dynamics on networks to dynamics of networks in Chapter 16. A dynamic
increase or decrease in the number of system components violates the assumption that
the system’s behavior can be represented as a trajectory within a static phase space. In
order to study the behaviors of such systems, the most general, practical approach would
probably be to conduct explicit simulations on computers.

Simulating an ABM with a varying number of agents requires special care for simu-
lating births and deaths of agents. Because agents can be added to or removed from
the system at any time during an updating process, it is a little tricky to implement syn-
chronous updating of agents (though it isn’t impossible). It is much simpler and more
straightforward to update the system’s state in an asynchronous manner, by randomly
choosing an agent to update its state and, if needed, directly remove it from the system
(simulation of death) or add a new agent to the system (simulation of birth). In what fol-
lows, we will adopt this asynchronous updating scheme for the simulation of ecological
ABMs.

An illustrative example of ecological ABMs is the predator-prey ecosystem, which we
already discussed in Section 4.6 and on several other occasions. The basic idea of this
model is still simple: Prey naturally grow but get eaten by predators, while the predators
grow if they get prey but otherwise naturally die off. When we are to implement this model
as an ABM, these ecological dynamics should be described at an individual agent level,
not at an aggregated population level. Let’s design this ABM step by step, again going
through the six design tasks.

1. Design the data structure to store the attributes of the agents. The predator-prey
ecosystem is obviously made of two types of agents: prey and predators. So the informa-
tion about agent type must be represented in the data structure. Also, if we are to simulate
their interactions in a space, the information about their spatial location is also needed.
Note that these attributes are identical to those of the agents in Schelling’s segregation
model, so we can use the same agent design, as follows:

Code 19.14:
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r_init = 100 # initial rabbit population

f_init = 30 # initial fox population

class agent:

pass

def initialize():

global agents

agents = []

for i in xrange(r_init + f_init):

ag = agent()

ag.type = ’r’ if i < r_init else ’f’

ag.x = random()

ag.y = random()

agents.append(ag)

Here, we call prey “rabbits” and predators “foxes” in the code, so we can denote them by
r and f, respectively (as both prey and predators begin with “pre”!). Also, we use r_init

and f_init to represent the initial population of each species. The for loop iterates
r_init + f_init times, and in the first r_init iteration, the prey agents are generated,
while the predator agents are generated for the rest.

2. Design the data structure to store the states of the environment, 3. Describe the
rules for how the environment behaves on its own, & 4. Describe the rules for how agents
interact with the environment. This ABM doesn’t involve an environment explicitly, so we
can ignore these design tasks.

5. Describe the rules for how agents behave on their own, & 6. Describe the rules
for how agents interact with each other. In this model, the agents’ inherent behaviors and
interactions are somewhat intertwined, so we will discuss these two design tasks together.
Different rules are to be designed for prey and predator agents, as follows.

For prey agents, each individual agent reproduces at a certain reproduction rate. In
equation-based models, it was possible to allow a population to grow exponentially, but
in ABMs, exponential growth means exponential increase of memory use because each
agent physically takes a certain amount of memory space in your computer. Therefore we
need to prevent such growth of memory use by applying a logistic-type growth restriction.
In the meantime, if a prey agent meets a predator agent, it dies with some probability
because of predation. Death can be implemented simply as the removal of the agent
from the agents list.
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For predator agents, the rules are somewhat opposite. If a predator agent can’t find
any prey agent nearby, it dies with some probability because of the lack of food. But if it
can consume prey, it can also reproduce at a certain reproduction rate.

Finally, both types of agents diffuse in space by random walk. The rates of diffusion
can be different between the two species, so let’s assume that predators can diffuse a
little faster than prey.

The assumptions designed above can be implemented altogether in the update func-
tion as follows. As you can see, the code is getting a bit longer than before, which reflects
the increased complexity of the agents’ behavioral rules:

Code 19.15:
import copy as cp

nr = 500. # carrying capacity of rabbits

mr = 0.03 # magnitude of movement of rabbits

dr = 1.0 # death rate of rabbits when it faces foxes

rr = 0.1 # reproduction rate of rabbits

mf = 0.05 # magnitude of movement of foxes

df = 0.1 # death rate of foxes when there is no food

rf = 0.5 # reproduction rate of foxes

cd = 0.02 # radius for collision detection

cdsq = cd ** 2

def update():

global agents

if agents == []:

return

ag = agents[randint(len(agents))]

# simulating random movement

m = mr if ag.type == ’r’ else mf

ag.x += uniform(-m, m)

ag.y += uniform(-m, m)
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ag.x = 1 if ag.x > 1 else 0 if ag.x < 0 else ag.x

ag.y = 1 if ag.y > 1 else 0 if ag.y < 0 else ag.y

# detecting collision and simulating death or birth

neighbors = [nb for nb in agents if nb.type != ag.type

and (ag.x - nb.x)**2 + (ag.y - nb.y)**2 < cdsq]

if ag.type == ’r’:

if len(neighbors) > 0: # if there are foxes nearby

if random() < dr:

agents.remove(ag)

return

if random() < rr*(1-sum(1 for x in agents if x.type == ’r’)/nr):

agents.append(cp.copy(ag))

else:

if len(neighbors) == 0: # if there are no rabbits nearby

if random() < df:

agents.remove(ag)

return

else: # if there are rabbits nearby

if random() < rf:

agents.append(cp.copy(ag))

Here, ag is the agent randomly selected for asynchronous updating. Python’s copy mod-
ule is used to create a copy of each agent as offspring when it reproduces. Note that
the logistic-type growth restriction is implemented for prey agents by multiplying the re-
production probability by (1 − x/nr), where x is the current population of prey and nr is
the carrying capacity. Also note that at the very beginning of this function, it is checked
whether there is any agent in the agents list. This is because there is a possibility for all
agents to die out in ecological ABMs.

Now, I would like to bring up one subtle issue that arises in ABMs with a varying num-
ber of agents that are simulated asynchronously. When the number of agents was fixed
and constant, the length of elapsed time in the simulated world was linearly proportional
to the number of executions of the asynchronous update function (e.g., in Schelling’s
segregation model), so we didn’t have to do anything special to handle the flow of time.
However, when the number of agents varies, an execution of the asynchronous update

function on one randomly selected agent doesn’t always represent the same amount of
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elapsed time in the simulated world. To better understand this issue, imagine two differ-
ent situations: Simulating 10 agents and simulating 1,000 agents. In the former situation,
each agent is updated once, on average, when the update function is executed 10 times.
However, in the latter situation, 10 times of execution of the function means only about
1% of the agents being updated. But in the simulated world, agents should be behav-
ing concurrently in parallel, so each agent should be updated once, on average, in one
unit length of simulated time. This implies that the elapsed time per each asynchronous
updating should depend on the size of the agent population. How can we cope with this
additional complication of the simulation?

A quick and easy solution to this issue is to assume that, in each asynchronous up-
dating, 1/n of a unit length of time passes by, where n is the size of the agent population
at the time of updating. This method can naturally handle situations where the size of the
agent population changes rapidly, and it (almost) guarantees that each agent is updated
once, on average, in each unit time length. To implement a simulation for one unit length
of time, we can write the following “wrapper” function to make sure that the time in the
simulated world elapses by one unit length:

Code 19.16:
def update_one_unit_time():

global agents

t = 0.

while t < 1.:

t += 1. / len(agents)

update()

import pycxsimulator

pycxsimulator.GUI().start(func=[initialize, observe, update_one_unit_time])

This trick realizes that the progress of time appears steady in the simulation, even if the
number of agents changes over time.

Okay, now we are basically done. Putting everything together and adding the visual-
ization function, the entire simulator code looks like this:

Code 19.17: predator-prey-abm.py
import matplotlib

matplotlib.use(’TkAgg’)

from pylab import *

import copy as cp

http://bingweb.binghamton.edu/~sayama/textbook/code/predator-prey-abm.py
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nr = 500. # carrying capacity of rabbits

r_init = 100 # initial rabbit population

mr = 0.03 # magnitude of movement of rabbits

dr = 1.0 # death rate of rabbits when it faces foxes

rr = 0.1 # reproduction rate of rabbits

f_init = 30 # initial fox population

mf = 0.05 # magnitude of movement of foxes

df = 0.1 # death rate of foxes when there is no food

rf = 0.5 # reproduction rate of foxes

cd = 0.02 # radius for collision detection

cdsq = cd ** 2

class agent:

pass

def initialize():

global agents

agents = []

for i in xrange(r_init + f_init):

ag = agent()

ag.type = ’r’ if i < r_init else ’f’

ag.x = random()

ag.y = random()

agents.append(ag)

def observe():

global agents

cla()

rabbits = [ag for ag in agents if ag.type == ’r’]

if len(rabbits) > 0:

x = [ag.x for ag in rabbits]

y = [ag.y for ag in rabbits]

plot(x, y, ’b.’)
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foxes = [ag for ag in agents if ag.type == ’f’]

if len(foxes) > 0:

x = [ag.x for ag in foxes]

y = [ag.y for ag in foxes]

plot(x, y, ’ro’)

axis(’image’)

axis([0, 1, 0, 1])

def update():

global agents

if agents == []:

return

ag = agents[randint(len(agents))]

# simulating random movement

m = mr if ag.type == ’r’ else mf

ag.x += uniform(-m, m)

ag.y += uniform(-m, m)

ag.x = 1 if ag.x > 1 else 0 if ag.x < 0 else ag.x

ag.y = 1 if ag.y > 1 else 0 if ag.y < 0 else ag.y

# detecting collision and simulating death or birth

neighbors = [nb for nb in agents if nb.type != ag.type

and (ag.x - nb.x)**2 + (ag.y - nb.y)**2 < cdsq]

if ag.type == ’r’:

if len(neighbors) > 0: # if there are foxes nearby

if random() < dr:

agents.remove(ag)

return

if random() < rr*(1-sum(1 for x in agents if x.type == ’r’)/nr):

agents.append(cp.copy(ag))

else:

if len(neighbors) == 0: # if there are no rabbits nearby

if random() < df:

agents.remove(ag)
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return

else: # if there are rabbits nearby

if random() < rf:

agents.append(cp.copy(ag))

def update_one_unit_time():

global agents

t = 0.

while t < 1.:

t += 1. / len(agents)

update()

import pycxsimulator

pycxsimulator.GUI().start(func=[initialize, observe, update_one_unit_time])

A typical simulation result is shown in Figure 19.5. The tiny blue dots represent prey
individuals, while the larger red circles represent predators. As you see in the figure,
the interplay between prey and predators produces very dynamic spatial patterns, which
somewhat resemble the patterns seen in the host-pathogen CA model discussed in Sec-
tion 11.5. The prey population grows to form clusters (clouds of tiny blue dots), but if they
are infested by predators, the predators also grow rapidly to consume the prey, leaving
a deserted empty space behind. As a result, the system as a whole begins to show dy-
namic waves of prey followed by predators. It is clear that spatial distributions of those
species are highly heterogeneous. While we observe the periodic wax and wane of these
species, as predicted in the equation-based predator-prey models, the ABM version gen-
erates far more complex dynamics that involve spatial locality and stochasticity. One could
argue that the results obtained from this ABM version would be more realistic than those
obtained from purely equation-based models.

We can further modify the simulator code of the predator-prey ABM so that it outputs
the time series plot of prey and predator populations next to the visualization of the agents’
positions. This can be done in a fairly simple revision: We just need to create lists to store
time series of prey and predator populations, and then revise the observe function to
count them, append the results to the lists, and visualize the lists as time series plots.
Here are the updated initialize and observe functions:

Code 19.18: predator-prey-abm-with-plot.py
def initialize():

global agents, rdata, fdata

http://bingweb.binghamton.edu/~sayama/textbook/code/predator-prey-abm-with-plot.py
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Figure 19.5: Visual output of Code 19.17. Time flows from left to right, then from top
to bottom.
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agents = []

rdata = []

fdata = []

...

def observe():

global agents, rdata, fdata

subplot(2, 1, 1)

cla()

rabbits = [ag for ag in agents if ag.type == ’r’]

rdata.append(len(rabbits))

if len(rabbits) > 0:

x = [ag.x for ag in rabbits]

y = [ag.y for ag in rabbits]

plot(x, y, ’b.’)

foxes = [ag for ag in agents if ag.type == ’f’]

fdata.append(len(foxes))

if len(foxes) > 0:

x = [ag.x for ag in foxes]

y = [ag.y for ag in foxes]

plot(x, y, ’ro’)

axis(’image’)

axis([0, 1, 0, 1])

subplot(2, 1, 2)

cla()

plot(rdata, label = ’prey’)

plot(fdata, label = ’predator’)

legend()

A typical simulation result with this revised code is shown in Fig. 19.6. You can see
that the populations of the two species are definitely showing oscillatory dynamics, yet
they are nothing like the regular, cyclic ones predicted by equation-based models (e.g.,
Fig. 4.8). Instead, there are significant fluctuations and the period of the oscillations is
not regular either. Spatial extension, discreteness of individual agents, and stochasticity
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in their behaviors all contribute in making the results of agent-based simulations more
dynamic and “realistic.”
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Figure 19.6: Visual output of Code 19.18.

Exercise 19.9 In the current model settings, the predator-prey ABM occasion-
ally shows extinction of predator agents (or both types of agents). How can you
make the coexistence of two species more robust and sustainable? Develop your
own strategy (e.g., adjusting model parameters, revising agents’ behavioral rules,
adding structures to space, etc.), implement it in your simulator code, and test how
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effective it is. Find what kind of strategy works best for the conservation of both
species.

Exercise 19.10 Revise the predator-prey ABM so that it also includes a spatially
distributed food resource (e.g., grass) that the prey need to consume for their sur-
vival and reproduction. This resource can spontaneously grow and diffuse over
space, and decrease when eaten by the prey. Conduct simulations of this revised
model to see how the introduction of this third species affects the dynamics of the
simulated ecosystem.

The final addition we will make to the model is to introduce the evolution of agents.
Evolution is a simple yet very powerful dynamical process by which a population of organ-
isms may spontaneously optimize their attributes for their own survival. It consists of the
following three components:

Three components of evolution

Inheritance Organisms reproduce offspring whose attributes are similar to their own.

Variation There is some diversity of organisms’ attributes within the population, which
primarily arises from imperfect inheritance (e.g., mutation).

Selection Different attributes causes different survivability of organisms (fitness).

When all of these three components are present, evolution can occur in any kind of sys-
tems, not limited to biological ones but also social, cultural, and informational ones too.
In our predator-prey ABM, the selection is already there (i.e., death of agents). There-
fore, what we will need to do is to implement inheritance and variation in the model. For
example, we can let the diffusion rates of prey and predators evolve spontaneously over
time. To make them evolvable, we need to represent them as heritable traits. This can be
accomplished by adding

Code 19.19:
ag.m = mr if i < r_init else mf

to the initialize function, and then replacing

Code 19.20:
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m = mr if ag.type == ’r’ else mf

with

Code 19.21:
m = ag.m

in the update function. These changes make the magnitude of movement a heritable
attribute of individual agents. Finally, to introduce variation of this attribute, we should add
some small random number to it when an offspring is born. This can be implemented by
replacing

Code 19.22:
agents.append(cp.copy(ag))

with something like:

Code 19.23:
newborn = cp.copy(ag)

newborn.m += uniform(-0.01, 0.01)

agents.append(newborn)

There are two places in the code where this replacement is needed, one for prey and
another for predators. Note that, with the mutations implemented above, the diffusion
rates of agents (m) could become arbitrarily large or small (they could even become neg-
ative). This is fine for our purpose, because m is used in the update function in the form
of uniform(-m, m) (which works whether m is positive or negative). But in general, you
should carefully check your code to make sure the agents’ evolvable attributes stay within
meaningful bounds.

For completeness, here is the revised code for the evolutionary predator-prey ABM
(with the revised parts indicated by ###):

Code 19.24: predator-prey-abm-evolvable.py
import matplotlib

matplotlib.use(’TkAgg’)

from pylab import *

import copy as cp

nr = 500. # carrying capacity of rabbits

http://bingweb.binghamton.edu/~sayama/textbook/code/predator-prey-abm-evolvable.py
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r_init = 100 # initial rabbit population

mr = 0.03 # magnitude of movement of rabbits

dr = 1.0 # death rate of rabbits when it faces foxes

rr = 0.1 # reproduction rate of rabbits

f_init = 30 # initial fox population

mf = 0.05 # magnitude of movement of foxes

df = 0.1 # death rate of foxes when there is no food

rf = 0.5 # reproduction rate of foxes

cd = 0.02 # radius for collision detection

cdsq = cd ** 2

class agent:

pass

def initialize():

global agents

agents = []

for i in xrange(r_init + f_init):

ag = agent()

ag.type = ’r’ if i < r_init else ’f’

ag.m = mr if i < r_init else mf ###

ag.x = random()

ag.y = random()

agents.append(ag)

def observe():

global agents

cla()

rabbits = [ag for ag in agents if ag.type == ’r’]

if len(rabbits) > 0:

x = [ag.x for ag in rabbits]

y = [ag.y for ag in rabbits]

plot(x, y, ’b.’)

foxes = [ag for ag in agents if ag.type == ’f’]
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if len(foxes) > 0:

x = [ag.x for ag in foxes]

y = [ag.y for ag in foxes]

plot(x, y, ’ro’)

axis(’image’)

axis([0, 1, 0, 1])

def update():

global agents

if agents == []:

return

ag = agents[randint(len(agents))]

# simulating random movement

m = ag.m ###

ag.x += uniform(-m, m)

ag.y += uniform(-m, m)

ag.x = 1 if ag.x > 1 else 0 if ag.x < 0 else ag.x

ag.y = 1 if ag.y > 1 else 0 if ag.y < 0 else ag.y

# detecting collision and simulating death or birth

neighbors = [nb for nb in agents if nb.type != ag.type

and (ag.x - nb.x)**2 + (ag.y - nb.y)**2 < cdsq]

if ag.type == ’r’:

if len(neighbors) > 0: # if there are foxes nearby

if random() < dr:

agents.remove(ag)

return

if random() < rr*(1-sum(1 for x in agents if x.type == ’r’)/nr):

newborn = cp.copy(ag) ###

newborn.m += uniform(-0.01, 0.01) ###

agents.append(newborn) ###

else:

if len(neighbors) == 0: # if there are no rabbits nearby

if random() < df:
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agents.remove(ag)

return

else: # if there are rabbits nearby

if random() < rf:

newborn = cp.copy(ag) ###

newborn.m += uniform(-0.01, 0.01) ###

agents.append(newborn) ###

def update_one_unit_time():

global agents

t = 0.

while t < 1.:

t += 1. / len(agents)

update()

import pycxsimulator

pycxsimulator.GUI().start(func=[initialize, observe, update_one_unit_time])

You can conduct simulations with this revised code to see how the prey’s and preda-
tors’ mobilities evolve over time. Is the result consistent with or counter to your initial
prediction? I hope you find some interesting discoveries.

Exercise 19.11 Revise the observe function of the evolutionary predator-prey
ABM developed above so that you can see the distributions of m among prey and
predators. Observe how the agents’ mobilities spontaneously evolve in a simula-
tion. Are they converging to certain values or continuously changing?

Exercise 19.12 Conduct systematic simulations using both the original and evo-
lutionary predator-prey ABMs to quantitatively assess whether the introduction of
evolution into the model has made the coexistence of two species more robust and
sustainable or not.

Exercise 19.13 Make the reproduction rates of prey and predator agents also
evolvable, in addition to the magnitude of their movements. Conduct simulations
to see how the reproduction rates evolve over time.
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Believe it or not, we are now at the end of our over-450-page-long journey. Thanks for
exploring the world of complex systems with me. I hope you enjoyed it. Needless to say,
this is just the beginning for you to dive into a much larger, unexplored territory of complex
systems science. I believe there are tons of new properties of various complex systems
still to be discovered, and it would be my utmost pleasure if this textbook was a bit of a
help for you to make such discoveries in the coming years. Bon voyage!
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Garden of Eden, 214
gene regulatory network, 24
genetic algorithm, 24
geodesic distance, 377
Gephi, 310
giant component, 372, 374, 376
global bifurcation, 131

golden ratio, 84
gradient, 229
gradient field, 230
graph, 76, 295, 296
graph theory, 8, 295
Gray-Scott model, 266

heat equation, 243
higher-order system, 37, 100
homogeneous equilibrium state, 270
homophily, 365
Hopf bifurcation, 140
Hopfield network, 346
host-pathogen model, 204
hub, 355
hyperedge, 303
hypergraph, 303
hysteresis, 138

in-degree centrality, 381
inheritance, 459
instability, 85, 122
interactive simulation, 174
invariant line, 86
iterative map, 30, 38
iterator, 327

Jacobian matrix, 92, 126

Karate Club graph, 309
Keller-Segel model, 246, 440
Kuramoto model, 342

Laplacian, 234
Laplacian matrix, 336, 407
limit cycle, 140
linear dynamical system, 81, 120
linear operator, 276
linear stability analysis, 90, 125, 275
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linear system, 36
linearization, 90
link, 295, 296
local bifurcation, 131
logistic growth, 54, 105
logistic map, 80, 152
long tail, 355
long-range inhibition, 202
Lorenz attractor, 164
Lorenz equations, 162
Lotka-Volterra model, 58, 107, 114
Louvain method, 400
Lyapunov exponent, 157
Lyapunov stable, 94

machine learning, 8
majority rule, 190, 326
matplotlib, 42
matrix exponential, 120
matrix spectrum, 408
Matthew effect, 354
mean field, 215
mean-field approximation, 215, 416
mesoscopic property, 400
mode, 83
model, 13
modeling, 13
modularity, 400
moment closure, 426
Monte Carlo simulation, 207
multi-layer cellular automata, 200
multigraph, 302
multiple edges, 302
multiplex network, 340

n-partite graph, 300
nabla, 230
negative assortativity, 397

neighbor, 297
neighbor degree distribution, 421
neighbor detection, 436
neighborhood, 186
network, 8, 76, 295, 296
network analysis, 377
network density, 371
network growth, 354
network model, 295
network percolation, 372, 376
network randomization, 323
network science, 24, 295
network size, 371
network topology, 296
NetworkX, 76, 303
neuron, 143
neutral center, 94, 126
no boundaries, 189
node, 295, 296
node strength, 302
non-autonomous system, 37
non-diagonalizable matrix, 83
non-quiescent state, 189
nonlinear dynamics, 6
nonlinear system, 6, 36
nonlinearity, 6
nullcline, 113
numerical integration, 104

Occam’s razor, 21
order parameter, 200
Oregonator, 263
organized complexity, 4
out-degree centrality, 381

PageRank, 382
pair approximation, 426
parity rule, 191
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partial differential equation, 8, 201, 227
path, 299
pattern formation, 8
percolation, 206
period-doubling bifurcation, 146
periodic boundaries, 189
periphery, 379
perturbation, 90
phase coherence, 345
phase space, 31, 50
phase transition, 199
pitchfork bifurcation, 135
planar graph, 300
Poincaré-Bendixson theorem, 167
positive assortativity, 397
power law, 354
predator-prey interaction, 55
predator-prey model, 107
preferential attachment, 354
PyCX, 19, 174
pylab, 42
Python, 19, 39

quiescent state, 189

radius, 186, 379
random graph, 320
random regular graph, 321
reaction term, 259
reaction-diffusion system, 259, 286
recurrence equation, 30
regular graph, 300
renormalization group analysis, 219
robustness, 21
rotation, 88
rotational symmetry, 186
roulette selection, 355
rule-based modeling, 14

saddle point, 94
saddle-node bifurcation, 134
scalar field, 228
scale, 4
scale-free network, 295, 355
Schelling’s segregation model, 434
selection, 459
self-loop, 302
self-organization, 6, 83
self-organized criticality, 208
separable PDE, 280
separation of variables, 280
short-range activation, 202
shortest path length, 377
sigmoid function, 443
simple graph, 302
simplicity, 4, 21
simulation, 19, 39
simultaneous updating, 48
SIR model, 112, 128
SIS model, 333, 416
small-world network, 295, 349
small-world problem, 349
smoothness, 229
social contagion, 365
social network analysis, 295
soft computing, 8
spatial boundary condition, 189
spatial derivative, 228
spatial frequency, 279
spectral gap, 407
spectrum, 89
spiral focus, 94, 126
spontaneous pattern formation, 201, 247
stability, 85, 122
state transition, 74
state variable, 30
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state-transition function, 185
state-transition graph, 74
statistical physics, 295
stigmergy, 443
stochastic cellular automata, 200
strange attractor, 164
stretching and folding, 156
strong rotational symmetry, 186
structural cutoff, 399
subgraph, 299
susceptible-infected-recovered model, 112
susceptible-infected-susceptible model, 333,

416
synchronizability, 409
synchronization, 340
synchronous updating, 185
system dynamics, 56
systems theory, 7

temporal network, 325
tie, 295, 296
time series, 36
totalistic cellular automata, 189
trace, 123
trail, 299
transcritical bifurcation, 135
transitivity, 386
transport equation, 241
tree graph, 300
triadic closure, 359
Turing bifurcation, 293
Turing instability, 260
Turing pattern, 201, 260

undirected edge, 302
undirected graph, 302
unweighted edge, 302

validity, 21
van der Pol oscillator, 140
variable rescaling, 79, 118, 273
variation, 459
vector calculus, 229
vector field, 228
vertex, 295, 296
vertices, 296
voter model, 331
voting rule, 190

walk, 297
Watts-Strogatz model, 349
wave number, 280
weak rotational symmetry, 186
weighted edge, 302

XOR rule, 191

Zachary’s Karate Club graph, 309
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