Netwo rks of the Brain

or . .--
X =

Olaf Sporns




Networks of the Brain
Olaf Sporns

Over the last decade, the study of complex net-

works has expanded across diverse scientific fields.
Increasingly, science is concerned with the structure,
behavior, and evolution of complex systems ranging
from cells to ecosystems. Modern network approaches
are beginning to reveal fundamental principles of
brain architecture and function, and in Networks of the
Brain, Olaf Sporns describes how the integrative nature
of brain function can be illuminated from a complex
network perspective. Highlighting the many emerging
points of contact between neuroscience and network
science, the book serves to introduce network theory to
neuroscientists and neuroscience to those working on
theoretical network models.

Brain networks span the microscale of individual
cells and synapses and the macroscale of cognitive sys-
tems and embodied cognition. Sporns emphasizes how
networks connect levels of organization in the brain
and how they link structure to function. In order to
keep the book accessible and focused on the relevance
to neuroscience of network approaches, he offers an
informal and nonmathematical treatment of the sub-
ject. After describing the basic concepts of network
theory and the fundamentals of brain connectivity,
Sporns discusses how network approaches can reveal
principles of brain architecture. He describes new links
between network anatomy and function and investi-
gates how networks shape complex brain dynamics
and enable adaptive neural computation. The book
documents the rapid pace of discovery and innovation
while tracing the historical roots of the field.

The study of brain connectivity has already opened
new avenues of study in neuroscience. Networks of the
Brain offers a synthesis of the sciences of complex net-
works and the brain that will be an essential founda-
tion for future research.
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Preface

We live in the age of networks. For most of us, networks are an integral
part of our daily social and intellectual lives, connecting us at an ever
accelerating pace and transforming the way we communicate, learn,
create, work, and play. The importance of networks has long been real-
ized in the social sciences, resulting in a rich literature that capitalizes on
quantitative network analysis to understand the web of social relations,
cooperation and conflict among individuals and organizations. More
recently, networks have become of central interest in the natural sciences,
particularly in the study of complex biological systems, including the
brain. Modern network approaches are beginning to reveal fundamental
principles of brain architecture and function. This book highlights the
many emerging points of contact between neuroscience and network
theory.

With this book I wanted to introduce networks to neuroscientists and
make neuroscience appealing to all those working on theoretical network
models. I also wanted to give a real sense of how broadly and deeply
network thinking applies to neuroscience. I attempted to strike a balance
between providing a broad overview of the many areas of neuroscience
where network approaches have begun to make a difference and explor-
ing at least some of these areas in sufficient detail to illustrate the sub-
stance and direction of the field. This balance requires a compromise
between breadth and depth. Rather than focusing on a single “model
system” or level of analysis, I chose to emphasize how networks connect
levels of organization in the brain and how they help us link structure
to function. In order to keep the book accessible and focus more of the
discussion on the relevance of network approaches to many areas of
neuroscience, I opted for an informal and nonmathematical treatment
of the subject. Readers interested in the statistical and computational
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underpinnings of network science can find more formal and analytic
treatments in numerous monographs and review articles.

In each section of the book, I attempted to provide substantial discus-
sion of open research questions, in order to give a sense of the many
controversies and uncertainties that still pervade the field. I wanted to
document the rapid pace of discovery and innovation in brain networks
while also exposing the historical roots of the field. Not all areas of neu-
roscience have been equally covered. In the past, much of my own work
has focused on the structure and dynamics of large-scale brain networks,
and thus research in this area is discussed at some length. Other areas—
for example, the burgeoning field of cellular network analysis and model-
ing or exciting developments in the study of invertebrate nervous
systems—are not treated in as much detail. While the book contains
many scholarly references, they necessarily represent only a selection,
and I am afraid that some relevant areas have not been discussed or
cited. I sincerely apologize to all who believe that their work has been
overlooked.

This book would not have been possible without a network of col-
leagues and friends. I am deeply grateful to Paul Layer, who many years
ago took me on as an undergraduate research assistant and who opened
my eyes to the wonders and mysteries of the brain. My PhD advisor,
Gerald Edelman, had an enormous impact on my thinking, and it was a
privilege to be a part of the unique intellectual environment he created
at the Neurosciences Institute in New York and San Diego. Many years
of working with Giulio Tononi have been invaluable for developing key
ideas about complexity and networks. Interactions with Rolf Pfeifer,
Esther Thelen, and Linda Smith sharpened my appreciation of dynamics
and developmental change. Working with Barry Horwitz, Randy McIn-
tosh, and Rolf Kotter shaped my ideas about the link between structure
and function in the brain. The work of my students Chris Honey and Jeff
Alstott was instrumental for formulating many of the key ideas of the
book—and I thank them for encouraging me to write it and for cheering
me on as I toiled in my office. I also greatly appreciate the many interac-
tions with my colleagues at Indiana University, whose integrative, cross-
disciplinary, and forward-looking way of approaching complex scientific
questions I admire.

Many friends have given freely of their time to read and critique early
drafts of the book. I especially thank Mika Rubinov, who provided sig-
nificant scientific and editorial input to several chapters. I also thank
Dani Bassett, Diarmuid Cahalene, Barb Finlay, Chris Honey, Barry



Xi

Preface

Horwitz, Marcus Kaiser, Rolf Kotter, Rolf Pfeifer, Anne Prieto, and
Larry Yaeger for reading portions of the text. Their comments have
helped to improve the book—any remaining imperfections or errors are,
of course, my own responsibility. I am grateful to all those who provided
original images for the book’s many illustrations—my special thanks to
Alfred Anwander, Christian Beaulieu, Kevin Briggman, John Chen,
Peter Franssen, Gaolang Gong, Patric Hagmann, Biyu He, Shun Iwasawa,
Hans Meinhardt, Michael Nonet, Rolf Pfeifer, James Rilling, Emmanu-
elle Tognoli, Arjen van Ooyen, Larry Yaeger, and Malcolm Young. Bob
Prior and Susan Buckley at MIT Press gave important and helpful advice,
and I thank them for their enthusiasm and encouragement. Finally, I
thank my wife, Anne Prieto, for her love and support and for patiently
putting up with a higher than usual level of restlessness and distraction.
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Introduction: Why Networks?

What can network science tell us about the brain? This question, in a
nutshell, is the subject of this book. The book describes the ways in which
the integrative nature of brain function may be usefully addressed from
a complex network perspective. In doing so, the book brings together
two rapidly expanding fields that until now have been largely pursued
in isolation—neuroscience and the emerging science of complex
networks.

Over the last decade, the study of complex networks has dramatically
expanded across diverse scientific fields, ranging from the social sciences
to physics and biology. This expansion reflects modern trends and cur-
rents that have changed the way scientific questions are formulated and
research is carried out. Increasingly, science is concerned with the struc-
ture, behavior, and evolution of complex systems such as cells, brains,
ecosystems, societies, or the global economy.To understand these systems,
we require not only knowledge of elementary system components but
also knowledge of the ways in which these components interact and the
emergent properties of their interactions. The increasing availability of
large data sets and powerful computers makes it easier than ever before
to record, analyze, and model the behavior of systems composed of
thousands or millions of interacting elements. All such complex systems
display characteristic diverse and organized patterns. These patterns are
the outcome of highly structured and selective coupling between ele-
ments, achieved through an intricate web of connectivity. Connectivity
comes in many forms—for example, molecular interactions, metabolic
pathways, synaptic connections, semantic associations, ecological food
webs, social networks, web hyperlinks, or citation patterns. In all cases,
the quantitative analysis of connectivity requires sophisticated mathe-
matical and statistical techniques.
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Why should we take advantage of modern network approaches to
study the brain? Primarily, because these approaches can provide funda-
mental insights into the means by which simple elements organize into
dynamic patterns, thus greatly adding to the insights that can be gained
by considering the individual elements in isolation. Virtually all complex
systems form networks of interacting components. Interactions of even
very simple components, such as water molecules, can generate complex
patterns, such as eddies in the flow of an oceanic stream or the beautiful
symmetries of snow crystals. Very different systems can generate strik-
ingly similar patterns—for example, the motions of particles in a fluid or
gas and the coordinated movements of bacterial colonies, swarms of fish,
flocks of birds, or crowds of commuters returning home from work. The
brain is a complex system par excellence whose complex components
continually create complex patterns. The collective actions of individual
nerve cells linked by a dense web of intricate connectivity guide behav-
ior, shape thoughts, form and retrieve memories, and create conscious-
ness. No single nerve cell can carry out any of these functions, but when
large numbers are linked together in networks and organized into a
nervous system, behavior, thought, memory, and consciousness become
possible. Understanding these integrative functions of the brain requires
an understanding of brain networks and the complex and irreducible
dynamic patterns they create.

Brain networks span multiple spatial scales, from the microscale of
individual cells and synapses to the macroscale of cognitive systems and
embodied organisms. This architecture is also found in other complex
systems—for example, in the multiscale arrangement of social networks,
ranging from interpersonal relations and cohesive social groups, to local
communities and urban settlements, all the way to national economies
and global political organizations.' In multiscale systems, levels do not
operate in isolation—instead, patterns at each level critically depend on
processes unfolding on both lower and higher levels. The brain is a case
in point. We cannot fully understand brain function unless we approach
the brain on multiple scales, by identifying the networks that bind cells
into coherent populations, organize cell groups into functional brain
regions, integrate regions into systems, and link brain and body in a
complete organism. In this hierarchy, no single level is privileged over
others. The notion that brain function can be fully reduced to the opera-
tion of cells or molecules is as ill-conceived as the complementary view
that cognition can be understood without making reference to its biologi-
cal substrates. Only through multiscale network interactions can mole-
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cules and cells give rise to behavior and cognition. Knowledge about
network interactions on and across multiple levels of organization is
crucial for a more complete understanding of the brain as an integrated
system.

The study of brain connectivity has already opened new experimental
and theoretical avenues in many areas of neuroscience. Connectivity
plays an important role in neuroanatomy, neurodevelopment, electro-
physiology, functional brain imaging, and the neural basis of cognition.
The analysis of network architecture and connectivity illuminates a
number of problems that concern integrative brain function:

* Nervous systems are composed of vast numbers of neural elements
that are interconnected by synapses and axonal pathways. Quantitative
methods of network science can probe for architectural principles that
shape brain anatomy.

« Single neurons engage in complex physiological responses. These
responses result from network interactions among a great number of
individual nerve cells connected in local circuits as well as between brain
regions.

* Distinct sensory features within and across modalities are represented
in different portions of the cerebral cortex. Their integration as part of
a coherent perceptual or cognitive state is the outcome of distributed
network processes involving large parts of the brain.

* When a person is cognitively at rest, quietly awake and alert, the brain
engages in a characteristic pattern of dynamic neural activity. The spa-
tiotemporal profile of this pattern is molded by an intricate structural
network of nerve fibers and pathways.

* Changes in sensory input or cognitive task result in highly specific pat-
terns of brain activation. These patterns are the effects of dynamic per-
turbations of a complex and continually active network.

» The outcomes of brain trauma and disease include significant and long-
lasting neurological deficits. These insults result in structural network
damage, and the extent and location of the disturbance can inform pre-
dictions about the nature and severity of cognitive dysfunction as well
as the potential for recovery and compensatory response.

» Cognitive performance exhibits significant variation across healthy
individuals. The analysis of brain connectivity is beginning to draw links
between individual variations in behavior/cognition and variations in
brain networks.
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» Behavior and cognition change over development and the entire life
span. The growth and maturation of anatomical connections in the brain
modify the range of neural responses and cognitive capacities.

* Brain and body are dynamically coupled through continual cycles of
action and perception. By causing bodily movement, brain networks can
structure their own inputs and modulate their internal dynamics.

These and other key questions of neuroscience can be productively
addressed from the perspective of complex networks, and they form the
central subject matter of the book. We have a lot of ground to cover. We
will begin by defining brain networks and network measures. In the next
two chapters, we introduce neuroscientists to some of the basic concepts
and methods of network theory, and network scientists to some of the
fundamentals in brain connectivity. Chapter 2 provides an intuitive
survey of some of the quantitative tools and concepts from network
science that are important in studies of the brain. Chapter 3 describes
some fundamental techniques and approaches used to extract brain net-
works from neuroscience data. The next four chapters primarily consider
anatomical networks of cells and brain regions. Chapter 4 offers a
network perspective on the relationship between brain anatomy and
function, while chapter 5 outlines modern neuroanatomical techniques
that promise to extract structural brain networks of unprecedented
quality and resolution. Chapter 6 reviews some of the key architectural
principles of anatomical networks known so far, while chapter 7 attempts
to illuminate their functional meaning and evolutionary origin. The next
four chapters of the book are primarily devoted to network dynamics.
Chapter 8 discusses functional networks generated by spontaneous activ-
ity in neural systems, while chapter 9 attempts to draw links between
brain networks and cognition. Chapter 10 outlines our knowledge of
brain network disruptions in neurological and psychiatric disease.
Chapter 11 focuses on the growth, development, and aging of brain net-
works across the life span. The final three chapters of the book address
different aspects of network complexity. Chapter 12 makes the case for
diverse and flexible neural dynamics as a prerequisite for efficient com-
putation, and chapter 13 traces the origin of complex dynamic patterns
to structural patterns of network connectivity. Finally, chapter 14 broad-
ens the subject of brain connectivity further by examining the role of the
body in shaping the functioning of brain networks.

What exactly are networks? How can we define them and measure
their properties? The next chapter will try to answer these questions and
illustrate some of the quantitative methods and tools that allow us to
characterize the networks of the brain.
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Network Measures and Architectures

In addition to that branch of geometry which is concerned with magnitudes, and
which has always received the greatest attention, there is another branch, previ-
ously almost unknown, which Leibniz first mentioned, calling it the geometry of
position. This branch is concerned only with the determination of position and
its properties; it does not involve measurements, nor calculations made with
them. It has not yet been satisfactorily determined what kind of problems are
relevant to this geometry of position, or what methods should be used in solving
them. Hence, when a problem was recently mentioned, which seemed geometri-
cal but was so constructed that it did not require the measurement of distances,
nor did calculation help at all, I had no doubt that it was concerned with the
geometry of position [...].!

—Leonhard Euler, 1736

Euler’s problem was a popular puzzle involving seven bridges across the
river Pregel in the East Prussian city of Konigsberg (today’s Kalinin-
grad). These bridges spanned the two main branches of the river and
linked four separate parts of the city including a small island (see figure
2.1). The problem was to find a path by which a person could cross each
of these bridges exactly once and return to the starting point. Popular
opinion held that this was impossible, but there was no proof that such
a path could not be found. Euler provided a mathematical treatment of
the problem in an article published in the Proceedings of the Petersburg
Academy in 1736 (Euler, 1736). Euler proved that the Konigsberg path
did not exist and found a general solution that could be applied to an
arbitrary arrangement of bridges and landmasses. More importantly, he
realized that the problem could be resolved by solely taking into account
the relative position of bridges and landmasses and that precise geo-
graphical position or physical distance was unimportant. In doing so,
Euler is generally credited with founding the field which he referred to
as the “geometry of position” (geometria situs) and which is now known
as graph theory.?
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Figure 2.1

Euler’s solution to the Konigsberg bridge problem. The illustration on the left is from
Euler’s original paper and shows the river Pregel and its seven bridges joining four land-
masses. The illustration on the right is the graphical representation of the problem—
landmasses have been replaced by nodes and bridges by edges. Euler showed that a path
that traverses all bridges exactly once and leads back to the point of origin is impossible.

Graph theory is the mathematical study of networks, or graphs. While
some of graph theory falls under pure mathematics and has no immedi-
ate applications, the use of graph theoretical formalism is often invalu-
able in the treatment of real-world problems, such as the Konigsberg
bridge puzzle. Two nineteenth-century examples from physics and chem-
istry further illustrate this point. While looking for ways to compute
voltage and current flow in electrical networks, the physicist Gustav
Kirchhoff represented these networks as graphs and formulated several
original theorems that laid the foundation of circuit theory in electrical
engineering. Kirchhoff’s contemporary, the mathematician Arthur
Cayley, applied graph theoretical concepts to the problem of enumerat-
ing chemical isomers, molecules that contain the same number of atoms
bonded together in different ways. This approach allowed the complete
characterization of various groups of hydrocarbons as families of chemi-
cal graphs.?

Today, graph theory is one of the most active branches of mathematics.
Its applications are everywhere, ranging from structural mechanics,
urban planning, and scheduling and routing of air traffic to electronic
communications, polymer chemistry, and social sciences. However, until
recently, most studied networks were relatively small. For instance, social
scientists focused on analyses of small network structures (such as circles
and chains) and on identification of conspicuous network elements, such
as influential people in social networks (Wasserman and Faust, 1994;
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Borgatti et al., 2009). Over the last decade, the study of networks has
expanded to include the statistical descriptions of much larger systems.
This novel approach, sometimes called a “new network science,” aims to
characterize the structure and the dynamics of complex networks and
consequently make predictions of their global functionality. Over the last
few years this approach has revealed commonalities and differences in
local and global organization of real-world networks from social, biolo-
gical, technological, and other domains (Strogatz, 2001; Albert and
Barabasi, 2002; Newman, 2003; Amaral and Ottino, 2004; Watts, 2004;
Barabdsi and Oltvai, 2004; Boccaletti et al., 2006; Costa et al., 2007;
Borner et al., 2007; Barabdsi, 2009).*

This chapter introduces the basic terminology and methodology of
network science and its most important mathematical foundation, graph
theory. I start by defining some basic terms and concepts frequently
encountered in network studies. I then survey network measures of par-
ticular importance to neuroscience. I informally describe each measure
and discuss its neuroscientific relevance and interpretation. I then
describe the major classes of network architectures and discuss their
main structural features and neuroscientific relevance. I will return to a
more in-depth discussion of these network measures and architectures
throughout the book—here the emphasis is on providing the reader with
the necessary basic concepts and terminology, as well as an intuitive and
conceptual understanding of how networks are organized.

There are no equations in this book.To assist the reader in translating
network science terminology to neural applications, I provide a “Network
Glossary” at the end of the volume. The glossary contains brief defini-
tions of terms which are frequently used in network studies and through-
out the book. Exact mathematical definitions of all measures can be
found in relevant review articles (e.g., Rubinov and Sporns, 2010). There
are also many textbooks on graph theory, including the classic treatments
by Harary (1969), Bollobds (1979), and Chartrand (1985), as well as more
specialized surveys focusing on algorithms and practical applications.

Graphs and Networks: Definitions

A graph is a mathematical representation of a real-world network® or,
more generally, of some system composed of interconnected elements.
A simple graph comprises a set of nodes and a set of edges. Nodes rep-
resent the fundamental elements of the system, such as people in social
networks. Edges represent connections between pairs of nodes, such as
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friendships between pairs of people. Edges can be undirected or directed
from origin to destination. Independently, edges can be binary or can be
associated with a weight. It is useful to distinguish graphs based on the
types of edges they contain: for instance, undirected graphs contain only
undirected edges, while directed graphs contain only directed edges.
All four types of binary/weighted and undirected/directed graphs are
important for describing networks of the brain. The distinction between
undirected and directed graphs is especially important, as most graph
measures are defined and computed slightly differently for these two
major classes of graphs. Most of the classical work in graph theory has
been carried out for binary undirected graphs, and in-depth treatments
of directed or weighted graphs can be found in more specialized text-
books (e.g., Chartrand and Lesniak, 1996; Bang-Jensen and Gutin, 2001).
All graph-based approaches discussed in this book can be applied to
networks that are binary or weighted, directed or undirected, provided
that all edges represent single dyadic (pairwise) relationships, and none
of the edges have negative weights. While more specialized applications
of graph theory allow for the mathematical treatment of graphs that
include multiple as well as negative edges, these methods have not yet
been widely applied in neuroscience.®

One of the most elementary representations of a graph is the adja-
cency matrix, also called the connection matrix. The adjacency matrix
defines the topology of the graph by representing nodes as matrix rows
and columns and representing edges as binary or weighted matrix entries.
Nodes that are linked by an edge are called neighbors. The adjacency
matrix allows the derivation of one of the most fundamental graph mea-
sures, the degree. In an undirected graph the degree of a node is the
number of edges connected to that node. In directed graphs the indegree
and outdegree correspond to the number of incoming and outgoing
edges, respectively. In weighted graphs, the sum of all edge weights of a
node gives the node strength, which is analyzed similarly to node degree.
Degrees of all nodes together form the degree distribution of the
network, which shows whether the network contains nodes with approxi-
mately equal degrees or whether node degrees vary over a broader
range. Node degrees are fundamental because they have a significant
impact on most other network measures described in this chapter, and
the degree distribution can be highly informative about the graph’s
network architecture (see below). Another simple measure based on
degree is the assortativity (Newman, 2002), defined as the correlation
coefficient for the degrees of neighboring nodes. Positive assortativity
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indicates that edges tend to link nodes of similar degree, while negative
assortativity indicates that high-degree nodes preferentially connect
with low-degree nodes. In brain networks, node degree and node strength
may be simply viewed as a measure of direct interaction: high-degree or
high-strength nodes can be interpreted to directly interact with a large
number of other nodes. A node with high indegree is influenced by many
other nodes, while a node with high outdegree has many potential func-
tional targets. The balance of node indegree and outdegree is an indica-
tion of the way the node is embedded in the overall network; for example,
this balance specifies whether the node primarily sends or receives infor-
mation (see chapter 4).

Nodes can be linked directly by single edges or indirectly by sequences
of intermediate nodes and edges. Ordered sequences of unique edges
and intermediate nodes are called paths, while sequences of nonunique
edges are called walks. Many graph analyses of brain networks are based
on paths. Paths can connect a node to itself, in which case the path is
called a cycle. If a finite path between two nodes exists, then one node
can be reached by traversing a sequence of edges starting at the other
node. If all pairs of nodes are linked by at least one path of finite length,
the graph is said to be connected (or strongly connected). In binary
graphs, the length of a path is equal to the number of edges it contains.
In weighted graphs, path lengths are computed using edge weights, such
that paths composed of stronger edges span shorter lengths. The distance
between two nodes is the length of the shortest path linking the nodes
and is often of particular interest. All pairwise distances in a graph may
be represented in the distance matrix. The global maximum of the dis-
tance matrix is also called the graph diameter. It is important to note
that distance in graphs is a topological concept that does not refer to the
spatial separation of nodes in geographical or metric units.

The adjacency and distance matrices have fairly straightforward inter-
pretations, at least in the context of anatomical brain networks. Network
nodes represent neural elements, such as cells, cell populations, or brain
regions, while network edges represent connections between nodes, such
as anatomical synapses or pathways (other types of connections are
described in chapter 3). The structure of the adjacency and distance
matrices together describes the pattern of communication within the
network. The presence of an edge linking two nodes indicates that the
two nodes can communicate directly. Paths of various lengths record
possible ways by which signals can travel indirectly between two
nodes. Longer paths are likely to have less of an effect than shorter paths.
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Most analyses focus on shortest possible paths (distances) between
nodes since these paths are likely to be most effective for internode
communication.

Most of the measures discussed in the remainder of this chapter and
the book are derived from the adjacency and distance matrices. Exem-
plar measures are schematically displayed in figure 2.2. I divide the dis-
cussion of these measures into several sections. I begin with measures
that quantify the properties of local topological neighborhoods of indi-
vidual nodes. I then consider measures that capture global network
communication and signaling. Finally, I discuss how local and global
measures of centrality allow us to determine the influence of nodes or
edges within a network and thus quantify contributions of each indi-

/clustering

Figure 2.2

Basic concepts of graph theory. The schematic diagram shows an undirected weighted
network before (top) and after (bottom) applying a threshold that removes weak connec-
tions. The network consists of two modules, linked by a connector hub (labeled “C”), and
each module contains one provincial hub (“P”). Diagrams on the right show one of the
modules after the connections have been binarized, and illustrate a path of minimal length
(3 steps) between nodes 1 and 2 (top) and clustering around node 3 (bottom). Node 3 has
S neighbors, and these neighbors have 5 out of 10 possible undirected connections between
them, for a clustering coefficient of 0.5.
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vidual element to the network’s structural integrity and information flow.
In introducing these measures I will give a general idea about their
functional roles—much more detailed discussions are found in later
chapters.

Local Segregation: Clustering and Modularity

In many networks, the effective strength of functional interactions dimin-
ishes as nodes become topologically more remote. Hence, it is often a
realistic assumption that a large number of processing characteristics and
functional contributions of a node are determined by its interactions
within a local neighborhood. Importantly, this neighborhood is defined
in terms of topological distance and does not necessarily imply close
physical proximity. Several measures of local connectivity evaluate the
extent to which the network is organized into densely coupled neighbor-
hoods, also known as clusters, communities, or modules. One of the most
elementary measures of local segregation is the clustering coefficient
(Watts and Strogatz, 1998). The clustering coefficient of an individual
node measures the density of connections between the node’s neighbors.
Densely interconnected neighbors form a cluster around the node, while
sparsely interconnected neighbors do not. The average of the clustering
coefficients for each individual node is the clustering coefficient of the
graph. The clustering coefficient may be disproportionately influenced
by nodes with low degree. A collectively normalized variant of the
clustering coefficient, the transitivity (e.g., Newman, 2003), circumvents
this potential problem. Clustering coefficient and transitivity have been
generalized for weighted and directed networks (Onnela et al., 2005;
Fagiolo, 2007).

Different local neighborhoods or clusters may engage in different
patterns of interactions—for example, in order to carry out different
processing tasks. To aid in the analysis of connection patterns in local
neighborhoods, large networks or graphs can be decomposed into smaller
“building blocks” or “networks-within-networks.” Such subgraphs, or
motifs (Milo et al., 2002; 2004a), form a basic structural alphabet of
elementary circuits. For example, three nodes may be connected with
directed edges in 13 distinct ways (see figure 6.4). Every network can be
uniquely decomposed into a set of motifs, and the number and distribu-
tion of individual motifs reflect some functional characteristics of the
network. In order to assess the significance of a given motif distribution,
it is important to compare motifs derived from an empirical network to
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a population of randomly constructed networks that serve as a “null
hypothesis.” Motif analysis can be extended to weighted networks
(Onnela et al., 2005), and motif composition can be evaluated for indi-
vidual nodes, yielding a node-specific profile of local processing capacity
(Sporns and Koétter, 2004; Sporns et al., 2007).

Networks with high levels of clustering are often (but not always)
composed of local communities or modules of densely interconnected
nodes. These modules are segregated from each other, such that most
edges link nodes within modules, and few edges link nodes between
modules. The balance of the density of within-module and between-
modules connections defines a measure of network modularity (Girvan
and Newman, 2002; Newman, 2006).” Optimization algorithms are
needed to identify the partitioning scheme for which the modularity
measure is maximized. Various such algorithms have been developed,
such as an algorithm based on the graph’s spectral properties (Newman,
2006) or an algorithm that can detect a hierarchy of smaller modules
nested within larger modules (Blondel et al., 2008). Most modularity
algorithms partition the network into nonoverlapping modules. Other
approaches allow the detection of modules that overlap—for example,
due to nodes that are central to more than one community (Palla et al.,
2005).

Clustering, motifs, and modularity capture aspects of the local con-
nectivity structure of a graph. In many cases, the information provided
by these measures significantly overlaps. For example, a connectivity
pattern with high clustering is also likely to simultaneously exhibit an
overabundance of densely connected motif classes. This is because, in its
simplest formulation, the clustering coefficient is equivalent to the frac-
tion of fully connected three-node motifs, which are simply triangles.
Highly modular graphs often consist of densely clustered communities,
but high clustering alone does not necessarily indicate the existence of
modules or communities (see, e.g., regular graphs, below). Despite their
partial redundancy, each measure of local connectivity also provides
some unique information about the way individual nodes are locally
embedded (clustering, motifs) and about their community structure
(modularity).

Clustering is significant in a neurobiological context because neuronal
units or brain regions that form a densely connected cluster or module
communicate a lot of shared information and are therefore likely to
constitute a functionally coherent brain system. We will return to this
important point in much more detail in later chapters. Conversely, neu-
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ronal units that belong to different clusters or modules do not share as
much information and remain functionally segregated from each other.
Thus, measures of clustering and modularity highlight a particular aspect
of the functional organization of the brain, its tendency to form segre-
gated subsystems with specialized functional properties. The identifica-
tion of modules in brain networks is an important first step toward the
characterization of these subsystems.

Global Integration: Path Length and Efficiency

While clustering, motifs, and modularity evaluate local connectivity and
the segregation of the network into communities, another set of mea-
sures captures the capacity of the network to engage in more global
interactions that transcend the boundaries of modules and enable net-
work-wide integration. Many of these measures are based on paths and
distances between nodes. As defined earlier, path lengths in binary graphs
correspond to the number of distinct edges (or “steps along the path”),
while path lengths in weighted networks correspond to the sum of the
edge lengths. Edge lengths are inversely related to edge weights since
edge weights express the coupling strength and thus the proximity
between nodes, not their distance. To compute path lengths for weighted
graphs, one must first transform edge weights to lengths.

One of the most commonly used measures of integration in brain
networks is the characteristic path length (or “path length” in short),
usually computed as the global average (or median) of the graph’s dis-
tance matrix (Watts and Strogatz, 1998). A short path length indicates
that, on average, each node can be reached from any other node along
a path composed of only a few edges. However, the absolute value of the
path length varies greatly with the size and density of individual graphs
and, hence, provides only limited information on integration in the
network. The network path length should therefore be compared to path
lengths of appropriately constructed random networks (see the example
below). The path length can also be significantly influenced by a small
number of disconnected or remote nodes. A related and often more
robust measure, the global efficiency (Latora and Marchiori, 2001), is
computed as the average of the inverse of the distance matrix. A fully
connected network has maximal global efficiency since all distances are
equal to one (all pairs of nodes are linked by an edge), while a fully
disconnected network has minimal global efficiency since all distances
between nodes are infinite.



14

Chapter 2

A low path length or a high efficiency indicates that pairs of nodes, on
average, have short communication distances and can be reached in a
few steps. Path length and efficiency are global measures of network
integration. Both measures take into account only short paths, while
alternative but longer paths and the total number of short paths are
neglected. Other measures of global connectivity take these alternative
routes into account. One example is the communicability, a measure of
global information flow based on the number of walks between nodes
(Estrada and Hatano, 2008), a measure that can be applied to binary and
weighted networks (Crofts and Higham, 2009).

The measures discussed in this section all capture the capacity of the
network to pass information between its nodes, and they are therefore
of significance in a neurobiological context. For instance, structural paths
that are shorter or are composed of fewer steps generally allow signal
transmission with less noise, interference, or attenuation. Given two net-
works of equal size and density of connections, shorter path length or
greater efficiency is likely to reflect better overall communication in the
corresponding network. It will also be the network with the greater effi-
ciency, another metric that is of significance in the context of brain net-
works.Efficiencyislesssensitive tothe presence of “outliers,” disconnected
or very weakly connected nodes, than the path length. In neural terms,
a network with high efficiency places all its nodes at short distances from
each other, which enables them to interact more directly, thus promoting
high functional integration.

Segregation and integration place opposing demands on the way in
which networks are constructed. Optimal clustering and modularity are
inconsistent with high integration, since highly segregated communities
will engage in very little cross talk. On the other hand, optimal efficiency
or integration is only achieved in a fully connected network that lacks
any differentiation in its local processing. This tension between local and
global order is one of the main themes of this book, as both segregation
and integration turn out to be essential for structural and functional
organization of brain networks. However, before we examine the rela-
tionship between local and global connectivity in different network
architectures, we need to consider the heterogeneous contributions made
by individual nodes and edges.

Influence and Centrality

In most real-world settings, individual nodes or edges differ in their
impact on the overall functioning of the network. Some nodes are more



15

Network Measures and Architectures

essential, or more influential, than others. Some edges carry more traffic,
or their loss is more disruptive to the rest of the network. “Important”
nodes are often more highly or densely connected to the rest of the
network, facilitate global integrative processes, or play a critical compen-
satory role when the network is damaged. Such nodes are often referred
to as “hubs,” a term that is widely used yet often imprecisely defined.
Hubs can be identified on the basis of several different criteria, including
the degree, participation in modular connectivity, or centrality. Of these
measures, the simplest indicator of a node’s importance is its degree. The
degree (or strength) can be highly informative in networks with very
inhomogeneous degree distributions. In such networks, nodes with high
degree are often essential for maintaining global connectedness. The
degree is less informative about node importance in networks with fairly
homogeneous degree distributions.

In networks that are composed of local communities or modules,
within-module and between-modules connectivity can provide informa-
tion about the specific contributions of individual nodes. Once a partition
of the network into modules has been identified, the diversity of between-
modules connections can be assessed with a measure called the participa-
tion coefficient (Guimera and Amaral, 2005; Guimera et al., 2007).
High-degree nodes that maintain a diverse set of between-modules con-
nections have a high participation coefficient. Such nodes, called connec-
tor hubs, are likely to facilitate intermodular communication and
integration. On the other hand, high-degree nodes that have few or less
diverse between-modules connections have a low participation index.
These nodes, called provincial hubs, mostly participate in interactions
within their own module and thus promote the cohesion of a single
community.

Several measures of centrality are based on the notion of shortest
paths. Of these, the closeness centrality and the betweenness centrality
are based on the idea that a node is central if it has great control over
the flow of information within the network and that this control results
from its participation in many of the network’s short paths (Freeman,
1977; 1978). The closeness centrality of an individual node is the inverse
of the average path length between that node and all other nodes in the
network. A node with high closeness centrality can reach all other nodes
via short paths and may thus exert more direct influence over the nodes.
The betweenness centrality of an individual node is defined as the frac-
tion of all shortest paths in the network that pass through the node.
A node with high betweenness centrality can control information
flow because it is at the intersection of many short paths. Betweenness
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centrality can be computed not only for individual nodes but also for
individual edges and for directed and weighted networks (after appropri-
ate conversion of edge weights to distances).

The use of a specific measure to characterize the influence or centrality
of a node or edge necessarily makes assumptions about the nature of the
flow or dynamic process occurring on the network (Borgatti, 2005).
Closeness and betweenness centrality only take into account shortest
paths between nodes, but network traffic occurring on longer paths also
contributes to global communication patterns. Furthermore, between-
ness centrality assumes that whatever flows along the shortest path
between two nodes is indivisible and unaffected by patterns of diver-
gence or convergence along the path. A different centrality measure is
based on the principal eigenvector of the graph’s adjacency matrix
(Bonacich, 1972; 2007). Because of the way in which it is computed,
eigenvector centrality takes into account interactions of different lengths
and their dispersion, relying on walks rather than shortest paths. The
measure captures indirect influence patterns by which nodes that are
adjacent to highly central nodes become highly central themselves.
Eigenvector centrality has not yet been widely applied to biological or
neuroscience data sets.?

The identification of highly influential nodes and/or edges on the basis
of graph topology is an important part of brain network analysis. It rep-
resents a step toward the classification of network elements in terms of
their potential functional roles (chapter 4). In general, centrality mea-
sures identify elements that are highly interactive and/or carry a signi-
ficant proportion of signal traffic. A node that is highly central in a
structural network has the potential to participate in a large number of
functional interactions. Conversely, a node that is not central is unlikely
to be important in network-wide integrative processes. Furthermore, the
loss of nodes or edges with high structural centrality tends to have a
larger impact on the functioning of the remaining network.

Network Architectures

Graphs of real-world networks fall into distinct classes that have char-
acteristic architectural features. These architectural features reflect the
processes by which the graph was constructed or developed, and they
have an extremely important role to play in the function of the network
as a whole. We now turn to several classes of network architectures that
are the object of ongoing research and are of relevance to the brain.
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We first consider a simple class of networks, known as the random
network, or the Erdos—Rényi graph (after the mathematicians Paul
Erdos and Alfréd Rényi, who made seminal contributions to their theo-
retical analysis). A random network is constructed by starting with a
disconnected set of nodes and connecting pairs of nodes with a uniform
probability. Random networks are composed of nodes with fairly uniform
degree, and so the degree distribution has a characteristic scale defined
by the mean degree. Pairs of nodes in sufficiently dense random networks
are typically connected by short paths. On the other hand, nodes that are
directly connected maintain uncorrelated patterns of connections, and it
is very unlikely for two neighbors of a node to also be neighbors of each
other. As a result, random networks have short characteristic path lengths
but low levels of clustering.

Another simple class of networks is known as the regular lattice graph.
In contrast to random graphs, lattice graphs have an ordered pattern of
connections between nodes. Examples of lattice graphs include the ring
or grid lattice, where edges link nearby nodes in one or two dimensions,
respectively. By their construction, lattice graphs have connections that
are “locally dense.” Connected nodes tend to have the same neighbors,
but distances between nodes vary greatly, with some shortest paths tra-
versing a large number of intermediate nodes. Hence, in contrast to
random graphs, lattice graphs have much higher clustering but also much
longer characteristic path lengths.

Random and regular graphs are idealized models and permit some
very elegant formal description and analysis. However, most real-world
networks, including the networks of the brain, are not well described as
either random or regular graphs. For example, the connection topology
of both random and regular graphs is fairly homogeneous, with all nodes
having approximately the same degree and the same level of influence.
In most real-world networks, the degree and influence of individual
nodes varies over a wide range. Some of the earliest and most funda-
mental insights into the heterogeneity of real-world networks came from
network studies in the social sciences. Since at least the 1950s, network
models were used to describe the structure of social groups and to
explain the relationship between different topologies of social networks
and their collective properties. One of these collective properties, called
the “small-world effect,” is a phenomenon experienced by almost every-
one who participates in social interactions.’ In a very large social group,
perhaps as large as the entire human population, it is often possible
to connect two individuals via surprisingly short paths of contact or
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acquaintanceship—the world of social relationships is a “small world,”
much smaller than might be expected given the size of the social network.
The problem was first treated mathematically in a draft paper that was
widely circulated for two decades before finally being published in the
inaugural issue of the journal Social Networks (Pool and Kochen, 1978).
The authors suspected that the small-world effect was rooted in several
factors that shape social relationships, from geographical proximity to
social stratification and the formation of social cliques. Stanley Milgram’s
famous experiments conducted in the 1960s provided empirical support
for the small-world effect (Travers and Milgram, 1969) and led to the
popular notion that any two humans are, on average, linked by no more
than “six degrees of separation.” Milgram asked randomly selected indi-
viduals in Boston and Nebraska to forward a document to target people
in Boston. The origin and destination participants were not acquainted,
and so participants had to forward the document to other acquaintances
in a manner that would bring the document closer to its intended target.
The average path length for completed paths originating from the
Nebraska group was 5.7. As Jon Kleinberg pointed out (Kleinberg, 2000),
Milgram’s central finding revealed not only the existence of surprisingly
short paths in very large social networks but also the remarkable ability
of individuals to identify links that collectively produce a short path to
a given target location.'

The modern era of network studies was launched by Duncan Watts
and Stephen Strogatz in 1998. Watts and Strogatz not only devised a
deceptively simple network model that explained the origin of the small-
world phenomenon on the basis of connectivity patterns but also discov-
ered that these patterns are present in a broad range of natural, social,
and technological networks (Watts and Strogatz, 1998). The model inter-
polated between a ring lattice and a random network by variation of a
single parameter, the probability that an edge of the ring lattice is ran-
domly rewired (see figure 2.3). If this probability is zero, the network is
fully regular, and if it the probability is one, the network is fully random.
For intermediate settings of the rewiring probability, the graph contains
a mixture of regularity and randomness. Watts and Strogatz found that
at a very small rewiring probability the graph combined high clustering
(much greater than that of the fully random graph) with a short path
length (almost as short as that of the fully random graph). The combina-
tion of these two properties gave rise to small-world topologies, in which
connected nodes have highly overlapping sets of partners (high cluster-
ing) yet pairs of nodes are, on average, connected via short paths. Impor-
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Figure 2.3

The Watts-Strogatz small-world model. Starting from a ring lattice with circular boundary
conditions (upper left) connections are randomly rewired with rewiring probability p. For
p = 0, the network is completely regular, for p = 1 the network is completely random.
Intermediate networks consist of a mixture of random and regular connections. The plots
at the bottom show the clustering coefficient C and the path length L, both normalized by
their values at p = 0. Note that there is a broad parameter range where networks have
clustering that is similar to that of the regular (p = 0) network and have a path length that
is similar to that of the random (p = 1) network. Within this range, networks exhibit small-
world attributes. Data computed following Watts and Strogatz (1998), with networks con-
sisting of 1,000 nodes and 10,000 edges (average of 400 networks per data point).

tantly, Watts and Strogatz found that small-world attributes were present
in a great variety of networks, as diverse as the electrical power grid of
the western U.S. and the graph of collaborations among movie actors.
Since the original article by Watts and Strogatz (1998), networks are
generally considered to have small-world architecture if they have a
much higher clustering coefficient but an approximately equal path
length when compared to a population of random networks with equal
numbers of nodes and edges. Humphries et al. (2006; Humphries and
Gurney, 2008) introduced a measure of “small-world-ness,” the small-
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world index, which expresses the ratio of the clustering coefficient to the
path length after both are normalized by corresponding values of random
networks. A value of the small-world index significantly greater than one
is consistent with the coexistence of the two main attributes of the small-
world topology, namely, high clustering and short path length.

It is important to note that the presence of the small-world topology
by itself provides only limited information about network architecture.
For example, it is possible for two small-world networks to exhibit very
different patterns of connectivity. One could say that there exist a number
of different types of small-world architectures. Small-world architectures
constructed by the algorithm of Watts and Strogatz have high clustering
but are not organized into modules. A different class of small-world
networks can be generated from sets of isolated modules by gradually
redistributing connections from within modules to between modules
(Sporns, 2006). As we will see, this class of modular small-world networks
is of particular significance to the brain.

A year after the description of small-world networks, Albert-L4zl6
Barabdsi and Réka Albert reported another architecture found in many
real-world networks. A defining feature of this architecture is an
extremely broad and nonhomogeneous degree distribution and hence
the existence of nodes with much higher degree than would be expected
in a random, regular, or small-world network (see figure 2.4). A number
of real-world networks, of citation data, the World Wide Web, and cellular
metabolism, were found to exhibit degree distributions that followed a
power law.'" A power law implies that the probability of finding a node
with a degree that is twice as large as an arbitrary number decreases by
a constant factor. This relationship holds over the entire distribution. For
example, if the probability of finding a node with a degree of 10 was 0.4,
then doubling the degree to 20 might reduce the probability to 0.1, and
doubling it again to 40 lowers the probability to 0.025 (this particular
power-law distribution has an exponent of 2). Power-law degree distribu-
tions are shared across many networks and indicate a “scale-free” orga-
nization (Barabdsi and Albert, 1999). The term “scale-free” refers to the
fact that a power-law distribution has no characteristic scale—“zooming
in” on any segment of the distribution does not change its shape, and the
assignment of a characteristic scale for the degree of network nodes is
therefore meaningless.'?

Barabdsi and Albert demonstrated that power-law degree distribu-
tions could be generated by a “preferential attachment” growth process.
This growth process involves the gradual addition of nodes and the
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Scale-free nctworks, preferential attachment, and degree distribution. (A) Illustration of
the early stages of network growth by preferential attachment. Nodes are added one by
one, and a single new edge links the new node to an existing node choscen with a probability
based on node degree. The three plots show an example of a growing network at the
10-node, 20-node, and 40-node stagc. (B) Degree distribution of a scalc-free network (black
dots) and random network (open dots), plotted on linear (left) and double logarithmic
scales (right). Plots show average distributions for 10 networks, each with 100,000 nodes
and a mean degree of 10. Note that the distribution for the scalc-free network has a slowly
decaying “heavy tail” when plotted on a linear scale and forms a straight line in the loga-
rithmic plot, indicative of a power law. In comparison, the degrees of the random network
are distributed around a single characteristic scale.

attachment of these nodes to already existing nodes proportional to their
degree. The preferential attachment model remains a key example of
how a simple (local) growth process can shape a global statistical prop-
erty of a complex network. In the simplest case, linear preferential
attachment yields scale-free networks with an exponent of 3. More
complex attachment rules that vary the “attractiveness” of nodes result
in scale-free networks with exponents anywhere between 2 and 3. If the
attachment of edges involves a cost, as is often the case in spatially
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embedded networks where edges take up volume or cost energy, the
degree distribution can become truncated for high degrees (Amaral et
al., 2000). Such networks exhibit scale-free behavior only over a range
of node degrees and are thus called broad-scale.

Random and regular, small-world and scale-free networks represent
major classes of network architectures that have been the subject of
extensive study and analysis in network science and graph theory. Other
architectures are of interest as well but are less well studied and less
clearly defined. For example, many real-world networks exhibit hierar-
chical connection patterns, characterized by nested levels of organiza-
tion. Such hierarchical networks can combine a scale-free degree
distribution and high clustering (Ravasz and Barabasi, 2003). Other types
of hierarchical networks may have more homogeneous degree distribu-
tions and form a small-world architecture composed of nested clusters
of nodes. This hierarchical model is of special interest in the case of the
brain (see chapters 9 and 12). As illustrated in figure 2.5, different classes
of network architecture can be qualitatively arranged within a space of
possible networks (Solé and Valverde, 2004), with each class occupying
a distinct location. Each architectural class results from a different set of
growth processes and enables different patterns of system dynamics.
Notably, not all “niches” within this space are populated by networks
that are encountered in the real world. Empty regions of this space
(“exclusion zones”) may be impossible to reach via realistic growth
strategies, or they may generate unstable or maladaptive dynamics.

Network Analysis: An Example

Graph analysis is perhaps best illustrated by applying a set of graph
measures to an example of a brain network. The example is a structural
network of brain regions (nodes) and pathways (edges) covering a large
portion of the macaque cerebral cortex. The network was originally
derived from numerous anatomical studies and was recently described
and analyzed (Honey et al., 2007; Sporns et al., 2007). The network con-
sists of a total of 47 nodes and 505 edges."> All edges are binary and hence
describe the presence or absence of directed anatomical connections
between the nodes. Figure 2.6 shows a plot of the graph’s adjacency
matrix. Note that this matrix can be displayed in many different ways,
depending on the ordering of the nodes along the rows and columns.
Reordering the nodes does not change the structure of the graph, and
all graph measures are completely invariant with respect to these per-
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Classes of network architectures. In this schematic diagram network architectures are
arranged along three major characteristics: randomness, heterogeneity (of node degrees),
and modularity. “ER graphs” are Erdés—Rényi random graphs, and “SF-like networks” are
networks with scale-free degree distributions. Note that “cortical maps” are placed in a
separate region of this space near the location for “modular ER graphs.” Reproduced from
Solé and Valverde (2004) with permission.

mutations. The ordering of nodes chosen for figure 2.6 was obtained from
a previous study (Honey et al.,2007) and roughly corresponds to a divi-
sion of the macaque cortex into visual and sensorimotor regions. The
degree distribution of the graph, also shown in figure 2.6, reveals that
node degree varies rather widely within this data set, more so than would
be expected in random graphs of identical size and density. Some nodes
have very few connections (low-degree nodes) while others are more
widely connected (high-degree nodes). The small size of the graph does
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not allow us to reach a definite conclusion on the exact shape of the
degree distribution.

Just as there are wide variations in node degree in this network, there
are also significant variations in the clustering coefficient. The analysis
of clustering coefficients can reveal important differences in the way
individual nodes are embedded within their local neighborhoods. Figure
2.7 shows an example of how the clustering coefficient is determined.
Somatosensory cortical area 3b has 5 neighbors, most of which are func-
tionally related regions of motor or sensory cortex. These neighbors have
14 out of 20 possible connections between them. Thus, the node’s cluster-
ing coefficient is 0.7, a high value which indicates that many of the
neighbors of node 3b are also neighbors of each other. Across all nodes,
the clustering coefficient ranges from 0.33 to 1.00, and the network
average is 0.55. Some areas with very low clustering coefficient—for
example, area V4—also have high node degree, which indicates that
these areas communicate with a great variety of partners that are not
connected to each other and thus possibly belong to different specialized
communities (see also figures 4.6 and 6.8). Modularity provides comple-
mentary information about the extent to which nodes form segregated
communities. An optimal modularity score of 0.33 is reached for a parti-
tion of the network into 4 modules (see figure 2.7). Each of these modules
consists of regions that are functionally related and, for the most part,
spatially contiguous on the cortical surface.

Figure 2.8 displays the graph’s distance matrix. All entries of the dis-
tance matrix have finite values. Thus, the graph is strongly connected
since all nodes can be reached from all other nodes in a finite number
of steps (between 1 and 4). In functional terms, this means that all regions
of the macaque cortex can communicate with all other areas. The global
average of the distance matrix corresponds to the network’s character-
istic path length (2.05 in the current example), which is a marker of
integration in the network. The shorter the path length, the “easier” it is
to pass information between all pairs of nodes.

The absolute values of clustering coefficient and path length vary
greatly with the number of nodes or edges in the network. A compari-
son with a properly constrained random model (a “null hypothesis”) is
essential to assess whether the clustering or the path length is signifi-
cantly different from corresponding values in a population of random
networks."* A commonly used random model consists of a population
of randomly constructed networks that contain an identical number of
nodes and edges, as well as identical indegrees and outdegrees for each
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node. Since node degrees are preserved, significant differences in graph
measures are not due to the local statistics or overall distribution of
node degree. Figure 2.8 shows a comparison of the average clustering
coefficient and path length of the macaque cortex with corresponding
measures obtained from a population of random networks with identi-
cal degrees. The macaque cortex clustering coefficient is significantly
greater than the mean obtained from a random population (0.55 vs.
0.35), while its path length is approximately the same (2.05 vs. 1.91),
resulting in a small-world index of 1.45. Thus, following our earlier defi-
nition, the macaque cortex appears to be a small-world network (see
chapter 6).

Finally, we ask if any nodes of this network are more influential, or
central, than others. As we discussed earlier, influence or centrality can
be assessed on the basis of node degree, the closeness of the node to the
rest of the network, or its betweenness on short paths. Figure 2.9 shows
a comparison of these three measures of centrality. A set of nodes, includ-
ing areas V4, FEF, 7a, 7b, 5, and 46, appear at or near the top of all three
distributions, indicating that these areas are more central than other
nodes. It turns out that several of these nodes correspond to brain regions
that were previously classified as “association” or “integrative” centers
because of their physiological responses and activations. I will discuss
these areas in more detail in chapter 6.

I will have a lot more to say about the definition and interpretation of
these and other network measures in coming chapters of the book. Here
I wanted to demonstrate the potential of graph analysis tools and illus-
trate the application of these tools in a simple and intuitive example.
Many additional measures can be computed on this example or any
other brain network, and a variety of software packages for graph analy-
sis and visualization are available.” These packages have various (and
often complementary) advantages and disadvantages. Some are more
suited for very large graphs (composed of thousands of nodes), while
others excel in visualizing and graphically representing complex
networks or provide open-access code that can be modified to fit a par-
ticular application.

Regardless of the software used in the analyses, the user of graph
theoretical tools should be familiar with how graph measures are com-
puted and be aware of their neurobiological interpretation. Several
surveys of graph analysis applications to brain connectivity data are
available (Sporns, 2003; Sporns et al., 2004; Stam and Reijneveld, 2007;
Reijneveld et al., 2007; Bullmore and Sporns, 2009; Rubinov and Sporns,
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Figure 2.9

A comparison of centrality measures. Diagrams show rank-ordered distributions of degree,
closeness, and betweenness for the network of macaque cortex shown in figure 2.6. The
rankings of brain regions in the three plots are fairly consistent, indicating substantial
overlap of these three centrality measuresfor this particular network. Note that this mutual
agrecment does not always exist—it is possible for these measures to show sharply different
profiles in some network architectures. For abbreviations of cortical areas see figure 2.6.

2010). Most of these reviews provide technical details about how various
graph methods are defined and computed that go beyond what is covered
in this introductory chapter.

Complex Networks of the Brain

Starting with Euler’s solution to the Konigsberg bridge problem, graph
theory and network analysis have made essential contributions to an
ever wider range of the natural and social sciences. The power of graph-
based approaches stems from the fact that virtually all complex systems,
regardless of whether they are composed of molecules, neurons, or
people, can be meaningfully described as networks.
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While there is much appeal in the universality of a mathematical and
statistical theory of networks, it is important to remain mindful of the
distinction between a real-world system, the rich brew of mechanisms
and components, and its abstract mathematical description as a graph.
In order for this description to accurately model real system processes,
its elementary components, nodes and edges, and their dynamic interac-
tions must be configured in ways that are compatible with the neurobio-
logical system under study.

Different fields have taken different approaches to the study of net-
works (Borgatti et al., 2009). Unsurprisingly,network theory in the physi-
cal sciences emphasized statistical descriptions of global network
organization. In the social sciences, network analysis focused more on
specific characteristics of nodes and edges and on the ways by which their
interactions contribute to a functional outcome. These two approaches
are not mutually exclusive, and I would argue that both are important in
network neuroscience. Analysis of global network statistics and their
association with universal classes of network architectures can provide
important initial insights. These insights should be supplemented with
more detailed analyses and models incorporating domain-specific knowl-
edge about neural structure and physiology. In all cases, the use and
interpretation of graph models has to be motivated by the specific func-
tionality of the neural system at hand.

Given the importance of many of the assumptions that enter into
graph descriptions and analyses, we need to gain a better understanding
of the nature of brain connectivity. It turns out that there are many ways
to define, measure, and represent connectivity in the nervous system.
Thus, our next question must be this: What exactly are brain networks?
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Brain Networks: Structure and Dynamics

Far from being able to accept the idea of the individuality and independence of
each nerve element, I have never had reason, up to now, to give up the concept
which I have always stressed, that nerve cells, instead of working individually, act
together [...] However opposed it may seem to the popular tendency to indi-
vidualize the elements, I cannot abandon the idea of a unitary action of the
nervous system [...]'

—Camillo Golgi, 1906

The most fundamental concepts of the organization of the nervous
system originated in the second half of the nineteenth century as the
result of anatomical and physiological studies that firmly established the
cellular basis of brain function. A major controversy at the time con-
cerned two fundamentally different views of neural organization. One
view, which became synonymous with the term “neuron doctrine,” stated
that the nerve cell, or neuron, was the anatomical, physiological, meta-
bolic, and genetic unit of the nervous system. The opposing view rejected
the idea that neurons were bounded structures and instead proposed that
the thin branches of neuronal fibers formed a continuous nerve network,
or “reticulum,” allowing neural activity to spread freely across the brain.
By the turn of the century, the controversy was settled. The neuron doc-
trine became, and has remained, one of the foundations of modern
neuroscience.

Camillo Golgi was a strong advocate of the nerve network, and his
defiant words, quoted above, were spoken on the occasion of his Nobel
lecture in 1906, at a time when the neuron doctrine was already firmly
established. Golgi’s stance was a matter of great irritation for his rival
Ramén y Cajal, with whom he shared the Nobel Prize. Cajal’s work,
much of which utilized a cellular stain developed by Golgi, delivered
crucial evidence that neurons were individual cells and communicated
through discrete junctions, later termed synapses by Charles Sherrington.
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Golgi’s futile insistence on a diffuse and continuous nerve network may
have been motivated by his desire to account for the more integrative
or “holistic” aspects of brain function (Shepard, 1991). Golgi was sharply
critical of the concept of functional localization, which he thought was
incompatible with a network “evidently destined to establish a bond of
anatomical and functual [sic] union between the cellular elements”
(Shepard, 1991, p. 99). Golgi could not accept the idea that neurons were
discrete anatomical and functional units of the brain because, he argued,
the functional independence of neurons could not account for the inte-
grative action of the nervous system. Instead, he saw the reticulum as an
anatomical means to ensure functional unity. The dense plexus of fibrils
and fibers formed by neuronal processes (see figure 3.1) provided a
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Figure 3.1

The nerve network of the hippocampus from a drawing by Camillo Golgi. At the top,
granule cells of the dentate gyrus send out fine axonal fibers that intermingle within a
“reticular zone” with input fibers arriving from the bottom of the diagram. The reticular
zone is represented as a diffuse network. The image was presented during Golgi’s 1906
Nobel Lecture. Reproduced after Shepard (1991).
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substrate for structural and functional continuity, and this continuity
allowed nerve cells to act collectively.

Despite the victory of Cajal and the neuron doctrine, the intellectual
struggle over the manner in which discrete cellular elements can achieve
continuity and collective action is far from resolved.? A network-based
approach may provide a way to address this question, because networks
naturally relate the structure of a divisible material object, the brain, to
the integrated and continuous flow of neural dynamics. Furthermore, the
concepts and tools of complex networks can be applied to both brain
structure and function and thus provide a common theoretical frame-
work to understand their relationship. However, any such study must
begin with appropriate definitions of brain networks. These definitions
are not straightforward as there are many different ways to measure and
construct networks from neural data sets. Network topology sensitively
depends on the designation of nodes and edges, as well as on the choice
of recording techniques and association measures. In this chapter, I
provide a brief overview of empirical techniques for observing the brain
and describe the most common measures of connectivity used to define
brain networks. Throughout the chapter I distinguish three types of con-
nectivity: structural connectivity of physical coupling, functional con-
nectivity of statistical dependencies in neural dynamics, and effective
connectivity of causal influences.

Observing the Brain

For much of the early history of neuroscience, observing the brain meant
visually examining its anatomy: the convolutions of the cerebral hemi-
spheres, the nerve fibers and gray matter regions, and the fine structure
of neurons and their axonal and dendritic processes. Over 100 years ago,
techniques for staining and sectioning nerve tissue were already well
developed and widely applied, and anatomists such as Dejerine and
Cajal had cataloged and described brain and neuronal morphology in
exquisite detail. Cajal, who deduced that neurons were polarized cells
and relayed signals from a receptive structure (the dendrite) to a trans-
missive one (the axon), annotated his meticulous ink drawings of neuro-
nal circuits with arrows indicating the direction of signal propagation.
However, the nature of the propagated signal remained obscure until
later in the twentieth century as new methods for detecting electrical
activity of neural tissue began to appear.
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Most of the major breakthroughs regarding the nature of neuronal
activity and neurotransmission were obtained with electrophysiological
recordings of single neurons, carried out in the intact brain of an awake
or anesthetized animal, or in an explanted piece of tissue. Such record-
ings provide extremely high spatial (micrometer) and temporal (milli-
second) resolution and allow direct observation of electrical currents and
potentials generated by single nerve cells. This high resolution comes at
considerable cost, as all cellular recording techniques are highly invasive,
requiring surgical intervention and placement of bulky recording elec-
trodes within brain tissue. Nevertheless, electrophysiological recordings
allow the most direct access to neural signals. Most, but not all, neurons
communicate via action potentials or “spikes,” and neural recordings are
therefore often transformed into series of discrete spiking events that
can be characterized in terms of rate and timing. Neural activity can also
be recorded with a variety of optical imaging methods, based on intrinsic
voltage-dependent signals and calcium- or voltage-sensitive dyes.

Less direct observations of electrical brain activity involve the record-
ing of electromagnetic potentials generated by combined electrical
currents of large neuronal populations. These techniques—electroen-
cephalography (EEG) and magnetoencephalography (MEG)—are non-
invasive as recordings are made through groups of sensors placed on, or
near, the surface of the head.* EEG and MEG directly record signals
generated by neuronal activity and consequently have a high temporal
resolution. On the other hand, the spatial resolution is comparatively
poor as neither technique allows an unambiguous reconstruction of the
electrical sources responsible for the recorded signal. Since sources are
difficult to localize in anatomical space, EEG and MEG signals are often
processed in sensor space, and their analysis involves a broad range of
signal processing techniques in the time and frequency domain.

Noninvasive techniques for recording neural activity at high spatial
and temporal resolution do not currently exist. Positron emission tomog-
raphy (PET) and functional magnetic resonance imaging (fMRI), respec-
tively, measure metabolic and hemodynamic signals, which are only
indirectly related to neural activity. Both techniques allow the recon-
struction of spatially localized signals at millimeter-scale resolution
across the imaged brain volume. In the case of fMRI, the primary
measure of activity is the contrast between the magnetic susceptibility
of oxygenated and deoxygenated hemoglobin within each volume
element (“voxel”), hence called the “blood oxygen level-dependent”
(BOLD) signal. However, although blood oxygenation, blood volume,
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and flow rate are coupled to neuronal activity and cerebrovascular
responses, the nature of this coupling is complex and can vary across
regions of the brain. Consequently, the BOLD signal can only be viewed
as an indirect measure of neural activity.’ In addition, the slow time
constants of the BOLD response result in poor temporal resolution on
the order of seconds.® Hence, one important objective of neuroimaging
data analysis is the inference of neural processes that are causally respon-
sible for the observed data (see below).

The nature of neural signals recorded by the above techniques differs
significantly in both spatial and temporal resolutions and in the direct-
ness with which neuronal activity is detected. The simultaneous use of
two or more recording methods within the same experiment can reveal
how different neural or metabolic signals are interrelated (Logothetis
et al.,2001). Each technique measures a different aspect of neural dynam-
ics and organization, and the interpretation of neural data sets must take
these differences into account. There are several reasons why the current
heterogeneity of methods and approaches is likely to persist. First, all
methods for observing brain structure and function have advantages but
also disadvantages that limit their range of applicability or resolution.
Some methods provide great structural detail but are invasive or cover

-only a small part of the brain, while other methods may be noninvasive

but have poor spatial or temporal resolution. Second, nervous systems
are organized on multiple scales, from synaptic connections between
single cells, to the organization of cell populations within individual
anatomical regions, and finally to the large-scale architecture of brain
regions and their interconnecting pathways. Different techniques are
sensitive to different levels of organization.

This last point deserves to be emphasized. The multiscale aspect of the
nervous system is an essential feature of its organization and network
architecture. Descriptions of the brain at large scales should not be
regarded as poorly resolved approximations of an underlying micro-
scopic order. Instead, brain connectivity at the large scale (among regions
and systems) describes neural processes that are the outcome of dynamic
coordination among smaller elements, and such a description has as
much validity as one that captures processes at the small scale (among
individual cells and synapses). Different scales offer parallel and comple-
mentary views of brain organization and cannot be reduced to a single
observational scale or method.” The multiscale nature of brain networks
and dynamics will occupy us over most of the book (e.g., chapters 9,12,
and 13).
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Defining Brain Connectivity

Given the broad range of methods for observing the brain, it is not sur-
prising that there are also many different ways to describe and measure
brain connectivity (Horwitz, 2003; Lee et al., 2003; Jirsa and McIntosh,
2007). Brain connectivity can be derived from histological sections that
reveal anatomical connections, from electrical recordings of single nerve
cells, or from functional imaging of the entire brain. Even when using a
single recording technique, different ways of processing neural data may
result in different descriptions of the underlying network.

Perhaps the most fundamental distinction is between structural con-
nectivity as a “wiring diagram” of physical links and functional connec-
tivity as a web of “dynamic interactions.” Throughout the book we will
adhere to this very basic distinction. As will become apparent in many
later chapters, structural and functional connectivity are mutually inter-
dependent, and one of the most important questions in the area of brain
networks concerns the way in which structural and functional networks
shape and constrain each other. A third class of brain networks defines
“effective connectivity,” which encompasses the network of directed
interactions between neural elements. Effective connectivity attempts to
go beyond structural and functional connectivity by identifying patterns
of causal influence among neural elements. While the vast majority of
network studies have so far been carried out on structural and functional
connectivity, effective connectivity is of special interest because it
attempts to reveal the causes driving observed patterns of neural
activity.

Before describing individual measures of connectivity, let us define the
three main types of brain connectivity more precisely:

Structural connectivity refers to a set of physical or structural (anatomi-
cal) connections linking neural elements. These anatomical connections
range in scale from those of local circuits of single cells to large-scale
networks of interregional pathways. Their physical pattern may be
thought of as relatively static at shorter time scales (seconds to minutes)
but may be plastic or dynamic at longer time scales (hours to days)—for
example, during development or in the course of learning and synaptic
remodeling (see chapter 4). Depending on how anatomical networks are
recorded or traced (see chapter 5), the resulting structural networks may
contain binary or weighted edges, and these edges may be either directed
or undirected (see chapter 2).
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Functional connectivity captures patterns of deviations from statistical
independence between distributed and often spatially remote neuronal
units (Friston, 1993; 1994). The basis of all functional connectivity is time
series data from neural recordings. These data may be extracted from
cellular recordings, EEG, MEG, fMRI, or other techniques. Deviations
from statistical independence are generally taken to indicate dynamic
coupling and can be measured, for example, by estimating the correlation
or covariance, spectral coherence, or phase locking between pairs of time
series. Unlike structural connectivity, functional connectivity is highly
time dependent, and it can be statistically nonstationary. In many cases,
functional connectivity changes on a scale of hundreds of milliseconds,
and it is modulated by external task demands and sensory stimulation,
as well as the internal state of the organism. Because it expresses statisti-
cal relationships, functional connectivity does not make any explicit ref-
erence to causal effects among neural elements or to an underlying
structural model of the anatomy. Hence, an observed statistical depen-
dence between two nodes does not allow the inference of a causal inter-
action between them.

Effective connectivity describes the network of causal effects between
neural elements (Friston, 1994; Biichel and Friston, 2000), which can be
inferred through time series analysis, statistical modeling, or experimen-
tal perturbations. Like functional connectivity, effective connectivity is
time dependent and can be rapidly modulated by external stimuli or
tasks, as well as changes in internal state. Some approaches to effective
connectivity derive directed interactions from temporal precedence and
are consequently “model free.” Others require the specification of an
explicit causal model including structural parameters, that is, anatomical
pathways. The estimation of effective connectivity requires complex data
processing and modeling techniques, several of which are described later
in this chapter.

While these definitions provide a rough operational framework for
discussing and investigating brain connectivity, the close relationship
between structure and function in the brain can create some ambiguity
as to whether a neural parameter is best classified as structural or func-
tional. For example, neuronal function is profoundly constrained by
biophysical properties of neurons, which in turn depend on cellular mor-
phology as well as the expression, chemical modification, and cellular
distribution of molecular components. Similarly, neuronal communica-
tion is significantly affected by axonal conduction delays, which depend
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on structural attributes of the axon (length, diameter, and myelination).
Thus, a comprehensive representation of structural connectivity should
comprise not only information about whether connections between pairs
of nodes are present or absent but also about neuronal biophysical prop-
erties and axonal conduction delays. Very few of the currently available
structural connectivity data sets include this information.

No single mode of brain connectivity is sufficient to fully explain how
brain networks operate. It is sometimes proclaimed that the function of
the brain will become apparent once we possess the brain’s wiring
diagram (see chapter 5). Such views are overly simplistic, because the
wiring alone does not account for the physiology of neural interactions,
for the rich repertoire of spontaneous and task-dependent neural
responses, or for their temporal patterning. At the same time, dynamic
patterns of neural interactions cannot be fully interpreted unless struc-
tural connectivity is taken into account. Both structural and functional
networks (or their union in a suitable model of effective connectivity)
are needed to fully explain the time evolution of spontaneous network
activity or of neural responses to perturbation.

Nodes and Edges

The construction of structural and functional brain networks from
empirical data proceeds along several main steps (see figure 3.2; Bull-
more and Sporns, 2009). The first step is the definition of network nodes,
followed by an estimation of a (usually continuous) measure of associa-
tion between pairs of nodes. These estimates are then compiled into an
association matrix, which is often made sparse by removing weak rela-
tionships (“thresholding”) in order to examine the structure of the stron-
gest pairwise associations.® The final step is the calculation of graph
measures from the fully weighted or thresholded association (adjacency)
matrix and the statistical comparison of these measures to populations
of random networks (as in the example discussed in chapter 2). Each of
these steps requires choices in the processing and partitioning of empiri-
cal data sets. It is important to remember that graphs (sets of nodes and
edges) are descriptions of real systems and that the choices made in
parsing the system into nodes and in estimating measures of their mutual
association will influence the results obtained from network analysis
(Butts, 2009; Zalesky et al., 2010).

One of the most fundamental problems of graph analysis in the brain
is the definition of nodes and edges. In some areas of network science,
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histological or
imaging data

structural functional

graph theoretical analysis

brain network brain network

Figure 3.2

Constructing and measuring structural and functional brain networks. The diagram illus-
trates four major steps: definition of network nodes (step 1), estimation of association
measure (step 2), generation of an association matrix and a network composed of nodes
and edges (step 3), and graph theoretical analysis (step 4). Network representations are
from Hagmann et al. (2008) and Achard et al. (2006), modified and reproduced with per-
mission. The diagram was redrawn and modified after Bullmore and Sporns (2009).

the definition of nodes and edges is quite straightforward. In social net-
works, nodes usually represent individuals that are part of a social group.
Studies of the World Wide Web typically identify nodes and edges as
hyperlinked web pages, and studies of citation or collaboration patterns
examine links between citing and cited documents or between groups of
researchers. In the case of the brain, nodes and edges are more difficult
to define. At first glance, the most natural partition is that of individual
neurons and their synaptic connections.” However, most neural record-
ing techniques do not allow the direct observation of large numbers of
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individual neurons. Techniques that resolve single neurons currently
permit the observation of only a small number of cells embedded within
a vast and mostly unobserved network. All noninvasive techniques, while
covering a large part of the brain, record signals that originate from
neuronal populations. Hence, virtually all studies of structural and func-
tional brain networks require a parcellation of the recorded brain volume
into distinct regions and connections. The rationale for the parcellation
process imposes important constraints on the subsequent network
analysis.

Node definition generally involves an anatomical parcellation into
coherent regions on the basis of histological or imaging data. Objective
parcellation, for example, of the cerebral cortex into a set of uniquely
specified functionally coherent and nonoverlapping regions presents sig-
nificant challenges that have still only been partially addressed (see
chapter 4). Simple parcellation schemes based on anatomical landmarks
are imprecise and insufficient to fully represent the true anatomical and
functional diversity of the cortical architecture. More sophisticated
approaches utilize information about structural and/or functional con-
nectivity to define regions with a coherent connectivity profile, ideally
obtained from individual brains (Johansen-Berg et al., 2004; Cohen
et al., 2008). An alternative approach involves defining nodes as indi-
vidual voxels in fMRI data or electrodes or sensors in electrophysiologi-
cal or MEG experiments. This approach can be problematic due to
shared variance among spatially contiguous recording sites, especially in
EEG and MEG (Ioannides, 2007). Reconstruction of anatomical sources
could conceivably map extracranially recorded electromagnetic poten-
tials back into an anatomical partition, but source reconstruction algo-
rithms still have limited coverage, accuracy, and resolution.

Edge definition involves the estimation of pairwise associations
between nodes. Again, important choices have to be made, since there is
avery wide range of potential measures of structural, functional, or effec-
tive association. Structural networks are constructed from measures of
physical association—for example, the number of stained or recon-
structed axonal fibers that link two nodes in an anatomical partition (see
chapter 5). Functional networks are usually derived from symmetrical
measures of statistical dependence such as cross-correlation, coherence,
or mutual information. Effective networks can be defined on the basis
of estimates for pairwise causal or directed interactions, obtained from
time series analysis or from coefficients of models designed to infer
causal patterns.
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Connection, Correlation, Causation

The application of multiple recording techniques to the same neuronal
preparation or the same individual brain can deliver multiple sets of
associations within a single nodal partition. For example, noninvasive
neuroimaging techniques allow researchers to simultaneously map struc-
tural and functional connections from recordings of dynamic time series
data in the same individual. Can we use these data to deduce the complex
chains of neural events causing other neural events in the course of
perception and cognition? The inference of causality from a joint knowl-
edge of anatomy and neural dynamics is a central question in theoretical
neuroscience.

As defined earlier, functional connectivity records statistical depen-
dencies between elements of a neural system or between neural record-
ing sites. The relative ease with which measures of functional connectivity
can be estimated has helped to promote their widespread use in the
analysis of neuronal time series data. Bivariate statistical dependencies
can be computed in the time domain as cross-correlation or mutual
information, with the latter measure capturing both linear and nonlinear
interactions. They can also be computed in the spectral domain as coher-
ence, phase synchronization, or generalized nonlinear synchronization,
for example, the synchronization likelihood (Stam, 2006). While these
functional connectivity measures allow mapping of statistical patterns of
dynamic coupling, they cannot reveal causal processes occurring among
neurons or brain regions. For example, functional connectivity measures
cannot detect whether dynamic coupling is due to direct and indirect
interaction or due to a common external influence, such as shared input.
Effective connectivity attempts to go beyond the fundamentally correla-
tive construct of statistical dependence and aims to identify a network
of causes or directed influences that explain the observed data. This
endeavor faces a number of fundamental obstacles associated with the
concept of “causality.”'

The use of perturbations offers one approach for discerning causal
patterns. Before the advent of sophisticated tracers for mapping neuro-
anatomical connections, neuronal stimulation was used to create local-
ized perturbations and observe their effects on other parts of the brain.
In a variant of this approach, called physiological neuronography, strych-
nine, which partially blocks inhibitory neurotransmission, was applied to
a small patch of cortex, resulting in local disinhibition and propagation
of excitatory activity away from the stimulation site. In anesthetized
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animals, it was found that strychnine-induced excitation did not spread
across multiple synapses (Dusser de Barenne and McCulloch, 1939) and
could thus reveal the extent of axonal connectivity emitted from the
stimulated location. In an extensive series of studies, Dusser de Barenne
and McCulloch (1938; Bailey et al., 1940) used strychnine neuronography
to map directed functional relations mediated by interareal axons linking
regions of the primate sensorimotor cortex. The diagrammatic summary
of their results (see figure 3.3) essentially represents one of the earliest
examples of a connection matrix of directed functional (and anatomical)
relations between a set of brain regions. While neuronography was essen-
tially abandoned half a century ago, other perturbational approaches for
recording directed neural interactions continue today."

One of the first formal definitions of effective connectivity originated
in neurophysiology in the analysis of spike trains obtained from multi-
electrode recordings (Gerstein and Perkel, 1969; Aertsen et al., 1989;
Aertsen and Preissl, 1991). Effective connectivity was defined as the
minimal neuronal circuit model that could account for observed correla-
tions between simultaneously recorded spike trains after stimulus-
induced modulations of single neuron firing rates have been discounted.
This circuit model was not intended to represent a unique solution to
the “inverse problem” of inferring synaptic connections from spike trains.
In fact, effective connectivity between individual neurons in cat visual
cortex was found to exhibit rapid stimulus-locked modulations (Aertsen
et al., 1989). In neuroimaging and cognitive neuroscience, effective con-
nectivity, as originally defined by Karl Friston, attempts to reconstruct or
“explain” recorded time-varying activity patterns in terms of underlying
causal influences of one brain region over another (Friston, 1994; Biichel
and Friston, 2000; Friston, 2009a). While there are conceptual similarities
between effective connectivity in neurophysiology and in neuroimaging,
there are also significant differences, primarily in temporal/spatial resolu-
tion and the nature of the recorded neural signal.

One approach to effective connectivity estimates directed interactions
from observed neural data without making any assumptions about an
underlying structural model or measuring the effects of perturbations.
These methods utilize neural time series data to extract information
about directed (or causal) interactions by exploiting the fundamental
fact that causes must precede effects in time. One of the most widely
used methods, Granger causality, was originally developed for social and
economic systems (Granger, 1969). Based on time-lagged linear regres-
sion analysis, Granger causality captures the amount of information
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Figure 3.3

Mapping of connectivity with strychnine neuronography. The image on the top left shows
the surface of the chimpanzee cortex, indicating the extent and location of functional
subdivisions of the sensory cortex of the arm, numbered as bands II through X, and adja-
cent bands I and XI. The diagram on the top right shows a summary of the functional (and
anatomical) relations detected with strychnine neuronography between cortical bands I
through XI. “Anterior border” and “posterior border” mark the limits of sensory cortex,
and “F CE” marks the fissura centralis (also called the Rolandic fissure). Black triangles
schematically represent cell bodies, with excitatory axons and synapses (“Y”) extending
into other areas. Suppressive effects after the application of strychnine to bands I, I11, VII,
and XI are indicated by “~.” The diagram represents an early example of a cortical con-
nection matrix. The image on the bottom is a summary of directed functional (anatomical)
relationships revealed by strychnine neuronography of chimpanzee cortex from Bailey and
von Bonin (1951), reproduced with permission. Top illustrations are reproduced from
Bailey et al. (1940) with permission.
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about the future state of one variable that is gained by taking into
account the past states of another variable. Granger causality has been
widely applied in neuroscience (Kaminski et al.,2001; Ding et al.,2006)—
for example, to EEG data sets obtained from large-scale sensorimotor
networks (Brovelli et al., 2004) as well as fMRI time series (Goebel et
al.,2003; Roebroeck et al.,2005; Bressler et al., 2008). A related measure
based on information theory, called transfer entropy, is also based on
temporal precedence cues and takes into account linear as well as non-
linear interactions (Schreiber, 2000). Transfer entropy detects directed
interactions between two variables by considering the effects of the state
of one variable on the state transition probabilities of another
variable."

It is important to note that approaches to effective connectivity based
on temporal precedence rely on several key assumptions (Friston,2009a).
Since these methods operate in discrete time, the parsing of the naturally
continuous system dynamics into sequences of discrete states should
conform to the time scale at which these states cause each other. Most
importantly, the recorded variables must accurately preserve the tempo-
ral dependencies present within the system. This last assumption is vio-
lated if there are delays in the responses of these variables due to
perturbations, as may be the case for fMRI signals due to regional varia-
tions in the hemodynamic response function (David et al., 2009). Such
delays can disrupt the sequence of observed time series, possibly revers-
ing the temporal order of cause and effect. Finally, Granger causality and
related methods rely on statistical patterns of observed responses' but
do not infer the hidden neural causes that underlie these observations.

In contrast to methods based on temporal precedence, there are
several approaches for extracting effective connectivity under constraints
imposed by a structural model of synaptic connectivity or interregional
pathways. One of the earliest techniques is called covariance structural
equation modeling (CSEM) and assigns effective connection strengths
to anatomical pathways that best match observed covariance patterns,
often recorded during performance of a specific cognitive task (McIntosh
and Gonzalez-Lima, 1994; Horwitz et al., 1999). This technique has been
applied in different cognitive domains, allowing the identification of
time- and task-dependent differences in connectivity between a fixed set
of brain regions. For example, McIntosh et al. (1994) used PET data to
show that object or spatial vision tasks were associated with different
effective connections among occipital, temporal, and parietal regions of
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visual cortex (see chapter 9, figure 9.5). In another example, an fMRI
study of repetition suppression revealed that learning-related decreases
in the activation of specialized cortical areas were accompanied by
increases in effective connectivity extracted by path analysis (Biichel
et al., 1999). One of the drawbacks of CSEM is that it does not explicitly
model neural time series or temporal changes in experimental context
(Stephan, 2004).

More recently, Karl Friston and colleagues have formulated a theoreti-
cal framework called dynamic causal modeling (DCM; Friston et al.,
2003; Stephan and Friston, 2007). DCM uses statistical inference to esti-
mate parameters for directed influences between neural elements, explic-
itly in the context of experimental perturbations (see figure 3.4). This
inference is carried out by a comparison of neuronal models that include
structural and biophysical parameters describing neural populations and
their interactions, as well as a hemodynamic mechanism for the genera-
tion of fMRI signals. DCM identifies distributions of parameters that can
account for observed fMRI data, and DCM also selects the model that
describes the data most accurately and most parsimoniously by quantify-
ing the model evidence. Unlike methods based on temporal precedence,
DCM makes an inference on brain dynamics modeled as a system of
coupled differential equations governing temporally continuous pro-
cesses and derives estimates for parameters that relate directly to neu-
ronal structure and biophysics. Hence, it explicitly tests hypotheses about
how data are generated by inferring the form and coefficients of the
neural system’s equations of motion. Applications of DCM are discussed
further in chapter 9.

The estimation of effective connectivity still presents a number of dif-
ficult technical and interpretational challenges. Structural equation mod-
eling and dynamic causal modeling are sensitive to choices made about
the underlying structural and/or dynamic model, while measures based
on temporal precedence are sensitive to the rate and temporal resolution
at which data are acquired. These difficulties notwithstanding, applica-
tions of effective connectivity are likely to grow in the future as they
promise to reveal how brain responses are generated through temporally
ordered dynamic processes unfolding in structural networks. Because
computational models are a central component of effective connectivity
and play an increasingly important role in studies of brain connectivity,
we need to briefly review how such models are configured and tested
against empirical data.
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Figure 3.4

Effective connectivity. (A) A representation of a nonlinear neural model involving three
neural regions (x,—x;) and their interconnections. Regions x, and x; receive external inputs
(u; and u,, respectively), and the output of region x; modulates the efficacy of the connec-
tion from x, to x,. Plots in (B) show the time courses of modeled neural population activity
(top) and synthetic blood-oxygen-level-dependent (BOLD) signal change (bottom). Note
that activation of x; enables transmission of signals from x, to x,. The model was used in
dynamic causal modeling to estimate parameters in a neuroimaging study of attentional
modulation of motion signals (C). Activity in the posterior parietal cortex (PPC = x;) was
found to modulate the efficacy of the connection from visual area V1 (x,) to V5 (x,) and
thus the effect of sensory stimulation (stim). Adapted from Stephan et al. (2008); repro-
duced with permission.
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Models of Brain Connectivity

Neither “armchair theorizing” nor formal mathematical analysis is suf-
ficient to deal with the rich spatiotemporal structure of complex systems.
Instead, computer simulations of such systems are necessary to form and
test hypotheses and to gain mechanistic insight. Without the use of com-
puter simulations, it would be impossible to explore complex physical
processes such as the formation of planets from spinning circumstellar
disks of gas and dust, the impact of human activity on climate change, or
the folding of proteins.

Computational approaches to complex systems now pervade many
scientific disciplines, and neuroscience is no exception. The extraordinary
variety and complexity of neural activity patterns requires computa-
tional modeling of empirical data to achieve an understanding of the
system that is both explanatory and predictive. Models are the basis of
most, perhaps all, empirical investigation in neuroscience.' No hypoth-
esis is formulated, no empirical measure is selected, and no experimental
manipulation is devised without recourse to some sort of model or rep-
resentation of the essential components and interactions and their
expected behavior. Charts of cellular signaling pathways, box-and-arrow
diagrams of cognitive processes, and circuit maps of neurons are models
that inform and motivate empirical research. These models are often
defined only implicitly and nonquantitatively. Increasingly, however,
empirical researchers make use of models that are explicitly defined in
a computational framework. The design of a computational model
requires the choice of model components and the quantitative formula-
tion of their unit and aggregate behavior. Thus, one important implica-
tion of computational modeling is the necessity to explicitly parameterize
potentially ill-defined and qualitative concepts. Comprehensive surveys
of computational neuroscience testify to the broad range of modeling
approaches and the increasing integration of computational models and
empirical investigation (e.g., Dayan and Abbott,2001). In studies of brain
networks and connectivity, models occupy an important role (Break-
spear and Jirsa, 2007). Dynamic connectivity-based models are indis-
pensable for understanding how the local activity of neural units is
coordinated and integrated to achieve global patterns, and we will
encounter such models frequently in the course of this book (see chap-
ters 8-13).

The basis of all computational models is a set of state equations that
govern the temporal evolution of the dynamic variables. These equations
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can take different forms. Often they are differential equations that
describe the rate of change of a system variable. In brain models, such
variables may stand for electrical membrane potentials, and the state
equations describe how these potentials change as a result of changes in
membrane conductances or synaptic inputs. The integration of these
equations, usually carried out numerically by a computer, generates time
series data that can be embedded in a geometric phase space. If the state
equations describe two variables, a suitable phase space is the two-
dimensional plane, and successive states of the system can be repre-
sented as a trajectory within this space. Given a set of initial conditions,
the trajectory of the system will flow toward a bounded set of points that
constitute an attractor. If the state equations are sufficiently complex,
multiple attractors can coexist, and different initial conditions may end
up on the same or different attractors. An attractor may be as simple as
a single “fixed point” or have a more elaborate geometric shape such as
limit cycles (in the case of periodic dynamics) or strange attractors (in
the case of chaotic dynamics). An attractor is stable if the dynamic
system returns to it after a small deflection. The set of points from which
the system flows to a given attractor is its basin of attraction. As the
parameters of a dynamic system are varied, the system trajectories may
describe very different paths and approach qualitatively different
attractors.

There are several systems of differential equations for describing the
activity of individual neurons or of neuronal populations. Perhaps the
most famous among these is the system of conductance-based coupled
ordinary differential equations formulated by Hodgkin and Huxley
(1952). The Hodgkin—Huxley model describes the generation of action
potentials as a function of current flows through sodium, potassium, and
chloride ion channels. Different models describe neural processes at dif-
ferent levels of scale. There are systems for modeling neural dynamics at
the microscale of individual neurons (as in the case of the Hodgkin—
Huxley equations), at the mesoscale of local populations of neurons such
as columns, or at the macroscale of entire brain regions (Deco et al.,
2008).

Synaptic interactions between neural elements are implemented by a
coupling or connectivity matrix. Connectivity between neural masses
creates large-scale neural models that aim to describe spatiotemporal
dynamics of a large neural system based on realistic biophysical mecha-
nisms. The connectivity structure is provided by a structural adjacency
matrix (see chapter 2) that incorporates spatial (topological) parameters
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and, in many cases, also temporal (conduction delays) parameters. The
temporal dynamics and attractors of coupled large-scale neural models
can be analyzed with the tools of dynamical systems theory. Some models
allow the mapping of simulated neural states to observables such as
electromagnetic surface potentials or BOLD responses and thus enable
direct comparison of model data to empirical data. Importantly, models
can be manipulated in ways that are difficult or impossible in real neural
systems. This allows systematic variations in biophysical parameters or
in the space-time structure of the coupling matrix to be related to dif-
ferent dynamic regimes and global states attained by the large-scale
system.

The prediction of the large-scale behavior of a complex system requires
more than a description of the dynamic behavior of its components or a
wiring diagram of its interactions. Model-based numerical simulations
are often the only means by which such predictions can be generated—
this is true for the complex spatiotemporal dynamics of molecules inside
a cell, for the time evolution of social and economic systems, and for
models of the global environment.” For example, computational models
that attempt to predict future climate change are based on simulations
of the entire “earth system,” including the distribution of landmasses and
oceans, solar energy input and dissipation, atmospheric and oceanic
chemistry and flow patterns, as well as biological processes (McGuffie
and Henderson-Sellers, 2001). These simulations are implemented as
coupled differential equations on a three-dimensional grid covering the
earth surface. Predictions of the long-term effects of perturbations or
driving forces due to human activity are made on the basis of numerical
simulations that are calibrated using data about the past of the earth’s
climate.

There are some parallels between these computational studies of the
earth system and those of the brain. Perhaps, a “global brain simulator”
will soon be on the horizon.'® A feasible near-term goal of such a simula-
tor would be the implementation of a realistic model of the large-scale
dynamics of the human brain at a level of scale commensurate with that
used in noninvasive neuroimaging and electrophysiology. Comprehen-
sive data on brain connectivity (the “connectome”; see chapter 5) is
essential to constrain such a model. If appropriately configured, a detailed
“forward model” of the human brain would allow predictions about pat-
terns of endogenous brain dynamics, about the responsiveness of the
“brain system” to various exogenous stimuli, and about pathological
changes in brain dynamics following damage or disease.
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From Components to Patterns

There is great diversity in the way brain connectivity can be measured,
computed, and represented, reflecting the many neural recording tech-
niques that allow the direct or indirect observation of neural activity on
different time and spatial scales. The distinct nature of neural signals
obtained by techniques as disparate as cellular neurophysiology and
functional neuroimaging can obscure the fact that underneath electrodes,
sensors, and magnetic coils there is a single biological system, whose true
structure and function is the object of the investigation. There is an
urgent need for empirical data and computational models that provide
insight into the relationship of neural signals from different recording
modalities (hemodynamic responses, cellular or electromagnetic surface
potentials) and, by extension, the ways in which brain connectivity esti-
mated from these signals can be combined. The relationship between
neural events in macroscopic brain systems, within millimeter-scale brain
voxels, or among individual cells and synapses will be illuminated by
more accurate models of connectivity at these different scales (Honey
et al, 2010).

Connectivity translates unitary events at the cellular scale into large-
scale patterns. Once the cellular machinery for generating impulses and
for transmitting them rapidly between cells had evolved, connectivity
became a way by which neurons could generate diverse patterns of
response and mutual statistical dependence. Connectivity allows neurons
to act both independently and collectively, thus providing the substrate
for the “unitary action of the nervous system” that was so important to
Camillo Golgi. The neuron doctrine has remained an important founda-
tion of modern neuroscience, and yet its emphasis on the neuron as an
autonomous anatomical and physiological unit of the nervous system
should not be mistaken for the notion that the functioning of the brain
can be reduced to that of its cellular substrate. Brain function is funda-
mentally integrative—it requires that components and elementary pro-
cesses work together in complex patterns (Kelso, 1995). Connectivity is
essential for integrating the actions of individual neurons and thus for
enabling cognitive processes such as perception, attention, and memory.

The neuron doctrine, with its insistence on the functional autonomy
of cellular elements of the brain, very much reflects the mechanistic lean-
ings of the nineteenth century. A different and related mechanistic idea,
functional localization, also originated during that time. It turns out that
an analysis of brain connectivity can illuminate how function is localized
and represented among nerve cells and brain regions.
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Although I believe in the principle of localization, I have asked myself and still
ask myself within what limits this principle can be applied. [...] There are in the
human mind a group of faculties, and in the brain groups of convolutions, and
the facts assembled by science so far allow to state, as I said before, that the great
regions of the mind correspond to the great regions of the brain. It is in thissense
that the principle of localization appears to be, if not rigorously demonstrated,
so at least probable. But to know whether each particular faculty has its seat in
a particular convolution, is a question which seems completely insoluble at the
present state of science.!

—Paul Broca, 1861

Few theoretical concepts have had a deeper, more confounding influence
in the history of neuroscience than the concept of functional localization
(Phillips et al., 1984; Young, 1990; Finger, 1994). The debate surrounding
functional localization has raged for at least two centuries, pitching those
who view brain function as resulting from the action of specialized
centers against others who conceptualize brain function as fundamen-
tally nonlocal and distributed. The battle plays out on the grand stage of
whole-brain anatomy and in cellular physiology where highly specific
responses of single neurons are usually interpreted as localized sub-
strates of complex perceptual and cognitive functions.? This chapter
explores how a more complete understanding of structure—function rela-
tionships in the brain can be achieved by taking a network perspective.
I will argue that the problem of functional localization, or more generally
the relationship between anatomical locations and mental processes, is
productively addressed when the system is conceptualized as a complex
network.

One of the goals of neuroanatomy is the identification of anatomical
units (cells, cell groups, or brain regions) and the mapping of their inter-
connections to reveal brain architecture (Swanson, 2003;2007). Once the
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brain’s elements and connections have been determined, they collec-
tively form a structural network that can be explored with the tools and
methods of network science. For example, the organization and topology
of structural brain networks provides quantitative information about the
differential contributions of individual network elements to the overall
architecture (see chapter 2). This information is useful when considering
regional functional specialization in the brain. In most biological systems
the elements of a given network display some level of functional special-
ization; that is, they participate in different system processes to a varying
degree. Specialization among network elements can arise in two ways. It
can be the result of differences that are intrinsic to each of the ele-
ments—for example, their intrinsic capacity to process information.
Alternatively, or additionally, it can be the result of differences in their
extrinsic connections, which determine the way the elements exchange
information between each other. In other words, the functional special-
ization of each local element is determined in part by the intrinsic prop-
erties of the element and in part by its extrinsic network interactions.
Thus, mapping the anatomy of brain networks offers important clues as
to the functional specialization of each of the network elements.

An example from another domain of network biology may help to
clarify this point. Modern molecular biology generates a wealth of
genomic sequence data that poses significant challenges for identifying
the functional roles of individual proteins. Classical methodologies for
predicting protein function examine structural characteristics of indi-
vidual proteins and infer function on the basis of structural similarities
to other proteins with known functional roles. In contrast, network
approaches to protein function prediction utilize information about
interactions among proteins during specific cellular processes. Proteins
often carry out functions by associating with other proteins to form
protein complexes. These complexes are defined by protein—protein
interactions, and a complete map of all such interactions (an interac-
tome) thus provides important information about functional roles of
individual proteins (Cusick et al., 2005). Unknown functions of proteins
can be deduced from this map of interactions in several different ways
(Vazquez et al., 2003; Sharan et al., 2007). Simple methods examine
neighborhood relations and assign functions on the basis of a majority
rule. More sophisticated methods attempt to identify modules consisting
of proteins that participate in a common biological function. Proteins of
unknown function that occur within such modules can then be given a
predicted functional role. What all network-based protein function pre-
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diction methods have in common is that they exploit local and global
features of the network structure to determine functional roles rather
than viewing function exclusively as an intrinsic feature of isolated
network nodes.

Thus, it appears that connectivity carries information about the func-
tionality of elements in different kinds of biological networks. In this
chapter, I will briefly examine the historical origins of the debate sur-
rounding functional localization in the brain and consider how modern
approaches to the analysis of the brain’s microstructure and connectivity
can create new bridges from structure to function. I will outline an
emerging set of ideas where patterns of structural connectivity define
functional specialization in the brain.

From Phrenology to Modern Cytoarchitecture

Phrenology, the identification of psychological and personality traits on
the basis of protrusions or bumps on a person’s skull, has been thor-
oughly debunked as a pseudoscience that lacks any plausible physiologi-
cal basis and has no explanatory or predictive power. Despite the
inadequacy of the correlational methods employed in phrenology, its
originator, Franz Joseph Gall, has made a lasting contribution to psycho-
logical science by helping to establish its biological foundation. Gall
promoted the idea that the brain forms the material basis for all mental
function,® and his studies focused the interest of nineteenth-century
anatomists and physiologists on the cerebral cortex as the seat of complex
cognition. Gall’s conception of the brain as composed of numerous and
independent cerebral “organs of mind,” each devoted to a specific and
innately specified mental faculty, represented an extreme version of cere-
bral localization. Gall’s ideas came under almost immediate attack from
opponents like Pierre Flourens, whose lesion studies were suggestive of
a much more diffuse organization of higher brain functions within the
cerebrum. Ever since Gall, phrenology or “neophrenology” have been
invoked, usually with negative connotations, in the discussion of histori-
cal or contemporary attempts to localize cognitive functions in discrete
parts of the cerebral cortex.*

Clinical studies of the effects of lesions in the human brain—for
example, those of Paul Broca—strongly supported the view that the
integrity of specific mental functions depended on the integrity of spe-
cific brain centers (see chapter 10). These clinical observations were soon
reinforced by histological evidence for structural differentiation of the
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brain that lent further support to localizationism. The anatomical studies
of Korbinian Brodmann, Alfred Campbell, and others provided detailed
and comprehensive maps of regional differences in the cytoarchitecture
of the human cerebral cortex (see figure 4.1). One basis for these inves-
tigations was a histological stain discovered in the late nineteeenth
century by Franz Nissl that allowed the selective visualization of cell
bodies, in particular those of neurons. Campbell and Brodmann system-
atically charted the often subtle boundaries separating regions that dif-
fered in their staining pattern, marking variations in cell density, size,and
layering. Remarkably, Brodmann’s cortical maps and his regional clas-
sification scheme remain an important reference system for cortical
localization even today.

Brodmann’s observations on the regional differentiation of brain
tissue offered a potential structural basis for functional localization and
specialization. And yet, Brodmann rejected the notion that cytoarchitec-
tonic regions of the brain operate in isolation from one another. Regard-
ing complex brain functions, he wrote that “one cannot think of their
taking place in any other way than through an infinitely complex and
involved interaction and cooperation of numerous elementary activities
[...] we are dealing with a physiological process extending widely over
the whole cortical surface and not a localised function within a specific
region” (Brodmann, 1909; quoted after Garey, 1994, p. 255).° However,
Brodmann did not clearly articulate the role of connectivity in this
process of coordination—in fact, he explicitly excluded fiber architecture
from his cytoarchitectonic work. Alfred Campbell, on the other hand,
viewed cytoarchitectonic specialization in the context of the patterning
of cortical fiber bundles (Campbell, 1905). Campbell was among the first
neuroanatomists to consider the role of regionally specific connectivity
patterns in functional descriptions of the cortical system (ffytche and
Catani, 2005). He is therefore regarded as one of the earliest advocates
of the integrated study of structure—function relations in the human
brain.

Despite the nuanced views and theories of some of its proponents,
Brodmann and Campbell among them, descriptions of the highly

Figure 4.1

Anatomical parcellation of the human cerebral cortex. Mapsshow the left hemisphere as
rendered by Alfred Campbell (1905), Korbinian Brodmann (1909), and Constantin von
Economo (von Economo and Koskinas, 1925). Campbell distinguished 14 cortical fields,
while Brodmann and von Economo divided the cortex into 44 and 54 regions,
respectively.
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differentiated microarchitecture of the cortex fueled the simplistic notion
that the diversity of mental and cognitive functions supported by the
human brain came about by the actions of specialized brain regions that
operated as independent “organs of the mind.” However, this extreme
variant of functional specialization was soon to be challenged. Karl Lash-
ley’s studies of the behavioral effects of ablations and white matter cuts
in the rat brain and of the cortical localization of memory traces follow-
ing learning led him to reject localization of function altogether. Instead,
he formulated a set of opposing ideas such as cortical “equipotentiality”
and “mass action” (Lashley, 1929) that emphasized the distributed nature
of brain function. Later, Lashley’s influential critique of the cytoarchi-
tectonic approach (Lashley and Clark, 1946) cast doubt on the reliability
and accuracy of cytoarchitectonic boundaries between cortical regions
found in histological material. Lashley and Clark noted that the criteria
for determining regional boundaries in cytoarchitectonic studies differed
considerably between investigators, resulting in maps that were inconsis-
tent and included a variable amount of detail.

Despite these criticisms, the study of cortical microstructure continues
to provide important data on the structural differentiation and hetero-
geneity of cortical regions. A number of methodological innovations now
allow the use of sophisticated statistical tools for the mapping of the
brain’s cytoarchitecture (Schleicher et al., 1999; Amunts and Zilles,2001).
These modern tools have confirmed some of the “classical” structural
differentiations reported in earlier cytoarchitectonic studies. In addition,
they have revealed numerous anatomical subdivisions that were missed
previously. Automated analyses of cortical microanatomy utilize image
processing and statistical techniques—for example, by examining the
continuity of histological patterns across the cortical surface (see figure
4.2). One type of analysis proceeds by extracting linear density profiles
quantifying cortical laminar patterns in histological sections. The statisti-
cal comparison of such patterns along the cortical surface allows the
detection of sharp transitions, corresponding to putative boundaries
between anatomically segregated cortical regions (Schleicher et al.,
2005). Recent mapping studies of the auditory cortex have revealed
additional regional subdivisions that were not contained in the classical
Brodmann map (Morosan et al.,2001). More detailed and highly resolved
cytoarchitectonic maps have also been constructed for human inferior
parietal cortex (Caspers et al., 2006) and superior parietal cortex
(Scheperjans et al.,2008). In addition to techniques based on histological
stains, Karl Zilles and colleagues conducted systematic quantitative
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Figure 4.2

Objective identification of cytoarchitectonic boundaries. (A) Schematic drawing of a
coronal section through the human brain. A portion of the superior temporal gyrus is
marked, and a corresponding tissue section stained for cell bodies is displayed in panel (B).
To extract borders between cytoarchitectonic areas, the cross-section of the cortex is
covered by equidistant radial profiles that record the gray level index, an estimate of the
volume fraction of cell bodies. Changes in the shape of these profiles are recorded by a
distance measure, plotted in panel (C). Significant discontinuities in these profiles indicate
an abrupt change of the pattern, corresponding to an areal boundary, in this case between
temporal cortical regions Te2.2, Te3, and Te4. Images from Morosan et al. (2005), modified
and reproduced with permission.

receptor autoradiography revealing regional and laminar densities of
several neurotransmitter receptors (Zilles et al., 2004). These biochemi-
cal labeling approaches allow the parcellation of the cortex into physi-
ologically and presumably functionally distinct regions. Most of these
modern investigations have revealed additional regions that were not
captured during the classic era of cytoarchitectural analysis, suggesting
that these early attempts at subdividing the cortex underestimated the
regional diversity of cerebral microstructure. Notably, virtually all
modern cytoarchitectonic and receptor-labeling studies report significant
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intersubject and interhemispheric variability (Uylings et al., 2005). This
variability requires probabilistic mapping techniques to construct reli-
able anatomical reference maps (Amunts and Zilles, 2006a).

The development of objective computational methods for determining
areal boundaries in histological material is an important step toward a
more complete characterization of the brain’s cellular architecture.
Recent studies have clearly confirmed the architectural heterogeneity of
human cerebral cortex, and the impending arrival of comprehensive
gene expression maps for the human brain will add an important new
dimension.® Comprehensive cytoarchitectonic, receptor density, and
gene expression brain maps will yield multivariate data on cell densities,
laminar patterning, receptor types, and protein levels. The conjunction of
these different measures allows inferences about functional differentia-
tion that are more precise than those relying on a single structural attri-
bute. A quantitative framework for combining multimodal data on the
structure and physiology of brain regions (Kétter et al, 2001) relies on
multivariate data analysis tools such as hierarchical cluster analysis and
multidimensional scaling. These methods combine the assessment of
“intrinsic” areal measures such as microstructural and receptor binding
data together with “extrinsic” connectional information. These and other
approaches contribute to achieving one of the basic premises of cytoar-
chitectonics, indeed of cerebral cartography in general (Zeki, 2005), that
is, establishing links between local variations in microstructure and varia-
tions in function. Thus, modern cytoarchitectonic studies provide more
than descriptive maps of cortical anatomy. They contribute to the iden-
tification of functional relationships among areas within the highly inter-
connected architecture of the cortex.In addition,modern cytoarchitectonic
techniques are important tools for defining network nodes in the brain
at the scale of macroanatomy.

Connectivity-Based Parcellation

The early focus on cyto- and myeloarchitecture as the main criterion for
mapping anatomically segregated brain regions has yielded brain maps
(such as Brodmann’s) that continue to be in use today. Yet, cytoarchitec-
ture alone, even when pursued with modern quantitative techniques, may
still be insufficient for reliably detecting all anatomical boundaries
between brain regions. While there is some evidence suggesting that
similarities in cytoarchitecture may be indicative of functional relations
(or at least interconnectivity), there are cases where regions currently
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viewed as microstructurally coherent are known to be functionally sub-
divided (e.g., Brodmann’s area 18). Furthermore, high-resolution cytoar-
chitectonic studies currently require the use of postmortem brains, as
they are difficult to conduct noninvasively in live tissue.”

Additional information about regional specialization can be derived
from their interconnections. Numerous lines of evidence suggest that
regional microanatomy and interregional connectivity of the cortex are
mutually related. For example, Barbas and colleagues analyzed the
laminar organization of areas in the monkey prefrontal cortex and found
that the local cytoarchitecture could predict laminar termination pat-
terns of connections between these areas with high accuracy (Barbas and
Rempel-Clower, 1997; Barbas and Hilgetag, 2002). The origin of this
relationship is not yet well understood but may involve developmental
processes that lead to coregulated regional and connectional differentia-
tion. Thus, the developmental linkage of cytoarchitecture and connectiv-
ity further clarifies the functional relationships between segregated
cortical areas.

The topological pattern of corticocortical connections provides infor-
mation that can aid in the definition of regional boundaries (Johansen-
Berg and Rushworth, 2009).2 The basic postulate is that projection
neurons within a coherent brain region should share extrinsic (interre-
gional) projection sources and targets, while projection neurons in dif-
ferent regions should have dissimilar connection patterns. If the
connection profiles of neurons across the cortical surface can be mea-
sured, one can then use a clustering approach to extract homogeneous
groupings that correspond to segregated brain regions. Such an approach
would naturally result in a definition of network nodes (see chapter 3)
that maximizes the information gained about internode connectivity, as
additional subdivision of these nodes does not resolve the connection
topology any further.

Node definition by clustering of connectivity can in principle be carried
out on structural or functional connections. Behrens et al. (2003) used
data on thalamocortical structural connectivity obtained by diffusion
tensor imaging (DTT) to segment gray matter nuclei in the thalamus, with
results that were reproducible between individual brains and consistent
with neuroanatomical patterns previously described in nonhuman pri-
mates. Johansen-Berg et al. (2004) extended this approach toward iden-
tifying correlated structural and functional subdivisions within the
cerebral cortex (see figure 4.3, plate 1). Diffusion magnetic resonance
imaging (MRI) was used to determine the connectivity profile between
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Figure 4.3 (plate 1)

Connectivity-based parcellation of cortical regions. (A) Voxel mask in medial frontal cortex
shown in a sagittal (top) and axial view (bottom). (B) The matrix of cross-correlations
between connectivity profiles of single voxels from the sagittal (top) and axial (bottom)
sections of the medial frontal cortex shown in (A). High correlation implies similarity in
the connection profile (hot colors), while low correlation implies dissimilarity (cool colors).
In the plots on the right the voxels have been arranged using a spectral reordering algo-
rithm to identify distinct clusters, labeled in blue and red along the axis at the bottom (black
denotes voxels that remained unclassified). (C) Positions of the two clusters in anatomical
space. Clusters are spatially contiguous, and they largely correspond to segregated func-
tional volumes determined by functional magnetic resonance imaging. Plots reproduced
from Johansen-Berg et al. (2004) with permission.

a set of seed voxels in medial frontal cortex and all other voxels across
the whole brain. These connectivity profiles were then cross-correlated,
and the resulting cross-correlation matrix served as the input to a spec-
tral reordering algorithm that identified clusters of voxels with shared
connectivity patterns. This structural imaging approach allowed the iden-
tification of connectivity-defined regions in medial frontal cortex.’ In
parallel, functional imaging experiments were performed on the same
group of participants, probing for regionally specific activations within
the same area of the brain. Comparison of structurally defined regions
with regions defined by patterns of neural activation in fMRI revealed
a high degree of overlap, which turned out to be significant even at the
level of individual participants.

Johansen-Berg’s connectivity-based parcellation of medial frontal
cortex was replicated in a subsequent analysis (Anwander et al., 2007).
These authors then used connectivity profiles obtained from diffusion
MRI to partition a portion of the inferior frontal cortex corresponding
to Broca’s area. Previous cytoarchitectonic and receptor mapping work
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Figure 4.4

Parcellation of Broca's area in the left inferior frontal cortex. Broca's arca appears segre-
gated into three distinct subregions, derived on the basis of the similarities and dissimilari-
ties of their long-range structural connections estimated from diftusion imaging followed
by computational tractography. The tractographic signatures of the three subregions are
shown at the top. The image at the bottom shows their anatomical location on the surface
of the brain. Data are from a single subject reported in Anwander et al. (2007). converted
to gray scale and reproduced with permission.

(Amunts and Zilles, 2006b) had shown several microstructurally defined
subregions within Broca’s area. Anwander and colleagues extended this
work by showing that similar parcellations could be revealed in vivo in
individual brains on the basis of patterns in connectional architecture.
Examining data from six individual participants, a cluster analysis
revealed three subdivisions of Broca’s area, roughly corresponding to
Brodmann’s area 44, 45 and the deep frontal operculum (see figure 4.4).
A comparison with a probabilistic map obtained on the basis of cytoar-
chitecture showed good agreement between the two parcellation
methods. Broad agreement was also reported between the proposed
anatomical parcellation and functional activation studies. As is the case
for virtually all brain connectivity studies that examine individual
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participants, there were significant variations in area shape and size,
sulcal pattern, and relation to cortical surface landmarks.
Cytoarchitectonic studies have not yet achieved whole-brain coverage,
and connectivity-based segmentation approaches have not yet been
applied to the entire cortex or more widely across the brain. Given the
limitations of both histological and imaging methods, it may be difficult
to achieve such whole-brain maps with uniform reliability and resolution.
Nevertheless,connectivity-based parcellation, in conjunction with proba-
bilistic maps of cellular microanatomy, has great promise for relating
brain structure to function at the macroscopic scale. Additional criteria
for defining boundaries of cortical regions may be derived from func-
tional activation studies or from functional correlation patterns found in
spontaneous or task-evoked fMRI time series data (Cohen et al., 2008;
see chapter 8). The resulting maps will be more than mere descriptive
tools—they will allow new ways to quantitatively analyze the functional
contributions of individual brain regions and pathways within the global
cortical network—for example, through connectional fingerprints.

Connectional Fingerprints

Once cortical regions have been defined on the basis of cytoarchitecture,
receptor mapping, or connectivity-based parcellation, their mutual con-
nections can be represented as a structural network. In such a network,
each region is represented as a single node maintaining a specific pattern
of internode (corticocortical) connections. Passingham et al. (2002)
examined the relationship between cytoarchitecture and connectivity
and concluded that both local structural differentiation and extrinsic
connections contribute to define the functional specialization of each
cortical area. Differences in cytoarchitecture between brain regions
reflect differences in their intrinsic connectivity—for example, the defini-
tion of cell layers and relative proportions of cell types. As discussed
earlier, these differences likely contribute to a given region’s specific
physiology or functionality. However, functional differences cannot be
explained on the basis of cortical microstructure alone. Passingham and
colleagues focused on the contribution of extrinsic or interregional con-
nections and proposed the concept of the “connectional fingerprint,” the
idea “that each cytoarchitectonic area also has a unique set of extrinsic
inputs and outputs, and this is crucial in determining the functions that
the area can perform” (Passingham et al., 2002, p. 607).!°
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The hypothesis that connectional fingerprints are unique for each
cortical area was tested by applying multivariate statistical techniques to
anatomical data sets from primate prefrontal cortex (Stephan et al.,2001;
see figure 4.5). The analysis showed that each area exhibited a unique
set of extrinsic connections, and that areas could be grouped on the basis
of the similarity of their connectional pattern. Passingham and colleagues
suggested the term “connectional families” for clusters of regions that
share similar patterns of connections. While it is difficult to objectively
define cluster boundaries (due to the graded nature of the connectional
similarity measure), the distance between two areas in this structurally
defined connectional space may be predictive of their degree of func-
tional relatedness. Support for this idea comes from earlier studies of
Malcolm Young, who noted a high degree of similarity in connectional
patterns among regions that are known to be functionally related (Young,
1992). Thus, clustering methods applied to connectional fingerprints may
reveal not only structural but also functional similarities and relation-
ships among segregated brain regions.

The concept of connectional fingerprints can be extended further—for
example, by examining the hierarchical organization of connections
around each node. Hierarchical fingerprints are constructed by taking
into account connections not only within local neighborhoods but also
within neighborhoods that are more than one step removed from the
central node. In the primate visual system, such hierarchical fingerprints
differ between areas belonging to the dorsal and ventral streams (Costa
and Sporns, 2005). It is also possible to define “motif fingerprints,” which
describe the proportions of structural motifs of different classes that each
node participates in (Sporns and Kotter, 2004; Sporns et al., 2007). Motif
fingerprints are useful additional means for classifying nodes according
to the way they are embedded in the network.

Classification of Nodes and Edges

Once a brain network has been defined, it is possible to quantify the
contributions made by individual network nodes to the overall architec-
ture (see chapter 2). Examples are so-called network participation
indices (Kotter and Stephan, 2003), which measure relatively simple
statistics of individual nodes such as the density, convergence/divergence,
and symmetry of a node’s afferent and efferent connections. Respec-
tively, these indices have identified regions that are more or less densely
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Figure 4.5

Connectivity fingerprints of macaque prefrontal cortex. (A) Matrix of anatomical pathways
between prefrontal areas according to Walker (1940), graded in strength from 0 (absent)
to 3 (strong)—X marks an existing connection of unknown strength (set to 2 in the other
plots). (B) Connectional fingerprints of areas W14 and W9. (C) Hierarchical clustering
analysis of Spearman correlations between areal connectivity vectors. (D) Multidimen-
sional scaling of Spearman correlations, showing groupings of areas by similarity in the two
principal dimensions. Panels (A) and (C) reproduced from Stephan et al. (2001) with
permission. Panels (B) and (D) were generated from data shown in panel (A).
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connected, that engage in widespread or more restricted interactions, and
that predominantly receive or emit connections. Kotter and Stephan
proposed that network participation indices could be related to modes
of information transfer and thus be useful for defining nodes as either
“senders,” “receivers,” or “relays.”

Other network measures that are computed for single nodes provide
additional information about the node’s functional specialization. For
example, important information can be gleaned from a comparison of a
node’s clustering coefficient and its average path length to other partners
in the network. In mammalian cortex nodes that reside in highly clus-
tered neighborhoods often tend to have long path lengths since they are
relatively remote from nodes in other clusters. On the other hand, nodes
that connect clusters to each other often have low clustering coefficients,
since many of their neighbors belong to different communities, but a
short path length, since they facilitate intercluster communication
(Sporns and Zwi, 2004; see figure 4.6). Numerous other nodal graph
measures are available, including centrality and efficiency (see chapter
2), and concepts from game theory can be applied to further assess the
contributions of individual nodes to the global network (Kotter et al.,
2007). Participation measures can also be constructed for individual
network edges or for sets of edges that comprise coherent anatomical
pathways.

Because they are mathematically interrelated, many nodal participa-
tion indices and network measures are partially redundant. For example,
in most cases highly central nodes also have high degree (see chapter 2).
However, this is not always the case, and therefore considering both node
degree and centrality can provide additional information when it comes
to classifying nodes on the basis of their contribution to the network. For
example, as we will see in chapter 6, one major functional class is com-
posed of nodes that are highly connected and highly central, so-called
hubs. Hubs can be objectively identified on the basis of several network
measures although a classification threshold must be applied since they
normally do not form a class with sharply defined boundaries—all highly
connected and highly central nodes are hubs, but to a varying extent.
Current anatomical studies suggest that most hub nodes correspond to
brain regions that were previously described on the basis of anatomical
or physiological studies as multimodal, transmodal, or association areas.
Hubs have been identified in several different regions of the brain, and
it remains to be seen if all hubs display common functional properties,
regardless of which brain areas they connect.
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Relation of clustering coefficient and path length. The figure shows a scatter plot of areal
clustering coefficients and path lengths for a matrix of 47 regions of macaque cortex (see
figure 2.6). Note that regions that have high centrality (see figure 2.9) are found near the
lower left corner of the plot, that is, they have low clustering and a short path length. Data
were replotted from Sporns et al. (2007). For abbreviations of cortical areas see figure 2.6.

Variability in Brain Connectivity

Most anatomical mapping methods reveal not only species-specific and
invariant patterns but also significant variability in corresponding struc-
tures across individuals. This variability is not surprising given the mul-
titude of genetic and experiential factors that shape the morphology of
the nervous system at all levels of organization. Should a network
approach to neuroscience exclusively focus on population averages, or
should it also take into account individual differences in connectional
anatomy? There are many reasons to consider variability a significant
factor in the organization of brain networks. Variability is an essential
feature of many biological systems, and it is one of the major driving
forces of evolution. According to the evolutionary biologist Ernst Mayr,
a consideration of individual variability is what sets biology apart from
other natural sciences. Biological variation is central to “population
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thinking,” which stresses that “all organisms and organic phenomena are
composed of unique features and can be described collectively only in
statistical terms” (Mayr, 1959, p. 2).

Repeatedly in this chapter, we encountered evidence for individual
variability in the structural composition and connectivity of brain net-
works, particularly those of the mammalian cerebral cortex. Individual
variations are observed in all complex brains, whether they come from
mammals, birds, or insects—no two brains from individual organisms are
completely alike. This is true for cells within specific structures and for
macroscopic brain regions and fiber tracts. Variability is encountered in
vertebrate and invertebrate nervous systems. A functionally specialized
interneuron in the locust, the descending contralateral movement detec-
tor, was found to be highly variable from animal to animal (Pearson and
Goodman, 1979) with large variations in its branching structure as well
as synaptic connectivity. The sizes of different brain regions in Dro-
sophila display great variability, which likely reflects continual structural
plasticity and reorganization (Heisenberg et al, 1995). In the human
brain, there is significant intersubject variability at the macroscopic scale,
which poses major challenges to brain mapping (see figure 4.7). Van
Essen and Dierker (2007) proposed to distinguish four different types of
variability, the variability of the macroscopic cortical folding pattern, the
positioning of areas relative to these folds, as well as variability in areal
size and connection patterns. In their terminology, the last two types of
variability together constitute “variability in macro-circuitry” (p. 1050),
and they note that this form of variability may be a structural basis for
individual variations in cognition and behavior." Individual variation in
macroanatomy and connectivity is partly the result of genetic factors
(Toga and Thompson, 2005; Chiang et al., 2009) and is reduced but not
completely absent in monozygotic twins. A significant proportion of vari-
able neuronal morphology and network structure is likely the result of
experience- and activity-dependent processes, particularly at the scale of
individual neurons and synapses (Butz et al., 2009).

Despite enormous differences in morphology and connectivity, human
brain networks support behavioral and cognitive functions that are, for
the most part, shared among all individuals. At the same time, specific
variations in brain regions or fiber pathways alter network topology in
ways that can be linked to individual differences in behavioral or cogni-
tive performance (see chapter 9). Thus, brain networks combine a strong
tendency toward functional homeostasis, the maintenance of function
despite persistent variations in structure, with the capacity to express
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Figure 4.7

Intersubject variability in boundaries of cortical areas. The plots show five superimposed
left-hemisphere reconstructions of cortical areas 9 and 46 based on their cytoarchitectonic
profile. The outlines of the two areas in individual brains are marked by lines, and their
overlap is indicated by the level of shading. Cortical territory occupied by area 9 or arca
46 in all five individual brains is filled in black. Images from Rajkowska and Goldman-
Rakic (1995). reproduced with permission.

variations in behavior. Functional homeostasis limits the phenotypic
expression of variable neuroanatomy and is likely the result of coordina-
tive network processes (Maffei and Fontanini, 2009). Functional homeo-
stasis is found even in very simple networks. Prinz et al. (2004; Marder
and Prinz, 2002) performed a modeling study of a three-cell model of
the pyloric network of the crustacean stomatogastric ganglion, a circuit
involved in the generation of rhythmic movements. The analysis exam-
ined many millions of circuit variants that differed in a number of bio-
physical parameters. Different parametric realizations of the circuit
produced virtually indistinguishable dynamic behavior, suggesting that a
given target network performance could be achieved with highly variable
circuit designs. Prinz et al. suggested that networks may be regulated in
terms of global functionality rather than by adjusting local settings of
biophysical or morphological parameters. Such homeostatic mechanisms
are essential for the long-term stability of the brain given the continual
remodeling and structural turnover of its cellular and molecular compo-
nents (Marder and Goaillard, 2006; Minerbi et al., 2009).'2

Structurally variable but functionally equivalent networks are an
example of degeneracy, defined as the capacity of systems to perform



69

A Network Perspective on Neuroanatomy

similar functions despite differences in the way they are configured and
connected (Tononi et al., 1999; Edelman and Gally, 2001). Degeneracy is
widespread among biological systems and can be found in molecular,
cellular, and large-scale networks. Price and Friston have noted that
human brain networks display degeneracy since different sets of brain
regions can support a given cognitive function (Price and Friston, 2002).
Cortical activation maps obtained from functional neuroimaging studies
of individuals often show only partial overlap for a given cognitive task,
suggesting that different individuals utilize different (degenerate) net-
works. The loss of a subset of all regions that are reliably activated in a
given task may not disrupt task performance, indicating that individual
regions may not be necessary or that recovery processes following brain
injury can configure structurally different but functionally equivalent
networks (see chapter 10). These examples of degeneracy in cognitive
networks are suggestive of the idea that mechanisms promoting func-
tional homeostasis may also operate at the scale of the whole brain to
ensure that structural variations or disturbances do not lead to uncon-
trolled divergence of functional outcomes.

In addition to variability among neurons of the same type, nervous
systems also exhibit striking diversity of neuronal cell types, distinguished
by their characteristic cellular morphology. This morphological diversity
is likely matched by an unknown degree of variability in the expression
of cellular proteins involved in metabolism and interneuronal commu-
nication. Diversity and variability in cortical interneurons has been
shown to affect network dynamics, with greater variability leading to less
pronounced network synchrony (Soltesz,2006). Diverse and variable cell
morphology may thus help to regulate the excitability of nervous tissue,
a potentially important factor in preventing pathological states such as
epilepsy. The heterogeneity of interneurons has also been invoked as a
source of greater “computational power” for cortical networks (Buzséaki
et al., 2004).

Specificity and Randomness in Synaptic Connections

How specific or how random are synaptic connections between indi-
vidual neurons? Early anatomical studies of neuronal circuits in the
cerebral cortex as well as other structures such as the cerebellum sug-
gested a degree of randomness of cellular connectivity (Sholl, 1953;
Uttley, 1955). One of the prevailing ideas was that synaptic connectivity
could be described by statistical distributions of synapses between cells
of same or different types and that such descriptions were sufficient to
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explain the neural processing characteristics of a given circuit or struc-
ture. For example, Braitenberg and Schiiz described the cortex as a
“mixing device” whose corticocortical connections are “set up largely by
chance and possibly refined by learning processes” (Braitenberg and
Schiiz, 1998, p. 64). Szentdgothai acknowledged the existence of anatomi-
cally ordered long-range projections in the cortex, conveying specific
axonal connections between different brain areas, but maintained that
local synaptic connections between nearby cells appeared diffusely orga-
nized, with “cloud”-like arborization patterns (Szentigothai, 1977). In
parallel with these neuroanatomical ideas, most early neural network
models, dating as far back as the 1950s (e.g., Beurle, 1956), utilized
random connectivity, an unorganized substrate that could be molded by
learning and plasticity.”

Contrary to the idea of brain networks as “random nets,” the develop-
ment of new anatomical tracing and staining techniques that allow the
visualization of the fine structure of morphologically and physiologically
identified neurons in local circuits has provided abundant evidence that
cells of different types form and maintain specific connection patterns.
This structural specificity confers distinct biophysical and physiological
properties to each cell type and is thus essential for neurons’ normal
operation. Computational studies suggest that specific neuronal mor-
phologies—for example, dendritic branching patterns and synaptic dis-
tributions—support specific elementary computations (Stiefel and
Sejnowski, 2007). Given that the cellular structure and the biophysics of
neurons are intricately linked, it appears unlikely that any structural
detail will ever be identified that is truly “without function.” Much of the
detail of cell structure and connectivity contributes to the cell’s capacity
to respond to and relay signals.

Are these ideas of randomness and specificity in cellular networks
mutually incompatible with one another? Some confusion arises because
of the way in which the terms “randomness” and “specificity” are applied
to neuronal or synaptic structures. Many authors have used the term
“randomness” to describe structural arrangements that are seemingly
unorganized, presumed to be functionally insignificant, or just plain dif-
ficult to quantify and describe. Other authors have used the term “speci-
ficity” to emphasize that even the finest structural detail in the nervous
system contributes to larger functional outcomes. What is considered
random or specific may thus depend more on the amount of available
information and less on the actual process by which a given structure has
arisen. From a developmental perspective, randomness and specificity
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fulfill complementary roles as they jointly shape the generation and
maintenance of synaptic connectivity. A developmental model for
synapse formation (Jontes and Smith, 2000) involves a primarily undi-
rected “exploratory” process of process extension, followed by selective
consolidation or dissolution of contacts. The first process may be consid-
ered “random,” while the second process conveys “specificity,” since it is
primarily driven by neural activity or biochemical interactions between
participating cells.

As we probe the cellular architecture of the brain with ever more
refined methods, we will undoubtedly discover more and more of its
structural elaboration and detail. The structure of every neuron will
reveal unique patterns of neuronal processes and intercellular junctions.
“Randomness” then is reduced to that which is due to residual unob-
served causes that are beyond current measurement—and given what
we now know about cells as “molecular machines,” it is likely that every-
thing that appears random today will yield to a causal description in
terms of molecular and cellular interactions at some later time. However,
the fact that fine details of cellular anatomy are “specific” (causally
determined) rather than truly “random” does not necessarily entail that
a full description of the nervous system in structural terms must be
framed at the level of the full-scale cellular, or even subcellular, anatomy.
Homeostatic and coordinative processes within the nervous system
ensure that variability at molecular or cellular scales generally does not
perturb processes unfolding on larger scales. The modularity of the
brain’s architecture, a recurrent theme in this book (see chapters 6, 7, 8,
9,12, and 13), effectively insulates functionally bound subsystems from
spreading perturbations due to small fluctuations in structure or dynam-
ics. Yet, while it is important to ensure that the loss of a single spine or
the overexpression of a protein in a small number of synaptic sites does
not result in alterations of global patterns of neuronal communication
and connectivity, it is equally important that the neuronal architecture
maintain variability and heterogeneity (Soltesz,2006). Individual neurons,
even those belonging to the same class, must remain different from one
another to continually create dynamic variability as a substrate for adap-
tive change.

Neuroanatomy and Network Science

The failure of phrenology, and of subsequent localizationist accounts of
brain function, resulted from an ill-conceived attempt to impose a
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classification of mental traits on the substrate of the brain. The main
thrust of the effort was to search for the place where function was rep-
resented rather than ask how a given structural substrate can give rise
to a broad set of functions." The key question, however, is how cognitive
function emerges from the specific anatomical and physiological sub-
strates of the brain. Rather than begin with preformed notions of how
cognition is carved up into distinct psychological functions or mental
faculties, an alternative approach is to ask how brain networks can gener-
ate different classes of dynamic behavior and how these dynamics map
onto cognition. Network neuroanatomy is essential for addressing this
question and thus forms an indispensable conceptual basis for our under-
standing of complex brain networks.

Networks are a pervasive concept in neuroanatomy. The quantitative
analysis of neuroanatomical networks can provide important clues for
relating anatomical structure to physiological function. Network mea-
sures allow the objective characterization of how nodes (and edges, if
desired) participate in the overall network. Nodes with shared attributes
can be placed into a single structurally defined class—for example, “hub
nodes” or “receivers.” Regardless of whether they are spatially close or
widely distributed across the brain, shared structural attributes can indi-
cate that nodes are functionally related. Since structural connections
shape functional interactions, these structural classes may be associated
with different functional roles. Importantly, these functional roles are not
assigned on the basis of the mental faculties of phrenology or “classical”
domains of cognition but in terms of the functional specialization of
nodes within the network.

Network approaches to neuroanatomy move us closer to resolving the
long-standing debate between localizationist and distributionist accounts
of brain function. The key step is to view local specialization as the result
of patterned distributed interactions that confer different functional
attributes to individual network elements. Since these interactions can
be accessed with network mapping tools, they also allow a quantitative
data-driven assessment of functionality and do not require assumptions
about of how brain regions participate in various cognitive processes.
Network approaches gain additional power because they can be applied
to both structural and functional networks, thus allowing their direct
comparison and interrelation. The relationship between structural and
functional networks of the brain is beginning to bear results across mul-
tiple cognitive domains. These relationships strongly motivate the appli-
cation of network approaches to neuroanatomy for providing mechanistic
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explanations of how, in Brodmann’s words, cognition emerges from “a
physiological process extending widely over the whole cortical surface.”

Increasingly, modern neuroanatomical techniques require sophisti-
cated tools for the acquisition, analysis, and representation of large data
sets, developed by practitioners of neuroinformatics and computational
neuroanatomy (Ascoli, 1999). A network perspective on neuroanatomy
builds on the use of modern computational methods for analysis and
representation of large data sets. To promote progress in computational
and network neuroanatomy, we urgently need more extensive and com-
prehensive structural connectivity data sets than have previously been
available. New methods will be needed to trace and map connections
between neurons, cell populations, and brain regions. Several of these
methods are poised to reveal structural connections in unprecedented
detail, and they will greatly enrich our understanding of the principles
that drive the anatomical and functional organization of the brain. We
now turn to these new methods for mapping the brain’s cells, circuits,
and systems.
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Mapping Cells, Circuits, and Systems

Instead of promising to satisfy your curiosity concerning the anatomy of the
brain, I confess sincerely and publicly here that I know nothing about it. I wish,
with all my heart, that I might be the only person to have to speak thus, for I
would benefit, in time, from the knowledge of others and it would be a great
blessing for the human race if this part of the body, which is the most delicate of
all and which is liable to very frequent and very dangerous disorders, were as
well understood as many philosophers and anatomists imagine it to be.!
—Nicolaus Steno, 1665

In 1665, the Danish-born naturalist Nicolaus Steno delivered a lecture
to a select audience assembled at the house of the Parisian linguist and
scholar Melchisédec Thévenot, entitled Discours sur I'anatomie du
cerveau (Lecture on the Anatomy of the Brain). Later transcribed and
published (Steno, 1965), this lecture became an important document in
the early history of brain anatomy.” Steno’s investigations into the struc-
ture of the human brain established him as one of the leading neuro-
anatomists of his time. He was among the first to pay close attention to
the brain’s white matter, composed of densely packed fibers whose neu-
ronal origin and function would remain obscure for another two centu-
ries. Steno believed that the organization of these fibers held the key for
a deeper understanding of the human mind. However, then as now, the
brain presented many challenges to neuroanatomy:

If, as I have just stated, the substance of the brain is little known to us, no more
so do we know the correct way to dissect it. [...] For my part, I hold that the
correct dissection would be one following the nerve filaments through the sub-
stance of the brain to see where they pass and where they come to an end. It is
true that this method is so full of difficulty that I do not know whether one may
hope ever to complete the task without very special preparations. The substance
is so soft and the fibres so delicate that one scarcely knows how to touch them
without breaking them. (Steno, 1965, pp. 124-125)
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Steno viewed the brain’s white matter as a set of specific pathways whose
connectivity had functional importance:

[...] wherever fibres are found in the body, they maintain always a certain pattern
among themselves, of greater or lesser complexity according to the functions for
which they are intended. [...] We admire the contrivance of the fibres in every
muscle, how much more ought we to admire them in the brain, where these fibres,
confined in such little space, carry out their individual functions without confu-
sion and without disorder. (Steno, 1965, pp. 122-123)

Steno’s view of the brain as a machine whose operations depend on
the anatomical arrangement of fiber pathways is strikingly modern in
spirit.* In fact, our understanding of the brain as an integrated functional
system will be incomplete so long as we do not have a comprehensive
description of its structural elements and interconnections. Descriptions
of structural brain connectivity are sometimes referred to as the brain’s
“wiring diagram,” a blueprint of sorts that charts the elements and con-
nections of the brain in a way that is analogous to the layout of transistors
and switches on a computer chip or in a complex electronic appliance. If
obtained at high resolution, this blueprint would capture the entire cel-
lular machinery of the brain and all its synaptic connections, encompass-
ing approximately 10" cells and 10" connections in the case of the
human brain.* Such a map is sometimes viewed as the “holy grail” of the
study of intelligence, a road map to deciphering human cognition, or at
least an essential milestone on our journey to a complete understanding
of the brain.” Some authors have suggested that the wiring diagram is
not only necessary but sufficient for understanding the brain and that
there is no need for a global theory of how the brain operates. Rather,
all that is required is to figure out how all its elements are connected and
what mechanisms are involved in updating their individual states.
However, the quest for the brain’s wiring diagram cannot replace the
search for theoretical principles that underlie brain network organiza-
tion. Reliable and detailed maps of structural brain connectivity are
necessary, but not sufficient, for formulating theoretical principles that
capture the functioning of the brain as an integrated system with emer-
gent and complex properties.

Even if the function of the brain cannot be reduced to its wiring
diagram, there can be little doubt that structural brain networks shape
patterns of spontaneous and evoked neural activity (see chapters 8 and
9). Simply put, in order to understand how brain networks function, one
must first know how their elements are connected. In this chapter we
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will examine a range of empirical approaches to the mapping of struc-
tural brain networks at multiple scales of organization. Many of these
approaches are currently undergoing rapid technological development
and refinement, and several new methods for imaging and tracing neural
connectivity are on the horizon. Given that most methods for mapping
structural brain networks are still in the early stages of methodological
development and application, it is premature to identify a single tech-
nique as the most promising or appropriate for capturing brain connec-
tivity. In fact, it seems quite likely that a plurality of empirical approaches
to brain mapping as well as new computational tools will be needed and
that their integration into a common framework for capturing and
recording structural brain connectivity will be essential for the ultimate
success of the endeavor.

Defining the Brain’s Connectome

In a 1993 commentary, Francis Crick and Ted Jones pointed to the lack
of a connectional map of the human cortex, comparable to that compiled
for the macaque monkey by David Van Essen and Dan Felleman (Fel-
leman and Van Essen, 1991), and they challenged the field that such a
map was essential for human neuroscience. In their words, “it is intoler-
able that we do not have this information for the human brain. Without
it there is little hope of understanding how our brains work except in the
crudest way” (Crick and Jones, 1993, p. 110). Indeed, a comprehensive
description of the structural network of the human brain is of fundamen-
tal importance in cognitive neuroscience (Sporns et al., 2005). Together
with Giulio Tononi and Rolf Kétter, I proposed the term “connectome”
for such a data set. We stated as our central motivating hypothesis “that
the pattern of elements and connections as captured in the connectome
places specific constraints on brain dynamics, and thus shapes the opera-
tions and processes of human cognition” (Sporns et al.,, 2005, p. 249).
Parallel to our proposal, Patric Hagmann suggested a similar approach
to mapping structural connections in the human brain, which he termed
“connectomics” (Hagmann, 2005). A principal goal of the connectome
was the representation of structural brain networks in the form of graphs,
collections of nodes and edges, which would allow the quantitative analy-
sis of brain connectivity with the mathematical tools of network science.
From the beginning we saw the connectome as a way to reveal structural
principles of brain networks that would illuminate brain function, not
merely as a database of “what connects to what.”®
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We chose the term “connectome” in deliberate analogy to the genome,
the complete set of genetic information of an organism. We immediately
recognized that, even when limiting the scope to the brain of a single
species—for example, humans—there are significant challenges facing
any effort to compile a comprehensive connectome data set. The human
genome (Venter et al., 2001) consists of approximately 3 x 10° base pairs,
linearly arranged in DNA molecules and perhaps containing little more
than 20,000 protein-encoding genes (Pennisi, 2007). Despite the rela-
tively straightforward composition of the genome, the assembly of a
complete genome map has taken considerable time and resources and
was eventually made possible by the adoption of innovative sequencing
techniques that did not yet exist when the original goal of implementing
a human genome program was formulated in 1986.” The connectome
may require similar methodological innovation. The human brain’s
three-dimensional structure, its growth and development, individual
variability, and the sheer number of components that it contains present
challenges that far exceed those posed by the human genome (Insel
et al., 2003).

Another fundamental challenge is the inherently multiscale architec-
ture of human brain structural connectivity. When we first defined the
human connectome (Sporns et al.,2005), we distinguished three relevant
scales of organization, the microscale of single neurons and synapses, the
mesoscale of anatomical cell groupings and their projections, and the
macroscale of brain regions and pathways. We argued that the vast
number, morphological variability, and structural dynamics of individual
nerve cells and their processes render the microscopic scale an improb-
able target for an initial draft of the human connectome. The mesoscale
offers much greater promise and may be feasible in the near term, espe-
cially in the case of smaller brains that can be studied with “classical”
invasive anatomical techniques (described below). At the macroscale,
techniques and approaches are currently available that allow the tracing
of interregional pathways, including the noninvasive neuroimaging of
white matter fiber tracts in the human brain. In the original proposal, we
envisioned that a first draft of the human connectome would be assem-
bled at the macroscale, and we proposed a strategy based on the com-
bined use of diffusion and fMRI. We suggested the mapping of highly
resolved structural and (resting-state and multistimulus/multitask) func-
tional connectivity patterns, as well as their mutual comparison. We also
emphasized the open-ended nature of any effort to compile a connec-
tome, which ultimately may be extended to include information on
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neuronal and connectional subtypes, biophysical properties, metabolic
signatures, and associated tissues like glial cells and brain vasculature.

Since our proposal was first published, others have suggested that the
primary focus of connectomics should be on individual neurons and their
synaptic connections (Lichtman and Sanes, 2008). To date, cellular tech-
niques have not yet been applied to the comprehensive mapping of
neural connectivity in large brains, and significant technical challenges
regarding the reliability and sensitivity of these techniques remain to be
addressed. Yet, even when applied to small volumes of tissue, these tech-
niques will make an essential contribution—for example, by mapping
local circuitry and interneurons which cannot be captured with neuro-
imaging methods. In the future,connectomics will most likely involve the
mapping of brain connectivity at multiple scales and with multiple meth-
odologies. Computational approaches may also play a role. Sebastian
Seung suggested that it may not be necessary to acquire connectome
data by “dense reconstruction” of a single brain specimen (Seung, 2009).
Rather, connectomic data could be assembled via a (much simpler)
“sparse reconstruction” approach—for example, by identifying and
recording connected pairs of neurons.

A Simple Brain?

The microscopic roundworm Caenorhabditis elegans lives in the soil of
temperate climates. Millions of individuals can be found underneath a
single square meter of moist vegetated ground. The worm’s tube-like
body reaches a length of about 1 millimeter,and lacking vision or hearing,
it is capable of sensing its environment through receptors responding to
chemical, thermal, and tactile stimulation. Feeding mostly on bacteria in
the ground, its behavioral repertoire ranges from relatively simple activi-
ties like locomotion or swimming to complex activities involving repro-
duction and even rudimentary forms of social interactions. Some of the
worm’s behaviors involve adaptation and learning—for example, the
capacity to modify chemotaxic and thermotaxic behavior in response to
changes in the environment.

For many years, C. elegans has been a favored model organism for
developmental biologists, in part due to the ease with which it is grown
in the laboratory and the relative simplicity of its body structure. C.
elegans was also among the very first organisms whose genome was
sequenced and mapped in its entirety, found to consist of ~100 million
base pairs forming 17,000-20,000 genes.® Its body comprises ~1,000 cells,
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and the nervous system of the hermaphrodite adult worm consists of
exactly 302 neurons arranged into a number of more or less distinct cell
groupings or ganglia. These neurons are connected by several thousand
chemical synapses and gap junctions. An important feature of the worm’s
nervous system is that the spatial position, number, and connectivity of
its neurons are largely constant across individuals.

The nervous system of C. elegans has been mapped in exquisite detail.
To this day, it remains the only nervous system of any organism whose
connectivity structure is completely mapped at the level of individual
cells and synapses. This remarkable feat was accomplished by painstak-
ing reconstruction of the three-dimensional wiring pattern from electron
micrographs (EMs) of a complete stack of serial sections, each about 50
nm thick (White et al., 1986).° The reconstruction work was performed
largely by hand from a total of about 8,000 prints of EMs and took more
than ten years to complete. The invariance of the structure of the nervous
system across individuals, as well as the relatively simple morphology of
many of its neurons—for example, the abundance of local connections
and the relative lack of axonal or dendritic branches—aided in the recon-
struction effort. Dmitri Chklovskii and colleagues recently performed a
partial reanalysis as well as additional anatomical studies to generate a
more complete reconstruction of the brain of C. elegans (Chen et al.,
2006). The end result was a cellular connection matrix (see figure 5.1)
comprised of a total of 279 nodes (neurons) linked by 6,393 chemical
synapses, 890 electrical junctions, and 1,410 neuromuscular junctions.'’ A
unique feature of the data set is that the spatial position of each neuron
and hence the length of all synaptic connections are known. These data
on the spatial layout of the worm’s nervous system allowed a detailed
analysis of wiring length (see chapter 7), providing important insights
into spatial embedding and wiring minimization as possible constraints
on neuronal placement and connectivity.

Since we possess the complete map of all cells and connections in the
nervous system of C. elegans, do we now also have complete knowledge
of how this brain functions and controls behavior? Indeed, the avail-
ability of the complete wiring diagram for C. elegans stimulated several
projects aimed at creating a computational model of functional patterns
of neural activity and behavior (e.g., Achacoso and Yamamoto, 1992).
However, these efforts have not yet led to a full-scale computational
model of the worm’s nervous system, nor have they provided a complete
description of its functional behaviors. There are several reasons for this
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Figure 5.1

Connection matrix of C. elegans. The connection matrix shows (directed) chemical synapses
in black and (undirected) electrical synapses in gray. Neurons are arranged in order of
position along the main axis of the worm. Note that many connections are found near the
main diagonal, a first indication that wiring length is conserved (see chapter 7, figure 7.2).
Note also that some neurons are more highly connected than others—these neurons have
high centrality. The plot on the right is a visualization of the connectivity using the
Fruchterman-Reingold force-directed layout algorithm in Pajek (Bagatelj and Mrvar,
1998). Nodes (cells) are shaded according to their position along the main axis (light gray
= anterior, dark gray = posterior), and highly central nodes are displayed as large circles.
The sketch of C. elegans at the top is courtesy of Michael Nonet (Washington University),
and the connection matrix was constructed from data made available by Dmitri Chklovskii
and colleagues (http://www.wormatlas.org/neuronalwiring.html).
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failure. Because of formidable technical challenges, we still lack essential
information on the physiological properties of many of the neuronal cell
types of C. elegans (Goodman et al., 1998). Further obstacles are that we
know very little about the nature of the worm’s sensory inputs or the
way in which the worm’s neural circuits control its motions and behavior.
This situation reminds us that the complete wiring diagram is insufficient
for reconstructing functional dynamics of a neural system in the absence
of complementary information about the biophysical properties of
neurons and synapses. These biophysical properties have a large role in
determining the dynamic characteristics of neuronal activations, neural
transmission, and synaptic plasticity. Most of the techniques surveyed in
this chapter are limited to visualizing cellular or connectional morphol-
ogy and cannot deliver these biophysical parameters.

Mapping Connections at Cellular and Subcellular Resolution

C. elegans is currently the only organism for which we have a (nearly)
complete wiring diagram of its neuronal networks. The highly stereotypi-
cal nature and the small size of the brain of this species have helped
significantly in creating and interpreting this important data set. Other
brains have been partially mapped, revealing complex cell morphologies
and wiring patterns. The mushroom bodies located in the protocerebrum
of insects are believed to be the structures most closely associated with
complex sensorimotor integration, learning, and social behaviors, and
they comprise approximately 1 million neurons in the brain of the honey
bee. The complex cellular and connectional anatomy of the bee mush-
room body has been investigated with classical cell staining techniques
(Mobbs, 1982). However, the sheer number and density of cellular pro-
cesses in this structure will likely require techniques that allow the recon-
struction of three-dimensional volumes of tissue at subcellular resolution.
The complete mapping of the cellular anatomy of an insect brain is being
pursued as one of the next research goals in this area (Adee, 2008).
New imaging tools, automated serial sectioning, and reconstruction
techniques (Smith, 2007; Helmstaedter et al., 2008; Arenkiel and Ehlers,
2009) are crucial to the success of such an effort. These technological
advances now make it possible to reconstruct the cellular anatomy of a
block of neural tissue at submicrometer resolution. One promising
approach, serial block-face scanning EM, allows the three-dimensional
reconstruction of cellular processes and even organelles within large
tissue blocks hundreds of micrometers on each side (Denk and
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Figure 5.2 (plate 2)

Neuronal reconstruction with serial block-face scanning electron microscopy. The image
on the left shows a 350 um® volume of adult rat cortex composed of 253 sections, each
30 nm thick. On the right is a volume reconstruction of a single manually traced spiny
dendrite. Images are from Briggman and Denk (2006), reproduced with permission.

Horstmann,2004; see figure 5.2, plate 2). Denk and colleagues argue that
EM approaches are needed because the small diameters of many axonal
processes as well as dendritic spines preclude the use of optical imaging
methods (Briggman and Denk, 2006). Improved sectioning and imaging
techniques will have to be complemented with improved reconstruction
algorithms that allow the automated tracing of neurites. Complete ultra-
structural mapping of neural connectivity of entire nervous systems will
require the development of a comprehensive methodological framework
that parallelizes serial section EM imaging, volume assembly, and data
analysis to allow large-scale high-throughput collection and testing of
connectivity information (Anderson et al., 2009). Future work will likely
attempt the reconstruction of a single mouse cortical column (Helms-
taedter et al., 2007), a task that will require the accurate mapping of
synaptic connectivity on a scale that exceeds that of C. elegans by more
than a million-fold. A unique feature of serial EM reconstruction is that
it provides exquisite detail about the three-dimensional structure of
neuronal and nonneuronal cells, which is important for understanding
the biophysical properties of neural processes, spines, and synapses, as
well as for neuron-glia interactions and models of brain tissue that take
into account the spatial relations between cells.
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Optical staining and circuit reconstruction tools have undergone sig-
nificant technological improvements in recent years. One approach,
called array tomography, combines optical fluorescence microscopy and
scanning EM of ultrathin cryosections of immunolabeled neural tissue
(Micheva and Smith, 2007; see figure 5.3). The method allows for a high-
resolution three-dimensional map of the distribution of specific antigens
in relation to cellular and subcellular structure. Imaging of synaptic
markers and wide-field coverage might allow the construction of con-
nectivity maps from tomographic volume images. Another approach
involves the application of newly developed fluorescent intracellular or
membrane dyes in transgenic mice. Lichtman and colleagues have devel-
oped a technique that labels individual neurons with distinctly colored
immunofluorescent markers (Livet et al., 2007; see figure 5.4, plate 3).
The distinct colors result from combinatorial expression of a small
number of differently colored fluorescent proteins in transgenic animals
(“Brainbow” mice). In these animals, labeled neurons can be traced by
creating stacks of confocal microscopy images, each essentially a cross-
section of the imaged tissue block, followed by the creation of a three-
dimensional montage. The technique has produced breathtaking images

Figure 5.3

Array tomography. The images are a stereo pair of a volume rendering from an array
tomograph of a block of mouse cerebral cortex, showing cell bodies and processes of
several cortical neurons, studded with dendritic spines, as well as additional processes that
intersect the imaged volume. Readers can see these images in three dimensions by crossing
their eyes or viewing them through a stereoscope. Images from Micheva and Smith (2007),
reproduced with permission.
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Hippocampus

Figure 5.4 (plate 3)

Imaging of neural connectivity with combinatorial expression of fluorescent markers. Com-
posite image of thc mouse hippocampus (A) and magnified portion of the CA1 cell laycr
(B). from Livet et al. (2007), reproduced with permission.

of cellular neuronal architecture—for example, in the mammalian
hippocampus—and it has been successfully applied to a portion of the
mouse neuromuscular circuitry (Lu et al., 2009). A number of technical
problems remain to be addressed (Lichtman et al., 2008), including limi-
tations of optical resolution, uniformity of expression and stability of
Brainbow markers, and the number of distinct colors expressed in a
single animal, as well as extraordinary challenges for data collection
and compression.'' The technique currently requires the generation of
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transgenic animals that express fluorescent marker molecules and is
therefore limited to animal species for which such transgenics can be
successfully generated, effectively ruling out all primate species including
humans.

It is too early to tell which technique will ultimately provide the most
feasible and reliable approach to mapping neural circuits at the cellular
or subcellular level. Perhaps a combination of serial EM, single-cell, and
Brainbow labeling will be needed to acquire useful data sets in ways that
are both fast and accurate. As more and more sophisticated data sets will
become available in coming years, what will we learn about the structure
of brain networks? Will microscale subcellular approaches, singly or in
combination, soon deliver the complete wiring diagram of a brain that
is significantly more complex than that of C. elegans? Several method-
ological and technological hurdles must be cleared before the cellular
connectome of a complex brain can become a reality. While subcellular
methods have provided tantalizing glimpses of neural wiring patterns,
the complete mapping of, say, the full three-dimensional architecture of
the approximately 80 million projection neurons in the mouse cortex still
poses significant challenges in terms of resolution, tracing accuracy, and
computational reconstruction. These challenges, while formidable, may
well be overcome in the foreseeable future.

The cellular architecture of any complex nervous system exhibits tre-
mendous heterogeneity and variability (see chapter 4). Several lines of
evidence indicate that the cellular microanatomy of the brain is in con-
stant flux, with spines and synapses, axonal and dendritic branches, and
entire cells changing their morphology and connectivity, spontaneously
and as a result of neural activity (Alvarez and Sabatini, 2007; Minerbi et
al., 2009). At cellular or subcellular resolution, the connectome is there-
fore a “moving target,” where each successful reconstruction of a block
of neural tissue represents a snapshot of a dynamic architecture frozen
in time. A collection of such snapshots would be invaluable for a system-
atic account of dynamic structural variability in neurons and circuits and
for discovering what morphological or topological characteristics of con-
nectivity remain invariant over time. An important goal for the connec-
tome is to deliver a description, that is, a compressed representation of
the invariants of neural connectivity, the structural regularities of brain
networks that are characteristic for a given neuronal cell type, circuit, or
brain region in a given species. For example, the reconstruction of indi-
vidual mushroom bodies in the Drosophila brain or of individual columns
in the mammalian neocortex should lead to the formulation of quantita-
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tive connectivity rules that capture statistical regularities in the pattern-
ing of cells and synapses, ideally in relation to genotype or environmental
factors. Hence, for subcellular maps of brain connectivity to achieve their
full potential, sophisticated neuroinformatics tools and statistical
approaches to neuroanatomy are essential. Once an integration of
empirical circuit mapping and computational analysis is accomplished, it
will provide us with an unprecedented view of cellular networks that will
inform more realistic physiological and neurocomputational models.

Tracing Long-Range Neural Connections

While comprehensive maps of the cellular connectivity of a complex
brain may still be years away, there are several established and proven
empirical approaches for the construction of connectome data sets at the
level of mesoscopic and macroscopic projections between cell groups
and brain regions (Kotter, 2007). These techniques usually involve the
injection of a tracer into the living brain at a specific location which is
then taken up by neurons in the proximity of the injection, transported
along their projections, and ultimately visualized in histological sections
or by optical imaging approaches. Tracers differ in the way they are
transported, as well as in their sensitivity and persistence within the cell.
The tracing of neuronal projections is usually carried out in vivo—for
example, by injecting the plant lectin Phaseolus vulgaris leucoagglutinin,
which labels the cell via binding to the cell membrane and allows detailed
mapping of neuronal processes. Some tracing studies can be carried out
in postmortem tissue—for example, through the use of lipophilic carbo-
cyanine dyes (e.g., Dil and DiO). Neuroanatomical tracers are best
suited to the mapping of long-range projection pathways, while local
circuitry or processes of interneurons are often less well captured. Other
approaches to the tracing of long-range projections involve myelin stain-
ing as well as a new class of optical imaging approaches using polariza-
tion microscopy. The latter technique allows insights into the
three-dimensional arrangement of fiber bundles which can then be used
to build three-dimensional trajectories of fiber pathways (Axer et al.,
2002; Palm et al., 2010).

Axonal tracing methods have been widely applied in studies of the
connectional anatomy of several mammalian species, including the
mouse, rat, cat, and macaque monkey. For several of these species, sys-
tematic collation of individual tract tracing studies in the anatomical
literature has led to the creation of consolidated and well-documented
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neuroinformatics data sets. A landmark paper in 1991 combined ana-
tomical information on hundreds of long-range projections in the cere-
brum of the macaque monkey and provided the first large-scale structural
connection matrix (Felleman and Van Essen, 1991; see figure 5.5). The
matrix summarized information on 305 connections between 32 ana-
tomically segregated visual and visual-association areas. The network
was found to be composed of multiple interconnected subdivisions
forming a distributed hierarchy (Van Essen et al., 1992), a result that was
confirmed on the basis of cluster analyses of the connectivity performed
by Malcolm Young (e.g., Young, 1992; 1993). Young and colleagues later
provided the first comprehensive connection matrix for the thalamocor-
tical system of the cat (Scannell et al., 1995; 1999). This data set com-
prised a total of around 850 connections linking 53 cortical areas and 650
connections linking cortical areas to 42 thalamic nuclei.

These anatomical data sets have provided unique insights into the
connectional organization of cortex,including graph-theoretical analyses
which are reviewed in detail in the following chapter. They have also
spurred the development of dedicated neuroinformatics tools (Bota and
Swanson, 2007), most of which are openly accessible to the scientific
community."” For example, the online macaque cortex connectivity data-
base CoCoMac provides a continually updated collection of anatomical
reports on structural connectivity among regions of the cortex and some
subcortical structures in the brains of adult primates of the genus macaca
(Kotter, 2004). Another such tool, the Brain Area Management System
(BAMS), records connections between anatomically distinct cell groups
and nuclei in the brain of the rat (Bota et al.,, 2005). As of 2007 (Bota
and Swanson,2007), the matrix of axonal projections interconnecting 486
anatomically defined regions of the rat central nervous system contained
data on 22,178 distinct connections collected in the BAMS database for
a total coverage of 9.4 percent.

Weaknesses of the tract tracing approach are its invasiveness and the
need to combine a large number of studies involving many individual
brains of a given species in order to create a complete connection map.
Tract tracing is ill suited for studies in humans, for obvious reasons, and
the often gradual and patchy distribution of tracer across the brain is still
only incompletely captured in the often fairly qualitative, if not subjec-
tive, ways in which the data are reported. Nevertheless, its undeniable
success in tracing long-range pathways may make it a complementary
partner for optical or EM studies of cellular connectivity whose strengths
are in capturing local circuits and connections of interneurons.
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Figure 5.5

Connectivity matrix for interconnections of macaque visual cortex. This figure summarizes
observations from numerous anatomical studies, recording the confirmed presence (“+”

or confirmed absence (“-”) of interregional pathways, with untested connections corre-
sponding to empty cells in the figure. Self-connections along the main diagonal are not
recorded. From Felleman and Van Essen (1991), reproduced with permission. For abbrevia-
tions of cortical areas see figure 2.6.
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A group of researchers, mostly from neuroanatomy and neuroinfor-
matics, recently proposed a systematic plan for compiling neuroanatomi-
cal connectivity data at a mesoscopic scale (Bohland et al.,2009), utilizing
“classical” anatomical tracers. The plan aims at whole-brain coverage and
the development of standardized and automated techniques for mapping
and validating connection patterns, as well as open access and interoper-
ability with existing neuroinformatics tools. A specific target is the
mapping of the mesoscopic connectivity of the mouse brain, with pos-
sible extension to primate species in the near future. Bohland and col-
leagues argue for a focus on the mesoscopic scale of local populations
of neurons that share functional properties and connectional patterns
and that can generate information about species-specific invariant pat-
terns of anatomical connectivity, rather than an effort to map all
microscale synaptic connections, citing technological obstacles as well as
an unknown degree of interindividual variability. This effort, if carried
out, could provide a fairly fine-grained connectivity matrix for an entire
mammalian brain within a reasonably short time frame."

Noninvasive Mapping of Human Brain Connectivity

Invasive anatomical techniques such as tract tracing cannot be used in
humans. The structural connectivity of the human brain is accessible by
postmortem examination of dissected brain tissue (see figure 5.6) or by
utilizing in vivo noninvasive brain imaging (see figure 5.7, plate 4).
However, postmortem neuroanatomy faces numerous obstacles, not the
least of which is the rapid deterioration of neural tissue after death,"
and there is a lack of suitable postmortem tracing techniques. More
promising, at least in the short term, are noninvasive neuroimaging
approaches such as structural MRI and diffusion MRI.

Structural MRI utilizes differences in magnetic resonance (MR)
signals produced by different types of brain tissue to visualize and quan-
tify the three-dimensional arrangement of structural subdivisions of the
brain—for example, cell nuclei and cortical gray matter. Structural MRI
measures not only reveal variations in the volume or surface area of
specific brain structures but also allow the inference of structural con-
nectivity. Correlations in the thickness or volume of gray matter between
two cortical areas, usually measured across brain data sets from multiple
participants, have been shown to be associated with the presence of a
fiber tract linking these areas. The mechanism that leads to these correla-
tions is currently unknown but possibly involves correlated metabolic or
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Figure 5.6

Dissection of the human brain to reveal fiber architecture. The image is from an atlas of
the human cortex by Ludwig and Klingler (1956), prepared from postmortem tissue by
carefully freezing the specimen followed by gradual removal of tissue around major fiber
pathways. The largest pathway shown here is the superior longitudinal fasciculus, which
connects frontal, occipital, and temporal cortex. Image reproduced with permission.

trophic processes, genetic factors, or experience-related factors. Cortical
thickness correlations have been used to assemble some of the very first
whole-brain connection matrices (He et al., 2007c) and are discussed
further below.

The diffusion of water molecules in biological tissue is the primary
signal measured by diffusion imaging (Johansen-Berg and Behrens,
2009). In the gray matter of the brain, changes in the direction of MR
gradients do not result in large changes in the diffusion pattern of water
molecules since diffusion is largely isotropic. Diffusion anisotropy,
however, is often observed in the brain’s white matter, with a maximum
that generally coincides with the spatial orientation of nerve fibers within
each voxel. Hence, the signal generated by diffusion imaging can provide
information about the direction of fiber tracts within individual voxels
of the brain. The spatial resolution of the signal is limited by the voxel
size and could be improved by imaging at higher field strength. A more
fundamental limitation encountered in DTI is that the diffusion tensor
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Figure 5.7 (plate 4)

Diffusion spectrum imaging and tractography of cortical connectivity. Images show dorsal
and lateral views of the brain of a single human participant. Images courtesy of Patric
Hagmann (Ecole Polytechnique Fédérale Lausanne).
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captures only a single diffusion direction per voxel, which does not
account for crossing fibers. Heterogeneous fiber directions within single
voxels can be revealed with imaging techniques that utilize multiple dif-
fusion directions, for example, high angular resolution diffusion imaging
(Tuch et al.,, 2002), g-ball (Tuch et al., 2003), and diffusion spectrum
imaging (DSI; Wedeen et al., 2005; see figure 5.7, plate 4). The nature of
the diffusion weighted signal requires the application of computational
algorithms for probabilistic estimation or fiber reconstruction from the
set of diffusion profiles of individual voxels. These tractography algo-
rithms are fundamentally inferential in nature, that is, they attempt to
construct fibers that are consistent with the observed distribution of dif-
fusion anisotropy. The development of tractography algorithms is an
active field of research in its own right. Deterministic approaches to
tractography rely on finding optimal streamlines within the tensor field,
while probabilistic approaches aim to provide statistical estimates for the
existence of fiber pathways.

Diffusion MRI and tractography data are often difficult to validate
against more “classical” anatomical techniques, such as tract tracing. In
the case of the human brain, tract tracing is unavailable, although further
technology development might produce viable tracers for postmortem
connectivity studies. To date, only a handful of studies have acquired
diffusion imaging data in species for which anatomical tract tracing data
are also available. In validation studies of macaque cortex, Dauguet et
al. (2007) performed tract tracing as well as DTI in the same animal.
While DTI appeared to reconstruct major white matter pathways cor-
rectly, some differences were seen in fine anatomical detail. Schmah-
mann et al. (2007) first used DSI to identify a number of long-range
association tracts in the macaque brain and then compared these tracts
to a large set of previously assembled histological tract tracing data
(Schmahmann and Pandya, 2006). The study revealed considerable
agreement between these two different anatomical approaches, thus pro-
viding indirect support for the validity of diffusion imaging data obtained
from the human brain, where tract tracing data are not available.
Hagmann et al. (2008) compared a connection matrix of a single macaque
hemisphere obtained with DSI to tract tracing data in the CoCoMac
database. Only about 6 percent of all cortical fibers derived from DSI
were in places where pathways had been reported absent in previous
anatomical studies. Taken together, the comparison of structural con-
nectivity obtained with diffusion weighted imaging and with “classical”
tract tracing anatomy reveals a high degree of overlap.
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Complete agreement between tract tracing and diffusion imaging may
never be achieved since both techniques probe structural connectivity
only at specific spatial scales and with limited resolution. With regard to
whole-brain connectivity data, diffusion imaging has certain advantages
over tract tracing techniques. Unlike tract tracing, diffusion MRI allows
the acquisition of large volumes of data under conditions of relative
homogeneity in terms of resolution and sensitivity from a single brain.
The compilation of tract tracing data for the brain of a given species
requires numerous injections and histological reconstructions across the
brains of many individuals, thus rendering the result a “mosaic” of con-
nectivity. Another advantage of the noninvasive neuroimaging approach
is that it offers the potential for parallel recording of structural (DTI/
DSI) and functional (fMRI) data in the same individual brain, which
allows unique insights into structure—function relationships (see chapters
8 and 9). A major disadvantage of diffusion imaging is that it does not
currently allow the determination of the direction of a fiber pathway.

Noninvasive imaging techniques have been in use for a number of
years and have delivered profound insights into the spatial arrangement
of fiber tracts of the human cerebrum. Recently, investigators have begun
with the acquisition and analysis of whole-brain data sets for mapping
human structural connectivity. One of the first such data sets exploited
cross-correlations in cortical thickness obtained from a database of 124
human brains (He et al., 2007c). The resulting connection matrix was
analyzed using a broad array of graph theory methods (Chen et al., 2008).
Whole-brain structural connection matrices of the human brain have
also been obtained by Bassett et al. (2008) from a cohort of healthy
participants as well as participants with a clinical condition.

Several studies have constructed whole-brain structural connection
matrices derived from diffusion MRI. Iturria-Medina and colleagues
(2007; 2008) derived connection probabilities for between 70 and 90
cortical and basal brain regions on the basis of DTI data. Gong et al.
(2009) also used DTI and a similar parcellation scheme of 78 cortical
regions to create an average structural network for a cohort of 80 young
adult participants. DSI was used in two studies by Hagmann et al. (2007;
2008). Hagmann’s group first partitioned the cortical surface into ana-
tomical regions defined by a standard landmark-based template and then
subdivided these regions further into between 500 and 4,000 equally
sized regions of interest (ROIs). Fiber densities were then derived for
each pair of ROIs, resulting in a more highly resolved connection matrix.
For a partition into approximately 1,000 ROIs (500 per cerebral hemi-
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sphere) this procedure yielded between 13,000 and 15,000 distinct con-
nections. An example of a structural connection matrix rendered within
a standard landmark-based cortical parcellation is shown in figure 5.8
(Hagmann et al.,2008). The corresponding connectivity backbone of the
full resolution connection matrix displayed in spatial coordinates gives
a first visual impression of the contributions of both short- and long-
distance projections between regions of the cerebral cortex (see figure
5.9, plate 5). I will discuss the network architectures of these data sets in
the following chapter.

A direct comparison of connection matrices obtained in these studies
is made difficult because of the adoption of different parcellation schemes
(which define the network nodes and hence their connections as well)
and acquisition methods. Further complications arise because different
authors use different ways to measure the “strength” or “density” of
individual fiber pathways. The strengths of pathways are reported as fiber
counts or densities in some studies and as connection probabilities in
others. Diffusion imaging methods deliver weighted (symmetrical) con-
nection matrices, which are then in some cases thresholded and reported
as a binary pattern. The field is in great need of improved standardization
of cortical parcellation and a more rigorous definition of the strengths
or densities of reported fiber pathways. Particularly promising is the use
of structural connections (see chapter 4) or functional mapping criteria
(see chapters 8 and 9) for defining the anatomical boundaries of brain
regions. These methods may ultimately allow the parcellation of an indi-
vidual brain into internally coherent regions that constitute well-defined
network nodes.

Noninvasive brain imaging, including high-resolution diffusion
imaging, currently represents the most promising avenue for mapping
comprehensive structural connectivity data sets at the macroscale. In the
near future, we will see more comprehensive coverage of subcortical
regions and pathways as well as improved spatial resolution for mapping
smaller fiber bundles and anatomical subdivisions. Diffusion imaging
techniques are undergoing rapid technological development, which
makes it likely that this chapter’s summary of diffusion MRI approaches
to the connectome will soon be in need of revision.

The Future of the Connectome

Which of the methodological approaches to structural brain connectivity
surveyed in this chapter will yield the most detailed, most accurate, and
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Figure 5.8

Regional connection matrix of human cerebral cortex. Cortical regions in the right and left
cerebral hemispheres (RH and LH, respectively) are ordered along a frontotemporal
gradient (see insets on left), thus largely preserving their spatial proximity. Note the high
incidence of connections along the main diagonal of the matrix, indicative of the high
proportion of short connections linking neighboring areas. Replotted from data reported
in Hagmann et al. (2008). Abbreviations of anatomical areas are as follows (prefix “r”
denotes right hemisphere, and “1” denotes left hemisphere): BSTS, bank of the superior
temporal sulcus; CAC, caudal anterior cingulate cortex; CMF, caudal middle frontal cortex;
CUN, cuneus; ENT, entorhinal cortex; FP, frontal pole; FUS, fusiform gyrus; IP, inferior
parietal cortex; IT, inferior temporal cortex; ISTC, isthmus of the cingulate cortex; LOCC,
lateral occipital cortex; LOF, lateral orbitofrontal cortex; LING, lingual gyrus; MOF, medial
orbitofrontal cortex; MT, middle temporal cortex; PARC, paracentral lobule; PARH, para-
hippocampal cortex; POPE, pars opercularis; PORB, pars orbitalis; PTRI, pars triangularis;
PCAL, pericalcarine cortex; PSTS, postcentral gyrus; PC, posterior cingulate cortex; PREC,
precentral gyrus; PCUN, precuneus; RAC, rostral anterior cingulate cortex; RMF, rostral
middle frontal cortex; SF, superior frontal cortex; SP, superior parietal cortex; ST, superior
temporal cortex; SMAR, supramarginal gyrus; TP, temporal pole; TT, transverse temporal
cortex.
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Figure 5.9 (plate 5)

Backbone of the structural connectivity of human cerebral cortex. Nodes (998 regions of
interest) are coded in red according to the node strength, and edges (approximately 4,000
shown in this plot) are coded according to the connection strength (fiber density). LH, left
hemisphere; RH, right hemisphere. For abbreviations of anatomical areas see figure 5.8.
Replotted from data reported in Hagmann et al. (2008).

most reproducible brain network? The answer to this question is far from
obvious. There are many different empirical approaches to how struc-
tural connectivity of the brain is recorded and processed, each with some
considerable strengths as well as weaknesses. Each approach provides
data that illuminate different aspects of structural connections, often at
different levels of scale. A major future challenge will be to merge infor-
mation across these different scales, to yield structural networks that can
inform a broad range of physiological experiments and models, from
single cells to systems. Challenges are also posed by the numerous



98

Chapter 5

methodological and computational hurdles that must be cleared in order
to reveal the important invariants of structural connectivity. The essence
of such a description is that it is a meaningful compression of the full-
scale pattern, capturing its essential topology.

Cellular and subcellular reconstruction methods can deliver connec-
tivity data on neural circuits with unparalleled spatial resolution, and
they are poised for significant technological advances in the near future
(Eisenstein,2009). Cellular mapping techniques are also the only methods
currently available to map the anatomy of neural tissue in its entirety,
including all other cell types and structures within which nerve cells are
embedded (glial cells, cerebral vasculature, etc.). All serial sectioning and
reconstruction methods face significant methodological obstacles—for
example, establishing reliability in tracing long processes over millime-
ters or even centimeters of tissue. Because of these obstacles, these
methods may have greater probability of success, at least initially, when
applied to small nervous systems or to small blocks of tissue containing
local circuitry. With regard to the complete mapping of larger and more
complex brains, these techniques still face significant challenges, not only
in terms of data acquisition and processing, but also in terms of the
dimensionality, variability and stability of cellular structural connectivity
(Lichtman and Sanes, 2008). Other, complementary methodologies might
be of use in addressing these challenges.

Particularly promising are combinations of techniques that aim to
reconstruct connectional architecture with those that probe for func-
tional coupling. As we discussed earlier, the physical wiring diagram
usually only contains the morphological aspect of structural connectivity,
but the presence of a physical connection does not reveal its strength or
physiological efficacy. The efficacy of synapses in the cerebral cortex
varies over a wide range, with a large number of synapses that are weak
or “silent.” Dhawale and Bhalla (2008) have proposed combining struc-
tural labeling and tracing of cells (e.g., using the “Brainbow” method)
and functional circuit mapping, by presynaptic stimulation and measure-
ment of postsynaptic responses in large numbers of neurons using optical
imaging. Such a dual approach could distinguish between “silent” and
active synapses and assign synaptic efficacy to structurally identified sites
of intercellular contact. In functional neuroimaging, the combined analy-
sis of structural and functional connectivity has already begun (see
chapter 8), and relationships have begun to emerge between the pres-
ence and strengths of structural pathways and the magnitude and con-
sistency of functional coupling.
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Several “connectome projects” are on the horizon. In the United
States, the National Institutes of Health are embarking on a “Human
Connectome Project,” whose major goals parallel those originally sug-
gested in Sporns et al. (2005). This project will use existing MR method-
ologies to map human brain connectivity in a large population of healthy
adults. Other approaches are being pursued in parallel. Serial EM seems
poised to deliver the complete subcellular structure of a cortical column
within the next few years, and cellular labeling techniques such as “Brain-
bow” may soon be applied in an attempt to map all cells and connections
within a significant portion of a mammalian brain. Classical neuroana-
tomical tracing techniques will be used in a systematic attempt to obtain
the first complete connectome at the mesoscale, possibly of the mouse
brain. Researchers in human neuroimaging have already utilized diffu-
sion MRI and fMRI techniques to reconstruct whole-brain networks, and
these approaches are increasingly being deployed in developmental and
clinical studies (see chapters 10 and 11). There is little doubt that these
different methodologies will continue to become more refined and reli-
able, and entirely new techniques may soon appear on the horizon. As
techniques mature, it would be fruitful to explore avenues for mutual
cross-validation or for combining multiple technologies to map struc-
tural connectivity in ways that harness the often complementary strengths
of each approach.

“To extend our understanding of neural function to the most complex
human physiological and psychological activities, [...] it is essential that
we first generate a clear and accurate view of the structure of relevant
neural centers, and of the human brain itself, so that the basic plan—the
overview—can be grasped” (Cajal, 1995, p. 39). Cajal’s dream is about to
be fulfilled. The next few years will likely see a rapid proliferation of data
on structural connectivity in human and animal brains. Network analysis
techniques will then be needed to extract their statistical patterns and
regularities. The next chapter surveys what we know to-date about the
topology of structural brain networks.
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The Brain's Small World: Motifs, Modules, and Hubs

All the neurons in the central nervous system are reciprocally connected by
numerous pathways, some having great and others lesser degrees of complexity.
This wealth of connections is due not only to the high number of neurons and
pathways, but also to the branching of the axons and their collaterals and to the
overlapping of the fields of distribution of the branches of the different axons.
The number and complexity of central pathways are best described by saying
that, with but few exceptions, at least one pathway can be found connecting any
two central neurons [...] Obviously many of these complicated paths are physi-
ologically impassable, because the impulses sooner or later fail to reach the
threshold of an intervening neuron, but others actually do play an important role
in the physiology of the central nervous system.'

—Lorente de N6, 1938

Lorente de N6 sought to identify functional principles of the cerebral
cortex from the action of neurons organized into elementary circuits.?
These circuits were defined by the patterning of axonal ramifications and
synaptic connections, and they could be represented in diagrams not
unlike those found in present-day graph theoretical descriptions of struc-
tural brain connectivity. Lorente de N¢ realized the important role of
recurrent connections in the central nervous system,’ an idea that proved
to be highly influential in later physiological accounts of reverberant
neural activity. He also realized that elementary circuits did not operate
in isolation but were anatomically and functionally linked, with central
neurons arranged into complex “synaptic chains.” The resulting networks
were amenable to theoretical analysis: “Recent advances in the knowl-
edge of the physiology of the synapse [...] make it possible to analyze in
greater detail the physiological significance of the arrangement of the
neurons in synaptic chains. The interest of the analysis consists in that it
is possible to reduce the actual anatomical complexity of the nerve
centers to simple diagrams suitable for theoretical arguments” (Lorente
de N6, 1938, p. 207). Lorente de N6 advanced his own “theoretical
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Figure 6.1

Two fundamental types of neural circuits, after Lorente de N6 (1938). These two arrange-
ments of neurons, the multiple (M) and closed chain (C), reflect the two principles of
plurality and reciprocity. These arrangements resemble network motifs. Redrawn after
Lorente de N6 (1938).

arguments” suggesting that cortical circuitry can be characterized by a
combination of “plurality” and “reciprocity” (see figure 6.1). Importantly,
neurons in the central nervous system were linked by an “exceedingly
large number of interlacing pathways” (Lorente de N6, 1938, p. 241) that
shaped the conduction and circulation of central nerve impulses. He
recognized that such interlacing pathways provided numerous opportu-
nities for neurons to influence each other, either directly or indirectly,
resulting in network interactions that are essential for integration in the
central nervous system.

Since then, the bewildering complexity of structural brain connectivity,
its abundant variability and dynamic change, has posed many challenges
for neuroanatomists and physiologists. As we discussed in the previous
chapter, neuroanatomical data continue to be difficult to collect and
analyze, and complete circuit diagrams for most neural structures of most
species, notably humans, are still incomplete or lacking altogether. Can
we, at this early stage, discern overarching network principles that govern
the structure and function of cellular or large-scale neural systems?
Graph theoretical analyses have allowed us to make some first steps
toward elucidating important architectural features of structural brain
networks. As a result of these studies, simple notions of “randomness” in
brain connectivity have given way to a renewed emphasis on specific
network attributes, such as highly nonrandom distributions of motifs,
small-world organization, and the existence of modules and hubs. How
pervasive and common are these attributes, and what does their occur-
rence imply for the function of the brain?

The Nonrandomness of Brain Networks

Data sets recording large-scale connectivity within the mammalian thala-
mocortical system have been available since the early 1990s. It was imme-
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diately noted that these networks exhibited attributes characteristic of
an organization that was neither entirely random nor entirely regular.
The first connection matrix of the macaque visual cortex (Felleman and
Van Essen, 1991; see figure 5.5) was sparse (only about 30 percent of all
possible connections had been confirmed as present), and the majority
of pathways between cortical regions were found to be reciprocal.*
Closer inspection revealed the existence of multiple parallel processing
streams whose constituent brain areas were organized into a cortical
hierarchy (Van Essen et al., 1992). This anatomical organization provided
a structural substrate for functional specialization in the visual cortex
documented by physiological recordings and lesion studies (Ungerleider
and Mishkin, 1982; Van Essen and Maunsell, 1983).

Malcolm Young’s quantitative analyses of macaque cortical connectiv-
ity revealed additional nonrandom structural features (Young, 1992;
1993). Utilizing a multivariate statistical technique (nonlinear multi-
dimensional scaling) to visualize the topology of connection patterns
(figure 6.2), he demonstrated specific connectional relationships between

Figure 6.2

Multidimensional scaling of macaque cortical connectivity. Positions of cortical areas are
determined on the basis of similarity in their connectivity patterns, with areas that have
similar connection patterns placed close to one another. Reproduced from Young (1993)
with permission.
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brain regions, including the existence of largely segregated and hierarchi-
cally organized dorsal and ventral processing streams in primate visual
cortex and their convergence onto regions of temporal and frontal asso-
ciation cortex. This organization was inferred on the basis of structural
connection data, and it could explain a wide range of physiological and
cognitive findings. Young noted that the existence of areas of reconver-
gence of the two functional streams such as polysensory regions of the
superior temporal lobe and prefrontal cortex was suggestive of their
functional role in visual integration.

Young also noted that neighboring brain regions on the cortical surface
are more likely to be connected than pairs of regions that are separated
by greater distances. This overabundance of short-range corticocortical
pathways cannot be explained on the basis of a random model of cortical
connectivity. At the same time, not all corticocortical pathways conform
to a lattice-like regular pattern because a significant proportion of path-
ways extend over long distances. Connections that link nearby regions
contribute to one of the most conspicuous nonrandom features of large-
scale cortical connectivity, the existence of clusters or modules (see
below). These clusters, for the most part, form compact groupings that
occupy contiguous regions on the cortical surface. In order to test whether
spatial proximity could explain all or at least a large fraction of the topol-
ogy of interregional pathways, Young and colleagues attempted to predict
cat cortical connectivity on the basis of simple nearest-neighbor and
next-door-but-one models (Scannell et al., 1995). It turned out that these
models could only account for a fraction of the existing connections, thus
indicating that the cat cortex was neither random nor entirely regular,
or lattice-like, but instead combined features of both random and regular
connectivity.

As noted in chapter 2, random networks have degree distributions that
are fairly homogeneous, indicating a single characteristic scale of network
connectivity, while the degree distribution of other network architectures
is much more heterogeneous, possibly even scale-free. Are structural
brain networks single-scale or scale-free? Given the small size of most
currently available connection data sets (in many cases comprising less
than 100 nodes), the question is difficult to settle and may require the
arrival of more highly resolved structural data sets. Because of the cost
of adding connections in the brain, it seems unlikely that structural brain
networks, including those at the large scale, can exhibit scale-free degree
distributions across a wide range of degrees (Amaral et al., 2000).
Since all brain nodes, regardless of how they are defined, are spatially
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embedded, there must be strict upper limits on the number and density
of connections that can be sustained at any given node, due to basic
spatial and metabolic constraints. Other networks that are spatially
embedded and where similar constraints on node degree apply, such as
transportation networks, have been shown to exhibit exponential or
exponentially truncated scale-free degree distributions (Amaral et al,,
2000; Guimera et al.,2005). Even if structural brain networks willnot turn
out to be scale-free, the degree distributions analyzed so far all exhibit
deviations from a simple Gaussian or exponential profile that is charac-
teristic of random networks. For example, brain regions that maintain a
large number of connections are generally more abundant than would be
expected based on the assumption of random degree distributions.

While there is convergent evidence for the nonrandom and nonregular
organization of brain networks at the large scale, the degree to which
cellular networks are either random or regular is much less well under-
stood. A primary reason for this gap in our knowledge is the relative lack
of cellular connectivity data sets acquired in a format that allows graph
analysis. At the time of writing, most such data sets consist of very small
numbers of neurons and do not comprise entire networks, or they report
connection probabilities between cells and cell types rather than actual
wiring patterns. In the few available cellular connectivity data sets—for
example, the nervous system of the worm C. elegans (see chapter 5)—non-
random features abound. As was already noted by White (1985), the
connection pattern of C. elegans is highly nonrandom, in that connections
between neurons predominantly occur within local neighborhoods,
resulting in conservation of axonal lengths (see chapter 7). Spatial prox-
imity of connected neurons is likely to be just one among several factors
that account for the nonrandomness of the overall topology. Given that
a nervous system as compact as that of C. elegans needs to support a
wide range of behavioral capacities, it is likely that functional consider-
ations provide an additional set of tight constraints on connectivity.

In the case of pyramidal cells in the mammalian neocortex, one of the
most robust observations on cellular interconnectivity is that the prob-
ability that two cells are synaptically connected falls off with their mutual
distance (Braitenberg and Schiiz, 1998). The relationship has a bell-
shaped profile and drops to near zero as distances grow to several mil-
limeters (Hellwig, 2000). At longer distances, connections are often
patchy and locally clustered, possibly linking cell groups that have similar
response properties. Such connection patterns can be described by dis-
tance-dependent probabilistic distributions that govern cellular and
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synaptic densities. Inferences of synaptic connectivity from observed
functional interactions have provided some additional insights into
various nonrandom properties of cellular cortical networks. For example,
when synaptic connections in rat visual cortex were probed (Song et al.,
2005), synaptic strengths were found to observe a lognormal distribution
with a “heavy tail,” indicative of a greater than expected abundance of
strong synaptic connections embedded “in a sea of weaker ones” (see
figure 6.3). Stronger connections also showed a tendency to be more
highly clustered, which favors more densely connected structural motifs.
Different sets of experiments demonstrated the existence of indepen-
dent subnetworks of highly coupled excitatory neurons that are inter-
mingled within single cortical columns (Yoshimura et al., 2005) and of a
high degree of cellular precision in functional maps of orientation selec-
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Figure 6.3

Nonrandom features of synaptic connectivity in rat cortex. (A) Fluorescent image of four
rat cortical neurons taken during a quadruple whole-cell recording. The recording setup
allows the estimation of connection strengths between these cells. (B) Across many record-
ings, the distribution of connection strengths has a lognormal profile, exhibiting a normal
(Gaussian) appearance in this semilog plot. Most connections are weak, while strong con-
nections are more abundant than would be expected if their strengths were exponentially
or normally distributed. wEPSP, synaptic connection strength, measured as the amplitude
of the excitatory postsynaptic potential. (C) A statistical reconstruction of the synaptic
network, depicting the “skeleton of strong connections in a sea of weaker ones” (Song
et al.,, 2005). Reproduced from Song et al. (2005).
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tivity (Ohki et al., 2005), which allows cells to express distinct functional
properties even in close spatial proximity, thus enabling functionally
independent communities to coexist within a single volume of space.
Developmental studies (Yu et al., 2009) suggest that these observations
may have an anatomical basis. Taken together, these empirical findings
indicate that probabilistic rules based on spatial proximity alone are
insufficient to describe cellular cortical connections and that cellular
circuits form precise patterns with currently unknown topology. Critical
information on the nature of these patterns will become available once
volumes of cortical tissue have been comprehensively mapped with
ultrastructural or cellular labeling techniques (see chapter 5).

Motifs and Motif Distributions

The pronounced tendency for synapses to connect cells within local
neighborhoods results not only in high clustering but also in an over-
abundance, relative to random architectures, of particular classes of
structural motifs. The occurrence of a large number of densely connected
three-node motifs (“triangular sub-circuits”) in the brain of C. elegans
was already noted by White (1985, p. 281), a feature he attributed to the
prevalence of local connectivity in the worm’s nervous system.’ Detailed
quantitative studies (Milo et al., 2002; 2004a; Reigl et al., 2004; Chen et
al., 2006) have confirmed an overabundance of a subset of motif classes
in the nervous system of C. elegans. The relative abundance of each motif
class was determined on the basis of a comparison of the actual network
to a null model, constructed as a population of random networks with
identical sequences of node degree. However, it is likely that the exis-
tence of some highly enriched motif classes is at least partly due to the
predominance of short connections that link neurons in local communi-
ties (Artzy-Randrup et al.,2004; Milo et al.,2004b). Comparison of motif
classes across networks of different origin (e.g., neuronal, cell transcrip-
tion, and ecology; Milo et al., 2004a) may require the construction of
domain-specific random models. The issue has implications for argu-
ments about the evolutionary origin of network topology in general and
the functional importance of specific enriched motif classes in particular
(see below).

While only very few motif analyses of cellular networks are currently
available, indications are that they show characteristic nonrandom dis-
tributions. Recording from multiple neurons in the mammalian cortex,
Song et al. (2005) have demonstrated a much greater than expected
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likelihood for reciprocal connectivity (a motif involving only two nodes),
as well as for a specific set of triadic motifs of cells, particularly those
that involve highly clustered connections. Whether this observation is
due to spatial biases in the recordings, preferentially local connectivity,
or specific computational roles of these motifs that provide an adaptive
advantage to the organism is currently unknown.

As will be discussed in the following chapter, the spatial proximity of
segregated regions on the cortical surface is thought to contribute to the
patterning of corticocortical connections at the large scale. When inves-
tigating the abundance of motif classes in large-scale cortical networks—
for example, those of the cat and macaque monkey cortex—it is therefore
important to compare the actual networks against at least two null
models that capture effects of randomness and spatial regularity. When
this dual comparison was performed, cat and macaque cortex were found
to contain an overabundance of a single three-node motif (Sporns and
Kotter, 2004). The motif was comprised of two sets of reciprocal connec-
tions (a “dyad”) joined at a single node (motif class 9 in figure 6.4). When
the contributions made by individual nodes to the overall motif distribu-
tion (“motif fingerprints”;see chapter 4) were examined, this “dual dyad”
motif was found to be enriched at putative hub nodes that are character-
ized by relatively low clustering, short path lengths, and high centrality
(Sporns et al., 2007). Because hub nodes maintain connections linking
different network communities or modules, a greater than expected pro-
portion of their neighbors will not be mutually connected, thus leading
to an aggregation of dual dyad motifs at these nodes.

Why are motifs of potential interest in brain networks? Motifs repre-
sent different topological patterns of structural connections that link
small subsets of nodes within a “local” neighborhood (defined topologi-
cally, and not necessarily implying small metric distances between nodes).
In principle, different motif classes could support different modes of
information processing, and their distribution within a larger network
could therefore be considered of adaptive value. Modeling studies have
shown that the way in which small groups of units are structurally inter-
connected constrains their dynamic interactions. Different structural
motifs facilitate specific classes of dynamic behavior—for example, peri-
odic or chaotic behavior (Zhigulin,2004)—or promote dynamic stability
(Prill et al., 2005). Another way in which structural motifs contribute to
neural function derives from the idea that more densely connected
motifs contain a larger number of potential subcircuits (“functional
motifs”; see Sporns and Kétter, 2004).° A greater number of potential
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Figure 6.4

Motifs in macaque cortex. (A) All 13 possible motif classes for three nodes linked by
directed edges. (B) Motif frequency distribution for a structural connection matrix of
macaque cortex containing 47 nodes and 505 directed edges (see figure 2.6). Motif counts
are compared (right panel) against populations of random (light gray) and lattice networks
(dark gray). Only one motif class (motif class 9, referred to as the “dual dyad” motif) is
found in significantly increased proportion relative to both random and lattice controls.
Data were redrawn from Sporns et al. (2007).

subcircuits allows greater diversity in the topology of functional and
effective interactions that are expressed in the brain at any given time.
Yet another functional aspect of motifs relates to synchronization. Dif-
ferent motif classes exhibit different capacities for synchronization in
networks with conduction delays (D’Huys et al., 2008). The high propor-
tion of dual dyad motifs in large-scale connectivity data sets has been
linked to the capacity of such motifs to promote zero phase-lag syn-
chrony across great spatial distances and hence long conduction delays
in cortex (Vicente et al., 2008). Taken together, these studies suggest
that specific classes of neural motifs contribute to specific network
functionalities.’

These studies appear to support the argument that certain motif classes
may have been selected for in evolution because they confer adaptive
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value to the organism. However, nonrandom motif distributions may also
have arisen as a result of selection pressure on other network compo-
nents or processes—for example, the need to accommodate develop-
mental constraints or to conserve wiring and metabolic energy (see the
next chapter). In that sense, nonrandom motif distributions may be sec-
ondary features of network architectures, reflecting their rules of con-
struction rather than their adaptive value. A recent re-examination of
motifs in cellular networks cast doubt on their interpretation within an
adaptive framework and traced their emergence to network construction
rules such as duplication mechanisms (Solé and Valverde, 2006). Viewed
from this perspective, motifs may be phenotypic characteristics that are
by-products of true adaptations, or “spandrels” of complex network
design.® Because of their mutual dependence and partial redundancy, it
is probably premature to attribute adaptive advantages to each and
every nonrandom network attribute. The fundamentally intertwined
nature of many of the network attributes discussed in this chapter (motifs,
modules, hubs) makes it difficult to disentangle selective contributions
made by one but not another attribute. The detection of a statistically
significant network feature does not automatically imply that the feature
has adaptive value (see chapter 7). Simple random models, often
employed in graph theoretical studies of networks, provide statistical
validation but often make little biological sense as they fail to take into
account biological rules of growth, spatial embedding, or metabolism.

Small Worlds Everywhere!

The seminal paper by Watts and Strogatz (1998) first presented evidence
for the small-world organization of neural systems (see chapter 2). The
paper reported that the clustering of the neural network of C. elegans
was significantly increased relative to equivalent random networks, while
its path length remained approximately the same. Only very few addi-
tional examples of structural cellular networks have since been examined
for small-world attributes. A study of the medial reticular formation by
Humphries and colleagues (Humphries et al.,2006) provided an example
of small-world connectivity in the vertebrate brain at the cellular scale.
Humphries et al. did not find evidence for a scale-free organization of
the network’s degree distribution. In general, the high density of local or
short-range connections in many nervous system structures, together
with a small admixture of long-range connections, should favor a small-
world topology. Synthetic connectivity matrices that combine these two



111

The Brain's Small World

types of connection profiles exhibit high clustering and short path lengths
(Sporns and Zwi, 2004). Some early quantitative studies of cellular cir-
cuits of mammalian neocortex show the presence of small-world features
and suggest an important role for inhibitory connections in maintaining
dynamic balance (Binzegger et al., 2009). Networks constructed from
physiological recordings have begun to reveal clusters and hub nodes
within functional cellular networks of cerebral cortex (Yu et al., 2008)
and “superconnected hub neurons” in hippocampus (Bonifazi et al.,
2009).

Soon after the paper by Watts and Strogatz was published, small-world
attributes were also described in cat and macaque cortex (Sporns et al.,
2000a; Hilgetag et al.,2000), and their existence has since been confirmed
in all studies, without exception, of the large-scale anatomy of the mam-
malian cortex (Bassett and Bullmore, 2006).° An interesting question
concerns the cross-species comparison of network attributes—for
example, those indicating the presence of a small-world network. Has
the “small-worldness” of the mammalian cortex increased over evolu-
tionary time, or does it covary with brain size? Cross-species compari-
sons of small-world attributes are made difficult by the use of incompatible
anatomical partitioning schemes and by a general lack of structural data
for many species. A possible experimental avenue is the acquisition of
connectivity data sets from brains of different organisms using a consis-
tent methodology, for example, high-resolution diffusion MRI of post-
mortem whole brains (Wedeen et al., 2009). Network analysis might then
address the question of whether small-world features have undergone
any kind of evolutionary trend (see chapter 7).

Mapping studies of the human brain have provided additional support
for the ubiquity of small-world architectures. A connection matrix of the
human brain derived from cortical thickness correlations revealed short
path lengths and high clustering of cortical regions (He et al., 2007c).
These clusters were later shown to be related to known functional sub-
divisions (Chen et al., 2008), supporting the idea that extrinsic connec-
tion patterns partly determine the intrinsic functionality of brain regions.
Other studies used DTI to create cortical connectivity maps. A series of
studies investigated networks of 70-90 cortical and basal brain gray
matter regions derived from diffusion imaging of 20 participants using
graph methods that preserve connection weights (Iturria-Medina et al.,
2007; 2008). These networks were shown to exhibit robust small-world
properties, and they contained an abundance of motifs in classes similar
to the ones identified in tract tracing data from nonhuman mammalian
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cortex. [turria-Medina and colleagues were the first to report individual
variations in small-world attributes, which may be the result of macro-
scale variability in the structural connectivity of individual brains (see
chapter 4). The study also reported high betweenness centrality for a
small set of brain regions, including the precuneus, the insula, the supe-
rior parietal cortex, and the superior frontal cortex. Several of these
findings were confirmed in an independent study reporting graph analy-
ses of DTI-derived connection matrices of 78 cortical regions (Gong
et al., 2009). Once again, cortical networks were found to exhibit small-
world attributes, and several regions of high centrality were identified,
including the precuneus and the superior frontal gyrus.

Small-world attributes were also found for connection matrices created
from DSI data sets of individual human participants. The nodes of the
network were obtained from a random partition of the cortical surface
into equally sized ROIs, numbering between 500 and 4,000 (Hagmann
et al.,, 2007). High clustering and short path lengths were found at all
partitions, indicating that small-world attributes persist across multiple
scales and that their detection is somewhat independent of the cortical
parcellation scheme used to define the network. These results were con-
firmed in a more extensive analysis of 998 ROI cortical networks obtained
from five participants (Hagmann et al., 2008) using graph methods that
preserved the experimentally obtained fiber densities for individual
pathways. This study found evidence for not only high clustering at most
nodes but also positive assortativity for the network as a whole. Positive
assortativity, the tendency for highly connected nodes to be connected
to one another, is rarely seen for other types of biological networks such
as those formed by interacting proteins or signaling pathways (Newman,
2002) and is more common in social systems such as coauthorship net-
works. Positive assortativity is inconsistent with an organization where
hubs are dispersed and disconnected but is found in network architec-
tures that contain highly and densely connected core regions with inter-
linked hubs. Small-world measures are not independent of the network
size or of the resolution at which brain network data are acquired
(Humphries and Gurney, 2008; Wang et al.,2009a). As the spatial resolu-
tion of the network partitioning scheme is increased, a greater propor-
tion of all connections are revealed as local or short-range, thus increasing
the clustering coefficient of the network as well as the small-world index
and the assortativity. Thus, the presence of network characteristics such
as small-world attributes or assortativity is robust across scales, but
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numerical estimates for these measures depend on the prior definition
of nodes and connections.

Most recent analyses of small-world structural brain networks have
gone beyond merely reporting global statistics of clustering and path
length. Several studies have identified clusters of brain regions or nodes,
as well as critical hub nodes that link them with one another, an archi-
tecture that is highly characteristic of mammalian cortical connectivity
at the large scale. This particular type of small-world architecture plays
a significant role in shaping functional and effective connectivity (see
chapters 8 and 9). Presently, it is much less clear whether cellular circuitry
exhibits similar or different topological characteristics. As we noted in
chapter 2, there are multiple ways in which a small-world network can
be constructed, not all of them involving structural modules and hubs.
Future studies are needed to more fully reveal the nature of the small
world in cells and circuits.

Structural Modules in Mammalian Neocortex

The term “modularity” has many meanings and connotations within
brain and cognitive sciences. Some of the more cognitive or psychologi-
cal formulations of “modularity of mind” have attracted considerable
attention, and their potential relationship with structural and functional
network modules will require a separate discussion later in the book (see
chapter 9). Here, I refer to modules strictly in a graph theoretical sense,
defined as communities of nodes that share greater numbers of mutual
connections within each community and fewer connections between
them. Community detection in graphs generally involves the application
of well-described clustering algorithms that are either agglomerative
(starting from small groupings and constructing progressively larger
ones) or divisive (subdividing larger units into smaller ones). Mark
Newman and colleagues (Newman and Girvan, 2004; Newman, 2006)
developed several community detection algorithms that are particularly
well suited for detecting communities of arbitrary number and size based
on a simple measure of modularity (see chapter 2).!° These algorithms
have been widely applied in the analysis of complex networks in trans-
portation, social, ecological, and metabolic systems. In all these applica-
tions, modularity is the result of an objective analysis of network
connectivity and not based on intuitive or subjective classification crite-
ria for network elements or on their intrinsic characteristics. These and
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other related clustering methods are being increasingly applied to struc-
tural as well as functional brain networks, and they have begun to reveal
the brain as a set of interconnected communities of structurally and
functionally related elements, arranged on multiple scales from cells to
systems.

Predating the graph-based community detection algorithms of
Newman and colleagues, Young and colleagues applied multidimen-
sional scaling to connection data sets and retrieved clusters of cortical
areas that resembled known functional subdivisions in macaque and cat
brain (Young, 1992; 1993; Scannell et al., 1995). Connections between
nodes were translated into spatial relationships,and dimension reduction
allowed the visualization of the set of spatial distances in two dimensions,
thus revealing clusters of nodes that shared connectional patterns. Claus
Hilgetag developed a different method termed “optimal set analysis,” a
stochastic optimization technique that arranged nodes into clusters such
that a global cost function based on the distribution of intra- and inter-
cluster connections is minimized. Implemented as an evolutionary algo-
rithm, the method was applied to large-scale mammalian connection
matrices (Hilgetag et al., 2000). In the case of the matrix of areas and
connections of the macaque visual cortex, the method revealed two main
clusters that closely corresponded to the dorsal and ventral streams of
the primate visual cortex. For cat cortex, clusters corresponded to pre-
dominantly visual, auditory, somatomotor, and frontolimbic areas (see
figure 6.5). It was noted that the cluster structure, once identified, may
aid in the prediction and discovery of previously unknown connections.
Hilgetag and Kaiser (2004) commented on the relationship between
clusters in anatomical connectivity and the spatial proximity of many
cluster members. Their proposal for a spatial growth model that can
reproduce some features of the cluster structure observed in large-scale
brain networks will be discussed in chapter 11.

Various structural connection matrices obtained from human brain
data sets have been subjected to graph-based community detection
methods. Chen et al. (2008) performed a modularity analysis with
Newman’s modularity measure on a connection matrix of human cortex
previously derived from intersubject correlations in cortical thickness
(He et al, 2007c). Several densely connected modules were identified
whose members corresponded to functionally distinct groups of areas
related to vision, movement, or language (see figure 6.6). Interlinking
hub regions tended to be areas of multimodal or association cortex.
Based on data sets derived from DSI, Hagmann et al. (2008) identified
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Figure 6.5

Clustered organization of cat cortex. Regions of cat cortex are arranged on a circle such
that regions with similar connectivity patterns are placed near each other. Note the appear-
ance of clustered communities corresponding to known functional subdivisions. The order-
ing is based on Hilgetag et al. (2000), and the image is from Hilgetag and Kaiser (2004),
reproduced with permission.

modules in networks of 998 cortical regions of interest. Six structurally
distinct modules were identified consisting of frontal, temporoparietal,
and medial cortical regions (see figure 6.7). Modules consisted of spa-
tially contiguous brain regions reflecting the large number of short con-
nection pathways linking adjacent areas. Connector hubs linking multiple
modules were located along the anterior—posterior medial axis of the
brain and included highly connected regions such as the rostral and
caudal anterior cingulate cortex, the paracentral lobule, and the precu-
neus. More fine-grained modularity analyses carried out on restricted
subsets of ROIs revealed additional, hierarchically nested, modular
arrangements. For example, clustering of ROIs within the visual cortex
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Structural modules of human cerebral cortex, identified from correlations of cortical gray
matter thickness. Modularity analysis based on the modularity measure by Newman (2006)
revealed 6 modules, consisting of between 4 and 10 cortical regions. Modified and repro-
duced from Chen et al. (2008).

yielded segregated dorsal and ventral clusters, corresponding to separate
functional processing streams.

These initial studies indicated that modules mostly consist of regions
that are spatially close, functionally related, and connected through hub
nodes. Additional data on functional modules derived from physiologi-
cal recordings (see chapters 8 and 9) confirm these patterns although
the degree to which structural and functional modules can be mutually
aligned is still unknown. It should also be stressed that, in many cases,
reported patterns of modularity represent optimal configurations,
selected for lowest cost under a cost function based on attraction/
repulsion or for highest modularity score in graph-based methods.
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Figure 6.7

Structural modules of human cerebral cortex, identified with diffusion imaging and trac-
tography. The plot shows a dorsal view of the brain, with the anterior—posterior axis running
vertically from top to bottom. Brain regions form 6 modules whose position and size are
indicated by the gray disks. Connector hubs are shown as solid black circles, and provincial
hubs as open black circles. Modified and redrawn after Hagmann et al. (2008). For abbre-
viations of anatomical areas see figure 5.8.

However, quite often other, less optimal configurations (with greater
or fewer numbers of modules) coexist within the network. The full
pattern of modularity in any real-world neuroanatomical network likely
involves a nested hierarchy, ranging from coarse clusterings, for example,
the two cerebral hemispheres, to much more fine-grained groupings,
such as functional brain systems (e.g., visual, auditory, somatomotor cor-
tices), individual anatomically segregated areas, gray matter nuclei, or
columnar arrangements of cells. This concept of hierarchical modularity
stands in marked contrast to the more widely used notion of serial hier-
archy based on patterned feedforward and feedback connections (see
chapter 9).
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Modularity involves a decomposition of a larger network into smaller
units, and it has important functional connotations. It has been noted
repeatedly that nodes that form a module often appear to be functionally
related. For example, several of the modular groupings detected on the
basis of structural connectivity in mammalian cortex involve areas with
similar functionality, for example, areas within the dorsal stream of the
visual cortex or within somatomotor cortex. As discussed earlier (see
chapter 4), the functionality of a network node results in part from its
afferent and efferent connections. Areas within structural modules are
functionally related because they share many of their inputs and outputs,
including connections to many other members of the same community.
This pattern of preferential interconnectivity ensures that processing
occurs primarily within the module, thus preserving the informational
specialization of each region. However, specialized modules are not suf-
ficient to explain cognition—the operations of individual modules must
be coordinated in order to ensure system-wide coherence and informa-
tion integration. We need specialized nodes that interlink modules:
network hubs.

Hubs in the Brain

Hub nodes are among the most intriguing structural features of brain
networks. Hubs have attracted much attention in network science since
they often correspond to nodes that have special integrative or control
functions. For example, hubs in protein interaction networks correspond
to proteins whose deletion is often lethal to the organism (Jeong et al.,
2001). In social networks, hub nodes are individuals who are highly con-
nected and often occupy positions of leadership and power. Not surpris-
ingly, in a social context, centrality is generally conceptualized as an
influence measure. While the mechanisms of information flow in the
brain are rather different from those in social systems, it is likely that
neuronal hubs have a privileged role in organizing network dynamics
and exert strong influence on the state of more peripheral nodes. By
virtue of their structural connections,hub nodes integrate a highly diverse
set of signals and are in a position to control the flow of information
between otherwise relatively segregated parts of the brain. Since much
of the “between-modules” information flow travels through hubs, the
rate at which they relay signals would have a large impact on system-
wide communication. Because of their position on many of the network’s
short paths, any perturbation of the state of a hub node would be able
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to spread quickly across the network. Hubs also contribute to brain
economy. The existence of hubs as specialized “integrators” helps to
conserve wiring length and volume since most regions can access infor-
mation from most other regions through a few long-distance connections
that access a small set of hub nodes. Taken together, there are numerous
ways by which hub nodes can exert special influence on other parts of
the brain—we will return to a more complete discussion of the integra-
tive processes taking place at hub nodes in chapters 8 and 9.

Criteria for hub identification vary across different studies. In some
cases, hubs are identified as “highly connected nodes,” that is, primarily
on the basis of node degree or strength. In scale-free networks that have
heavy-tailed degree distributions, hubs are identified as nodes that are
highly connected, for example, highly linked and frequently visited web
sites in the case of the World Wide Web. In the case of structural brain
networks, which may not exhibit scale-free degree distributions for
reasons discussed earlier, the reliable identification of hub regions should
take into account a combination of node degree, motif fingerprint, and
centrality measures (Sporns et al., 2007). Hubs should be both highly
connected and highly central, and in addition they can be identified on
the basis of their low clustering coefficient and high aggregation of char-
acteristic motifs—for example, the dual dyad (see figure 6.4). Based on
these multiple criteria, a detailed analysis of the structural connectivity
of macaque cortex revealed several putative hub regions, including pre-
frontal area 46, the frontal eye fields, and parietal areas 7a and 7b, as well
as visual area V4 and somatosensory area SII, among others (Sporns
et al., 2007).

Another useful distinction is that between a provincial hub and a con-
nector hub, introduced by Guimera and Amaral (2005) in studies of
metabolic networks (see chapter 2). This classification is dependent on
a previously determined partitioning of the network into modules. Pro-
vincial hubs are nodes that have high degree and centrality but whose
connections are mostly contained within a single module of the network.
Their position within the network allows them to facilitate the exchange
and integration of information within a single segregated community. In
contrast, connector hubs also have high degree and centrality, but their
connections run mostly between two or more modules. Thus, they can
promote information flow between otherwise segregated communities.
In the study of the macaque cortex of Sporns et al. (2007), visual area
V4 and somatosensory area SII were classified as provincial hubs. For
example, area V4 maintains a large number of reciprocal pathways with



120 Chapter 6

other visual areas, and its structural embedding identifies it as a crucial
link between dorsal and ventral visual streams (see figure 6.8). Most of
its projections are short, underscoring its role as a hub within a single
spatially coherent module. Lesions of V4 result in a variety of functional
disruptions, including deficits in visual recognition and attention. In com-
parison, prefrontal area 46 also has high degree and centrality, but its
connections link areas across multiple modules in macaque cortex, and
it is therefore classified as a connector hub. Many of the projections of
area 46 travel across long distances, for example, those connecting to
parietal and temporal visual regions. Area 46 is known to be involved in
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Provincial and connector hubs in macaque cortex. Network diagrams show area V4 (A)
and area 46 (B) and their neighbors (left panels), as well as their spatial arrangement on
the cortical surface (right panels; V4 and 46 shaded in dark gray, neighbors in medium
gray). Both areas have high degree and high centrality (see figure 2.9). Area V4 connects
almost exclusively to other visual areas via short projections (average length 17 mm), while
area 46 maintains more widespread projections (average length 33 mm) with a mixture of
visual, sensorimotor, and multimodal areas. V4 can be classified as a provincial hub, and
area 46 as a connector hub. Modified and reproduced from Sporns et al. (2007). For abbre-
viations of anatomical areas and corresponding connection matrix see figure 2.6.
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the integration of polysensory inputs, in relating external sensory inputs
to internal goals, and in maintaining information in working memory.
Lesions of area 46 have been shown to cause impairments in various
complex cognitive tasks and to disturb internal drive and awareness.

While the special roles of areas like V4 or 46 have been previously
noted in the context of physiological studies, their identification as hubs
on the basis of their anatomical connectivity provides a structural basis
for their involvement in diverse cortical functions. Following the idea
that connectional fingerprints are associated with functional specializa-
tion (see chapter 4), the physiological characteristics and functional pro-
files of these hub regions are at least partly the result of their diverse
and distributed pattern of structural connections. Further support for the
close relationship of structure and function comes from the observation
that many of the hubs identified in structural graph theoretical studies
correspond to areas of the brain that had previously been classified as
multimodal, transmodal, or high-level association regions.

Several authors have examined structural connectivity data sets
obtained from the human cerebral cortex for highly connected or highly
central regions. Gong et al. (2009) reported high centrality for the pre-
cuneus and medial frontal cortex (see figure 6.9, plate 6). Hagmann
et al. (2008) identified several provincial and connector hubs on the basis
of an optimal partitioning into six modules (see figure 6.7). Connector
hubs were located along the anterior—posterior axis, including anterior
and posterior cingulate cortex and the precuneus. Nodes with high degree
and high centrality were found in areas of lateral prefrontal and parietal
cortex, as well as along the cortical midline (see figure 6.10, plate 7). The
most conspicuous aggregation of hubs was located in the posterior
medial cortex, comprising portions on the precuneus, the posterior cin-
gulate cortex, and parts of the retrosplenial cortex (see figure 6.11, plate
8). The structural prominence of this complex of brain regions derives
from its high degree of connectedness as expressed in the graph mea-
sures of node degree and strength, as well as its high betweenness cen-
trality, independently reported in several graph theoretical analyses of
the structural connectivity of the human cerebral cortex (Iturria-Medina
et al., 2008; Hagmann et al., 2008; Gong et al., 2009; Li et al., 2009).

As we will see in chapters 8 and 9, the precuneus/posterior cingulate
cortex occupies an equally central position in functional networks of the
human brain, in particular those engaged during cognitive rest (Greicius
et al., 2003; Fransson and Marrelec, 2008), and it corresponds to an area
of extremely high metabolic activity (Gusnard and Raichle, 2001). The
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Figure 6.9 (plate 6)

Topological organization of human brain structural connectivity obtained with diffusion
tensor imaging. Brain regions are arranged using a spring embedding algorithm, and
symbol size indicates the magnitude of a region’s betweenness centrality. Regions are clas-
sified as belonging to association, primary, or paralimbic cortex. Reproduced from Gong
et al. (2009) with permission.

region is homologous to the macaque monkey posteromedial cortex,
known to maintain extensive and widely distributed connections with
numerous cortical and subcortical regions (Parvizi et al., 2006). In the
past, the functional roles of the precuneus were not well understood,
in part because of the scarceness of neurophysiological recording data
and the reported involvement of the precuneus in an extremely broad
range of diverse cognitive phenomena. For example, activation of the
precuneus has been reported in self-referential processing, imagery, and
episodic memory (Cavanna and Trimble, 2006), and its level of activation
is associated with the level of consciousness (Laureys et al., 2004).
Administration of general anesthetics such as propofol induces large
regional decreases in cerebral blood flow in the precuneus, cuneus, and
posterior cingulate cortex (Fiset et al., 1999), and deactivation of poste-
rior medial cortex is associated with loss of consciousness (Kaisti et al.,
2002). Lesions of the posterior medial cortex, while rare because of its
redundant arterial blood supply and protected location deep within the
skull, result in severe disturbances of cognition and consciousness
(Damasio, 1999)."2 Could this intriguing confluence of diverse functional
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Figure 6.10 (plate 7)
Anatomical distribution of node strength, node centrality, and core membership. All plots

show summary results obtained for brains of 5 participants. (A) Network nodes with high
node strength. The plot shows how consistently region-of-interest (ROI) strength ranked
in the top 20 percent across participants. (B) Network nodes with high centrality. The plot
shows how consistently ROI centrality ranked in the top 20 percent across participants.
(C) Average network core across participants. The plot shows how consistently ROIs were
included in the core across participants. Data as shown in Hagmann et al. (2008).
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Figure 6.11 (plate 8)

The precuneus/posterior cingulate in brain imaging and network analysis. (A) Resting
metabolism in a healthy participant and in a patient in the vegetative state. Images show
glucose metabolism (high values in hot colors) shown in the sagittal plane, with the precu-
neus/posterior cingulate cortex outlined in red. The region exhibits the highest metabolic
rate in the healthy participant and the lowest in the vegetative patient. Image is from
Laureys et al. (2004), reproduced with permission. (B) Sagittal slice of functional magnetic
resonance imaging activations obtained during the elaboration of past (left) and future
(right) events, both relative to a control task. Image is from Addis et al. (2007), reproduced
with permission. (C) Map of betweenness centrality obtained from structural connectivity
of the cerebral cortex, indicating several structural hubs (PCUN, precuneus; SFGmed,
medial superior frontal gyrus, CAL, calcarine cortex). Image is from Gong et al. (2009),
reproduced with permission. (D) Cortical hubs estimated on the basis of node degrec
obtained from resting-state functional connectivity of the cerebral cortex. Image is from
Buckner et al. (2009), reproduced with permission.

roles, from brain metabolism to consciousness, be the result of the area’s
high centrality within the cortical system?

The existence of hub nodes is essential to maintain network-wide
information flow. Their loss or dysfunction has disproportionate effects
on the integrity and functionality of the remaining system. Studies of
social or technological systems have shown that hubs are points of vul-
nerability that may become subject to “targeted attack.” I will further
examine this aspect of structural hubs when I discuss the effects of
lesions and disease states on brain networks. However, despite their
highly central structural embedding and diverse functionality, hub nodes
should not be mistaken for “master controllers” or “homunculus regions,”
capable of autonomous control or executive influence. Their influence
derives from their capacity to connect across much of the brain and
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promote functional integration, not from special intrinsic processing
power or capacity for “decision making.” Hubs enable and facilitate
integrative processes, but they do not represent their outcome, which
instead is found in the distributed and global dynamics of the brain.

Small World—Big Deal?

A broad range of natural, social, and technological systems exhibits
small-world connectivity (see chapter 2). The ubiquity of this architec-
ture is suggestive of a universal functional role that transcends specific
network implementations and mechanisms (Watts and Strogatz, 1998).
As we have seen in this chapter, small-world architectures are abundant
in structural networks of the brain, across a number of species and
systems—but are small-world networks of functional importance? Small-
world architectures in the brain are implemented as networks of modules
and hubs, and these architectural features have clear relevance for the
functional organization of the brain. As we will see in coming chapters,
the dual hallmarks of the small world, high clustering and short path
length, play crucial roles in shaping dynamic neuronal interactions at
cellular and large scales. Not only do patterns of functional interactions
themselves exhibit small-world features (see chapters 8 and 9), but there
is mounting evidence that disruptions of small-world organization are
associated with disturbances in cognition and behavior (see chapter 10).
The next chapter will demonstrate that modular small-world architec-
tures also promote the economy and efficiency of brain networks by
allowing for structural connectivity to be built at low cost in terms of
wiring volume and metabolic energy demand and by enabling efficient
information flow across the entire network. Furthermore, economical
and efficient small-world networks can generate functional dynamics
that express highly diverse states (see chapter 12) and high complexity
(see chapter 13).

Thus, the small-world architecture of neuronal networks, at the scale
of cellular and large-scale systems, provides a structural substrate for
several important aspects of the functional organization of the brain. The
architecture promotes efficiency and economy, as well as diverse and
complex network dynamics. Each of these functional aspects is of critical
importance for the organism and its evolutionary survival, and it is
important that small-world networks can promote all of them sirmultane-
ously. A brain network that is economically wired but not capable of
rapid and flexible integration of information would be highly suboptimal,
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as would be an architecture that supports great computational power but
utilizes an inordinate amount of space or energy.

These considerations naturally lead to the idea that the small-world
architecture of brain networks has been selected for in biological evolu-
tion. Are small-world networks an adaptation, or can their ubiquitous
appearance be explained in some other way? To begin to answer this
question, we need to consider brain networks not only as topological
patterns but also as physical objects that consume space, energy, and
material.
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After reviewing the many shapes assumed by neurons, we are now in a position
to ask whether this diversity [...] has been left to chance and is insignificant, or
whether it is tightly regulated and provides an advantage to the organism. [...]
all of the morphological features displayed by neurons appear to obey precise
rules that are accompanied by useful consequences. What are these rules and
consequences? [...] all of the various conformations of the neuron and its various
components are simply morphological adaptations governed by laws of conser-
vation for time, space, and material.'

—Santiago Ramén y Cajal, 1899

Nervous systems are physical objects of staggering complexity. In the
human brain, at least a million billion synapses and thousands of miles
of neural wiring are compressed within a volume of around 1,400 cm?,
forming a dense web of cellular connections that is yet to be completely
mapped. When examining the physical structure of the brain, one cannot
help but be struck by its high economy and efficiency. Santiago Ramén
y Cajal was among the first anatomists to clearly express the idea that
the conservation of basic resources such as space and biological material
has governed the evolution of neuronal morphology and connectivity
(see figure 7.1). Recently, the availability of network data sets and com-
putational modeling tools has allowed this idea to be more fully explored.
There can be little doubt that space and energy constraints can have
direct effects on the physical realizability of a nervous system. For the
brain to function properly it must fit inside the head.? The brain’s “wiring,”
its constituent neuronal and nonneuronal cells and all their processes,
cannot occupy a volume greater than that afforded by the bony enclo-
sure of the skull. Furthermore, the metabolic cost of operating the brain’s
neural elements should only be a fraction of the total energy budget of
the body. The wiring and metabolic cost that result from the architecture
and operation of the brain impose narrow limits on structural brain
connectivity that cannot be circumvented. Detailed studies of neural
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Figure 7.1

Cajal’s example for wiring economy. The diagrams show cross-sections of idealized inver-
tebrates, with three sensory neurons (a) each of which innervates three muscles (b).
(A) Only sensory neurons are present and the total wiring cost is high (approximately 6
times the diameter of the cross-section). (B) The appearance of separate motor neurons
(c) and the aggregation of their cell bodies in ganglia (C) lowers the wiring cost (to about
3 times the diameter of the cross-section). Reproduced from Cajal (1995, p. 14) with
permission.

morphology and spatial layout of neural connectivity in brains of several
species support the idea that neural elements are arranged and con-
nected in ways that make economical use of limited resources of space
and energy.The brain’s connectivity pattern appears to have been shaped
over evolutionary time to provide maximal computational power while
minimizing the volume and cost of physical wiring.

Much of this chapter will examine this “wiring minimization” hypoth-
esis. To what extent has brain connectivity been shaped by spatial and
metabolic constraints? Are the elements and connections of brain net-
works optimally economical (in a spatial or metabolic sense), and is this
optimality the direct result of natural selection? Are functional design
constraints compatible with economical spatial embedding and low met-
abolic cost? As we will see, multiple lines of empirical and computational
evidence suggest that brain architectures balance competing spatial,
metabolic, and functional demands. Rather than being optimal for any
single factor, brain connectivity jointly satisfies these multiple demands.
The combination of these demands is likely to have shaped the neuronal
morphology and connection topology of nervous systems ranging from
C. elegans to humans.

The Cost of Neuronal Communication

The economy of neuronal architecture involves a combination of factors
that come into play during growth and development of the nervous
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system, as well as during its operation in the adult organism (Laughlin
and Sejnowski, 2003). Economy during development may imply that
neural structures require only a small number of molecular cues for
regulation of elementary processes such as cell proliferation, differentia-
tion, migration, and axonal outgrowth and guidance. Economical design
may also result from a combination of conserved wiring length or volume,
short axonal conduction delays, fast signal propagation, and low meta-
bolic cost of neural activity and spike propagation. All of these factors
contribute to the overall cost of neuronal communication between spa-
tially remote neurons and brain regions.

Mechanisms of neural development lead to the formation of specific
long-range neural pathways that link neurons over great distances or
within local volumes of space. Temporally regulated patterns and gradi-
ents of a small number of attractive or repulsive guidance molecules can
shape growing axons into complex anatomical networks (Dickson, 2002;
Williamson and Hiesinger, 2008). For example, molecular guidance cues
are critically involved in the establishment of topographic maps (Sur and
Rubenstein, 2005). Topography supports a number of important compu-
tational functions (Thivierge and Marcus, 2007) and is also compatible
with an efficient arrangement of wiring between neural areas. The spa-
tiotemporal control of molecules involved in axonal patterning of topo-
graphic projections thus supports economical wiring in structural brain
networks. A further example includes the intra-areal connections in the
cerebral cortex, which are mostly made within local volumes of space
and tend to be reciprocal and patchy (Douglas and Martin, 2004). These
synaptic patterns are shaped by distributions of morphogens that control
axonal outgrowth as well as synapse formation and stabilization. Thus,
molecular developmental mechanisms can account for the observed
abundance of topographic and local connections and, consequently, for
at least some aspects of wiring minimization in neural structures such as
the cerebral cortex.

Given that developmental mechanisms play a major role in shaping
connectivity and naturally promote short wiring, what is the role of
development in theories of wiring minimization? Most proponents of
conservation principles, including Cajal,’ have suggested that economical
features of cell morphology and connectivity arose as a result of selection
for utility and adaptive advantage rather than as a result of developmen-
tal processes. An alternative view proposes that developmental processes
may also directly contribute to conserved wiring patterns. Following the
same general principles that govern the evolution of animal forms
(Carroll, 2005), evolution may have favored developmental processes
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that give rise to economical brain connectivity, including short wiring and
low metabolic cost. It is also worth pointing out that many developmen-
tal processes that unfold in a growing organism are not a direct conse-
quence of natural selection. For example, the physical and chemical
forces that shape spatial gradients of morphogens and the capacity of
cells to respond to external cues in a concentration-dependent manner
naturally favor topographic and clustered connectivity. Physical pro-
cesses such as diffusion or adhesion do not arise as the result of natural
selection but can nevertheless promote specific patterns of morphology
and connectivity such as short wiring. Furthermore, morphology and
function are closely intertwined. For example, the prevalence of short-
range connections, particularly in cortical maps, has important functional
and computational implications. Developmental mechanisms that favor
short-range over long-range (or randomly arranged) connections not
only are conserving cortical space and volume but also have direct con-
sequences for the computational operations carried out in neural maps
(Nelson and Bower, 1990; Thivierge and Marcus, 2007) and for the emer-
gence of a modular neural architecture (Jacobs and Jordan, 1992).

The constraints imposed by wiring volume on axonal patterning have
been recognized for some time. Mitchison (1991) demonstrated that
minimizing the volume of axonal branching in intra-areal connectivity
can account for observed arrangements of cells and connections in corti-
cal maps—for example, interleaved stripes and blobs formed by distinct
cell populations that occur in visual cortex. Segregation of cells that have
distinct patterns of inputs favors economical wiring, and the same idea
was invoked as an explanation for the existence of multiple segregated
cortical areas whose inputs are distinct and whose physiological proper-
ties are functionally specialized (Mitchison, 1991;1992). Cherniak (1992)
applied a network optimization framework to identify the critical param-
eters that are optimized in the design of branching neuronal structures
such as dendritic and axonal arbors. Results suggested a minimized
wiring volume, rather than wiring length, signal propagation speed, or
surface area. Cherniak concluded that local network volume minimiza-
tion may be sufficient to account for observed neuroanatomy, “without
introduction of, e.g. the ideas of optimization of subtle electrophysiologi-
cal signal-processing roles for the junctions, or of the abstract flow of
information through them” (p. 509). More recently, the idea of pure
volume minimization has been supplemented by more detailed models
that explain the topology of dendritic branching by using a combination
of wiring constraints and graph theoretical measures, such as path length



131

Economy, Efficiency, and Evolution

between synaptic inputs and the base of the dendritic tree (Cuntz et al.,
2007). The model suggests that a conjunction of biophysical and topologi-
cal factors is sufficient to account for the observed shapes and morpholo-
gies of neuronal processes.

Another aspect of the cost of neuronal communication involves the
relationship between connection length and axonal conduction delays.
Conduction delays have important effects on processing speed, dynamic
coupling, and other integrative processes within populations of neurons.
Recent studies have reaffirmed the importance of neuronal conduction
delays in determining connectional features of structural brain networks
(e.g., Chklovskii et al., 2002), despite earlier suggestions that delays may
play only a minor role (e.g., Mitchison, 1991).

Finally, metabolic demand should be mentioned as another costly
aspect of long connections. The generation of spikes by neurons and their
propagation along axons requires considerable amounts of metabolic
energy. In unmyelinated axons, the cost of neuronal communication
increases with axonal length and has been estimated at around one third
of the total metabolic cost for each single spike (Lennie, 2003), likely
imposing tight constraints on the architecture of structural brain net-
works. In virtually all species, neural tissue operates at very high ener-
getic cost, both during active processing and at rest. This cost is seen to
have led to further selective pressure toward energy efficiency. Niven and
Laughlin (2008) examined data on the energy consumption of neuronal
structures in the visual system of a wide range of animal species. They
concluded that energy efficiency may have played a key role in the evolu-
tion of the morphology and physiology of neural systems, including the
way in which neurons encode and transmit information.

Neuronal Placement and Connection Length in C. elegans

The availability of the complete anatomical arrangement of neurons in
the brain of the nematode C. elegans (see chapter 5), including their
connectivity and spatial location, has provided a rare opportunity to
investigate the role of resource constraints in determining wiring pat-
terns. In the mid 1990s, Christopher Cherniak advanced a theory to
explain the spatial layout of nervous systems and, specifically, that of
C. elegans. He suggested that the physical positions of network compo-
nents were arranged such that total connection cost was minimized, a
principle he termed “component placement optimization” in analogy to
principles used in the design of electronic microcircuits (Cherniak, 1994;
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1995). Combining data on the physical location and connectivity of
neurons in C. elegans, Cherniak showed that the spatial positions of
ganglia or cell groupings are highly optimal, with the actual placement
exhibiting minimal wiring cost among about 40 million alternatives. An
examination of the spatial layout of individual neurons was not feasible
at the time.

The central idea in Cherniak’s theory was that neurons (or ganglia)
are placed at spatial locations such that their total wiring length is mini-
mized. The theory was framed in an evolutionary context, with the impli-
cation that optimal component placement conferred an advantage in
natural selection. However, it was left unspecified how the spatial place-
ment of neurons could be varied independently of connectivity in any
real nervous system. Placement of neurons is not independent of the
formation of connections since both events unfold within the same devel-
opmental process. Spatial distributions of morphogens guiding connec-
tivity are regulated by other developmental factors such as cell migration
and differentiation. These factors follow specific spatial and temporal
rules that cannot be independently varied to produce “suboptimally”
wired variants. Instead, if two neurons are spatially close within the
developing organism, biochemical mechanisms (such as graded molecu-
lar cues) make it more likely that these neurons are also connected
(Young and Scannell, 1996). Developmental processes thus produce a
tendency for neurons to be “connected, because they are adjacent,” not
“adjacent, because they are connected” as suggested by component
placement optimization.

Ciritics of the component-placement-optimization approach disputed
the privileged role of wiring minimization by questioning whether the
wiring of C. elegans is indeed minimal. Cherniak’s original study only
provided an analysis of the placement of 11 ganglia. More recent studies
have been able to determine whether C. elegans is minimally wired at
the level of individual neurons. Chen et al. (2006) performed a painstak-
ing reanalysis of the wiring diagram of C. elegans, which led to an updated
and more complete connection matrix (see chapter 5). Given the wiring
diagram, Chen et al. compared the most economical layout of individual
neurons and connections to the actual set of spatial positions recorded
in the organism. Predicted neuronal positions were found to be close to
actual ones for most neurons; however, some neurons showed significant
deviations from their predicted optimal positions (see figure 7.2). Thus,
it appears that wiring minimization can account for much of the neuronal
layout, with some important exceptions that may relate to functional
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Figure 7.2

Wiring economy in C. elegans. Scatterplot of neuron positions along the main axis of the
worm’s body versus positions predicted by a wiring-minimization model. Dots along the
main diagonal of the plot correspond to perfect predictions. Overall, the discrepancy
between actual versus predicted positions is less than 10 percent. The sketch at the bottom
shows the location of the main ganglia and cell groupings (cf. figure 5.1). Modified and
reproduced from Chen et al. (2006) with permission.

demands which violate the minimization rule. Two other studies also
indicate that the actual wiring of C. elegans does not embody a global
minimum in wiring cost. Ahn et al. (2006) were able to generate a spatial
layout for neurons in C. elegans that further reduced wiring cost by about
50 percent. Given the distribution of connection lengths, much of the
“suboptimal” connection cost in the real worm appeared to be due to
the existence of long connections spanning around 80 percent of the
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worm’s body length. A similar reduction in wiring cost was obtained by
Kaiser and Hilgetag (2006). Again, much of the excess in wiring cost was
found to be due to long-distance connections.*

There is broad agreement that wiring minimization alone cannot
account for the exact spatial layout of neurons in the nervous system of
C. elegans. While the actual layout seen in the real organism does con-
serve space and material, other functional considerations are also likely
to play a role. An examination of the efficiency and economy of neural
wiring in the mammalian cerebral cortex offers additional clues to the
nature of these functional constraints.

Neuronal Wiring in the Mammalian Brain

One of the most robust features of corticocortical connectivity is the
prevalence of short-range connections. This pattern prevails among indi-
vidual cortical neurons as well as between segregated brain regions.
Anatomical studies have demonstrated an exponential decrease of con-
nection probability with increasing spatial separation between cortical
neurons (Braitenberg and Schiiz, 1998; Hellwig, 2000; Liley and Wright,
1994). While these connection probabilities approach zero at distances
of several millimeters, cortical cells can make horizontal connections that
extend over greater distances, in addition to long-range projections to
targets in other regions. Similar biases of connections toward spatial
proximity are seen not only among individual cells but also at the large
scale of brain regions and systems, ultimately shaping cortical topology
into spatially coherent modules (see chapter 6). Among the segregated
areas of the cerebral cortex, connections occur with high probability
between adjacent or neighboring areas and with much lower probability
between areas that are separated by greater distances (Felleman and Van
Essen, 1991; Van Essen, 1997). However, not all adjacent cortical regions
are mutually connected. Young’s analysis of the wiring pattern in macaque
cortex (Young, 1992; 1993) showed that only a fraction of interregional
pathways could be explained on the basis of regional proximity on the
cortical surface. Within more spatially confined sets of brain regions—for
example, those of the primate prefrontal cortex—neighboring areas
were found to be anatomically linked with a probability of 0.94, and
these probabilities progressively decreased as distances between areas
increased (Averbeck and Seo, 2008).

The macroscopic anatomical organization of the mammalian cortex is
characterized by the segregation of cell bodies and axonal connections
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into gray matter and white matter, by an arrangement of gray matter
into a sheet surrounding a white matter core, and by various degrees of
folding of the cortical surface. Ruppin et al. (1993) noted that given the
preponderance of short-range over long-range connections in cortical
networks, the combination of these three characteristics supports volume
minimization and results in a volume-efficient architecture (see also
Murre and Sturdy, 1995). Wen and Chklovskii (2005) have argued that
the segregation of much of the vertebrate brain into gray matter and
white matter is a consequence of joint optimization for the competing
requirements of high connectivity and minimal conduction delay. Based
on measurements of the gray matter “wire fraction,” defined as the pro-
portion of volume occupied by axons and dendrites within gray matter,
Chklovskii et al. (2002) suggested that cortical circuits are organized such
that conduction delays are near-minimal and synapse numbers are near-
maximal. In a similar vein, Klyachko and Stevens (2003) performed
computational analyses of the spatial layout of macaque prefrontal
cortex and concluded that the actual spatial arrangement of these corti-
cal areas minimizes the total volume of the interconnecting axons. An
extension of the component-placement-optimization framework to
the positioning of brain regions within mammalian cerebral cortex
(Cherniak et al., 2004) suggested that cortical regions are placed such
that connection lengths between them are minimized.

Cortical folding contributes to conserving wiring length.’> Van Essen
(1997) suggested that the compactness of cortical wiring may be due to
physical tension along developing axonal pathways and the consequent
folding of the cortical surface (see figure 7.3). Such a process of tension-
based morphogenesis would naturally promote short wiring lengths and
small conduction delays. In cat and macaque cortex, local connections
between brain areas are denser within gyri than across sulci (Scannell,
1997), a finding that is consistent with the tension-based folding model.
Further support for a significant role of physical forces, such as tension
exerted by corticocortical connections in the folding of the cortex, was
provided by Hilgetag and Barbas (2005; 2006). Axonal tension should
result in projections that are predominantly straight rather than curved,
and a quantitative analysis of corticocortical pathways in macaque pre-
frontal cortex provides support for this hypothesis. Folding was found to
have differential effects on the cellular architecture of cortex that is
folded inward or outward, influencing cell density and the spatial layout
of cortical columns. Hence, the effects of folding far exceed wiring opti-
mization. Instead, it appears that mechanophysical forces operating
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Figure 7.3

Tension-mediated folding of the cerebral cortex. (A) At early developmental stages, newly
differentiated neurons emit axons. (B) Axons reach target structures, and the formation of
axonal pathways results in the onset of tensile forces that pull strongly interconnected
regions closer together. (C) Outward folds begin to appear, separating more strongly con-
nected regions. Simplified and redrawn after Van Essen (1997).

within growing brain tissue can have profound effects on several key
aspects of brain connectivity. The mechanics of cortical folding may
introduce variations in the way cortical tissue responds to or processes
information. As discussed earlier (see chapter 4), cortical folding pat-
terns are variable across individuals, even between monozygotic twins.
Among healthy adults, larger brains are more highly folded, possibly as
a result of increased axonal tension during development (Im et al.,
2008).5 Disturbances of cortical folding may be associated with brain
diseases such as schizophrenia and autism that exhibit disorganized
structural and functional connectivity (see chapter 10). Brain shape and
brain function are once again revealed to be interdependent.
Intuitively, if wiring volume or length were the only factor according
to which neural connectivity is optimized, then the existence and, in
many cases, evolutionary elaboration of long-range projections between
distant cortical regions is hard to explain. An optimally short wiring
pattern would look like a two-dimensional grid or lattice, with connec-
tions that link only neighboring nodes. This point was examined in more
detail by Kaiser and Hilgetag (2006), who reanalyzed optimal spatial
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arrangements for several brain connectivity data sets including C. elegans
(see above) and mammalian cortex by taking into account metric dis-
tances between neurons or areas. Remarkably, these networks could be
spatially rearranged such that the total cost of wiring decreased by more
than 30 percent, due to the existence of “nonoptimal” long-distance con-
nections in the primate cerebrum (see figure 7.4). These long-distance
connections are essential for keeping path lengths between pairs of corti-
cal regions short and, thus, for enabling efficient information flow within
the network. In fact, networks that minimize wiring cost but lack any
long-distance connections showed significantly increased path lengths,

i
E; «oss @ original [} optimized ««««« é 800
4 ? &
8 g s : " _§ 600
0 o —_ 3% : @Q -
£ £ x10°. : 2=
g5 £ B0r ¢ : s @
£ 2 = : £ € 400
3 = H =]
Q9 £ : 3 8
Jo =5 = * o E
O E c o8
3 2 200
2 E N
2 s E of :
O o 20 40 60 ® a o 20 40 60
~ S o
= ~
Approximated projection tength [mm] Approximated projection length fmm]
B x103 [ original [} minimal
E g 3
£ 50+ 2 L
= o
240 % ol
2 a
230+ g L
£ §
S 20+ L
5 <
e 10- -
o~ Ok
Macaque Macaque

Figure 7.4

Wiring cost in macaque cortex. (A) Projection length before and after component place-
ment optimization. The “original” distribution was derived by determining Euclidean dis-
tances between all pairs of connected regions. The “optimized” distribution was derived
from an optimal “wire-saving” rearrangement of cortical regions determined by a simu-
lated annealing optimization algorithm. Optimal placement of regions reduced wiring cost
by an additional 32 percent over the original pattern, predominantly by eliminating long-
distance pathways. (B) Wiring length and path length in minimally rewired macaque cortex.
Rewiring was carried out by preferentially connecting neighboring regions without chang-
ing the overall density of connections. Minimizing wiring cost comes at the expense of an
increase in path length. Modified and reproduced from Kaiser and Hilgetag (2006).
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indicative of an increased number of processing steps. Kaiser and
Hilgetag concluded that optimal wiring length alone cannot account for
the observed wiring patterns—instead, the topology of structural brain
connectivity appears to be shaped by several different factors, including
wiring as well as path length.

Thus, a cortical architecture with short path length (or high efficiency;
see below) may confer a selective advantage to the organism. A drive
toward maintaining short path length may partly explain the appearance
and expansion of long-range fiber pathways in evolution. One such
pathway, the arcuate fasciculus, is a prominent fiber tract in the human
brain and links cortical regions in the temporal and lateral frontal cortex
involved in language (see figure 7.5). Rilling et al. (2008) compared the

macaque

human

Figure 7.5

Evolution of a long-distance fiber pathway, the arcuate fasciculus. The image at the left
shows an anatomical preparation exposing the arcuate fasciculus in the left cerebral hemi-
sphere of the human brain (image courtesy of the Digital Anatomist Project, Department
of Biological Structure, at the University of Washington). Sketches at right show a sche-
matic summary of the connectivity of the arcuate fasciculus in three primate species,
obtained by diffusion imaging and tractography. Note the expansion of the tract and the
appearance of new links between the frontal and temporal cortices in humans. Modified
and reproduced from Rilling et al.,, 2008, with permission.
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anatomy of this tract in postmortem brains of several primate species,
imaged with diffusion MRI. The tract is significantly smaller and differ-
ently organized in the cortex of nonhuman primates compared to the
cortex of humans. Rilling et al. suggested that the elaboration and modi-
fication of the arcuate fasciculus, together with the increased differentia-
tion of connected cortical regions, represents a structural substrate for
the evolution of human language. The selective evolutionary expansion
of the arcuate fasciculus is interpreted as evidence against the notion
that language arose as an incidental by-product of brain-size enlarge-
ment. Viewed from the perspective of network topology, selective pres-
sure on maintaining functional integration and efficient information flow
in a larger brain may also have contributed to the evolutionary expan-
sion of the arcuate fasciculus. This expansion led to the emergence of a
new structural network that became available for functional recruitment
by communication and language.

Efficient Information Flow

Network-wide communication and functional integration are facilitated
by short path lengths (see chapter 2). This aspect of the topology of
structural brain networks has been quantified as “brain efficiency.” Effi-
ciency as a network measure was first introduced by Latora and
Marchiori (2001; see chapter 2) to express the capacity of networks to
facilitate information exchange. The efficiency with which two nodes
communicate was defined to be inversely proportional to the shortest
distance between these nodes. The global efficiency of the network is the
average of the efficiency over all pairs, including disconnected pairs (see
chapter 2). Local efficiency is a nodal measure of the average efficiency
within a local subgraph or neighborhood. While global efficiency is
related to the path length, local efficiency is related to the clustering
coefficient. Latora and Marchiori suggested that local and global effi-
ciency characterize a network in terms of its ability to support parallel
information transfer. Small-world topology is closely associated with
high global and local efficiency, often achieved with sparse connectivity
at low connection cost (Latora and Marchiori, 2003).

Latora and Marchiori (2001; 2003) provided a range of examples of
real-world networks with high global and local efficiency. Among these
were several neuronal networks, including those of C. elegans, cat cortex,
and macaque monkey cortex. In all cases, the topology of structural brain
networks exhibited high global and high local efficiency, consistent with
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their small-world architecture (see chapter 6). Latora and Marchiori
noted that the coexistence of high local and high global efficiency allows
the network to balance localized processing, fault tolerance, and large-
scale functional integration. Human brain networks also enable highly
efficient parallel information flow. Achard and Bullmore (2007) applied
efficiency to functional brain networks acquired with fMRI during cogni-
tive rest (see chapter 8) and showed that such networks exhibited small-
world properties with globally and locally efficient information flow. This
high efficiency could be achieved at relatively low cost, where cost was
defined as the number of edges in the network. Other studies have since
confirmed that small-world topology of brain networks is associated with
high efficiency of information flow.

Neuronal synchrony is thought to play an important role in informa-
tion flow and system-wide coordinative processes. The two main cellular
components of mammalian cortex, excitatory principal cells and inhibi-
tory interneurons, jointly account for much of the computational capac-
ity of the network and its ability to form synchronized assemblies. Gyorgy
Buzséki and colleagues have argued that this computational capacity is
enhanced by the great morphological and physiological diversity of corti-
calinterneurons (Buzsiki et al.,2004). This diversity of network elements
counteracts opposing demands on the size and connection density of the
network, thus achieving a compromise between computational needs
and wiring economy. Computational models show that long-range con-
nections are crucial for producing network-wide synchronization, but
their addition to the network increases the wiring cost. An efficiency
function that trades off increases in synchronization with increases in
wiring defines an optimal range within which global synchrony can be
achieved with the addition of a modest number of long-range connec-
tions. Within this optimal range, the network exhibits a small-world archi-
tecture characterized by high clustering and short path length.

Robustness and Evolvability

If the brain were a system composed of billions of independent variables,
its very existence would be a mystery, since a system of such complexity
could hardly have evolved through the slow and gradual accumulation
of heritable variation. In a more general sense, the problem of how
complex biological organization can evolve applies to all organisms, and
it has puzzled evolutionary theorists since Darwin. More recently, the
issue has been reframed as “evolvability” or evolutionary adaptability,
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the capacity to generate heritable, selectable phenotypic variation
(Kirschner and Gerhart,1998;2005). This capacity is not simply accounted
for by random mutations, because it matters how such mutations are
translated into variable phenotypes. Evolvability is compromised if most
mutations result in lethality or seriously disrupt the functioning of the
organism. Thus, a degree of robustness is highly desirable, such that the
phenotypic effects of most random mutations are neutralized or at least
reduced. At first glance, robustness appears to limit the evolvability of a
system by reducing the number of genetic variations that are phenotypi-
cally expressed and upon which natural selection can act. However,
neutral mutations can also promote evolutionary innovation (Wagner,
2005) by creating a set of systems that vary in their genetic makeup yet
function equally well. This pool of stable variants can become useful if
novel external challenges are encountered that turn the hidden reservoir
of genetic variability into adaptations. In summary, “robustness implies
that many mutations are neutral and such neutrality fosters innovation”
(Wagner, 2005, p. 1773).

Robustness and evolvability are supported by the modular organiza-
tion of biological systems, found everywhere from gene and protein
networks to complex processes of embryonic development (Raff, 1996;
Wagner et al., 2007). Modularity promotes robustness by isolating the
effects of local mutations or perturbations and thus allowing modules to
evolve somewhat independently. Networks of dependencies between
system elements reduce the dimensionality of the global phenotypic
space and effectively uncouple clusters of highly interacting elements
from each other. Modularity itself should therefore offer an evolutionary
advantage and thus affect evolvability. The mechanisms by which the
modularity of biological systems may have arisen are a matter of much
debate (Wagner et al., 2007). Modularity may have evolved along two
routes, by integration of smaller elements into larger clusters or by par-
cellation of larger systems into segregated smaller ones (Wagner and
Altenberg, 1996).

The dissociability (or “near decomposability”; see chapter 13) of bio-
logical systems extends to the brain’s small-world architecture. Whether
the modular organization of the brain has supported its evolvability is
unknown and would depend in part on whether phenotypic characteris-
tics of individual modules, or regions within modules, are shown to be
under the control of locally expressed genes. In support of this notion, a
recent analysis of regional gene expression patterns during human brain
development revealed a high percentage of genes that were expressed
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in a regionally specific pattern (Johnson et al., 2009). Individual brain
regions were found to express partially segregated sets or modules of
coregulated genes. An intriguing possibility is that modular gene tran-
scription supports the independent evolution of regional phenotypes and
thus forms a substrate for functional innovation. Structural brain con-
nectivity may support this process by helping to coordinate gene expres-
sion patterns among remote locations in the brain through generating
dynamic correlations.

Models of evolutionary processes suggest that modular processing
emerges in the presence of a highly variable environment (Lipson et al.,
2002). This modularization is also observed in more complex models of
evolving networks exposed to an environment posing variable goals or
challenges (Kashtan and Alon, 2005). If these varying goals contained
common subgoals, networks evolved modular structure where the indi-
vidual modules become specialized for these subgoals. However, if
varying goals do not have common subgoals, networks fail to evolve
modularity. These models suggest that network modules become special-
ized for recurrent task demands of the environment. In addition to
allowing efficient processing and conferring a degree of robustness in
evolution, brain network modularity has a deep impact on the relation
of network structure to network dynamics, a topic we will more thor-
oughly explore in coming chapters (chapters 8, 9, 12, and 13). Among
these dynamic effects of modularity is a tendency toward increased
dynamic stability as shown by Variano et al. (2004). Networks optimized
for dynamic stability (within a linear systems framework) were found to
exhibit hierarchical modularity, a structural feature that rendered their
dynamics both stable and robust against structural mutations. Other
dynamic effects of modularity include limiting the spread of perturba-
tions between modules and shaping the pattern of dynamic dependencies
and synchronization (see chapter 12).

Brain Size and Scaling Laws

Size is of fundamental importance to the organization of all living organ-
isms (Bonner, 2006). Size has a major impact on the shape and form of
the organism’s body and on the way in which the organism interacts with
its environment. Size also plays a major role in the anatomical arrange-
ment and connectivity of the brain (Striedter, 2005). Many of the varia-
tions in brain structure and connectivity that are observed across species
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can be explained on the basis of variations in size. The absolute size of
a nervous system has straightforward effects on the total number of
neurons and the fraction of brain volume the neurons occupy as well as
on their regional density and patterns of connectivity. If a given brain is
scaled up or down in size, the physical embedding of the brain requires
corresponding changes in its anatomical connection patterns. It is impos-
sible to change the physical dimensions of a nervous system without also
changing its connection topology. Therefore, evolutionary changes that
affect the size, as well as the general morphology, of an organism’s body
have inevitable consequences for the connectional organization of its
nervous system.

Comparative analyses of morphological variables recorded across
numerous extant species have revealed a number of stable and robust
scaling relationships, relating the sizes and shapes of anatomical struc-
tures.” In most cases, these scaling relationships are not isometric but
allometric. Isometry implies that a change in the size of an organism does
not alter the proportional sizes of its components and hence does not
change its shape and form. Allometry, instead, is found when a change
in body size results in proportionally larger or smaller component struc-
tures. Many physiological and metabolic processes, as well as morpho-
logical features,scale allometrically with body size, and it has been known
since the nineteenth century that the brain is no exception. The exact
shape of the relationship of body-brain allometry depends on the taxo-
nomic groups that are included in the analysis (e.g., Jerison, 1973; Gould,
1975), but an allometric (not isometric) relationship is obtained in virtu-
ally all cases.

Allometric scaling has a significant impact on the connectional orga-
nization of the brain. This is most readily seen when one considers the
effect of an increase in the absolute size of a brain on its internal con-
nectivity (see figure 7.6). Deacon (1990) contrasted two scenarios result-
ing from an increase in the number of neural elements, which we term
“proportional” and “absolute” connectivity (following Striedter, 2005).
Proportional connectivity ensures that all neural elements remain
directly linked to one another, and the number of axons thus scales
exponentially with the number of neurons. In the case of absolute con-
nectivity, the same number of axons per neural element is maintained.
It is immediately obvious that absolute connectivity is much more eco-
nomical with regard to the number and lengths of axonal wires but that
it poses some constraints on network topology if global coherence of the
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Network allometry and two models for scaling of connectivity. In both cases, network size
increases from 4 to 8 to 16 nodes. If networks maintain “proportional connectivity” (top),
the number of axons (and the wiring cost) rises exponentially. If networks maintain “abso-
lute connectivity” (bottom), the number of axons increases linearly. Modified and redrawn
after similar diagrams in Deacon (1990), Ringo (1991), and Striedter (2005).

network is to be maintained. Naturally, what emerges is a form of small-
world connectivity, a combination of local clustering and interconnecting
bridges and hubs.

Available data on scaling relations between neuron number and
density, brain size, and relative proportions of gray and white matter
support the notion that brains maintain absolute connectivity as their
sizes change. As mammalian brain size increases over four orders of
magnitude from mouse to elephant, neuronal density decreases by a
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factor of 10, which indicates that the increase in brain size is associated
with an increase in the total number of neurons. Neocortical gray matter
and white matter exhibit an allometric relationship but do not scale with
an exponent close to 2 as would be expected if proportional connectivity
were maintained. Instead, white matter only increases with an exponent
of =4/3, much closer to the expected value for absolute connectivity.
Zhang and Sejnowski (2000) have argued that this empirical power law
can be explained as a necessary consequence of the basic uniformity of
the neocortex and the need to conserve wiring volume (see figure 7.7).
Evolutionary changes in the absolute size of the brain, including the
neocortex, thus result in progressively less dense connectivity and
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Scaling relationship between neocortical gray and white matter volume. Data from 59
mammalian species were assembled by Zhang and Sejnowski (2000). While white and gray
matter volumes range over five orders of magnitude, the ratio of white to gray matter
volumes varies over only one order of magnitude, resulting in a power law with an approxi-
mate exponent of 1.23, or 4/3 after a correction for cortical thickness is taken into account.
Reproduced from Zhang and Sejnowski (2000) with permission.
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increased modularity (Stevens, 1989). Stated differently, sparse connec-
tivity and modularity are inevitable outcomes of increases in brain size.
Brain architecture cannot sustain boundless increases in size, as long
conduction delays soon begin to offset any computational gains achieved
by greater numbers of neurons (Ringo, 1991). Larger brains are also
naturally driven toward greater functional specialization as it becomes
necessary to limit most connectivity to local communities while ensuring
their global functional integration. One way in which evolution can
create larger brains, or larger structures within brains, is by manipulating
timing in neural development, with structures that develop over a more
extended time and mature later becoming larger in size (Finlay and
Darlington, 1995). Evolutionary changes of developmental mechanisms
thus become a powerful force that shapes network topology. The tight
limits imposed by allometric scaling laws on the density of axonal con-
nections in large brains or large brain structures may put significant
selectional pressure on additional features of connectivity that promote
the brain’s functional coherence. Hence, small-world architectures may
thus be partly the result of the evolutionary emergence of larger organ-
isms with larger brains.

What Drives the Evolution of Brain Connectivity?

This brief survey of the many factors that shape the evolution of brain
morphology has raised more questions than it has been able to answer.
Nevertheless, one conclusion is apparent: the intricacies and interdepen-
dencies of evolutionary and developmental mechanisms render it highly
unlikely that brain connectivity has been “optimized” for any single
structural or functional measure. The architecture of brain networks
combines low wiring cost, high computational power, efficient informa-
tion flow, and (as I will discuss in more detail in chapter 13) high neural
complexity. Taken together, these factors reconcile the constraints of
brain economy, eloquently expressed by Cajal, with the demands of
efficiency in communication and information flow. It is likely that the
optimization of any single factor would result in an undesirable decre-
ment of one or more of the other factors. For example, minimization of
wiring cost alone tends to eliminate long-range pathways that are vital
for global information exchange, while optimization of information pro-
cessing requires a prohibitive increase in the number of neural elements
and interconnections. A corollary of this idea is that brain connectivity
represents a viable compromise of economy and efficiency.
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It is tempting to interpret the brain’s economical wiring or efficient
information flow as adaptations that have been selected for and opti-
mized in the course of evolution.® For example, the notion of wiring
optimization implies that low wiring cost represents an adaptive trait of
brain anatomy and that phenotypic variants whose brains were subopti-
mal with regard to wiring cost have been selected against. However,
wiring economy also partially correlates with dynamic and functional
characteristics, as well as with scaling relationships between body size
and gray and white matter volume. Furthermore, wiring patterns are
partly controlled by physical forces such as axonal tension that leads to
the prominent folding pattern of the cerebral cortex. This raises the ques-
tion of whether some of what we see in the wiring patterns of structural
brain networks is the result of physical forces rather than the outcome
of natural selection. The realization that not every observable phenotypic
trait is the result of adaptation has led to sharp disagreements among
evolutionary theorists.” This ongoing controversy suggests that any char-
acterization of complex brain networks as “optimally adapted” or “maxi-
mally efficient” should be viewed with an abundance of caution. Optimal
design is incompatible with the fact that evolutionary mechanisms cannot
anticipate functional outcomes before they are realized as part of a living
form and then become subject to variation and selection. It is therefore
problematic to argue that observations about the structural economy or
functional efficiency of extant brain networks are the outcome of a
process of optimal design. This mode of explaining brain network topol-
ogy in terms of a final cause (efficiency, optimality) is reminiscent of
teleology, an idea that has had a difficult time in the history of biology.

Brain structure, including the topology of brain networks, is part of an
organism’s phenotype. Currently existing animal forms occupy only part
of a large phenotypic space of possible forms, most of which have not
and will not be realized. Extending this argument, currently existing
nervous systems only occupy a small subspace within the much larger
space of all possible, physically realizable, phenotypic arrangements of
cells and connections. Given the vast number of combinatorial possibili-
ties, it seems likely that there are regions of phenotypic space with brain
connectivity that is more economical and more efficient than the con-
nectivity of all extant species, including humans. These regions may have
been missed by historical accident, or they may be unreachable because
these brains cannot be built with the available toolkit of developmental
biology—we just cannot “get there from here.” Developmental processes
are crucial for determining which regions of phenotypic space can be
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accessed given the genetic makeup of an organism and its lineage. The
brain’s niche in this space is partly determined by the development and
evolution of the rest of the body. The appearance or modification of new
body structures has a profound impact on brain architecture and will
often be accompanied by structural changes in brain networks. These
linkages and cross-dependencies make it highly unlikely that we find
ourselves on a path toward anything resembling optimality. This is not
to say that brain networks do not make economical use of limited bodily
resources or are not efficiently integrating information, but we have no
way of knowing if they do so optimally. Fortunately, the fundamental
demands of wiring economy and processing efficiency can be reconciled.
Had they turned out to be incompatible, I would not be writing this
sentence and you would not be reading it.
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A main function of the neural cell is of course to transmit excitations, and earlier
ideas of anatomy and physiology made the central nervous system appear, in
principle, a collection of routes, some longer, some shorter, leading without
reversal from receptors to effectors—a mass of conductors that lies inactive until
a sense organ is excited, and then conducts the excitation promptly to some
muscle or gland. We know now that this is not so. [...] Electrophysiology of the
central nervous system indicates in brief that the brain is continuously active, in
all its parts, and an afferent excitation must be superimposed on an already
existent excitation. It is therefore impossible that the consequence of a sensory
event should often be uninfluenced by the existing activity.'

—Donald Hebb, 1949

At the outset of his seminal book The Organization of Behavior, Donald
Hebb framed this discussion of “existing activity” in the central nervous
system in terms of the psychological problems of attention and set, and
he pointed to mounting neurophysiological evidence, gathered from
EEG and cellular recordings, for spontaneous brain activity in the
absence of afferent stimulation. Today, the existence of spontaneous or
endogenous neural activity has been demonstrated in many systems and
with a broad array of methodological tools, and yet its importance for
the functioning of the brain is only beginning to be grasped (Buzsaki,
2006). One way to characterize brain function is to focus entirely on the
brain’s responses to well-defined environmental stimuli. This “reflexive
mode” of brain function largely neglects or disregards the existence of
endogenous patterns of activation that are not directly attributable to
external stimulation. Instead, this theoretical framework treats the brain
as a system in which the essential neural process is the transformation
of inputs into outputs. Endogenous patterns of neural activity do not
participate, except as a source of “noise” that must be overcome by
purposeful activation. Until now, much of the interest in theoretical
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neuroscience has focused on stimulus-driven or task-related computa-
tion, and considerably less attention has been given to the brain as a
dynamic, spontaneously active, and recurrently connected system (e.g.,
Vogels et al., 2005; Raichle, 2010).

The previous four chapters (chapters 4-7) have focused on structural
brain networks, the physical wiring patterns traditionally described by
neuroanatomy, particularly those found in the mammalian cerebrum.
Even cursory examination of structural brain connectivity reveals that
the basic plan is incompatible with a model based on predominantly
feedforward processing within a uniquely specified serial hierarchy.
Whether considering individual neurons or entire brain regions, one
finds that the vast majority of the structural connections that are made
and received among network elements cannot be definitively associated
with either input or output. Rather, they connect nodes in complex and
often recurrent patterns (Lorente de Né’s “synaptic chains”). Even in
regions of the brain such as primary visual cortex that are classified as
“sensory,” most synapses received by pyramidal neurons arrive from
other cortical neurons and only a small percentage (5 percent to 20
percent) can be attributed to sensory input (Douglas et al., 1995).? Corti-
cal areas that are farther removed from direct sensory input are coupled
to one another via numerous mono- and polysynaptic reciprocal path-
ways. This prevalence of recurrent anatomical connections suggests that
models which focus exclusively on feedforward processing in a silent
brain are likely to capture only one aspect of the anatomical and physi-
ological reality.®> As will be discussed in more detail in chapter 9, recur-
rent or reentrant processes make an important contribution to the
shaping of brain responses and to the creation of coordinated global
states. This coordination is essential for the efficient integration of mul-
tiple sources of information and the generation of coherent behavioral
responses. In addition to recurrent processing induced by external per-
turbations, anatomical recurrence also facilitates the emergence of
endogenous, spontaneous dynamics. These dynamics are more accu-
rately captured as series of transitions between marginally stable attrac-
tors, as sequences of dynamic transients rather than stable states (see
chapter 12).

The next four chapters address the patterns of dynamic network inter-
actions that emerge from the brain’s physical wiring, as a result of spon-
taneous activity (chapter 8) or in response to stimuli and perturbations
(chapter 9), and how these interactions are affected by physical injury
or disease (chapter 10) or shaped by growth and plasticity (chapter 11).
Dynamic interactions between large populations of neurons are an
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essential ingredient for relating neural activity to cognition and behavior.
These dynamic interactions can be estimated with a broad range of
measures that capture the association between neural time series data
or model its causal origins, resulting in functional or effective brain con-
nectivity (see chapter 3). Analysis of functional connectivity measured
during spontaneous activity reveals characteristic patterns at multiple
spatial and temporal scales. Empirical and modeling studies demonstrate
that the spatial and temporal patterning of endogenous brain activity
reflects the structure of the underlying anatomical brain network and
exhibits characteristic topology consisting of functional modules linked
by hub regions. The existence of spontaneous patterns of neural activity
raises the question of their relevance for task-oriented processing. We
will explore the possibility that spontaneously generated network states
form an internal functional repertoire. The observation and modeling of
endogenous or spontaneous brain activity provide a unique window on
patterns of self-organized brain dynamics—an intrinsic mode of neural
processing that may have a central role in cognition.

Spontaneous Activity in Cellular Networks

Nervous systems do not depend on external input to provide represen-
tational content but instead rely on such inputs for context and modula-
tion. This view of brain function, as articulated by Rodolfo Llin4s, implies
that “the significance of sensory cues is expressed mainly by their incor-
poration into larger, cognitive states or entities. In other words, sensory
cues earn representation via their impact upon the pre-existing func-
tional disposition of the brain” (Llinds, 2001, p. 8). In order for the brain
to achieve this degree of autonomy, neurons must be capable of sponta-
neous discharge—for example, through intrinsic oscillatory electrical
properties. Numerous types of central nerve cells are indeed capable of
producing spontaneous rhythmic variations in their membrane potential
across a wide range of frequencies (Llinds, 1988). Mutual coupling
through synaptic connections promotes phase synchrony and coherence,
resulting in synchronized groups of cells that are joined together to
create large-scale functional connectivity. According to Llinds, intrinsic
electrical properties and functional coupling are the two essential ingre-
dients that enable spontaneous and stimulus-independent neural
activity.!

In nearly all instances where it has been empirically observed, spon-
taneous neuronal firing exhibits characteristic spatiotemporal structure.
Spontaneous neural activity therefore is not stochastic “noise” but rather
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is organized into precise patterns. For example, numerous studies have
shown that populations of cortical neurons coordinate their spontaneous
activity, presumably via their anatomical interconnections, and exhibit
characteristic correlation patterns. Neurons in mouse visual cortex are
found to be spontaneously active and show synchronization as well as
repeating patterns of sequential activation within distinct cellular net-
works (Mao et al., 2001). Pharmacological blocking of excitatory neuro-
transmission abolishes network synchronization, while some neurons
maintain their ability to engage in spontaneous firing. This suggests that
spontaneous cortical activity is shaped by two components, the intrinsic
electrical properties of “autonomous” neurons and the spreading and
synchronization of neural activity via excitatory connections. The impor-
tant role of recurrent connectivity in shaping spontaneous as well as
evoked cortical responses has since been confirmed in additional studies.
For example, MacLean et al. (2005) found that thalamic input triggered
patterns of cortical response that were strikingly similar to those seen
during spontaneous cortical activity, suggesting that the role of sensory
input is to “awaken” cortex rather than impose specific firing patterns
(see figure 8.1). This observation has far-reaching implications for models
of cortical information processing to which we will return in later
chapters.

One consequence of spontaneous dynamic interactions is the corre-
lated transition of populations of cortical neurons between a more qui-
escent (DOWN) and a more depolarized (UP) state (Steriade et al., 1993;
Sanchez-Vives and McCormick, 2000), characterized by two different
levels of the subthreshold membrane potential. The responsiveness of
the cortex to sensory stimuli is generally decreased during DOWN states
and increased during UP states.’ Synchronized UP states occur in popu-
lations of cortical neurons in virtually all regions of the cerebral cortex,
and they represent spatially organized “preferred network states” that
are dynamically stable and persist on a time scale far longer than that of
feedforward sensory processing (Cossart et al., 2003). These self-main-
tained depolarized network states are likely constrained by recurrent
intracortical structural connections. In vivo recordings of populations of
cells in rat neocortex demonstrated that transitions of cortical neurons
to coordinated UP states result in sequential firing patterns that are
stereotypically organized (Luczak et al., 2007). Dynamic patterns trig-
gered after transition to an UP state are shaped by cellular physiology
and anatomical connections that link populations of neurons. Impor-
tantly, these sequential patterns can unfold in the absence of sensory
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Figure 8.1

Overlap between spontaneous and evoked activity in mouse somatosensory cortex.
(A) Image of somatosensory cortex slice preparation indicating the location of recordings
shown in subsequent panels (square box), overlaying layer 4 of cortex. (B) Single frame
of layer 4 cortical neurons stained with a fluorescent voltage-sensitive calcium dye. Cell
bodies of neurons are brightly stained and are drawn as small circles in the following plots.
(C) Activity of imaged neurons illustrating network patterns that arise in response to
thalamic stimulation (left, “triggered™) or spontaneously (middle, “spontaneous”) and their
mutual overlap (right, “overlap”). Note that repeated activation, either through stimulation
or spontaneously, generates patterns that exhibit significant similarity (bottom), with a
number of “core neurons” that are consistently activated during both spontaneous and
evoked activity. Images are modified and reproduced from MacLean et al. (2005) with
permission.

input and on time scales of hundreds of milliseconds. Luczak et al. (2009)
suggested that population spike patterns form a constrained space, a
“vocabulary” or repertoire of dynamic states that is widely explored
during spontaneous activity and more narrowly subsampled by sensory
responses.

Several network models have attempted to shed light on the mecha-
nisms by which coordinated UP states arise or terminate. For example,
Compte et al. (2003) created a detailed biophysical model of 1,024 pyra-
midal cells and 256 interneurons that reproduced slow oscillations
between episodes of sustained low-rate neural activity and periods of
silence (UP and DOWN states, respectively). The model suggested that
the synchronized UP state is sustained by local excitatory recurrent con-
nections. A multilayer model of several interconnected cortical and tha-
lamic regions consisting of 65,000 neurons linked by several million
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synaptic connections also reproduced spontaneous slow oscillatory activ-
ity patterns that were synchronized through corticocortical connections
(Hill and Tononi, 2005). Spontaneous activity patterns and responses to
sensory stimuli resembled those seen in experimental studies and,
through modeled effects of neuromodulators, the system was able to
reproduce the transition of cortical dynamics from wakefulness to sleep.

Relationships between structural connections and patterns of dynamic
network correlations are difficult to observe directly at the level of indi-
vidual cells and synapses, in part because anatomical connections are not
easily traced within most preparations. Nevertheless, the stereotypical
nature of spontaneous cortical activity (MacLean et al., 2005) strongly
suggests the idea that preferred network states are sculpted by a back-
bone of intracortical connections. Interestingly, MacLean et al. identified
a set of “core neurons” that participated in many separate instances of
spontaneous or stimulus-evoked activations (see figure 8.1). These core
neurons may represent a separate functional class with distinctive physi-
ological properties that is highly influential in shaping dynamics due to
their structural embedding within the cellular network.®

Several studies of ongoing neuronal activity have attempted to relate
spontaneous activity patterns to the known functional architecture of
sensory cortex. In vivo spontaneous activity of cortical neurons has been
investigated with a wide array of techniques, including EEG, optical
imaging with voltage-sensitive dyes, and recording of single neuron or
population activity. The spatiotemporal organization of spontaneous
activity closely resembled firing patterns seen during stimulus-evoked or
task-related activation. A series of studies by Amos Arieli and coworkers
using voltage-sensitive dye imaging of cat primary visual cortex revealed
that spontaneous activity consists of a series of dynamically switching
cortical states that correspond to cortical representations of visual ori-
entations (Arieli et al., 1995; 1996; Kenet et al., 2003; see figure 8.2).
Patterns of spontaneous activity recorded with voltage-sensitive dyes are
correlated with the ongoing discharge of simultaneously recorded single
cortical neurons (Tsodyks et al, 1999). Their resemblance to stimulus-
evoked orientation maps strongly suggests that spontaneous dynamic
patterns are shaped by intracortical structural networks that define ori-
entation columns. Arieli and coworkers put forward the idea that these
intrinsic cortical states, constrained by the network architecture, serve as
an internal context for sensory processing or reflect a set of expectations
about probable patterns of sensory input from the environment.
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Figure 8.2

Spontaneous and evoked orientation-selective responses in visual cortex. The images are
taken from optical recordings of neural activity in area 18 of the cat. (A) The panel shows
a map of neural responses, acquired during the presentation of visual stimuli consisting of
oriented gratings, obtained by averaging 165 image frames. Panel (B) shows a single frame
obtained during a spontaneous recording session (no visual stimulus was presented). Panel
(C) shows a single frame recorded during the presentation of a grating with vertical ori-
entation. Note the similarity between all three panels, particularly the spontaneous and
evoked response patterns in (B) and (C). Reproduced from Kenet et al. (2003) with
permission.

While the experiments of Kenet et al. were carried out in anesthetized
animals, observations in the visual cortex of the alert ferret provide
additional support for the idea that spontaneous cortical activity exhibits
patterns that resemble those seen during visual stimulation (Fiser et al.,
2004). In fact, Fiser et al. (2004) noted that the correlation structure of
spontaneous neural firing was only weakly modified by visual stimula-
tion. Ongoing fluctuations in neural activity in the absence of visual input
also occur in the primate visual cortex (Leopold et al., 2003). Coherent
slow fluctuations in local field power were found to occur independently
of behavioral context, including during task states and rest. Consistent
with these experiments, functional neuroimaging studies of human visual
cortex showed spontaneous slow fluctuations of the BOLD signal in the
absence of visual stimuli (Nir et al., 2006) that were spatially correlated
and exhibited characteristic neuroanatomical distributions. Once visual
input was provided, these fluctuations were replaced by spatially less
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coherent and input- or task-specific patterns of functional connectivity.
Thus, transitions between rest and task state were associated with changes
in the spatial pattern of functional connectivity rather than with the
presence or absence of neural activity (see chapter 9).

Whatall these observations have in common is that they reveal cortex
as spontaneously active, with ongoing fluctuations that exhibit character-
istic spatiotemporal patterns shaped by recurrent structural connectiv-
ity.” The complex dynamics and rich patterning of spontaneous network
activity at the cellular scale is a remarkable example of how anatomy
and cellular physiology can combine to generate a set of dynamic network
states in the absence of external input or stimulus-evoked cognitive
processing. Sensory inputs “awaken” or modulate intrinsic cortical
dynamics rather than instruct central brain activity or transfer specific
information that is then processed in a feedforward manner. Many open
questions remain. The effect of extrinsic inputs on intrinsic network
states is still incompletely understood, and several current studies suggest
a nonlinear interaction, in particular in relation to UP or DOWN states,
rather than linear superposition. So far, most of the dynamic structure
of ongoing neural activity has been demonstrated within local patches
of cortex—how much additional structure exists between cells separated
by greater distances or located in different cortical regions is still
unknown. The anatomical and physiological factors that govern the slow
temporal dynamics of coordinated transitions between UP and DOWN
states in cortical neurons require further study. The topology of cellular
cortical networks remains largely uncharted as network analysis tech-
niques have yet to be widely applied in this experimental domain. How
UP/DOWN states relate to fluctuations of neural activity measures in
EEG/MEG or fMRI is yet to be determined. Finally, the possible rela-
tionship of spontaneous cortical activity with sequences of cognitive
or mental states of the organism urgently awaits further empirical
investigation.

Most of these studies on spontaneous activity in cellular networks
have been obtained from neurons in visual cortex, a part of the brain
that would be expected to be largely inactive at rest under a feedforward,
reflexive model of neural processing. Recent work in cognitive neurosci-
ence has provided evidence that spontaneous, ongoing cortical activity
is not restricted to sensory areas—instead, observations of large-scale
patterns of functional connectivity suggest that such patterns are wide-
spread, involve the whole brain, and are shaped by structural brain
networks.
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Functional Networks in the Resting State

Functional connectivity can be observed with a large number of neural
recording techniques, noninvasively and over several time scales (see
chapter 3). Spontaneous activity during quiet waking can be noninva-
sively recorded from the human brain with functional neuroimaging
(fMRI) and electrophysiological and magnetoencephalographic tech-
niques (EEG, MEG). While these techniques differ in their spatial and
temporal resolution, sensitivity, and signal origin, they reveal functional
networks that show a number of consistent topological features. We will
first turn to the topology of functional networks of spontaneous brain
activity obtained with fMRIL.

Most classical neuroimaging studies employ a subtractive methodol-
ogy to identify brain regions that are differentially activated in the
context of specific cognitive tasks. The subtractive paradigm has deliv-
ered many important insights into localized neural substrates of cogni-
tion. It is based on the assumption that task-specific neural activity can
be identified by comparing the task state to a suitable control state, an
approach that traces its origins to Donders’s mental chronometry. Cog-
nitive subtraction presupposes that the neural correlates of different
components of a cognitive task do not show significant interactions
(the hypothesis of “pure insertion”), thus rendering them amenable to
subtractive analysis. This view has been challenged, and alternative
approaches to the mapping of cognitive anatomy have been suggested
(Friston et al., 1996), for example, the use of experimental designs that
probe for significant interactions among cortical regions. Further impor-
tant developments include the application of modeling tools to go beyond
descriptive approaches to brain mapping and answer mechanistic ques-
tions about how observed patterns of regional activation and coactiva-
tion are generated (see chapters 3 and 9).

However, neural correlates of cognition are not limited to the appear-
ance of task-related activations. Particularly puzzling from the perspec-
tive of classical subtractive studies was the observation that, compared
with a passive control condition such as visual fixation, activity in a par-
ticular set of brain regions showed task-induced decreases (Shulman
et al., 1997). It appeared that cognitive tasks not only were associated
with specific activations of circumscribed brain regions but also modified
the activity pattern present in the control condition, when the brain was
cognitively “at rest.” Closer analysis of the pattern of activity decreases
revealed that they comprised a specific set of brain regions, including the
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precuneus/posterior cingulate cortex, medial frontal cortex, and lateral
parietal cortex. This raised the possibility that these regions formed a
previously unknown coherent system that operated during the resting
state. PET studies of brain metabolism carried out by Marc Raichle and
colleagues established a “default mode” of brain function, an organized
state corresponding to a physiological baseline that is suspended during
attention-demanding goal-directed cognitive tasks (Raichle et al., 2001;
Gusnard and Raichle, 2001). Notably, within this default mode, the pre-
cuneus/posterior cingulate cortex exhibits extremely high rates of tonic
metabolic activity (see figure 6.11). Interestingly, recent studies of struc-
tural brain networks have shown this region to be highly connected and
central, forming one of the main structural hubs of the cortex (see
chapter 6; Parvizi et al.,2006; Hagmann et al., 2008).

In 1995, Bharat Biswal and colleagues demonstrated that slow fluctua-
tions in fMRI signal recorded from regions of motor cortex showed
robust patterns of correlations, which were observed between contralat-
eral patches of motor cortex and other functionally linked regions
(Biswal et al., 1995). The amplitude of these signal fluctuations was found
to be within the same dynamic range as typical task-specific “cognitive”
activations. Numerous subsequent studies have recorded significant low-
frequency correlations in fMRI time series at rest between functionally
related areas of cortex (see figure 8.3). Greicius et al. (2003) examined
the hypothesis that brain regions that participated in the brain’s default
mode and were commonly deactivated during goal-directed cognitive
tasks formed an interconnected network. Analysis of fMRI time series
data showed that nearly all areas previously identified as commonly
deactivated during goal-directed processing were also dynamically cor-
related (functionally connected). This functionally linked “default mode
network” persisted during a sensory task with low cognitive demand but
was attenuated during a working memory task. The network exhibited
anticorrelations with brain regions such as the prefrontal cortex that
were activated during more demanding cognitive operations. The precu-
neus/posterior cingulate cortex was identified as playing a central role
within the default mode network, as its functional connectivity robustly
spanned the entire default pattern and displayed strong inverse correla-
tions with task-related brain regions.

More recent studies have confirmed and greatly extended these initial
observations. A central role for the precuneus/posterior cingulate cortex
within the default mode network was recently confirmed by Fransson
and Marrelec (2008; see figure 8.4, plate 9). Further studies have shown
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Figure 8.3

Correlated functional magnetic resonance imaging (fMRI) signal fluctuations in the resting
state. Traces show time series of fMRI signals recorded from the posterior cingulate cortex/
precuneus (PCC), the medial prefrontal cortex (MPF), and the intraparietal sulcus (IPS)
of a participant who is quietly awake and cognitively at rest. There is a strong temporal
correlation between two of the traces (PCC and MPF, both core regions of the default
mode network) and an anticorrelation of these two traces with the IPS. Note the slow time
course of the fluctuations and the magnitude of the signal change (about one percent to
two percent of baseline). This figure is adapted and redrawn from data shown in Fox et al.
(2005).
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Figure 8.4 (plate 9)

Central role of precuneus/posterior cingulate cortex in the default mode network. Plots
show the strengths of the pairwise or marginal correlations between nine distinct brain
regions, all part of the default mode network. The data were recorded during the resting
state (left panel) and during the performance of a working memory task (right panel). Note
that the strongest and most consistent pattern of correlations is found for node pC/pCC
(precuneus/posterior cingulate cortex). Note also that many of the correlations persist in
the transition from rest to task, albeit at reduced levels. ’MTL, right medial temporal lobe;
IMTL, left medial temporal lobe; dmPFC, dorsomedial prefrontal cortex; vinPFC, ventro-
medial prefrontal cortex; rTC, right temporal cortex; ITC, left temporal cortex; rIPL, right
inferior parietal lobe; ITPL, left inferior parietal lobe. Reproduced from Fransson and
Marrelec (2008) with permission.



160

Chapter 8

that task-related (task-positive) and default mode (task-negative) regions
form internally coherent but mutually anticorrelated large-scale net-
works (Fox et al., 2005; see figure 8.5, plate 10). Functional connectivity
within the default mode network was shown to be highly reliable and
reproducible (Shehzad et al., 2009), and, as I will discuss shortly, the
topology of the pattern has been linked to underlying long-range struc-
tural connections between brain regions. The neural mechanisms under-
pinning the slow rhythmicity of the BOLD signal are not yet clearly
understood (Fox and Raichle, 2007). Some physiological observations
suggest that BOLD signal fluctuations are driven by fluctuations in
neural activity (Shmuel and Leopold, 2008), particularly in neural firing
rate and high frequency (40-100 Hz) power modulations of local field
potentials (Nir et al., 2008). The identification of a neuronal origin for
slow spontaneous fluctuations in BOLD signals is important because
such signal fluctuations could in principle arise from filtering of neural
noise or from nonneuronal vascular dynamics. Recent electrocortico-
graphic recordings of fast electrical activity provide strong and direct
evidence for a neuronal basis of default mode brain activity (He et al.,
2008; Miller et al., 2009).

Figure 8.5 (plate 10)

Anticorrelated task-positive and task-negative networks in the human brain. Networks are
defined on the basis of resting-state functional magnetic resonance imaging recordings.
Positively correlated nodes (red/yellow) correspond to a set of brain regions that are jointly
activated during tasks demanding focused attention and working memory. Anticorrelated
nodes (blue/green) largely correspond to task-negative regions, including the default mode
network, that are deactivated during goal-directed processing. Reproduced from Fox et al.
(2005) with permission.
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The default mode network is not the only set of functionally linked
brain regions that is present in resting-state fMRI data. While the default
network is often extracted by placing seed ROIs in some of its known
key components,other methods such as independent component analysis
(ICA) allow the objective identification of resting-state networks from
spontaneous brain activity. ICA has revealed at least half a dozen
resting-state networks that are superimposed and partly overlapping
(Beckmann et al.,2005; De Luca et al.,2006; Mantini et al.,2007). Several
of these resting-state networks correspond to sets of interconnected
brain regions that cooperate in specific cognitive domains such as vision,
motor planning, or episodic memory. The remarkable consistency with
which these patterns of spontaneous brain activity appear across indi-
viduals (Biswal et al., 2010) raises this question: What shapes the correla-
tion structure of the default mode network in resting-state fMRI?

A main candidate is large-scale white matter pathways or, more gener-
ally, structural brain connectivity. A growing number of empirical and
modeling studies support the idea that patterns of endogenous neural
activity are sculpted by cortical anatomy. Vincent et al. (2007) found that
cortical patterns of coherent spontaneous BOLD fluctuations in macaque
monkey were similar to those of anatomical connectivity. Zhang et al.
(2008) mapped resting-state BOLD signal correlations between human
thalamus and cortex and noted significant agreement between BOLD
correlations and connectional anatomy within the same cortical hemi-
sphere. Johnston et al. (2008) performed a resting-state fMRI study on
a young patient before and directly after a complete section of the corpus
callosum. Postsurgery, interhemispheric functional connectivity was dra-
matically reduced, suggesting an important role for the callosum in gen-
erating functional connectivity across the two cerebral hemispheres. In
addition to these studies of specific pathways and fiber bundles, direct
comparisons of whole-brain structural and functional connectivity
provide additional support for the idea that functional connections are
shaped by anatomy.

Comparing Structural and Functional Connectivity

The persistence and reproducibility of functional networks measured
during the brain’s resting state provide a unique opportunity for compar-
ing functional connectivity to structural connectivity. Specifically, we can
ask how much of the pattern of functional connections is accounted for
or predicted by the pattern of structural connections. Such a comparison
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can also offer insight into the possibility of inferring structural connec-
tions from functional connections—an attractive possibility since func-
tional connections are currently much more easily obtained from
empirical data. The studies reviewed in this section have been carried
out using cross-correlation of BOLD time series as the measure of func-
tional connectivity and a variant of diffusion MRI for deriving fiber
anatomy.

A first study was undertaken by Koch et al. (2002), who collected both
DTI and fMRI data from a single brain slice. Functional connectivity was
obtained from cross-correlation of BOLD-signal fluctuations between
pairs of voxels, and structural connectivity was estimated from DTI data
using a probabilistic “particle jump” algorithm. The study reported a
positive correlation between structural and functional connections. Low
functional connectivity was rarely found between voxels that were struc-
turally linked. However, high functional connectivity was found to occur
between voxels that were not linked by direct structural connections,
presumably a result of indirect or unobserved anatomical links.

Two central regions within the default mode network, the precuneus/
posterior cingulate cortex and the medial frontal cortex, are known to
be connected via the cingulum bundle, a dense white matter tract running
along the cortical midline. Van den Heuvel et al. (2008a) extracted these
two cortical areas and the connecting cingulum bundle from fMRI and
DTI scans of 45 participants obtained during the resting state. The mag-
nitude of the functional connection between the two regions and the
average value of the fractional anisotropy of the cingulum bundle, a
measure reflecting the microstructural organization of the fiber tract,
were found to be significantly and positively correlated. Greicius et al.
(2009) performed structural imaging to search for and map anatomical
pathways linking known components of the default mode network, spe-
cifically the posterior cingulate cortex, the medial prefrontal cortex, and
the bilateral medial temporal lobe. DTI tractography revealed the pres-
ence of anatomical connections linking the posterior cingulate cortex
and medial prefrontal cortex, as well as posterior cingulate cortex and
medial temporal lobe. Despite the absence of direct structural links
between medial temporal lobe and medial prefrontal cortex, these areas
were found to be functionally connected as part of the default mode
network. These data suggest that medial temporal lobe and medial pre-
frontal cortex become functionally connected via the posterior cingulate
cortex or another unobserved intermediate brain region. In a similar
study, van den Heuvel et al. (2009a) extracted a total of nine resting-state
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networks, including the default mode network, in a cohort of 26 healthy
participants and then examined structural connections between those
regions found to be functionally linked. Cortical regions participating in
eight out of nine resting-state networks were found to be structurally
interconnected by anatomical fiber tracts, thus providing a structural
basis for their dynamic coupling.

More recently, several studies have appeared that performed direct
comparisons of structural and functional connectivity across the whole
brain in the same cohort of participants (Skudlarski et al.,2008; Hagmann
et al.,, 2008; Honey et al., 2009). Skudlarski et al. performed a voxel-wise
comparison of structural and functional connectivity using global con-
nection matrices for 5,000 brain voxels. There was significant overall
agreement between fiber counts and BOLD-signal cross-correlations,
with highly connected voxels showing the strongest relationship between
structural and functional measures. Hagmann et al. (2008) reported sig-
nificant positive correlations between DSI-derived structural connectiv-
ity and resting-state fMRI cross-correlations of pairs of brain regions
across the entire cortex (see figure 8.6, plate 11). The presence of a

structural connectivity functional connectivity

Figure 8.6 (plate 11)

Comparison of structural connectivity derived from diffusion imaging (Hagmann et al.,
2008) and resting-state functional connectivity derived from fMRI (Honey et al., 2009)
from the same set of five participants. Maps show connectivity among 998 ROIs shown
here in an anterior—posterior-temporal arrangement (the same ordering as in figure 5.8)
to emphasize spatial organization. The structural connectivity matrix is sparse and has only
positive entries (fiber densities). The functional connectivity matrix has both positive (hot
colors) and negative entries (cool colors). See figure 8.7 for a matching statistical compari-
son and figure 8.8 for a computational model. RH, right hemisphere; LH, left hemispherc.
Data replotted from Honey et al. (2009).
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structural connection between two regions quantitatively predicted the
presence of a functional connection. A high-resolution analysis of pair-
wise structural and functional connectivity between 998 ROlIs, uniformly
covering the two cerebral hemispheres (Honey et al., 2009) confirmed
this statistical relationship (see figure 8.7). Additional strong functional
connections often exist between ROIs with no direct structural connec-
tions, making it impractical to infer structural connections from func-
tional connections by simple means such as thresholding. Further
analysis revealed that many functional connections between uncon-
nected region pairs can be explained by the existence of indirect struc-
tural connections.

While each study used somewhat different imaging protocols and
tractography algorithms, the convergent message is that structural con-
nections, when present, are indeed highly predictive of the presence
and strength of functional connections. However, structural connections
cannot reliably be inferred on the basis of observed functional coupling
since strong functional connections may also exist between regions that
are not directly anatomically linked. An intuitive argument suggests that
the correspondence between structural and functional connectivity
should become less direct as brain networks are acquired from finer and
finer anatomical partitions. As structural nodes approach the level of
single neurons, structural connectivity becomes increasingly sparse, and
indirect couplings are likely to dominate the topology of functional net-
works. Thus,recentsuccesses in relating empirical structural to functional
connectivity should not lead to the mistaken conclusion that their rela-
tionship is simple or even trivial (Damoiseaux and Greicius, 2009). A
more refined understanding of this structure—function relationship may
come from computational models of endogenous neural activity.

Computational Models of the Brain's Resting State

The relationship between structural and functional connectivity in large-
scale brain systems can be investigated with the help of computational
modeling. Such models are useful because they allow the precise speci-
fication of structural coupling and the recording of complete neural time
series data that can then be processed similarly to empirical data sets.?
Structural and functional connectivity can then be compared, and their
relationship can be interpreted without the need to account for many of
the potential confounds present in experimental data such as physiologi-
cal noise, imaging artifacts, or problems with coregistration. Recent
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Figure 8.7

Structural and functional connectivity in whole brain and default mode network (DMN).
(A) Scatterplot of structural connections and corresponding functional connections (r =
0.54, p < 10°®). (B) Scatterplot of structural connections and corresponding functional con-
nections (r = 0.61, p < 10) for 200 regions of interest (ROIs) that form the DMN. These
200 ROIs were derived by placing seeds in the posterior cingulate/precuneus (PCC), medial
frontal cortex (MFC), and lateral parietal cortex (LPC) and then selecting the 200 ROIs
that were most strongly functionally correlated. (C) Anatomical location of the 200 DMN
ROIs and their structural interconnections. While there are dense structural pathways
between the MFC and superior frontal cortex (SFC) and both the PCC and LPC, few
connections are seen between the LPC and PCC (see also van den Heuvel, 2009a). All data
shown here represent averages over five participants originally reported in Honey et al.
(2009).
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models of endogenous neural activity in primate cerebral cortex informed
by neuroanatomical data sets have made significant progress toward
clarifying the complex relationship between structural connectivity and
dynamics.

Honey et al. (2007) investigated the relationship between structural
and functional connectivity in a large-scale model of the macaque
monkey cortex. The model was based on a structural network of segre-
gated regions and interregional pathways collated using the CoCoMac
database (see chapter 2, figure 2.6) and on a nonlinear dynamic model
of spontaneous neuronal activity. The dynamic model, based on the
observed physiological characteristics of cortical neuronal populations
(Breakspear et al., 2003), was capable of chaotic behavior and transient
synchronization. Modeled millisecond resolution voltage time series
were used to estimate synthetic BOLD signals from a nonlinear model
of the brain’s hemodynamic response (Friston et al., 2003). Cross-
correlations between these BOLD signals then yielded functional con-
nectivity patterns. Over longer time periods (several minutes),
BOLD-derived functional connectivity showed significant agreement
with the underlying structural connectivity. This relationship was also
seen for other measures of functional connectivity that were applied
directly to the modeled voltage time series, for example, the information-
theoretic measures of mutual information and transfer entropy (see
chapter 3). Consistent with experimental findings, modeled BOLD
responses showed slow spontaneous fluctuations. Importantly, these fluc-
tuations were not due to the convolution of noisy time series with a
(low-pass) hemodynamic response function but reflected transient syn-
chronization between varying sets of brain regions. Fluctuations in syn-
chrony reliably preceded fluctuations in the BOLD response. Thus, the
model predicted that BOLD fluctuations in the real brain originate from
transients of neuronal population dynamics.” Some recent results regard-
ing the origin of fluctuating fMRI signals are consistent with this predic-
tion (Shmuel and Leopold, 2008; Nir et al., 2008; Schélvinck et al., 2010).

The availability of human structural brain connectivity from diffusion
MRI (Hagmann et al., 2008) allowed an extension of the model to the
scale of the entire human cerebral cortex. Honey et al. (2009) imple-
mented the dynamic model just described on a human structural connec-
tion matrix linking 998 nodes. Functional connectivity patterns were
again derived from cross-correlations of synthetic BOLD time series
data. Comparison of these modeled patterns to the empirically obtained
functional connectivity revealed significant similarity (see figure 8.8,
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Figure 8.8 (plate 12)

Modeling and prediction of functional connectivity. The plots show cortical surface maps
for structural connectivity (SC), empirical resting-state functional connectivity (rsFC), and
modeled functional connectivity. The maps were created by placing seeds in the posterior
cingulate/precuneus (PCC), medial frontal cortex, and lateral parietal cortex (LPC; see
figure 8.7). High connection/correlation is indicated by hot colors, low connection/correla-
tion by cool colors. Note substantial agreement between modeled and empirical FC along
the cortical midline but lack of functional connectivity to LPC in the model, most likely
due to weak structural connections detected between PCC and LPC. Data were replotted
from Honey et al. (2009).

plate 12). The model could account for much of the empirically observed
functional coupling strengths present between structurally linked node
pairs. The model also was able to partially predict the strength of empiri-
cal functional connections on the basis of indirect structural coupling.
Prediction accuracy was especially high for many components of the
default mode network, particularly structures along the cortical midline.
The model strongly suggests that much of the patterning of the brain’s
functional connectivity in the resting state can be explained by the
pattern of structural connections linking regions of the cerebral cortex.

Ghosh et al. (2008a;2008b) constructed a model of spontaneous neural
activity by combining a large-scale structural connectivity matrix of
macaque cortex and a neural mass model based on the dynamic equa-
tions of FitzHugh-Nagumo. Importantly, the model equations included
estimates for neural conduction delays that varied with the spatial dis-
tances between connected region pairs, as well as a noise term modeling
Gaussian fluctuations of each node’s membrane potential. Ghosh et al.
varied conduction velocity and coupling strengths to map regions of the
model’s parameter space where the model displayed dynamically stable
or unstable behavior. A spatiotemporal analysis of the model dynamics
was performed to identify dominant subnetworks that underlie the
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ongoing oscillatory dynamics observed during spontaneous activity. Sim-
ulated BOLD signals were computed from neural activity time series,
and modeled functional connectivity patterns were derived. The correla-
tion structure of these patterns was found to be largely consistent with
those in empirically observed resting-state fMRI. In the model of Ghosh
et al., conduction delays within a physiologically realistic range as well
as physiological noise are found to be two important ingredients for
generating rich spatiotemporal patterns in spontaneous dynamics that
resemble those seen in the brain at rest.

Another model of spontaneous neural activity also incorporated con-
duction delays and noise within a structural connection matrix of the
macaque cortex (Deco et al., 2009). The model focused on the sensitivity
of interregional synchronization to variations in conduction velocity,
coupling strength, and noise level. Deco et al. reported anticorrelated
clusters of regions that corresponded closely to the anatomical and func-
tional clustering previously reported by Honey et al. (2007). Additionally,
the model demonstrated “stochastic resonance,” with anticorrelations
between clusters that depended on the presence of a low level of noise.
The level of synchronization between different brain regions was found
to be associated with the amplitude of the BOLD response.

Taken together, these modeling studies reinforce the idea that within
large-scale cortical networks structural and functional connectivity are
related.'® However, they also suggest that the degree to which this cor-
respondence manifests itself depends on spatial resolution and time
scales. The relationship is particularly robust for functional networks
obtained at low frequencies (as in resting-state fMRI) and over long
sampling periods (on the order of minutes). Despite constant coupling
between network nodes, the models of Honey et al. (2007; 2009), Ghosh
et al. (2008a; 2008b), and Deco et al. (2009) demonstrate that the collec-
tive spontaneous dynamics of a large-scale neural system can give rise
to a rich and diverse set of spatiotemporal patterns. Thus, we should not
think of the brain’s endogenous neural activity as a static time-invariant
pattern of interneuronal or interregional coupling. Instead, spontaneous
dynamics exhibits significant shifts, transitions, and nonstationarity,
allowing for rapid reconfigurations of functional interactions at fast time
scales of hundreds of milliseconds, even in the absence of exogenous
perturbations. The resulting dynamic diversity requires us to revisit the
temporal aspect of functional networks later in the book (see chapter
12). However, first I will turn to a simpler question. In chapter 6 I dis-
cussed the specific topological features of structural brain networks—
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do functional networks exhibit similar topologies, characterized by a
modular architecture interlinked by highly central hub regions?

Topology of Resting-State Functional Connectivity

If structural and functional connectivity are indeed related, we might
expect to see correspondences between their network topology and
architecture. Modularity and hubs are consistently found within the
large-scale organization of mammalian cortical anatomy (see chapter 6).
Does the topology of functional networks derived from observed brain
dynamics mirror the topology of the underlying anatomy? Over the past
decade, numerous studies of functional brain connectivity have indeed
demonstrated that functional interactions within large-scale structural
networks exhibit characteristic patterns that resemble those seen in the
anatomy.

One of the earliest studies to report on modular functional connectiv-
ity was based on empirical data collected decades ago using strychnine
neuronography in the macaque cortex (Stephan et al., 2000). As dis-
cussed in chapter 3, the localized application of strychnine to the cortical
surface results in disinhibition and spread of epileptiform neural activity
which is propagated along corticocortical pathways (see figure 3.3). Col-
lation of published data on activity propagation from a number of exper-
iments resulted in a matrix of functional connectivity between 39 cortical
regions within a single hemisphere.'' Stephan and colleagues found that
this matrix exhibited robust small-world attributes, including high levels
of clustering and short path lengths, and thus their study is one of the
first reports of small-world organization in a dynamic brain network.
Using hierarchical clustering algorithms, they also demonstrated that this
functional connectivity matrix contained a number of distinct modules.
Three main modules contained primarily visual, somatomotor, and
orbito—temporo—insular regions, respectively. The composition of each
module revealed regions that were generally considered to be function-
ally related, for example, areas in the occipital and parietal cortex
involved in different aspects of vision. Stephan et al. (2000) noted the
potential relationship of their functional connectivity patterns with
similar small-world features of structural connectivity in the macaque
cortex (Hilgetag et al., 2000; Sporns et al., 2000a). A companion paper
presented a computational model of activity propagation in the cat
cortex based on known anatomical projections and compared the per-
formance of the model to empirical data from strychnine neuronography
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(Kotter and Sommer, 2000). The model incorporating empirical connec-
tion data clearly outperformed random or nearest-neighbor architec-
tures and thus provided early support for the notion that the topology
of corticocortical pathways shaped the flow of neural activations.

Salvador et al. (2005) applied hierarchical cluster analysis to human
resting-state neural activity acquired with fMRI and demonstrated its
modular and small-world organization. Within a parcellation of 90 corti-
cal and subcortical regions, resting-state functional connectivity exhib-
ited small-world attributes and formed 6 major clusters, each containing
regions that had previously been described as anatomically and function-
ally related. Other resting-state fMRI studies have lent additional support
to the idea that the basic architecture of large-scale dynamic brain net-
works is both small-world and modular (Achard et al., 2006; Meunier
et al., 2009a; Valencia et al., 2009). Consistently, functional modules
contain regions that are known to be more strongly connected via white
matter pathways, as well as related in terms of their known functionality.
A small set of brain regions maintains functional connections that extend
across multiple modules, thus enabling system-wide dynamic interactions
and ensuring short path length. These highly connected and highly central
hub nodes were found primarily within multimodal association cortex,
including the inferior parietal lobule, the precuneus, the angular gyrus,
and portions of the superior frontal gyrus (Achard et al., 2006). Cluster-
ing and physical connection distance were negatively correlated for hub
regions, indicating that hubs were connecting physically remote regions
that did not directly connect to each other. Other studies of resting-state
fMRI functional connectivity have confirmed the modular organization
of the human cerebral cortex. He et al. (2009) performed a modularity
analysis on functional connectivity derived from resting-state fMRI
signals. Modules in spontaneous brain activity again reflected known
functional subsystems, such as visual, auditory, attention, and default
networks."

To what extent does the network structure depend on the spatial reso-
lution of the individual network nodes?'* Most fMRI-based analyses of
resting-state functional connectivity employ various cortical parcellation
schemes that result in networks comprising between 50 and 90 nodes.
Very few studies have attempted to perform network analyses on the
basis of time series data from single voxels. Eguiluz et al. (2005) provided
the first example of such a study and not only reported the coexistence
of high clustering and short path length, that is, a small-world archi-
tecture, but also presented evidence for a scale-free distribution of
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functional connections when nodes were defined at the scale of single
voxels. A scale-free degree distribution in voxel-based human functional
networks was also described in a more recent study by Van den Heuvel
et al. (2008b). In contrast, degree distributions of regional functional
networks typically show an exponentially truncated power law (e.g.,
Achard et al., 2006), that is, they contain highly connected nodes in pro-
portions above those of equivalent random networks but below those of
scale-free networks. This discrepancy may be due to differences in data
averaging, preprocessing, or the correlation pattern of the hemodynamic
signal for voxel-based as compared to region-based functional networks.
Further work is needed to determine if indeed the increased spatial reso-
lution provided by voxel-level networks reveals additional features of
network organization that are not detected in networks based on coarser
cortical parcellations.

Networks of functional connections obtained from electrophysiologi-
cal recordings also display characteristic patterns providing further
support for the highly ordered nature of spontaneous brain activity. One
of the very first demonstrations of small-world topology in a human
brain functional network came from MEG recordings obtained from a
group of five healthy participants (Stam, 2004). Across several frequency
bands, patterns of synchronous coupling displayed small-world attri-
butes, including high clustering and short path lengths. Other studies
confirmed these findings in healthy subjects and compared small-world
measures in healthy controls with those of subjects with various forms
of brain disease (e.g., Stam et al.,2007; Micheloyannis et al.,2006; Rubinov
et al.,2009a). We will return to these comparisons and their implications
for our understanding of the network aspects of brain disease in more
detail in chapter 10.

In one of the most comprehensive studies to date using wavelet cor-
relations to estimate frequency-dependent functional connectivity
between MEG sensors, Bassett et al. (2006) showed that functional net-
works across different frequencies exhibit self-similarity, scale-invari-
ance, and fractal patterning (see chapter 12). Small-world attributes were
identified at all frequency scales, and global topological parameters were
conserved across scales. Highest clustering and shortest path lengths
were found at higher frequencies, which have been associated with inte-
grative processes supporting perception and cognition (see chapter 9).
Importantly, the topology of these functional networks remained largely
unchanged during transitions from a state of cognitive rest to the per-
formance of a motor task, despite significant spatial reconfiguration.
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Hubs in Functional Connectivity

A comprehensive network analysis of resting-state functional connectiv-
ity identified locations of cortical hubs in several heteromodal associa-
tion areas,including posterior cingulate, lateral temporal, lateral parietal,
and medial/lateral prefrontal cortex (Buckner et al.,2009). The locations
of these hubs were largely consistent across different task states, such as
a passive fixation task (similar to an “eyes open” resting state) as well as
an active word-classification task,suggesting that hubs are stable features
of functional networks. Hubs were identified on the basis of their high
degree of connectivity, and the data were processed at single-voxel reso-
lution. Buckner and colleagues compared the locations of cortical hubs
with distributions, obtained through PET imaging, of the amyloid-f§
protein, a key marker of cellular pathology in Alzheimer’s disease (AD).
A striking degree of overlap between hubs in functional connectivity and
amyloid-p accumulation suggests a possible link between network topol-
ogy and pathology (see chapter 10).

While several studies have identified highly connected and highly
central hubs in the human brain, it is at present unclear what features of
neural dynamics discriminate between hub and nonhub regions. By defi-
nition, hubs are well connected, and within the modular architecture of
the brain they link communities that otherwise do not directly interact.
Thus, hubs are in a privileged position of influence and control. They
enable functional interactions between distinct communities and help to
integrate specialized information. In information and social networks,
hubs often promote navigability and searchability. What is it like, in
neural terms, to be a hub? In most other types of networks (social, trans-
portation, economic), hubs tend to be nodes that are exceptionally “busy”
at all times, that is, nodes that participate in unusual levels of traffic,
information flow, or signal fluctuations. In the brain, hub regions may be
expected to share in the variance of multiple segregated modules and
thus engage in more variable dynamics. Increased dynamic variability
may cause an elevated baseline metabolism. Consistent with this hypoth-
esis, high metabolism was found to be associated with high centrality in
the large-scale structural network of the cortex (Hagmann et al., 2008;
see figure 6.11).

Are hubs in functional networks also structural hubs in the underlying
anatomy? Empirical data, although not yet obtained from the same
individual participants,suggests this is indeed the case. Structural network
analyses have consistently found a highly central role of the posterior
cingulate/precuneus as well as various parietal and frontal regions.
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Buckner et al. (2009) identified hubs in functional networks whose posi-
tions largely coincided with those of structural hubs identified in diffu-
sion imaging data (see chapter 6; figure 6.11). The modeling study of
Honey et al. (2007) reported a similar correspondence when comparing
structural connectivity to functional connectivity averaged over a long
time interval (see figure 8.9). Interestingly, significantly less agreement
was seen on short time scales. For example, while the centrality of nonhub
regions remains consistently low across time, the centrality of regions
that were identified as network hubs on the basis of long-time averages
displayed significant variations. Under spontaneous dynamics, hubs can
engage and disengage across time, as they link different sets of brain
regions at different times. These fluctuations in network parameters
result from fluctuations in the strengths of functional connections and
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Figure 8.9

Comparison of structural and functional hubs in macaque cortex. These data are derived
from a simulation study of the macaque visual and somatomotor cortex. Structural con-
nections were obtained from a neuroanatomical database (connection matrix shown in
figure 2.6), and functional connections were derived from long-time samples of simulated
endogenous neural activity. The centrality of nodes in the structural and functional network
is highly correlated. Panel (A) shows a scatterplot of the betweenness centrality for struc-
tural and functional connectivity, and panel (B) shows a distribution of centrality on the
macaque cortical surface. Data were replotted from Honey et al. (2007). For abbreviations
of anatomical areas see figure 2.6. TE, transfer entropy.
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A repertoire of functional networks in spontaneous neural activity. Fixed structural con-
nectivity (A; cf. figure 2.6) gives rise to fluctuating neural dynamics that results in time-
dependent patterns of functional connectivity. Panel (B) shows the time evolution of
betweenness centrality computed from samples of functional dynamics obtained from
overlapping 30-second windows of neural activity. Nodes that have high centrality in long-
time average functional networks (e.g., area V4 and area 46; see figure 8.9) exhibit signifi-
cant fluctuations in centrality over shorter time periods. Panel (C) shows that the pattern
of functional connectivity exhibits time-dependent changes on a time scale of seconds to
minutes (t = time in seconds). Data replotted from Honey et al. (2007).

lead to changes in the topology of functional networks over time (see
figure 8.10). These fluctuations support the creation of diverse dynamic
states in the brain (see chapter 12) and constitute a functional repertoire
of varying network topologies.

Spontaneous Brain Activity, Behavior, and Cognition

Does endogenous network activity have a functional role in the brain?
Do these dynamic patterns contribute to cognitive and behavioral
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responses, or are they nothing but “physiological noise” without func-
tion? Despite the long history of spontaneous neural activity in electro-
physiology, tracing back to the 1920s, the cognitive role of such activity
remains very much a matter of debate and controversy. The functional
meaning of the brain’s default mode has been questioned (Morcom and
Fletcher, 2007; see responses by Raichle and Snyder, 2007; Buckner and
Vincent, 2007)."* Some authors have pointed to nonneuronal compo-
nents in resting brain fluctuations. Others have criticized the significance
of endogenous brain activity, a point that stems from the idea still preva-
lent within cognitive science that most of human cognition is about
computing purposeful responses to specific processing demands posed
by the environment. At the time of writing, the neuronal origin of default
mode or resting brain activity appears firmly established (e.g., Miller
et al,, 2009), and the reappraisal of the role of intrinsic brain activity in
perception and cognition has ushered in a paradigm shift in brainimaging
(Raichle, 2009, 2010).

Endogenous activity has key functional roles to play, not only in the
adult organism but also in the neural development of sensory and motor
systems (see chapter 11). In the mammalian nervous system, spontane-
ous neural activity is essential for the early patterning and refinement of
synaptic connectivity of the visual system (Feller, 1999; Torborg and
Feller,2005),long before sensory and motor structures have fully matured
and are capable of receiving or generating specific sensory inputs. Spon-
taneous activity of networks of spinal neurons generates embryonic limb
movements in the developing chicken embryo (O’Donovan et al., 1998;
Bekoff, 2001). Embryonic motility driven by spontaneous neural activity
has multiple roles, from calibrating developing sensorimotor circuits to
generating correlated sensory inputs. Just as processes of neuroplasticity
extend from development into adulthood, the developmental roles of
spontaneous neural activity may hint at their functional contributions in
the adult organism," possibly related to the need for maintaining func-
tional homeostasis (see chapter 4).

The metabolic cost of endogenous default mode neural activity far
exceeds that of evoked activity (Raichle and Mintun, 2006), with perhaps
as little as a few percent of the brain’s total energy budget associated
with momentary processing demands. The large cost of endogenous
activity does not by itself reveal its functional role, but it presents a
compelling argument for its physiological importance. Equally significant
are observations that highlight fundamental relationships between
endogenous and evoked brain activity, many of which have been reviewed
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in this chapter. Endogenous activity is functionally organized and shaped
by the same set of anatomical connections that are engaged in the context
of cognitive tasks. As is borne out by empirical study of both cellular and
large-scale systems, patterns of endogenous activity resemble evoked
responses, revealing functional brain architecture at rest that reflects sets
of dynamic relationships that are expressed in different configurations
during cognitive processing.

The relationship of patterns of task-evoked brain activations with
resting-state networks has been documented in several meta-analyses of
large numbers of brain activation experiments (Toro et al., 2008; Smith
et al., 2009). For example, a meta-analysis of a number of fMRI studies
of social cognition revealed a significant overlap between brain regions
identified as centrally involved in social cognitive processes and the
brain’s default network (Schilbach et al., 2008). This suggests the idea
that the physiological baseline of the brain is related to a “psychological
baseline,” a mode of cognition that is directed internally rather than
being externally driven and that is concerned with self and social context.
Along the same lines, Malach and colleagues have suggested that the
cortex can be partitioned into two coherently active systems, an “extrin-
sic system” associated with the processing of external inputs and an
“intrinsic system” (overlapping with the default mode network) dealing
with self-related signals and processes (Golland et al., 2007; 2008).

Synchronized patterns of resting-state functional connectivity persist
during the execution of cognitive tasks and may affect behavioral out-
comes. A significant fraction of the observed trial-to-trial variability of
the BOLD response can be accounted for by these persistent ongoing
fluctuations (Fox et al., 2006). Spontaneous fluctuations in the BOLD
response are also highly correlated with behavioral variables (Fox et al.,
2007) as shown in experiments where task-related and spontaneous
activity were separated by comparing left and right motor cortex, which
are known to be highly correlated at rest. Neural fluctuations may thus
account for at least some of the variability of human behavior. The
dependence of neural responses to sensory stimuli on an internal
“network state” (Fontanini and Katz, 2008), modulated by spontaneous
dynamics, attention, or experience, represents a fundamental aspect of
sensory processing. Variable sensory responses are more fully accounted
for by the interaction of an input and an intrinsic context generated from
the dynamic repertoire of network states (see figure 8.11).

Correlated activity within the brain’s default mode network has been
described by some authors as the physiological basis of conscious spon-
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Functional repertoire of network states and variability in evoked responses. The schematic
diagram shows structural connectivity on the left, patterns of spontaneous activity (network
states) in the middle, and neural response patterns to sensory stimulation on the right.
Panel (A) depicts the “traditional” or reflexive model of sensory processing. Sensory
responses act on a quiescent brain, and thus a given sensory stimulus should evoke stereo-
typical responses. Panel (B) shows a repertoire of intrinsic functional connectivity due to
dynamic diversity (sce figure 8.10; see also chapter 12) as well as dependence on the inter-
nal state of the organism. An identical sensory stimulus results in variable neural responses.
Modified and redrawn after a diagram in Fontanini and Katz (2008).
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taneous cognition as manifested in “daydreaming” or “mind wandering”
(Mason et al., 2007). However, studies of humans transitioning from
waking to sleep (Larson-Prior et al., 2009) and under light sedation
(Greicius et al., 2008), as well as anaesthetized nonhuman primates
(Vincent et al., 2007), have shown that correlated default mode activity
persists even in the absence of consciousness. Thus, it does not appear
that all correlated spontaneous activity reflects conscious mental states.
Instead, the continued presence of correlated fluctuations outside of
consciousness suggests a more basic, but no less fundamental, role and
does not exclude its participation in unconscious mental processes.
Computational modeling studies reviewed in this chapter suggest that
endogenous fluctuations give rise to temporal sequences of network
states that collectively form a diverse functional repertoire (see chapter
12). The idea has gained considerable empirical support from compari-
sons of thousands of brain activation maps acquired during cognitive
studies and resting-state networks extracted by objective pattern discov-
ery methods (Smith et al., 2009). Such comparisons indicate that func-
tional networks deployed during task-related processing are continually
active even when the brain is cognitively at rest. This ongoing rehearsal
of functional couplings may be a requirement for the continued mainte-
nance of the cognitive architecture, or it may serve to prepare the brain
for adaptive responses to intermittent environmental stimuli by continu-
ally replaying the past or imagining the future (Schacter et al., 2007).
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If we make a symbolic diagram on a blackboard, of the laws of association
between ideas, we are inevitably led to draw circles, or closed figures of some
kind, and to connect them by lines. When we hear that the nerve-centres contain
cells which send off fibres, we say that Nature has realized our diagram for us,
and that the mechanical substratum of thought is plain. In some way, it is true,
our diagram must be realized in the brain; but surely in no such visible and
palpable way as we at first suppose. [...] Too much anatomy has been found to
order for theoretic purposes, even by the anatomists; and the popular-science
notions of cells and fibres are almost wholly wide of the truth. Let us therefore
relegate the subject of the intimate workings of the brain to the physiology of
the future.'

—William James, 1890

William James’ skepticism regarding the relation of cognition to the
anatomy of the human brain may strike many of us as old-fashioned.
After all, modern neuroscience continues to yield a plethora of empiri-
cal data that reveal the neural basis of cognition in ever greater detail,
and the “physiology of the future” must surely have arrived by now. And
yet, the relationship between brain and cognition is still only poorly
understood. Great progress notwithstanding, neuroscience still cannot
answer the “big questions” about mind and intelligence. Consequently,
most cognitive scientists continue to hold the position that intelligence
is fundamentally the work of symbolic processing, carried out in rule-
based computational architectures whose function can be formally
described in ways that are entirely independent of their physical realiza-
tion. If cognition is largely symbolic in nature, then its neural substrate
is little more than an inconsequential detail, revealing nothing that is of
essence about the mind.> Naturally, there is much controversy on the
subject.
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The idea that mental life can be explained as a set of computational
processes has undeniable power and appeal. Yet, the nature of these
processes must in some way depend on the biological substrate of brain
and body and on their development and natural history. There have been
many false starts in the attempt to link brain and cognition. One such
failure is neuroreductionism, a view that fully substitutes all mental
phenomena by neural mechanisms, summarized in the catchphrase “You
are nothing but a pack of neurons,” or, put more eloquently, ““You’, your
joys and your sorrows, your memories and your ambitions, your sense of
personal identity and free will, are in fact no more than the behavior of
a vast assembly of nerve cells and their associated molecules” (Crick,
1994). The problematic nature of this statement lies not in the materialist
stance that rightfully puts mental states on a physical basis but rather in
the phrase “no more than,” which implies that the elementary properties
of cells and molecules can explain all there is to know about mind and
cognition. Reductionism can be spectacularly successful when it traces
complex phenomena to their root cause, and yet it consistently falls
short as a theoretical framework for the operation of complex systems
because it cannot explain their emergent and collective properties (see
chapter 13).

In this chapter, I will attempt to move beyond reductionist models of
cognition and view the subject from the more integrative perspective
of complex networks. I will focus on some of the main architectural
principles that underlie various forms of cognitive processing in the
mammalian brain—in particular, the dichotomy between functional seg-
regation and integration, and the hierarchical organization of brain net-
works. These principles emerge naturally from a close consideration of
anatomical connections and neural dynamics. First, I will briefly lay out
a few current theories of how cognition may result from the action of
neurocognitive networks that span large portions of the mammalian
thalamocortical system. The problem of functional integration is central
to all neural accounts of how coherent cognitive and behavioral states
are generated in the brain, and I will consider two ways in which integra-
tion is achieved in the brain, convergence and synchrony. Next, the
central role of hierarchical processing demands an analysis of its struc-
tural and physiological basis and of its relationship to the modularity of
brain networks. Finally, I will turn to the rapid reconfiguration of func-
tional and effective brain networks in response to varying demands of
the environment, which provides a dynamic basis for the flexible and
adaptive nature of cognition.
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Cognition as a Network Phenomenon

Cognition is a network phenomenon. It does not exist in synapses or
single neurons. Instead, it is a collective property of very large numbers
of neural elements that are interconnected in complex patterns.” The
search for elementary principles of how cognition emerges from network
interactions has led to several proposals that approach network function
from different angles and perspectives. One of the most influential move-
ments in modern cognitive science built on a set of models collectively
named “parallel distributed processing” (PDP; Rumelhart et al., 1986).
What many of these models had in common was that they viewed cogni-
tion as a process of cooperative computation, carried out in parallel
across distributed networks. The activity of nodes in these networks
formed representations about perceptual or conceptual entities such as
letters, words, visual shapes, and motor commands. The weights of con-
nections between nodes encoded knowledge about how these perceptual
or conceptual entities related to one another. The network as a whole
transformed a set of inputs into outputs, with outputs often consisting of
stable configurations of activated nodes that represented the network’s
response to the input and expressed its encoded knowledge. PDP models
provided many powerful examples of how cooperative processes could
yield “good” computational results within specific problem domains—
for example, in visual recognition. Yet, their utility as models of actual
neural processes was limited since their computational paradigms often
imposed narrow constraints on the types of network structures and
dynamics that could be implemented.

In parallel to PDP studies of neural computation, the interconnected
and dynamic nature of large-scale brain networks became of central
concern in cognitive neuroscience, fueled by increasingly detailed data
on the anatomical connectivity and functional activation of the cerebral
cortex. The tension between models that relied on hierarchical versus
distributed processing soon became apparent in anatomical and func-
tional accounts of the visual cortex (Zeki and Shipp, 1988) and the
prefrontal cortex (Fuster, 1980; Goldman-Rakic, 1988), as well as a
variety of other systems of the brain. Functional integration was soon
recognized as a central problem for neural accounts of cognition, and
the problem was approached from fundamentally different perspectives.
Many cognitive studies suggested the operation of a “central executive,”
a process exerting supervisory control over mental resources and
decision making, often thought to be affiliated with the prefrontal cortex
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(Goldman-Rakic, 1995). Instead, decentralized accounts of neural and
cognitive function emphasized the recurrent, recursive, and reentrant
nature of neural interactions and the complexity of their dynamics
(Edelman, 1978; 1987).

Marcel Mesulam proposed that the physical substrate of cognition is
a set of distinct large-scale neurocognitive networks that support differ-
ent domains of cognitive and behavioral function (Mesulam, 1990).
He conceptualized brain—behavior relationships as both localized and
distributed, mapping complex cognition and behavior to a “multifocal
neural system” rather than a circumscribed set of specialized anatomical
regions. He noted the absence of simple one-to-one correspondences
between anatomical regions and cognitive functions and instead argued
that specific domains of cognition or behavior are associated with net-
works of regions, each of which individually may support a broad range
of functions. Mesulam (1998) envisioned sensory processing to unfold
along a “core synaptic hierarchy” consisting of primary sensory, upstream
unimodal, downstream unimodal, heteromodal, paralimbic, and limbic
zones of the cerebral cortex (see figure 9.1). The last three subdivisions
together constitute transmodal areas that bind signals across all levels
and form integrated and distributed representations. Crosscutting this
hierarchical scheme, Mesulam distinguished five large-scale neurocogni-
tive networks, each concerned with functions in a specific cognitive
domain: spatial awareness, language, explicit memory/emotion, face/
object recognition, and working memory/executive function. These net-
works do not operate in isolation, instead they engage in complex inter-
actions partly coordinated by transmodal areas.

Steven Bressler put the notion of distinct neurocognitive networks in
a more dynamic context when he defined a complex function of the
brain as “a system of interrelated processes directed toward the perfor-
mance of a particular task, that is implemented neurally by a comple-
mentary system, or network, of functionally related cortical areas”
(Bressler, 1995, p. 289). According to this view, the structural networks
of the cerebral cortex, or the entire brain, serve as a substrate for the
system-wide dynamic coordination of distributed neural resources
(Bressler and Tognoli, 2006). An implication of this definition is that dif-
ferent complex functions are accomplished by transient assemblies of
network elements in varying conditions of input or task set. In other
words, different processing demands and task domains are associated
with the dynamic reconfiguration of functional or effective brain net-
works. The same set of network elements can participate in multiple
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Figure 9.1

A schematic diagram for representing different levels of cortical processing, after Mesulam
(1998). Each concentric circle represents a synaptic level, and cortical regions (represented
as nodes) are arranged on these circles depending on their interconnections and response
characteristics. The continuous arcs represent connections between nodes at the same level.
Additional connections are indicated as lines between different levels. Unimodal sensory
cortices are integrated by heteromodal and limbic regions in temporal, parietal, and frontal
cortex, arranged on the innermost circles of the diagram. Modified and redrawn after
Mesulam (1998).

cognitive functions by rapid reconfigurations of network links or func-
tional connections.

The multifunctional nature of the brain’s network nodes leads to the
idea that functions do not reside in individual brain regions but are
accomplished by network interactions that rapidly reconfigure, resulting
in dynamic changes of neural context (Mclntosh, 1999; 2000; 2008).
Regional activation is an insufficient indicator of the involvement of a
given brain area in a task, since the same pattern of regional activations
can be brought about by multiple distinct patterns of dynamic relation-
ships. Randy Mclntosh suggested that the functional contribution of a
brain region is more clearly defined by the neural context within which
it is embedded. This neural context is reconfigured as stimulus and
task conditions vary, and it is ultimately constrained by the underlying
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structural network. Comparison of regional activation patternsin a variety
of cognitive paradigms strongly suggests that a given brain region can take
on more than one functional role depending on the pattern of interactions
with other regions in the brain (Mclntosh et al., 1997; McIntosh et al.,
2003; Lenartowicz and Mclntosh, 2005; Bressler and MclIntosh, 2007).
McIntosh hypothesized that a special class of network nodes is instrumen-
tal in fast and dynamic reconfigurations of large-scale networks—for
example, during task switching. These so-called “catalysts” facilitate the
transition between large-scale functional patterns associated with cogni-
tive processing (McIntosh, 2004; 2008). Catalysts may be identifiable on
the basis of their embedding in structural or functional networks.

Network theories of cognition place an emphasis on cooperative
processes that are shaped by anatomical connectivity. The mapping
between neurons and cognition relies less on what individual nodes can
do and more on the topology of their connectivity. Rather than explain
cognition through intrinsic computational capacities of localized regions
or serial processing within precisely specified or learned connections,
network approaches to cognition aim for defining relationships between
mental states and dynamic neural patterns of spontaneous activity or
evoked responses. One of the most important features of these large-
scale system dynamics is the coexistence of opposing tendencies toward
functional segregation and integration.

Functional Segregation and Integration

Segregation and integration are two major organizational principles of
the cerebral cortex (Zeki, 1978; Zeki and Shipp, 1988; Tononi et al., 1994;
1998; Friston, 2002; 2005a; 2009b) and are invoked in almost all cognitive
domains. This dichotomy results from the need to reconcile the existence
of discrete anatomical units and regional specialization with the phenom-
enological unity of mental states and behavior.* For example, the
construction of a perceptually coherent visual image requires both seg-
regation and integration. It requires the activation of cells with special-
ized receptive field properties, as well as the “unification” of multiple
such signals distributed around the brain (Zeki, 1993).° This unification
or “binding together” of object attributes has to be carried out quickly
and reliably and on a virtually infinite set of objects that form part of a
cluttered and dynamic visual scene. This so-called “binding problem”
(see below) represents just one example of the general need to rapidly
and efficiently integrate specialized and distributed information.
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Evidence for anatomical and functional segregation comes from multi-
ple levels in the brain, ranging from specialized neurons to neuronal
populations and cortical areas. For example, maps of cortical regions,
such as those assembled by Ungerleider and Mishkin (1982), Van Essen
and Maunsell (1983), Zeki and Shipp (1988), and Felleman and Van
Essen (1991), have provided increasingly refined network diagrams of
multiple anatomically and functionally distinct areas of the primate
visual cortex. These specialized and segregated brain regions contain
neurons that selectively respond to specific input features (such as ori-
entation, spatial frequency, or color) or conjunctions of features (such as
objects or faces). Segregation can be defined in a purely statistical context
as the tendency of different neurons to capture different regularities
present in their inputs. The concepts of functional localization (see
chapter 4) and segregation are therefore somewhat distinct from one
another. Segregation implies that neural responses are statistically dis-
tinct from one another and thus represent specialized information, but
it does not imply that segregated neural populations or brain regions
become functionally encapsulated or autonomously carry out distinct
mental faculties. Furthermore, segregation is a multiscale phenomenon,
found not only among cortical areas but also among local populations
of neurons or single cells. Structural connectivity supports functional
segregation. For example, some intraregional (Gilbert and Wiesel, 1989;
Tanigawa et al.,2005) and interregional (Angelucci et al.,2002) anatomi-
cal connections are arranged in patches or clusters that link populations
with similar responses, thus preserving segregation.

Most complex cognitive processes require the functional integration
of widely distributed resources for coherent behavioral responses and
mental states. There are at least two ways by which neuronal architec-
tures can achieve functional integration in the brain, convergence and
phase synchrony.’ Integration by convergence creates more specialized
neurons or brain regions by conjunction of inputs from other less special-
ized neurons. Convergence can thus generate neurons whose activity
encodes high-level attributes of their respective input space, increasing
the functional segregation and specialization of the architecture.” There
is abundant evidence that the convergence of neural connectivity within
hierarchically arranged regions can yield increasingly specialized neural
responses, including neurons that show selective modulations of firing
rate to highly complex sensory stimuli (e.g., Quiroga et al., 2005). It
should be noted that these localized responses depend on widely distrib-
uted network processes, including feedforward and feedback influences.
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Network interactions endow even simple “feature detectors,” for example,
cells in primary visual cortex, with extremely rich response properties
that are particularly evident when these responses are recorded during
natural vision (Gallant et al, 1998; Vinje and Gallant, 2000). These
complex response properties reflect contextual influences from outside
of the cell’s classical receptive field that subtly modulate its neural activ-
ity. Thus, network interactions contribute to complex and localized
neuronal response properties encountered throughout the brain.

Integration by convergence is also found within large-scale neurocog-
nitive networks. Mesulam suggested that a special set of “transmodal
nodes” plays a crucial role in functional integration (Mesulam, 1998).
These regions bind together multiple signals from unimodal areas and
create multimodal representations. Graphically, they serve as articula-
tion points between net