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This paper presents a simple discrete-time model for valumg optlons. The fundamental econonuc 
principles of option pricing by arbitrage methods are particularly clear In this setting. Its 
development requires only elementary mathematics, yet it contains as a special limiting case the 
celebrated Black-&holes model, which has previously been derived only by much more difficult 
methods. The basic model readily lends itself to generalization in many ways. Moreover, by its 
very constructlon, it gives rise to a simple and efficient numerical procedure for valumg optlons 
for which premature exercise may be optimal. 

1. Introduction 

An option is a security which gives its owner the right to trade in a fixed 
number of shares of a specified common stock at a fixed price at any time on 
or before a given date. The act of making this transaction is referred to as 
exercising the option. The fixed price is termed the striking price, and the 
given date, the expiration date. A call option gives the right to buy the 
shares; a put option gives the right to sell the shares. 

Options have been traded for centuries, but they remained relativelv 
obscure financial instruments until the introduction of a listed options 
exchange in 1973. Since then, options trading has enjoyed an expansion 
unprecedented in American securities markets. 

Option pricing theory has a long and illustrious history, but it also 
underwent a revolutionary change in 1973. At that time, Fischer Black and 

*Our best thanks go to William Sharpe, who first suggested to us the advantages of 
the discrete-time approach to option prlcmg developed here. We are also grateful to our 
students over the past several years. Then favorable reactlons to this way of presenting things 
encouraged us to write this article. We have received support from the National Science 
Foundation under Grants Nos. SOC-77-18087 and SOC-77-22301. 
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Myron &holes presented the first completely satisfactory equilibrium option 
pricing model. In the same year, Robert Merton extended their model in 

several important ways. These path-breaking articles have formed the basis 
for many subsequent academic studies. 

As these studies have shown, option pricing theory is relevant to almost 
every area of finance. For example, virtually all corporate securities can be 
interpreted as portfolios of puts and calls on the assets of the firm.’ Indeed, 
the theory applies to a very general class of economic problems - the 
valuation of contracts where the outcome to each party depends on a 
quantifiable uncertain future event. 

Unfortunately, the mathematical tools employed in the Black-Scholes and 
Merton articles are quite advanced and have tended to obscure the underly- 
ing economics. However, thanks to a suggestion by William Sharpe, it is 
possible to derive the same results using only elementary mathematics.2 

In this article we will present a simple discrete-time option pricing formula. 
The fundamental economic principles of option valuation by arbitrage 
methods are particularly clear in this setting. Sections 2 and 3 illustrate and 
develop this model for a call option on a stock which pays no dividends. 

Section 4 shows exactly how the model can be used to lock in pure arbitrage 
profits if the market price of an option differs from the value given by the 
model. In section 5, we will show that our approach includes the Black- 
Scholes model as a special limiting case. By taking the limits in a different 
way, we will also obtain the Cox-Ross (1975) jump process model as another 
special case. 

Other more general option pricing problems often seem immune to 
reduction to a simple formula. Instead, numerical procedures must be 
employed to value these more compiex options. Michael Brennan and 
Eduardo Schwartz (1977) have provided many interesting results along these 
lines. However, their techniques are rather complicated and are not directly 
related to the economic structure of the problem. Our formulation, by its 
very construction, leads to an alternative numerical procedure which is both 
simpler, and for many purposes, computationally more efficient. 

Section 6 introduces these numerical procedures and extends the model to 
include puts and calls on stocks which pay dividends. Section 7 concludes 
the paper by showing how the model can be generalized in other important 
ways and discussing its essential role in valuation by arbitrage methods. 

‘To take an elementary case, consrder a lirm wrth a single liabthty of a homogeneous class ot 
pure discount bonds. The stockholders then have a ‘call’ on the assets of the firm which they can 
choose to exercrse at the maturtty date of the debt by paymg Its prmcipal to the bondholders. In 
turn, the bonds can be interpreted as a portfolio containing a default-free loan with the same 
face value as the bonds and a short position in a put on the assets of the firm. 

‘Sharpe (1978) has partially developed thts approach to optton prrcmg m his excellent new 
book, Investments. Rendleman and Bartter (1978) have recently independently discovered a 
srmtlar formulatton of the option pricing problem 
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2. The basic idea 

Suppose the current price of a stock is S=$50, and at the end of a period 
of time, its price must be either S* = $25 or S* = $100. A call on the stock is 
available with a striking price of K = $50, expiring at the end of the period.3 
It is also possible to borrow and lend at a 25% rate of interest. The one 
piece of information left unfurnished is the current value of the call, C. 
However, if riskless profitable arbitrage is not possible, we can deduce from 

the given information alone what the value of the call must be! 
Consider forming the following levered hedge: 

Table 1 gives the return from this hedge for each possible level of the stock 
price at expiration. Regardless of the outcome, the hedge exactly breaks even 
on the expiration date. Therefore, to prevent profitable riskless arbitrage, its 
current cost must be zero; that is, 

3c-100+40=0. 

The current value of the call must then be C=$20. 

Table 1 

Arbitrage table dlustratmg the formatlon of a rlskless hedge 

Write 3 calls 
Buy 2 shares 
Borrow 

Total 

Present 
date 

3c 
-100 

40 

Expiration date 

S* =%25 S* =$I00 

_ - 150 
50 200 

-50 -50 

_ _ 

If the call were not priced at $20, a sure profit would be possible. In 
particular, if C= $25, the above hedge would yield a current cash inflow of 
$15 and would experience no further gain or loss in the future. On the other 
hand, if C= $15, then the same thing could be accomplished by buying 3 
calls, selling short 2 shares, and lending $40. 

‘To keep matters simple, assume for now that the stock will pay no cash dividends durmg the 
life of the call We also Ignore transaction costs, margm reqmrements and taxes. 
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Table 1 can be interpreted as demonstrating that an appropriately levered 
position in stock will replicate the future returns of a call. That is, if we buy 
shares and borrow against them in the right proportion, we can, in effect, 
duplicate a pure position in calls. In view of this, it should seem less 

surprising that all we needed to determine the exact value of the call was its 
striking price, underlying stock price, range of movement in the underlying 
stock price, and the rate of interest. What may seem more incredible is what 
we do not need to know: among other things, we do not need to know the 
probability that the stock price will rise or fall. Bulls and bears must agree on 
the value of the call, relative to its underlying stock price! 

This example is very simple, but it shows several essential features of 
option pricing. And we will soon see that it is not as unrealistic as its seems. 

3. The binomial option pricing formula 

In this section, we will develop the framework illustrated in the example 

into a complete valuation method. We begin by assuming that the stock 
-price follows a multiplicative binomial process over discrete periods. The rate 
of return on the stock over each period can have two possible values: u- 1 
with probability q, or d - 1 with probability l-q. Thus, if the current stock 

price is S, the stock price at the end of the period will be either US or dS. We 
can represent this movement with the following diagram: 

US 

/ 

with probability q, 

dS with probability 1 -4. 

We also assume that the interest rate is constant. Individuals may borrow 
or lend as much as they wish at this rate. To focus on the basic issues, we 
will continue to assume that there are no taxes, transaction costs, or margin 
requirements. Hence, individuals are allowed to sell short any security and 
receive full use of the proceeds.4 

Letting r denote one plus the riskless interest rate over one period, we 
require u > r >d. If these inequalities did not hold, there would be profitable 
riskless arbitrage opportunities involving only the stock and riskless borrow- 
ing and lending.5 

To see how to value a call on this stock, we start with the simplest 

situation: the expiration date is just one period away. Let C be the current 
value of the call, C, be its value at the end of the period if the stock price 

40f course, restitution IS required for payouts made to securities held short. 
5We will Ignore the uninterestmg special case where 4 IS zero or one and u = d = r. 
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goes to US, and C, be its value at the end of the period if the stock price 
goes to dS. Since there is now only one period remaining in the life of the 
call, we know that the terms of its contract and a rational exercise policy 
imply that C, = max[O, US-K] and C, = max[O, dS -K]. Therefore, 

,C, = max[O, US -K] with probability q, 

C, =max[O, dS -K] with probability l-q. 

Suppose we form a portfolio containing d shares of stock and the dollar 
amount B in riskless bonds6 This will cost AS+B. At the end of the period, 
the value of this portfolio will be 

AuS + rB with probability q, 

AS+B 

< 
AdS + rB with probability l-q. 

Since we can select A and B in any way we wish, suppose we choose them to 
equate the end-of-period values of the portfolio and the call for each possible 
outcome. This requires that 

AuS+rB=C,, 

AdS+rB=C,. 

Solving these equations, we find 

A = c,-Cd UC, - dC, 

(u -d)S’ ‘= (u-d)r 

With A and B chosen in this way, we will call this the hedging portfolio. 
If there are to be no riskless arbitrage opportunities, the current value of 

the call, C, cannot be less than the current value of the hedging portfolio, 
AS + B. If it were, we could make a riskless profit with no net investment by 
buying the call and selling the portfolio. It is tempting to say that it also 
cannot be worth more, since then we would have a riskless arbitrage 
opportunity by reversing our procedure and selling the call and buying the 
portfolio. But this overlooks the fact that the person who bought the call we 
sold has the right to exercise it immediately. 

bBuymg bonds IS the same as lendmg; selhng them IS the same as borrowmg. 



Suppose that AS +B < S-K. If we try to make an arbitrage profit by 
selling calls for more than AS+B, but less than S-K, then we will soon find 
that we are the source of arbitrage profits rather than their recipient. Anyone 
could make an arbitrage profit by buying our calls and exercising them 
immediately. 

We might hope that we will be spared this embarrassment because 
everyone will somehow find it advantageous to hold the calls for one more 
period as an investment rather than take a quick profit by exercising them 

immediately. But each person will reason in the following way. If I do not 
exercise now, I will receive the same payoff as a portfolio with AS in stock 

and B in bonds. If I do exercise now, I can take the proceeds, S-K, buy this 
same portfolio and some extra bonds as well, and have a higher payoff in 
every possible circumstance. Consequently, no one would be willing to hold 
the calls for one more period. 

Summing up all of this, we conclude that if there are to be no riskless 
arbitrage opportunities, it must be true that 

C=AS+B 

C -C, UC,-dC, 

=L+ (u-d)r u-d 

if this value is greater than S-K, and if not, C=S-K.’ 
Eq. (2) can be simplified by defining 

r-d u-r 
p--- u_d and l-p=- 

u-d’ 

so that we can write 

C = CPC. + (1 -p)Gllr. 

(2) 

It is easy to see that in the present case, with no dividends, this will always 
be greater than S-K as long as the interest rate is positive. To avoid 

‘In some apphcattons of the theory to other areas, It IS useful to constder options which can 
be exercised only on the expiration date. These are usually termed European options. Those 
whtch can be exercised at any earher ttme as well, such as we have been examining here, are 
then referred to as Amertcan options. Our discussion could be easdy moddied to mclude 
European calls. Since immediate exerctse is then precluded, their values would always be gtven 
by (2). even tf thts IS less than S-K. 
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spending time on the unimportant situations where the interest rate is less 

than or equal to zero, we will now assume that I is always greater than one. 
Hence, (3) is the exact formula for the value of a call one period prior to 
expiration in terms of S, K, U, d, and r. 

To confirm this, note that if uSsK, then S<K and C=O, so CBS-K. 
Also if dSzK, then C= S- (K/r)> S-K. The remaining possibility is 
uS>K>dS. In this case, C=p(uS-K)/r. This is greater than S-K if (1 -p) 
dS> (p- r)K, which is certainly true as long as r> 1. 

This formula has a number of notable features. First, the probability q 
does not appear in the formula. This means, surprisingly, that even if 
different investors have different subjective probabilities about an upward or 
downward movement in the stock, they could still agree on the relationship 

of C to S, u, d, and r. 
Second, the value of the call does not depend on investors’ attitudes 

toward risk. In constructing the formula, the only assumption we made 
about an individual’s behavior was that he prefers more wealth to less wealth 
and therefore has an incentive to take advantage of profitable riskless 
arbitrage opportunities. We would obtain the same formula whether in- 

vestors are risk-averse or risk-preferring. 
Third, the only random variable on which the call value depends is the 

stock price itself. In particular, it does not depend on the random prices of 
other securities or portfolios, such as the market portfolio containing all 
securities in the economy. If another pricing formula involving other 

variables was submitted as giving equilibrium market prices, we could 
immediately show that it was incorrect by using our formula to make 
riskless arbitrage profits while trading at those prices. 

It is easier to understand these features if it is remembered that the 
formula is only a relative pricing relationship giving C in terms of S, u, d, 
and r. Investors’ attitudes toward risk and the characteristics of other assets 
may indeed influence call values indirectly, through their effect on these 
variables, but they will not be separate determinants of call value. 

Finally, observe that p- (r-d)/(u-d) is always greater than zero and less 
than one, so it has the properties of a probability. In fact, p is the value q 
would have in equilibrium if investors were risk-neutral. To see this, note 
that the expected rate of return on the stock would then be the riskless 
interest rate, so 

q(d)+ (1 -q)(dS)=rS, 

and 

q= (r-d)/(u-d)=p. 

Hence, the value of the call can be interpreted as the expectation of its 
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discounted future value in a risk-neutral world. In light of our earlier 
observations, this is not surprising. Since the formula does not involve 4 or 

any measure of attitudes toward risk, then it must be the same for any set of 
preferences, including risk neutrality. 

It is important to note that this does not imply that the equilibrium 
expected rate of return on the call is the riskless interest rate. Indeed, our 
argument has shown that, in equilibrium, holding the call over the period is 
exactly equivalent to holding the hedging portfolio. Consequently, the risk 

and expected rate of return of the call must be the same as that of the 
hedging portfolio. It can be shown that A 20 and BsO, so the hedging 
portfolio is equivalent to a particular levered long position in the stock. In 

equilibrium, the same is true for the call. Of course, if the call is currently 
mispriced, its risk and expected return over the period will differ from that 

of the hedging portfolio. 
Now we can consider the next simplest situation: a call with two periods 

remaining before its expiration date. In keeping with the binomial process, 

the stock can take on three possible values after two periods, 

U2S, 

US 

S duS, 

'dS 

‘d2S; 

similarly, for the call, 

/ 
C,, = max[O, u2 S -K], 

C” 

C 
<> 

C,,=max[O,duS-K], 

‘Cd 
C,,=max[0,d2S-K]. 

C,, stands for the value of a call two periods from the current time if the 
stock price moves upward each period; CdU and C,, have analogous 
definitions. 
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At the end of the current period there will be one period left in the life of 

the call and we will be faced with a problem identical to the one we just 
solved. Thus, from our previous analysis, we know that when there are two 
periods left, 

and 

c&l = L-PC,. + (1 - PKl,ll~. 

Again we can select a portfolio with AS in stock and B in bonds whose 

end-of-period value will be C, if the stock price goes to US and C, if the 
stock price goes to dS. Indeed, the functional form of A and B remains 
unchanged. To get the new values of A and B, we simply use eq. (1) with the 
new values of C, and C,. 

Can we now say, as before, that an opportunity for protitable riskless 
arbitrage will be available if the current price of the call is not equal to the 
new value of this portfolio or S-K, whichever is greater? Yes, but there is 
an important difference. With one period to go, we could plan to lock in a 
riskless profit by selling an overpriced call and using part of the proceeds to 

buy the hedging portfolio. At the end of the period, we knew that the market 
price of the call must be equal to the value of the portfolio, so the entire 
position could be safely liquidated at that point. But this was true only 
because the end of the period was the expiration date. Now we have no such 
guarantee. At the end of the current period, when there is still one period 
left, the market price of the call could still be in disequilibrium and be 

greater than the value of the hedging portfolio. If we closed out the position 
then, selling the portfolio and repurchasing the call, we could suffer a loss 
which would more than offset our original profit. However, we could always 
avoid this loss by maintaining the portfolio for one more period. The value 
of the portfolio at the end of the current period will always be exactly 
sufficient to purchase the portfolio we would want to hold over the last 
period. In effect, we would have to readjust the proportions in the hedging 
portfolio, but we would not have to put up any more money. 

Consequently, we conclude that even with two periods to go. there is a 
strategy we could follow which would guarantee riskless profits with no net 
investment if the current market price of a call differs from the maximum of 
AS + B and S-K. Hence, the larger of these is the current value of the call. 

Since A and B have the same functional form in each period, the current 
value of the call in terms of C, and C, will again be C = [PC, + (1 - p)C,]/r if 
this is greater than S-K, and C= S-K otherwise. By substituting from eq. 
(4) into the former expression, and noting that C,, = Cud, we obtain 
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C=CP2C,,+2p(l -p)C,,+ (1 -p)2Cdd]/r2 

=Ep2max[0,u2S-K]+2p(l-p)max[O,duS-K] 

+ (1 - p)2 max[O, d2 S -K]]/r’. (5) 

A little algebra shows that this is always greater than S-K if, as assumed, r 
is always greater than one, so this expression gives the exact value of the 
ca11.8 

All of the observations made about formula (3) also apply to formula (5), 
except that the number of periods remaining until expiration, n, now emerges 
clearly as an additional determinant of the call value. For formula (5), n = 2. 
That is, the full list of variables determining C is S, K, n, u, d, and r. 

We now have a recursive procedure for finding the value of a call with any 
number of periods to go. By starting at the expiration date and working 
backwards, we can write down the general valuation formula for any n: 

C=[~O~&)$(l-p)“jmax[O,ujdn-jS-K]]/r”. (6) 

This gives us the complete formula, but with a little additional effort we can 
express it in a more convenient way. 

Let a stand for the minimum number of upward moves which the stock 
must make over the next n periods for the call to finish in-the-money. Thus a 
will be the smallest non-negative integer such that u”d”-“S>K. By taking the 
natural logarithm of both sides of this inequality, we could write a as the 

smallest non-negative integer greater than log(K/Sd”)/log(u/d). 
For all j <a, 

max[O,ujd”-‘S-K] =O, 

and for all jza, 

max[O, ujd”-JS -K] = uJd”-JS -K. 

Therefore, 

c=[‘gl&) $(l -p)“-j[dd”-js-K] 
II 

r”. 

‘In the current sttuation, with no dividends, we can show by a simple direct argument that if 
there are no arbitrage opportunities, then the call value must always be greater than S-K 
before the expiration date. Suppose that the call is selling for S-K. Then there would be an 
easy arbitrage strategy which would requtre no imtial Investment and would always have a 
positive return. All we would have to do is buy the call, short the stock, and invest K dollars in 
bonds, See Merton (1973). In the general case, with dividends, such an argument is no longer 
vahd. and we must use the procedure of checking every period. 
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Of course, if a>n, the call will finish out-of-the-money even if the stock 

moves upward every period, so its current value must be zero. 

By breaking up C into two terms, we can write 

Now, the latter bracketed expression is the complementary binomial distri- 
bution function @[a; n,p]. The first bracketed expression can also be 
interpreted as a complementary binomial distribution function @[a; n, p’], 

where 

p’- (u/r)p and 1 -p’- (d/r)(l -p). 

p’ is a probability, since O<p'< 1. To see this, note that p< (r/u) and 

In summary: 

Binomial Option Pricing Formula 

C = S@[a; n, p’] -Kr-“@[a; n, p], 

where 

p= (r-Q(u-d) and p’- (u/r)p, 

a = the smallest non-negative integer 

greater than log(K/Sd”)/log(u/d) 

If a>n, c=o. 

It is now clear that all of the comments we made about the one period 
valuation formula are valid for any number of periods. In particular, the 

value of a call should be the expectation, in a risk-neutral world, of the 
discounted value of the payoff it will receive. In fact, that is exactly what eq. 
(6) says. Why, then, should we waste time with the recursive procedure when 
we can write down the answer in one direct step? The reason is that while 
this one-step approach is always technically correct, it is really useful only if 
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we know in advance the circumstances in which a rational individual would 
prefer to exercise the call before the expiration date. If we do not know this, 
we have no way to compute the required expectation. In the present 
example, a call on a stock paying no dividends, it happens that we can 
determine this information from other sources: the call should never be 
exercised before the expiration date. As we will see in section 6, with puts or 
with calls on stocks which pay dividends, we will not be so lucky. Finding 
the optimal exercise strategy will be an integral part of the valuation 
problem. The full recursive procedure will then be necessary. 

For some readers, an alternative ‘complete markets’ interpretation of our 
binomial approach may be instructive. Suppose that 71, and K,, represent the 
state-contingent discount rates to states u and d, respectively. Therefore, rc, 
would be the current price of one dollar received at the end of the period, if 
and only if state u occurs. Each security - a riskless bond, the stock, and the 

option - must all have returns discounted to the present by n, and rcl if no 
riskless arbitrage opportunities are available. Therefore, 

1 =71*r+lrdr, 

S=n,(uS) tnd(dS), 

c = iT”C, + n*C,. 

The first two equations, for the bond and the stock, imply 

1 _ 
r 

Substituting these equalities for the state-contingent prices in the last 
equation for the option yields eq. (3). 

It is important to realize that we are not assuming that the riskless bond 
and the stock and the option are the only three securities in the economy, or 
that other securities must follow a binomial process. Rather, however these 
securities are priced in relation to others in equilibrium, among themselves 
they must conform to the above relationships. 

From either the hedging or complete markets approaches, it should be 
clear that three-state or trinomial stock price movements will not lead to an 
option pricing formula based solely on arbitrage considerations. Suppose, for 
example, that over each period the stock price could move to US or dS or 
remain the same at S. A choice of A and I3 which would equate the returns 
in two states could not in the third. That is, a riskless arbitrage position 
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could not be taken. Under the complete .markets interpretation, with three 
equations in now three unknown state-contingent prices, we would lack the 
redundant equation necessary to price one security in terms of the other two. 

4. Riskless trading strategies 

The following numerical example illustrates how we could use the formula 

if the current market price M ever diverged from its formula value C. If 

M >C, we would hedge, and if M <C, ‘reverse hedge’, to try and lock in a 
profit. Suppose the values of the underlying variables are 

S=80, n=3, K=80, u=1.5, d=0.5, r=l.l. 

In this case, p= (r -d)/(u-d)=0.6. The relevant values of the discount factor 

are 

r-l =0.909, rW2=0.826, r-3=0.751. 

The paths the stock price may follow and their corresponding probabilities 
(using probability p) are, when n = 3, with S = 80, 

/ 

270, 

(0.216) 

80 

(0.16) 
\ 

’ 10; 

(0.064) 
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when n=2, if S= 120, 

/ 

270, 

(0.36) 

180 

(0.6) 

120 -.I: 90, 

(0.48) 

6 

(0.4) 

30; 

(0.16) 

when n=2, if S=40, 

(0.16) 

Using the formula, the current value of the call would be 

C=0.751[0.064(0)+0.288(0)+0.432(90- 80)+0.216(270-go)] 

= 34.065. 

Recall that to form a riskless hedge, for each call we sell, we buy and 
subsequently keep adjusted a portfolio with AS in stock and B in bonds, 

where A = (C, - C,)/(u-d)S. The following tree dragram gives the paths the 
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call value may follow and the corresponding values of A: 

With this preliminary analysis, we are prepared to use the formula to take 
advantage of misprlcing in the market. Suppose that when n=3, the market 
price of the call is 36. Our formula tells us the call should be worth 34.065. 
The option is overpriced, so we could plan to sell it and assure ourselves of a 

profit equal to the mispricing differential. Here are the steps you could take 
for a typical path the stock might follow. 

Step 1 (n=3): Sell the call for 36. Take 34.065 of this and invest rt in a 
portfolio containing A =0.719 shares of stock by borrowmg 0.719(80) 

- 34.065 =23.455. Take the remainder, 36- 34.065 = 1.935, and put it in the 
bank. 

Step 2 (n=2): Suppose the stock goes to 120 so that the new A 1s 0.848. 
Buy 0.848 -0.719 =0.129 more shares of stock at 120 per share for a total 
expenditure of 15.480. Borrow to pay the bill. With an interest rate of 0.1, 
you already owe 23.455(1.1)=25.801. Thus, your total current indebtedness 
is 25.801 + 15.480=41.281. 

Step 3 (PI= 1): Suppose the stock price now goes to 60. The new A is 0.167. 
Sell 0.848 -0.167 =0.681 shares at 60 per share, takmg in 0.681(60)=40.860. 
Use this to pay back part of your borrowmg. Since you now owe 41.281(1.1) 
=45.409, the repayment will reduce this to 45.409 -40.860=4.549. 

Step 4d (n=O): Suppose the stock price now goes to 30. The call you sold 
has expired worthless. You own 0.167 shares of stock sellmg at 30 per share, 
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for a total value of 0.167(30)= 5. Sell the stock and repay the 4.549(1.1)= 5 
that you now owe on the borrowing. Go back to the bank and withdraw 
your original deposit, which has now grown to 1.935(1.1)3 =2.575. 

Step 4u (n=O): Suppose, instead, the stock price goes to 90. The call you 
sold is in the money at the expiration date. Buy back the call, or buy one 
share of stock and let it be exercised, incurring a loss of 90- 80= 10 either 
way. Borrow to cover this, bringing your current indebtedness to 5 + 10 = 15. 
You own 0.167 shares of stock selling at 90 per share, for a total value of 
0.167(90)= 15. Sell the stock and repay the borrowing. Go back to the bank 
and withdraw your original deposit, which has now grown to 1.935(1.1)3 
= 2.575. 

In summary, if we were correct in our original analysis about stock price 
movements (which did not involve the unenviable task of predicting whether 
the stock price would go up or down), and if we faithfully adjust our 
portfolio as prescribed by the formula, then we can be assured of walking 
away in the clear at the expiration date, while still keeping the original 
differential and the interest it has accumulated. It is true that closing out the 

position before the expiration date, which involves buying back the option at 
its then current market price, might produce a loss which would more than 
offset our profit, but this loss could always be avoided by waiting until the 
expiration date. Moreover, if the market price comes into line with the 

formula value before the expiration date, we can close out the position then 
with no loss and be rid of the concern of keeping the portfolio adjusted. 

It still might seem that we are depending on rational behavior by the 
person who bought the call we sold. If instead he behaves foolishly and 
exercises at the wrong time, could he make things worse for us as well as for 
himself? Fortunately, the answer is no. Mistakes on his part can only mean 
greater profits for us. Suppose that he exercises too soon. In that circum- 
stance, the hedging portfolio will always be worth more than S-K, so we 

could close out the position then with an extra profit. 
Suppose, instead, that he fails to exercise when it would be optimal to do 

so. Again there is no problem. Since exercise is now optimal, our hedging 
portfolio will be worth S--K9 If he had exercised, this would be exactly 
sufficient to meet the obligation and close out the position. Since he did not, 
the call will be held at least one more period, so we calculate the new values 
of C, and C, and revise our hedging portfolio accordingly. But now the 
amount required for the portfolio, AS+ B, is less than the amount we have 
available, S-K. We can withdraw these extra profits now and still maintain 

‘If we were reverse hedging by buymg an undervalued call and selhng the hedgmg portfoho, 
then we would ourselves want to exercise at this pomt. Since we ~111 receive S-K from 
exercising, this will be exactly enough money to buy back the hedgmg portfoho. 
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the hedging portfolio. The longer the holder of the call goes on making 

mistakes, the better off we will be. 
Consequently, we can be confident that things will eventually work out 

right no matter what the other party does. The return on our total position, 
when evaluated at prevailing market prices at intermediate times, may be 
negative. But over a period ending no later than the expiration date, it will 
be positive. 

In conducting the hedging operation, the essential thing was to maintain 
the proper proportional relationship: for each call we are short, we hold A 

shares of stock and the dollar amount B in bonds in the hedging portfolio. 
To emphasize this, we will refer to the number of shares held for each call as 
the hedge ratio. In our example, we kept the number of calls constant and 
made adjustments by buying or selling stock and bonds. As a result, our 
profit was independent of the market price of the call between the time we 
initiated the hedge and the expiration date. If things got worse before they 
got better, it did not matter to us. 

Instead, we could have made the adjustments by keeping the number of 
shares of stock constant and buying or selling calls and bonds. However, this 
could be dangerous. Suppose that after initiating the position, we needed to 
increase the hedge ratio to maintain the proper proportions. This can be 
achieved in two ways: 

(a) buy more stock, or 
(b) buy back some of the calls. 

If we adjust through the stock, there is no problem. If we insist on adjusting 
through the calls, not only is the hedge no longer riskless, but it could even 
end up losing money ! This can happen if the call has become even more 
overpriced. We would then be closing out part of our position in calls at a 
loss. To remain hedged, the number of calls we would need to buy back 
depends on their value, not their price. Therefore, since we are uncertain 
about their price, we then become uncertain about the return from the hedge. 
Worse yet, if the call price gets high enough, the loss on the closed portion of 
our position could throw the hedge operation into an overall loss. 

To see how this could happen, let us rerun the hedging operation, where 
we adjust the hedge ratio by buying and selling calls. 

Step 2 (n=3): Same as before. 

Step 2 (n=2): Suppose the stock goes to 120, so that the new d =0.848. 
The call price has gotten further out of line and is now selling for 75. Since 
its value is 60.463, it is now overpriced by 14.537. With 0.719 shares, you 
must buy back l-O.848 =0.152 calls to produce a hedge ratio of 0.848 
=0.719/0.848. This costs 75(0.152)= 11.40. Borrow to pay the bill. With the 
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interest rate of 0.1, you already owe 23.455(1.1)=25.801. Thus, your total 
current Indebtedness IS 25.801+ 11.40 = 37.201. 

Stry 3 (,I= 1 1: Suppose the stock goes to 60 and the call is selling for 5.454. 
Since the call is now fairly valued, no further excess profits can be made by 
continuing to hold the position. Therefore, liquidate by selling your 0.719 
shares for 0.719(60)=43.14 and close out the call position by buying back 
0.848 calls for 0.848(5.454) =4.625. This nets 43.14 - 4.625 = 38.515. Use this 
to pay back part of your borrowing. Since you now owe 37.20(1.1)=40.921, 

after repayment you owe 2.406. Go back to the bank and withdraw your 
original deposit, which has now grown to 1.935(1.1)2 =2.341. Unfortunately, 
after using this to repay your remaining borrowing, you still owe 0.065. 

Since we adjusted our position at Step 2 by buying overpriced calls, our 
profit is reduced. Indeed, since the calls were considerably overpriced, we 
actually lost money despite apparent profitability of the position at Step 1. 
We can draw the following adjustment rule from our experiment: 7ii adjust a 

hedged position, never buy an overpriced option or sell an underpriced option. 

As a corollary, whenever we can adjust a hedged position by buying more of 
an underpriced option or selling more of an overpriced option, our profit 
will be enhanced if we do so. For example, at Step 3 in the original hedging 
illustration, had the call still been overpriced, it would have been better to 
adjust the position by selling more calls rather than selling stock. In 
summary, by choosing the right side of the position to adjust at intermediate 
dates, at a minimum we can be assured of earning the original differential and 
its accumulated interest, and we may earn considerably more. 

5. Limiting cases 

In reading the previous sections, there is a natural tendency to associate 
with each period some particular length of calendar time, perhaps a day. 
With this in mind, you may have had two objections. In the first place, 
prices a day from now may take on many more than just two possible 
values. Furthermore, the market is not open for trading only once a day, but, 

instead, trading takes place almost continuously. 
These objections are certainly valid. Fortunately, our option pricing 

approach has the flexibility to meet them. Although it might have been 
natural to think of a period as one day, there was nothing that forced us to 
do so. We could have taken it to be a much shorter interval - say an hour - 
or even a minute. By doing so, we have met both objections simultaneously. 
Trading would take place far more frequently, and the stock price could take 

on hundreds of values by the end of the day. 
However, if we do this, we have to make some other adjustments to keep 

the probability small that the stock price will change by a large amount over 
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a minute. We do not want the stock to have the same percentage up and 
down moves for one minute as it did before for one day. But again there is 
no need for us to have to use the same values. We could, for example, think 
of the price as making only a very small percentage change over each 
minute. 

To make this more precise, suppose that h represents the elapsed time 
between successive stock price changes. That is, if t is the fixed length of 
calendar time to expiration, and n is the number of periods of length h prior 

to expiration, then 

h = t/n. 

As trading takes place more and more frequently, h gets closer and closer to 

zero. We must then adjust the interval-dependent variables r, u, and d in 
such a way that we obtain empirically realistic results as h becomes smaller, 

or, equivalently, as n+ 32. 
When we were thinking of the periods as having a fixed length, r 

represented both the interest rate over a fixed length of calendar time and 
the interest rate over one period. Now we need to make a distinction 

between these two meanings. We will let r continue to mean one plus the 
interest rate over a fixed length of calendar time. When we have occasion to 
refer to one plus the interest rate over a period (trading interval) of length h, 

we will use the symbol ? 
Clearly, the size of i depends on the number of subintervals, n, into which 

t is divided. Over the n periods until expiration, the total return is P, where 
n= t/h. Now not only do we want F to depend on n, but we want it to 
depend on n in a particular way - so that as n changes the total return P 
over the fixed time t remains the same. This is because the interest rate 

obtainable over some fixed length of calendar time should have nothing to do 
with how we choose to think of the length of the time interval h. 

If r (without the ‘hat’) denotes one plus the rate of interest over a fixed 

unit of calendar time, then over elapsed time t, r’ is the total return.” 
Observe that this measure of total return does not depend on n. As we have 
argued, we want to choose the dependence of r^ on n, so that 

for any choice of n. Therefore, I*=r”“. This last equation shows how r^ must 
depend on n for the total return over elapsed time t to be independent of n. 

We also need to define u and d in terms of n. At this point, there are two 
significantly different paths we can take. Depending on the definitions we 

“The scale of this umt (perhaps a day, or a year) is ummportant as long as r and r are 
expressed in the same scale. 
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choose, as n-+00 (or, equivalently, as ~-PO), we can have either a continuous 
or a jump stochastic process. In the first situation, very small random 
changes in the stock price will be occurring in each very small time interval. 
The stock price will fluctuate incessantly, but its path can be drawn without 
lifting pen from paper. In contrast, in the second case, the stock price will 
usually move in a smooth deterministic way, but will occasionally experience 
sudden discontinuous changes. Both can be derived from our binomial 
process simply by choosing how u and d depend on n. We examine in detail 
only the continuous process which leads to the option pricing formula 
originally derived by Fischer Black and Myron &holes. Subsequently, we 
indicate how to develop the jump process formula originally derived by John 
Cox and Stephen Ross. 

Recall that we supposed that over each period the stock price would 
experience a one plus rate of return of u with probability q and d with 
probability l-q. It will be easier and clearer to work, instead, with the 
natural logarithm of the one plus rate of return, logu or logd. This gives the 

continuously compounded rate of return on the stock over each period. It is 
a random variable which, in each period, will be equal to logu with 
probability q and logd with probability l-q. 

Consider a typical sequence of five moves, say u, d, u, u, d. Then the final 
stock price will be S* = uduudS; S*/S = u3d2, and log(S*/S) = 3 log u + 2 log d. 
More generally, over n periods, 

log(S*/S) =j log u + (n -j) log d =j log(u/d) + n log d, 

where j is the (random) number of upward moves occurring during the n 
periods to*expiration. Therefore, the expected value of log(S*/S) is 

EClog(S*/S)] =log(u/d).E(j)+n logd, 

and its variance is 

var[log(S*/S)] = [log(u/d)12 .var(j). 

Each of the n possible upward moves has probability q. Thus, E(j)= nq. 
Also, since the variance each period is q(l -q)2 + (1 -q)(O-q)2=q(1 -q), 
then var(j) = nq (l-q). Combining all of this, we have 

E[log(S*/S)] = [q lo&/d) + log d]n s ,hn, 

var[log(S*/S)] =q(l -q)[log(u/d)]2n-82n. 

Let us go back to our discussion. We were considering dividing up our 
original longer time period (a day) into many shorter periods (a minute or 
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even less). Our procedure calls for, over fixed length of calendar time t, 
making n larger and larger. Now if we held everything else constant while we 
let n become large, we would be faced with the problem we talked about 
earlier. In fact, we would certainly not reach a reasonable conclusion if either 

fin or 8’n went to zero or infinity as n became large. Since t is a fixed length 
of time, in searching for a realistic result, we must make the appropriate 
adjustments in u, d, and q. In doing that, we would at least want the mean 
and variance of the continuously compounded rate of return of the assumed 
stock price movement to coincide with that of the actual stock price as n 

430. Suppose we label the actual empirical values of cn and rT2n as pt and 
a2 t, respectively. Then we would want to choose u, d, and q, so that 

Cq log(u/d)+logd]n+pt 
as n-+co. 

q(l -q)[log(u/d)]2n-azt 

A little algebra shows we can accomplish this by letting 

In this case, for any n, 

iin=pClt and 82n=[02--2(t/n)]t. 

Clearly, as n+co, a2n-+g2t, while dn=g for all values of n. 
Alternatively, we could have chosen u, d, and q so that the mean and 

variance of the future stock price for the discrete binomial process approach 
the prespecified mean and variance of the actual stock price as n-t co. 

However, just as we would expect, the same values will accomplish this as 
well. Since this would not change our conclusions, and it is computationally 
more convenient to work with the continuously compounded rates of return, 
we will proceed in that way. 

This satisfies our initial requirement that the limiting means and variances 
coincide, but we still need to verify that we are arriving at a sensible limiting 
probability distribution of the continuously compounded rate of return. The 
mean and variance only describe certain aspects of that distribution. 

For our model, the random continuously compounded rate of return over 
a period of length t is the sum of n independent random variables, each of 

which can take the value log u with probability q and logd with probability 
l-q. We wish to know about the distribution of this sum as n becomes large 
and q, u, and d are chosen in the way described. We need to remember that 
as we change n, we are not simply adding one more random variable to the 
previous sum, but instead are changing the probabilities and possible 
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outcomes for every member of the sum. At this point, we can rely on a form 
of the central limit theorem which, when applied to our problem, says that, 

as n-+a, if 

qllogu-#+ (1 -q)~logd-P~3t0 

d”& ’ 

then 

Prob K log(S*/S) -fin 
&\/;5 ) 1 sz +N(z), 

where N(z) is the standard normal distribution function. Putting this into 
words, as the number of periods into which the fixed length of time to 
expiration is divided approaches infinity, the probability that the standar- 
dized continuously compounded rate of return of the stock through the 
expiration date is not greater than the number z approaches the probability 
under a standard normal distribution. 

The initial condition says roughly that higher-order properties of the 
distribution, such as how it is skewed, become less and less important, 
relative to its standard deviation, as n-+io. We can verify that the condition 
is satisfied by making the appropriate substitutions and finding 

qllogu-Fl3+(1-q)lldgd-F13=(1-q)2+q2 

rY& JGFF)’ 

which goes to zero as n-+ cc since q =4 + i(p/a),/&. Thus, the multiplicative 
binomial model for stock prices includes the lognormal distribution as a 
limiting case. 

Black and Scholes began directly with continuous trading and the 
assumption of a lognormal distribution for stock prices. Their approach 

relied on some quite advanced mathematics. However, since our approach 
contains continuous trading and the lognormal distribution as a limiting 
case, the two resu”ing formulas should then coincide. We will see shortly 
that this is indeed true, and we will have the advantage of using a much 
simpler method. It is important to remember, however, that the economic 
arguments we used to link the option value and the stock price are exactly 
the same as those advanced by Black and Scholes (1973) and Merton (1973, 
1977). 

The formula derived by Black and Scholes, rewritten in terms of our 
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notation. is 

Black-&holes Option Pricing Formula 

1 
XE 

log(S/Kr-‘) 

CJt 

+$fJJi. 

We now wish to confirm that our binomial formula converges to the 
Black-Scholes formula when t is divided into more and more subintervals, 

and i, u, d, and q are chosen in the way we described - that is, in a way such 
that the multiplicative binomial probability distribution of stock prices goes 
to the lognormal distribution. 

For easy reference, let us recall our binomial option pricing formula: 

The similarities are readily apparent. r^-” is, of course, always equal to I-‘. 

Therefore. to show the two formulas converge, we need only show that as 

n-+03, 

@[a;n,p’]-+N(x) and @[a;n,p]-+N(x-a$). 

We will consider only Q[a;n,p], since the argument is exactly the same for 

a-a;n,p’l. 
The complementary binomial distribution function @[a; n, p] is the prob- 

ability that the sum of n random variables, each of which can take on the 
value 1 with probability p and 0 with probability 1 -p, will be greater than 
or equal to a. We know that the random value of this sum, j, has mean np 
and standard deviation Jm Therefore, 

l-@[u;n,p]=Prob[j5u-l] 

= Prob j-np I 
u-l-rip 1. JGJ-3-J;lpo 

Now we can make an analogy with our earlier discussion. If we consider a 
stock which in each period will move to US with probability p and dS with 
probability 1 -p, then log(S*/S)=j log(u/d)+ n logd. The mean and variance 
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of the continuously compounded rate of return of this stock are 

Fp=plog(u/d)+logd and &i=p(l-p)[log(u/d)]‘. 

Using these equahties, we find that 

j-w log(S*/S)-fi,n 
= 

J&v3 hp& 

Recall from the binomial formula that 

a - 1 = log(K/Sd”)/log(t4/d) - E 

= [log(K/S) - n log d]/log(u/d) - E, 

where E is a number between zero and one. Using this and the definitions of 

j2, and ai, with a little algebra, ‘we have 

a-l-np’ log(K/S)-; n-&log(u/d) 

&ZT &,‘A . 

Putting these results together, 

l-@Ca;n,Pl 

= Prob 
log(S*/S) -/I,n < log(K/S) - &I --E log(u/d) 

s,& = 
6P& l- 

We are now in a position to apply the central limit theorem. First, we 
must check if the initial condition, 

Pllogu-Pp13+(1-P)llogd-Pp13=(1-P)2+P2~0 

66 Jnpo 

as n-+ 30, is satisfied. By first recalling that p- (F-d)/(u -d), and then i= r”“, 
u = e”J”, and d = e-OJq, it is possible to show that as n+ CCI, 

As a result, the initial condition holds, and we are justified in applying the 
central limit theorem. 
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To do so, we need only evaluate &n, ain and log(u/d) as n-+oo.ll 
Examination of our discussion for parameterizing q shows that as n+oo, 

&n+ (log r --*a’)~ and B,&+afi. 

Furthermore, log(u/d)+O as n-+ co. 
For this application of the central limit theorem, then, since 

log(K/S) -&n -E log(+) log(K/S) - (log r - &T2)t 

%fi 

-+.Z= 
CT& ’ 

we have 

1 -@[Ca;n,p]-+N(z)=N 
log(Kr-‘/S) 

d 
+&/i . 1 

The final step in the argument is to use the symmetry property of 
standard normal distribution that 1 -N(z) = N (- z). Therefore, as n-+ KI, 

the 

@[a;n,p]-+N(-z)=N 
log(S/Kr-‘) 

~J; 

Since a similar argument holds for @[a;n,p’], this completes our dem- 

“A surprising feature of this evaluation is that although p#q and thus F,#$, dnd B,#B, 

nonetheless B,,fi and d& have the same limiting value as n+s3. By contrast, since pflogr 
-(ja’), &,n and in do not. This results from the way we needed to speclf u and d to obtain 
convergence to a lognormal distribution. Rewriting this as ~,,6= (log u) ;Y n, it is clear that the 
limiting value D of the standard deviation does not depend on p or q, and hence must be the 
same for either. However, at any point before the limit, since 

a2-(logr-ja2)2~ t, 
n 1 

d and B will generally have different values. 
The Act that &n-+(log r-ju’)t can also be derived from the property of the lognormal 

distribution that 

logE[S*/S] ‘p&J + j& 

where E and pP are measured with respect to probability p. Since p= (i-d)/(u-d), it follows 
that i=pu+(l -p)d. For independently distributed random variables, the expectation of a 
product equals the product of their expectations. Therefore, 

E[S*/~=[pu+(l-p)~“=P=fJ. 

Substituting r’ for E[S*/S] in the previous equation, we have 

/LLp = log r - $J’. 
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onstration that the binomial option pricing formula contains the Black- 
Scholes formula as a limiting case,12,r3 

As we have remarked, the seeds of both the Black-Scholes formula and a 
continuous-time jump process formula are both contained within the bi- 
nomial formulation. At which end point we arrive depends on how we take 
limrts. Suppose, in place of our former correspondence for u, d, and q, we 
instead set 

u = u, d = ei”‘“‘, q = 1 (c/n). 

This correspondence captures the essence of a pure jump process in which 
each successive stock price is almost always close to the previous price 
(S+dS), but occasionally, with low but continuing probability, significantly 

different (S-US). Observe that, as n+ca, the probability of a change by d 
becomes larger and larger, while the probability of a change by u approaches 
zero. 

With these specifications, the initial condition of the central limit theorem 
we used is no longer satisfied, and it can be shown the stock price 
movements converge to a log-Poisson rather than a lognormal distribution 
as n-+m. Let us define 

‘*The only dtfference is that, as n+co, p r~t+)[(logr+tcr2)/a]Jtln. 

Further, it can be shown that as n-co, d-N(x). Therefore, for the Black-Scholes model, 
dS=SN(x) and B= -Kr-‘N(x-a,/~) 

‘sIn our ortgmal development, we obtained the following equation (somewhat rewritten) 
relatmg the call prtces m successive periods: 

(!I!)c.+(,Zq>c-x=0. 

By then more difftcult methods, Black and &holes obtamed directly a partial differential 
equation analogous to our discrete-ttme difference equatton. Their equation IS 

The value of the call, C, was then derived by solvmg this equatton subject to the boundary 
conditton C* =max[O, S* -K]. 

Based on our previous analysis, we would now suspect that, as n-co, our difference equatton 
would approach the Black-Scholes partial differential equation. This can be conlirmed by 
substitutmg our definitions of f, u, d m terms of n in the way described earlier, expandmg C,, C 
m a Taylor series around (eOJr;S, t-h) and (e -ucS t-h), respectively, and then expanding eaJ , R , 
eeoJh, and ? in a Taylor series, substitutmg these in the equation and collecting terms. If we 
then divide by h and let h-0, all terms of higher order than h go to zero. This yields the Black- 
Scholes equation. 
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as the complementary Poisson distribution function. The limiting option 
pricing formula for the above specifications of u, d, and q is then 

Jump Process Option Pricing Formula 

C=SY[x;y]-Kr-‘Y[x;L’/u], 

where 

y=(logr--{)ut/(u-1), 

and 

x E the smallest non-negative Integer 

greater than (log(K/S) - @)/log u. 

A very similar formula holds if we let u = ec(““), d = d, and 1 - q = 1 (t/n). 

6. Dividends and put pricing 

So far we have been assuming that the stock pays no dividends. It is easy 
to do away with this restriction. We will illustrate this with a specific 
dividend policy: the stock maintains a constant yield, 6, on each ex-dividend 
date. Suppose there is one period remaining before expiration and the 
current stock price is S. If the end of the period is an ex-dividend date, then 
an individual who owned the stock during the period will receive at that 
time a dividend of either 6uS or 6dS. Hence, the stock price at the end of the 
period will be either ~(1-6)‘s or d(l-6)“S, where v=l if the end of the 
period is an ex-dividend date and v=O otherwise. Both 6 and v are assumed 
to be known with certainty. 

When the call expires, its contract and a rational exercise policy imply that 
its value must be either 

C,=max[O,u(l-@‘S-K], 

or 

C,=max[;,d(l -B)‘S--K]. 

Therefore, 

/ 
C,=max[O,u(l-6)‘S-K], 

‘C,=max[O,d(l-6)‘S-K]. 
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Now we can proceed exactly as before. Again we can select a portfolio of A 
shares of stock and the dollar amount B in bonds which will have the same 
end-of-period value as the call. i4 By retracing our previous steps, we can 
show that 

c= [PC, + (1 -Pm/~, 

if this is greater than S-K, and C= S-K otherwise. Here, once again, 

p=(i-d)/(u-d) and A=(C,-C,)/(u--d)S. 
Thus far the only change is that (1-8)“s has replaced S in the values for 

C, and C,. Now we come to the major difference: early exercise may be 
optimal. To see this, suppose that v = 1 and d(1 - 6)s >K. Since u >d, then, 

also, u(l-6)S>K. In this case, C,=u(l-6)S-K and C,=d(l-6)S-K. 
Therefore, since (u/f)p+ (d/i)(l -p)= 1, [PC,+ (1 -p)C,]/i= (1-6)S- (K/i). 
For sufficiently high stock prices, this can obviously be less than S-K. 
Hence, there are definitely some circumstances in which s no one would be 

willing to hold the call for one more period. 
In fact, there will always be a critical stock price, S, such that if S > 3, the 

call should be exercised immediately. S will be the stock price at which [PC, 
+(l-p)C,]/i=S-K. l5 That is, it is the lowest stock price at which the 
value of the hedging portfolio exactly equals S-K. This means 3 will, other 
things equal, be lower the higher the dividend yield, the lower the interest 

rate, and the lower the striking price. 
We can extend the analysis to an arbitrary number of periods in the same 

way as before. There is only one additional difference, a minor modification 
in the hedging operation. Now the funds in the hedging portfolio will be 
increased by any dividends received, or decreased by the restitution required 
for dividends paid while the stock is held short. 

Although the possibility of optimal exercise before the expiration date 
causes no conceptual difficulties, it does seem to prohibit a simple closed- 
form solution for the value of a call with many periods to go. However, our 
analysis suggests a sequential numerical procedure which will allow us to 
calculate the continuous-time value to any desired degree of accuracy. 

Let C be the current value of a call with n periods remaining. Define 

n-i 

C(n,i)= C vk, 
k=l 

so that ?(n, i) is the number of ex-dividend dates occurring during the next 
n - i periods. Let C(n, i, j) be the value of the call n - i periods from now, given 

14Remember that If we are long the portfolio we will receive the dividend at the end of the 
period; if we are short, we will have to make restitution for the dlvldend. 

*sActually solving for s explicitly is stralghtforward but rather tedious, so we ~111 omlt it. 
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that the current stock price S has changed to u’d”-‘-j(1 -fi)S(“*r)S, where 

j=o,1,2 ,..., n-i. 
With this notation, we are prepared to solve for the current value of the 

call by working backward in time from the expiration date. At expiration, 
i = 0, so that 

C(~,O,~)=~~~[O,UJ~~-~(~-G)~~~~~‘S-K] for j=O,l,..., n. 

One period before the expiration date, i = 1 so that 

C(n, l,j)=max[uJd”-‘-‘(I -6)v’“v1)S-K, 

[pC(n,O,j+l)+(l-p)C(h,O,j)lPl 

for j=O,l,..., n-l. 

More generally, i periods before expiration 

C(n,i,j)=max[ujd”-‘-j(1-6)v(“,“S-K, 

[pC(n,i-l,j+l)+(l-p)C(n,i-l,j)]/?] 

for j=O,l,...,n-i. 

Observe that each prior step provides the inputs needed to evaluate the 
right-hand arguments of each succeeding step. The number of calculations 
decreases as we move backward in time. Finally, with n periods before 
expiration, since i = n, 

C=C(n,n,O)=max[S-K,[pC(n,n- l.l)t (1 -p)C(n,n- 1,0)1/F], 

and the hedge ratio is 

d=r( ’ 
n n-l, 1)-C(n,n-1,O) 

(U--d)S 

We could easily expand the analysis to include dividend policies m which 
the amount paid on any ex-dividend date depends on the stock price at that 
time in a more general way.16 However, this will cause some minor 

complications. In our present example with a constant dividend yield, the 

possible stock prices n-i periods from now are completely determined by 
the total number of upward moves (and ex-dividend dates) occurring during 
that interval. With other types of dividend policies, the enumeration will be 

“We could also allow the amount to depend on previous stock prices 
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more complicated, since then the terminal stock price will be affected by the 
timing of the upward moves as well as their total number. But the basic 

principle remains the same. We go to the expiration date and calculate the 
call value for all of the possible prices that the stock could have then. Using 
this information, we step back one period and calculate the call values for all 

possible stock prices at that time, and so forth. 
We will now illustrate the use of the binomial numerical procedure in 

approximating continuous-time call values. In order to have an exact 
continuous-time formula to use for comparison, we will consider the case 
with no dividends. Suppose that we are given the inputs required for the 
Black-Scholes option pricing formula: S, K, t, or and r. To convert this 
information into the inputs d, u, and i required for the binomial numerical 
procedure, we use the relationships: 

d = l/u, 

Table 2 gives us a feeling for how rapidly option values approximated by 
the binomial method approach the corresponding limiting Black-Scholes 

values given by n= co. At n=5, the values differ by at most $0.25, and at 
n=20, they differ by at most $0.07. Although not shown, at n = 50, the 
greatest difference is less than $0.03, and at n = 150, the values are identical 
to the penny. 

To derive a method for valuing puts, we again use the binomial for- 
mulation. Although it has been convenient to express the argument m terms 
of a particular security, a call, this is not essential in any way. The same 
basic analysis can be applied to puts. 

Letting P denote the current price of a put, with one period remaming 
before expiration, we have 

< 

P,=max[O,K-u(l-6)“S], 

P 

P,=max[O,K -d(l -c~)~S]. 

Once again, we can choose a portfolio with AS in stock and B m bonds 
which will have the same end-of-period values as the put. By a series of steps 
which are formally equivalent to the ones we followed in section 3, we can 
show that 

p = CPP, + (1 - P )PdlP, 

if this is greater than K - S, and P =K - S otherwise. As before, p = (F-d)/ 
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(u-d) and A = (Pu -Pd)/(u -d)S. Note that for puts, since P, 5 P,, then A 5 0. 
This means that if we sell an overvalued put, the hedging portfolio which we 
buy will involve a short position in the stock. 

We might hope that with puts we will be spared the complications caused 
by optimal exercise before the expiration date. Unfortunately, this is not the 
case. In fact, the situation is even worse in this regard. Now there are always 

some possible circumstances in which no one would be willing to hold the 
put for one more period. 

To see this, suppose K>u(l-6)‘s. Since u>d, then, also, K >d(l-6)“s. 
In this case, P,=K--u(l-6)‘s and P,=K-d(l-6)‘S. Therefore, since 

(alr^)~+ (d/:)(1 -P)= 1, 

[pP,+(l-p)P,]/i=(K/i)-(1-6)‘S. 

If there are no dividends (that is, v =O), then this is certainly less than K-S. 
Even with v = 1, it will be less for a sufficiently low stock price. 

Thus, there will now be a critical stock price, 3, such that if S < 9, the put 
should be exercised immediately. By analogy with our discussion for the call, 
we can see that this is the stock price at which [pP,+ (1 -p)P,]/i=K -S. 
Other things equal, 9 will be higher the lower the dividend yield, the higher 
the interest rate, and the higher the striking price. Optimal early exercise 
thus becomes more likely if the put is deep-in-the-money and the interest rate 
is high. The effect of dividends yet to be paid diminishes the advantages of 
immediate exercise, since the put buyer will be reluctant to sacrifice the 
forced declines in the stock price on future ex-dividend dates. 

This argument can be extended in the same way as before to value puts 
with any number of periods to go. However, the chance for optimal exercise 
before the expiration date once again seems to preclude the possibility of 
expressing this value in a simple form. But our analysis also indicates that, 
with slight modification, we. can value puts with the same numerical 
techniques we use for calls. Reversing the difference between the stock price 

and the striking price at each stage is the only change.” 

“Mtchael Parkmson (1977) has suggested a stmtlar numertcal procedure based on a trmomtal 
process, where the stock price can etther Increase, decrease, or remam unchanged. In fact, gtven 
the theorettcal basts for the binomtal numertcal procedure provided, the numertcal method can 
be generahzed to permrt k + 16 n jumps to new stock prtces m each pertod. We can constde. 
exerctse only every k pertods, usmg the bmomtal formula to leap across mtermedtate pertods. In 
effect, this means permitting k + 1 possible new stock prices before exercise 1s again considered. 
That is, Instead of considering exercise n ttmes, we would only constder tt about n/k ttmes For 
ftxed t and k, as n-r so, option values wtll approach thetr contmuous-ttme values. 

This alternative procedure IS Interesting, smce tt may enhance computer eflicrency. At one 
extreme, for calls on stocks whrch do not pay dtvrdends, settmg k + 1 = n gtves the most etlictent 
results. However, when the effect of potenttal early exerctse ts Important and greater accuracy 1s 
requtred. the most efficient results are achieved by setttng k = I. as m our descrtption above 
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The diagram presented in table 3 shows the stock prices, put values, and 
values of A obtained in this way for the example given in section 4. The 
values used there were S=80, K=80, n=3, u=1.5, d=0.5, and i=l.l. To 
include dividends as well, we assume that a cash dividend of live percent 
(6=0.05)will be paid at the end of the last period before the expiration date. 
Thus, (1-6)“(“*‘)=0.95, (l -6)‘(“*‘)=0.95, and (1-6y(“,*)= 1.0. Put values in 

italics indicate that immediate exercise is optimal. 

Table 3 

256.5 

/A (0.00) 

7. Conclusion 

It should now be clear that whenever stock price movements conform to a 
discrete binomial process, or to a limiting form of such a process, options 
can be priced solely on the basis of arbitrage considerations. Indeed, we 
could have significantly complicated the simple binomial process while still 
retaining this property. 

The probabilities of an upward or downward move did not enter into the 
valuation formula. Hence, we would obtain the same result if q depended on 
the current or past stock prices or on other random variables. In addition, u 
and d could have been deterministic functions of time. More significantly, the 
size of the percentage changes in the stock price over each period could have 
depended on the stock price at the beginning of each period or on previous 
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stock prices. la However, if the size of the changes were to depend on any 
other random variable, not itself perfectly correlated with the stock price, 
then our argument will no longer hold. If any arbitrage result is then still 
possible, it will require the use of additi.onal assets in the hedging portfolio. 

We could also incorporate certain types of imperfections into the binomial 

option pricing approach, such as differential borrowing and lending rates and 
margin requirements. These can be shown to produce upper and lower 
bounds on option prices, outside of which riskless profitable arbitrage would 
be possible. 

Since all existing preference-free option pricing results can be derived as 
limiting forms of a discrete two-state process, we might suspect that two-state 
stock price movements, with the qualifications mentioned above, must be in 
some sense necessary, as well as sufficient, to derive option pricing formulas 
based solely on arbitrage considerations. To price an option by arbitrage 
methods, there must exist a portfolio of other assets which exactly replicates 
in every state of nature the payoff received by an optimally exercised option. 
Our basic proposition is the following. Suppose, as we have, that markets are 
perfect, that changes in the interest rate are never random, and that changes 
in the stock price are always random. In a discrete time model, a necessary 
and sufficient condition for options of all maturities and striking prices to be 
priced by arbitrage using only the stock and bonds in the portfolio is that in 
each period, 

(a) the stock price can change from its beginning-of-period value to only 

two ex-dividend values at the end of the period, and 
(b) the dividends and the size of each of the two possible changes are 

presently known functions depending at most on: (i) current and past 
stock prices, (ii) current and past values of random variables whose 
changes in each period are perfectly correlated with the change in the 
stock price, and (iii) calendar time. 

The sufficiency of the condition can be established by a straightforward 
application of the methods we have presented. Its necessity is implied by the 
discussion at the end of section 3.19720*21 

“‘Of course, different option pricmg formulas would result from these more complex 
stochastic processes. See Cox and Ross (1976) and Geske (1979). Nonetheless, all option pricmg 
formulas in these papers can be derived as hmitmg forms of a properly specified discrete two- 
state process. 

“Note that option values need not depend on the present stock price alone. In some cases, 
formal dependence on the entire series of past values of the stock price and other variables can 
be summarized in a small number of state variables. 

201n some circumstances, tt will be possible to value options by arbitrage when this condition 
does not hold by using additional assets m the hedging portfolio. The value of the option ~111 
then in general depend on the values of these other assets, although in certain cases only 
parameters describing their movement will be required. 

2’Merton’s (1976) model, with both contmuous and Jump components, IS a good example of a 
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This rounds out the principal conclusion of this paper: the simple two- 

state process is really the essential ingredient of option pricing by arbitrage 
methods. This is surprising, perhaps, given the mathematical complexities of 
some of the current models m this field. But it is reassuring to find such 
simple economvz arguments at the heart of this powerful theory. 

stock price process for which no exact option pricmg formula IS obtamable purely from 
arbitrage considerations. To obtain an exact formula, it is necessary to mpose restrictions on 
the stochastic movements of other securities, as Merton did, or on mvestor preferences For 
example, Rubinstem (1976) has been able to derive the Black-Scholes option pricmg formula, 
under circumstances that do not admit arbitrage, by suitably restricting Investor preferences 
Additional problems arise when Interest rates are stochastic, although Merton (1973) has shown 
that some arbitrage results may still be obtamed. 
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