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Abstract: The Boltzmann–Gibbs (BG) entropy and its associated statistical mechanics were generalized,
three decades ago, on the basis of the nonadditive entropy Sq (q 2 R), which recovers the BG entropy in
the q ! 1 limit. The optimization of Sq under appropriate simple constraints straightforwardly yields
the so-called q-exponential and q-Gaussian distributions, respectively generalizing the exponential
and Gaussian ones, recovered for q = 1. These generalized functions ubiquitously emerge in
complex systems, especially as economic and financial stylized features. These include price returns
and volumes distributions, inter-occurrence times, characterization of wealth distributions and
associated inequalities, among others. Here, we briefly review the basic concepts of this q-statistical
generalization and focus on its rapidly growing applications in economics and finance.
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1. Introduction

Exponential and Gaussian functions ubiquitously emerge within linear theories in mathematics,
physics, economics and elsewhere. To illustrate in what sense they are linear, let us focus on three
typical mathematical situations, namely an ordinary differential equation, a partial derivative equation
and an entropic optimization.

Consider the following ordinary differential equation:

dy
dx

= ay [y(0) = 1] . (1)

The solution is the well-known exponential function:

y = eax . (2)

Consider now the following partial derivative equation:

∂p(x, t)
∂t

= D
∂2p(x, t)

∂x2 [D > 0; t � 0; p(x, 0) = d(x)] , (3)

where d(x) is the Dirac delta function. The solution is the well-known Gaussian distribution:

p(x, t) =
1p

2pDt
e�x2/2Dt . (4)
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Let us finally consider the following entropic functional:

SBG = �k
Z

dx p(x) ln p(x) (k > 0) (5)

with the constraint: Z
dx p(x) = 1 , (6)

where BG stands for Boltzmann–Gibbs; k is a conventional positive constant (usually k = kB in physics,
and k = 1 elsewhere). If we optimize the functional (5) with the constraint (6) and:

he(x)i ⌘
Z

dx p(x)e(x) = u (u 2 R) (7)

e(x) being bounded below, we obtain:

p(x) =
e�be(x)

R
dx e�be(x) , (8)

where b ⌘ 1/kT is the Lagrange parameter associated with Constraint (7); T is the absolute temperature
within BG statistical mechanics (necessarily T > 0 if e(x) is unbounded from above; but both T > 0
and T < 0 possibilities exist if e(x) is bounded also from above). The probability distribution p(x)
corresponds to the celebrated BG weight, where Z ⌘

R
dx e�be(x) is usually referred to as the partition

function. Two particular cases emerge frequently. The first of them is e(x) = x (x � 0) with u ⌘ hxi,
hence p(x) = e�x/hxi

hxi , thus recovering solution (2). The second one is e(x) = x2 with u ⌘ hx2i, hence

p(x) = e�x2/2hx2ip
2phx2i

, thus recovering solution (4). Therefore, basic cases connect SBG with the solutions

of the linear Equations (1) and (3). In addition to that, let us make explicit in what sense SBG is itself
linear. We consider a system (A + B) constituted by two probabilistically independent subsystems
A and B. In other words, we consider the case where the joint probability of (A + B) factorizes, i.e.,
p(A+B)(x, y) = p(A)(x)p(B)(y) [8(x, y)]. We straightforwardly verify that the functional SBG is additive
in the sense of Penrose [1], namely that:

SBG(A + B) = SBG(A) + SBG(B) . (9)

In the present brief review, we shall address a special class of nonlinearities, namely those
emerging within nonextensive statistical mechanics, q-statistics for short [2–6].

Equation (1) is now generalized into the following nonlinear one:

dy
dx

= ayq [y(0) = 1; q 2 R] . (10)

Its solution is:
y = eax

q , (11)

where the q-exponential function is defined as ez
q ⌘ [1 + (1 � q)z]1/(1�q)

+ (ez
1 = ez),

with [1+ (1� q)z]+ = 1+ (1� q)z if z > 0 and zero otherwise. Its inverse function is the q-logarithm,
defined as lnq z ⌘ z1�q�1

1�q (ln1 z = ln z). To avoid any confusion, let us mention that many other
q-deformations of the exponential and logarithmic functions have been introduced in the literature
for a variety of purposes; among them, we have for instance Ramanujan’s q-exponential function,
unrelated to the present one.
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Equation (3) is now generalized into the following nonlinear one (referred to in the literature as
the porous medium equation [7–9]):

∂p(x, t)
∂t

= Dq
∂2[p(x, t)]2�q

∂x2 [Dq(2� q) > 0; D1 ⌘ D; q < 3; t � 0; p(x, 0) = d(x)] . (12)

Its solution generalizes Equation (4) and is given by:

p(x, t) =
1p
pAq

e�x2/{Aq[(Dq)t]
2

3�q }
q (13)

with:

Aq =

8
>>>>>>>>><

>>>>>>>>>:

p
q�1 G

�
1

q�1

�

G
�

3�q
2(q�1)

� if 1 < q < 3 ,

2 if q = 1 ,

p
1�q G

�
5�3q

2(1�q)

�

G
�

2�q
1�q

� if q < 1 .

(14)

Before going on, let us mention that solution (13) implies that x2 scales like t
2

3�q , hence normal
diffusion for q = 1, anomalous sub-diffusion for q < 1 and super-diffusion for 1 < q < 3, which has
recently been impressively validated (within a 2% experimental error) in a granular medium [10].
The important connection between the power-law nonlinear diffusion (12) and the entropy Sq described
here below was first established by Plastino and Plastino in [11], where they considered a more general
evolution equation that reduces to (12) in the particular case of vanishing drift (i.e., F(x) = 0, 8x).
The Plastino–Plastino Equation [11] ∂p(x,t)

∂t = � ∂
∂x [F(x)p(x, t)] + Dq

∂2[p(x,t)]2�q

∂x2 with F(x) = �dV(x)/dx
generalizes the porous medium equation in the same sense that the linear Fokker–Planck equation
generalizes the classical heat equation. The above nonlinear Equations (10) and (12) have been
addressed here in order to provide some basic mathematical structure to approaches of various
economic- and financial-specific features presented later on.

Let us now focus on the entropic functional Sq upon which nonextensive statistical mechanics is
based. It is defined as follows:

Sq ⌘ k 1�
R

dx [p(x)]q
q�1 = k

R
dx p(x) lnq

1
p(x) = �k

R
dx [p(x)]q lnq p(x) = �k

R
dx p(x) ln2�q p(x) (15)

with S1 = SBG. If we optimize this functional with the constraints (6) and:

he(x)iq ⌘
R

dx [p(x)]qe(x)R
dx [p(x)]q

= uq (uq 2 R; u1 = u) (16)

we obtain [4]:

p(x) =
e�bqe(x)

q
R

dx e�bqe(x)
q

=
e
�b0q[e(x)�uq]
q

R
dx e

�b0q[e(x)�uq]
q

(b1 = b01 = b) . (17)

As before, two particular cases emerge frequently. The first of them is e(x) = x (x � 0) with
uq ⌘ hxiq; hence, p(x) recovers the form of (11). The second one is e(x) = x2 with uq ⌘ hx2iq;
hence, p(x) recovers the form of solution (13). Finally, if we consider Sq itself for two independent
subsystems A and B, we straightforwardly verify the following nonlinear composition law:

Sq(A + B)
k

=
Sq(A)

k
+

Sq(B)
k

+ (1� q)
Sq(A)

k
Sq(B)

k
, (18)
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hence
Sq(A + B) = Sq(A) + Sq(B) +

1� q
k

Sq(A)Sq(B) . (19)

We then say that Sq is nonadditive for q 6= 1. Entropic additivity is recovered if (1 � q)/k ! 0,
which can occur in two different circumstances: q ! 1 for fixed k or k ! • for fixed q. Since k always
appears in physics in the form kT, the limit k ! • is equivalent to T ! •. This is, by the way, the basic
reason for which, in the limit of high temperatures or low energies, Maxwell–Boltzmann statistics,
Fermi–Dirac, Bose–Einstein and q-statistics asymptotically coincide.

The above q-generalized thermostatistical theory has been useful in the study of a considerable
number of natural, artificial and social systems (see [12]). Theoretical and experimental illustrations
in natural systems include long-range-interacting many-body classical Hamiltonian systems [13–20]
(see also [21,22]; the study of the long-range version of [23] would surely be interesting), dissipative
many-body systems [24], low-dimensional dissipative and conservative nonlinear dynamical
systems [25–31], cold atoms [32–34], plasmas [35,36], trapped atoms [37], spin-glasses[38], power-law
anomalous diffusion [39,40], granular matter [10], high-energy particle collisions [41–46], black
holes and cosmology [47,48], chemistry [49], earthquakes [50], biology [51,52], solar wind [53,54],
anomalous diffusion in relation to central limit theorems and overdamped systems [55–64], quantum
entangled systems [65,66], quantum chaos [67], astronomical systems [68,69], thermal conductance [70],
mathematical structures [71–76] and nonlinear quantum mechanics [77–96], among others. Illustrations
in artificial systems include signal and image processing [97,98] and (asymptotically) scale-free
networks [99–101]. In the realm of social systems, from now on, we focus on economics and financial
theory [102–118].

2. Applications in Economics and Finance

2.1. Prices and Volumes

Time series of prices pt (say of stocks, commodities, etc.), where t runs along chosen units
(say seconds or minutes, or days, or years) are conveniently replaced by their corresponding returns
(or logarithmic returns), defined as follows:

rt = ln
pt+1
pt

' pt+1 � pt
pt

(t = 0, 1, 2, . . . ) . (20)

Returns do not depend on the specific currency of the prices and fluctuate around zero; in addition
to that, their definition cancels systematic inflation. The distribution of returns usefully characterizes
the price fluctuations. See an illustration in Figure 1, from [103] (see also [104,118]). The amounts of
the corresponding transactions are currently referred to as volumes: see, for example, Figure 2.

2.2. Volatilities

The volatility characterizes the size (standard deviation) of the fluctuations of returns. The volatility
smile characterizes the correction of empirical volatilities with regard to a Gaussian-based expectation:
see an illustration in Figure 3 (from [103]). To be more explicit, let us assume that we are handling the
following Gaussian distribution µ e�Br2 , where B characterizes univocally the volatility. To discuss
the probability distribution of quantities such as B, Queiros introduced [108] the q-log normal
probability function:

pq(x) =
1

Zqxq e�
[lnq x�µ]2

2s2 (x > 0) , (21)

where Zq is a normalizing factor and (q, µ, s) are parameters. The q = 1 particular case corresponds
to the standard log-normal function. See Figure 4 for illustrative examples of this function. See also
Figure 5 for a real financial application.
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Figure 1. Empirical return densities (points) and q-Gaussians (solid lines) for normalized returns of the
10 top-volume stocks in the NYSE and in NASDAQ in 2001. The dotted line is a (visibly inadequate)
Gaussian distribution. The 2- and 3-min curves are moved vertically for display purposes. From [103].
There exist in the literature quite a few other such examples, for other stocks and other years, with
similar values of q.
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Figure 2. Empirical distributions (points) and q-exponential-like curves (solid lines) for normalized
volumes of the 10 top-volume stocks in the NYSE and in the NASDAQ in 2001. The solid lines are
fittings with a q-exponential multiplied by a power-law (analogous to the density of states prefactor
that typically emerges for the distributions of quasi-particles in, say, condensed matter physics);
from [103]. There exist in the literature quite a few other such examples, for other stocks and other
years, with similar values of q and of the rest of the fitting indices.
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Figure 3. Implied volatilities as a function of the strike price for call options on JY currency futures,
traded on 16 May 2002, with 147 days left to expiration. In this typical example, the current price of
a contract on Japanese futures is $79, and the risk-free rate of return is 5.5%. Circles correspond to
volatilities implied by the market, whereas triangles correspond to volatilities implied by our model
with q = 1.4 and s = 10.2%. The dotted line is a guide to the eye. From [103].

0.001 0.01 0.1 1 10 100 1000
10!6

10!5

10!4

0.001

0.01

0.1

1

x

p
!x
"

Figure 4. Illustrations of the q-log-normal density for µ = 0 and s = 1: blue q = 5/4, red q = 1 and
green q = 4/5. From [108].

Figure 5. Probability density function of a five-day volatility vs. B. The symbols are obtained from the
data, and the lines are the best fits with the Gamma distribution (dashed green) and the double-sided
q-log-normal (red) with µ = 0.391, s = 1.15 and q = 1.22. For further details, see [108].
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2.3. Inter-Occurrence Times

We can see in Figure 6 two typical time series of price returns, together with a chosen threshold
Q = �0.037, which corresponds to an average inter-occurrence time RQ = 70 [106,107]. The quantity
RQ monotonically increases with | � Q| in each one of the examples shown in Figures 7 and 8.
For a fixed value of RQ, we verify that pQ(r) µ e�bthreshold r

qthreshold , with:

qthreshold = 1 + q0 ln(RQ/2) (q0 ' 0.168) . (22)

See the illustrations in Figures 9 and 10. The fact that we have analytically pQ(r) enables us to
straightforwardly obtain an explicit expression for the risk function WQ(t; Dt), which is defined as the
probability of having once again a fluctuation larger than |� Q| within an interval Dt at time t after
the last large fluctuation. It can be shown [106,109] that:

WQ(t; Dt) ⌘
R t+Dt

t pQ(r)drR •
t pQ(r)dr = 1 �

h
1 + bthreshold(qthreshold�1)Dt

1+bthreshold(qthreshold�1)t

i qthreshold�2
qthreshold�1

= 1 �
e
�(bthreshold/q̃)(t+Dt)
q̃

e
�(bthreshold/q̃)t
q̃

(23)

with q̃ ⌘ 1/(2 � qthreshold). See Figure 11.

Figure 6. Illustration of the relative daily price returns Xi of the IBM stock between (a) January 2000
and June 2010 and (b) 27 August and 23 October 2002. The red line shows the threshold Q ' �0.037,
which corresponds to an average inter-occurrence time of RQ = 70. In (b), the inter-occurrence times
are indicated by arrows. From [106].
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Figure 7. The mean inter-occurrence time RQ vs. the absolute value of the loss threshold �Q.

The continuous curves are fittings with RQ = AeBinter |Q|
qinter = A[1 + (1 � qinter)Binter|Q|]1/(1�qinter).

Top left: For the exchange rate of the U.S. Dollar against the British Pound, the index S&P500, the IBM
stock and crude oil (West Texas Intermediate (WTI)), from left to right in the plot; the corresponding
values for qinter are 0.95, 0.92, 0.97, 0.927 (with A = 2, 2.04, 1.95, 2.02 and Binter = 240, 175, 95, 60).
Similarly for the top right, bottom left and bottom right plots. From [107].

Figure 8. The mean inter-occurrence time RQ versus the absolute value of the loss threshold �Q:
lnqinter (RQ/A) versus the Binter|� Q| representation of the same data of Figure 7. The continuous curve

is a fitting with RQ = AeBinter |�Q|
qinter . From [107].
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Figure 9. (a) The distribution function of the inter-occurrence times for the relative daily price returns
Xi of IBM in the period 1962–2010. The data points belong to RQ = 2, 5, 10, 30 and 70 (in units of days),
from bottom to top. The full lines show the fitted q-exponentials pQ(r) µ e�bthreshold r

qthreshold for typical values
of RQ. (b) The dependence of the parameters bthreshold (squares, lower curve) and qthreshold (circles,
upper curve) on RQ in the qthreshold-exponential. (c) Confirmation that, for RQ = 2, the distribution
function is a simple exponential (i.e., qthreshold = 1). The straight line is proportional to 2�r. From [106].

Figure 10. The distribution function of the inter-occurrence times (as in Figure 9a) for the relative daily
price returns of 16 examples of financial data, taken from different asset classes (stocks, indices, currencies,
commodities). The assets are: (i) the stocks of IBM, Boeing (BA), General Electric (GE), Coca-Cola
(KO); (ii) the indices Dow Jones (DJI), Financial Times Stock Exchange 100 (FTSE), NASDAQ, S&P 500;
(iii) the commodities Brent Crude Oil, West Texas Intermediate (WTI), Amsterdam-Rotterdam-Antwerp
gasoline (ARA), Singapore gasoline (SING); and (iv) the exchange rates of the following currencies
versus the U.S. Dollar: Danish Crone (DKK), British Pound (GBP), Yen, Swiss Francs (SWF). The full
lines show the fitted q-exponentials, which are the same as in Figure 9a. From [106].
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Figure 11. Universal risk function WQ(t, Dt) from Equation (23) for the inter-occurrence time RQ = 100
and for the intervals Dt = 1, 5, 20, 100 days (from bottom to top). From [106].

2.4. Wealth

Wealth inequality within a given country is a classical and most important matter, which can be
characterized within q-statistics as shown in [105]: see Figures 12 and 13. The larger the index qinequality
is, the larger the inequality. As we verify, the U.K. and Germany are more egalitarian countries than
the U.S. and Brazil. In addition to that, inequality appears to increase in the U.S. and Brazil, at least
during the years indicated in the plots.

Figure 12. Binned inverse cumulative distribution of the county, PI/PI0 (U.S.) and GDP/GDP0
(Brazil, Germany and U.K.), where PI denotes the Personal Income and GDP denotes the Gross
Domestic Product of countries. Three distributions are displayed for comparison: (i) q-Gaussian
(with bq0 = 0) (dot-dashed); (ii) (q; q0)-Gaussian (solid) and (iii) log-normal (dashed lines). (a,b) present
insets with a linear-linear scale, to make more evident the quality of the fitting at the low region (in (c,d),
the (q; q0)-Gaussian and the log-normal curves are superposed and, so, are visually indistinguishable).
The positions of the knees are indicated. The ankle is particularly pronounced in (c), though it is also
present in the other cases. From [105], where further details are available.
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Another index that characterizes the wealth of a country and its inequalities is associated with the
prices of the land. See in Figure 14 (from [105]) an illustration for Japan, where qland price = 2.136.

Figure 13. Evolution of parameter q for the U.S. (squares), Brazil (circles), the U.K. (up triangles) and
Germany (down triangles). The parameters q0 (for each country) are constant for all years: q0Brazil = 2.1,
q0USA = 1.7, q0Germany = 1.5, q0UK = 1.4. Lines are only guides to the eyes. As we verify, in some cases,
the index q remains invariant along time, whereas in others, it evolves; the functional forms remain
however the same as indicated in Figure 12. From [105].

Figure 14. Inverse cumulative probability distribution of Japanese land prices for the year
1998. The solid curve is a q-Gaussian with q = 2.136, which corresponds to the slope �1.76,
and 1/

p
bq = 188,982 Yen. From [105], where further details are available.

3. Conclusions and Perspectives

We have described a variety of financial and economic properties with a plethora of
q-indices, such as qreturn, qvolume, qvolatility, qinter, qthreshold, q0, q̃, qinequality, qland price. For a given system,
how many independent indices should we expect? The full answer to this question remains up to now
elusive. It seems however that only a few of them are essentially independent, all of the others being
(possibly simple) functions of those few. Such an algebraic structure was first advanced and described
in [119] and has been successfully verified in the solar wind [53] (see also [6] and the references therein)
and elsewhere; it has recently been generalized [120,121] and related to the Moebius group. The central
elements of these algebraic structures appear to constitute what is currently referred to in the literature
as q-triplets [122]. The clarification and possible verification of such structures constitutes nowadays
an important open question, whose further study would surely be most useful.

Another crucial question concerns the analytic calculation from first principles of some or all of
the above q-indices. This is in principle possible (as illustrated in [63–66]), but it demands the complete
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knowledge of the microscopic model of the specific class of the complex system. For the full set of
the q-indices shown in the present overview, such models are not available, even if they would be
very welcome.

Let us finally emphasize that many other statistical approaches exist for the quantities focused on
in the present overview. However, as announced in the title of this paper, this is out of the present
scope. The present paper is one among various others belonging to the same Special Issue of the journal
Entropy. The entire set of articles is expected to enable comparisons between these many approaches.

Acknowledgments: I thank C. Anteneodo, E.P. Borges, L. Borland, E.M.F. Curado, F.D. Nobre, R. Osorio,
A.R. Plastino, S.M.D. Queiros, G. Ruiz, and U. Tirnakli for longstanding fruitful conversations. I thank especially
J. Ludescher for authorizing me to use, in the present review, our unpublished figures of [107]. The financial
support from CNPq and FAPERJ (Conselho Nacional de Desenvolvimento Cientifico e Tecnologico, and Fundacao
de Amparo a Pesquisa do Rio de Janeiro, Brazilian funding agencies) and from the John Templeton Foundation
(U.S.) are also gratefully acknowledged.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Penrose, O. Foundations of Statistical Mechanics: A Deductive Treatment; Pergamon: Oxford, UK, 1970; p. 167.
2. Tsallis, C. Possible generalization of Boltzmann–Gibbs statistics. J. Stat. Phys. 1988, 53, 479–487.
3. Curado, E.M.F.; Tsallis, C. Generalized statistical mechanics: Connection with thermodynamics. J. Phys. A

1991, 24, L69–L72.
4. Tsallis, C.; Mendes, R.S.; Plastino, A.R. The role of constraints within generalized nonextensive statistics.

Physica A 1998, 261, 534–554.
5. Gell-Mann, M.; Tsallis, C. (Eds.) Nonextensive Entropy-Interdisciplinary Applications; Oxford University Press:

New York, NY, USA, 2004.
6. Tsallis, C. Introduction to Nonextensive Statistical Mechanics-Approaching a Complex World; Springer: New York,

NY, USA, 2009.
7. Muskat, M. The Flow of Homogeneous Fluids through Porous Media; McGraw-Hill: New York, NY, USA, 1937.
8. Frank, T.D. Nonlinear Fokker–Planck Equations: Fundamentals and Applications; Series Synergetics; Springer:

Berlin, Germany, 2005.
9. Tsallis, C.; Bukman, D.J. Anomalous diffusion in the presence of external forces: Exact time-dependent

solutions and their thermostatistical basis. Phys. Rev. E 1996, 54, R2197–R2200.
10. Combe, G.; Richefeu, V.; Stasiak, M.; Atman, A.P.F. Experimental validation of nonextensive scaling law in

confined granular media. Phys. Rev. Lett. 2015, 115, 238301.
11. Plastino, A.R.; Plastino, A. Non-extensive statistical mechanics and generalized Fokker–Planck equation.

Physica A 1995, 222, 347–354.
12. Nonextensive Statistical Mechanics and Thermodynamics. Available online: http://tsallis.cat.cbpf.br/biblio.htm

(accessed on 29 August 2017).
13. Anteneodo, C.; Tsallis, C. Breakdown of exponential sensitivity to initial conditions: Role of the range

of interactions. Phys. Rev. Lett. 1998, 80, 5313–5316.
14. Rapisarda, A.; Pluchino, A. Nonextensive thermodynamics and glassy behavior. Europhys. News 2005,

36, 202–206.
15. Chavanis, P.-H.; Campa, A. Inhomogeneous Tsallis distributions in the HMF model. Eur. Phys. J. B 2010,

76, 581–611.
16. Cirto, L.J.L.; Assis, V.R.V.; Tsallis, C. Influence of the interaction range on the thermostatistics of a classical

many-body system. Physica A 2014, 393, 286–296.
17. Christodoulidi, H.; Tsallis, C.; Bountis, T. Fermi–Pasta–Ulam model with long-range interactions: Dynamics

and thermostatistics. EPL 2014, 108, 40006.
18. Christodoulidi, H.; Bountis, T.; Tsallis, C.; Drossos, L. Dynamics and Statistics of the Fermi–Pasta–Ulam

b–model with different ranges of particle interactions. JSTAT 2016, 123206.
19. Bagchi, D.; Tsallis, C. Sensitivity to initial conditions of d-dimensional long-range-interacting quartic

Fermi–Pasta–Ulam model: Universal scaling. Phys. Rev. E 2016, 93, 062213.



Entropy 2017, 19, 457 14 of 17

20. Bagchi, D.; Tsallis, C. Long-ranged Fermi–Pasta–Ulam systems in thermal contact: Crossover from q-statistics
to Boltzmann–Gibbs statistics. Phys. Lett. A 2017, 381, 1123–1128.

21. Lucena, L.S.; da Silva, L.R.; Tsallis, C. Departure from Boltzmann–Gibbs statistics makes the hydrogen-atom
specific heat a computable quantity. Phys. Rev. E 1995, 51, 6247–6249.

22. Nobre, F.D.; Tsallis, C. Infinite-range Ising ferromagnet-thermodynamic limit within generalized statistical
mechanics. Physica A 1995, 213, 337–356.

23. Caride, A.O.; Tsallis, C.; Zanette, S.I. Criticality of the anisotropic quantum Heisenberg model on a self-dual
hierarchical lattice. Phys. Rev. Lett. 1983, 51, 145–147.

24. Miritello, G.; Pluchino, A.; Rapisarda, A. Central limit behavior in the Kuramoto model at the ‘edge of chaos’.
Physica A 2009, 388, 4818–4826.

25. Tirnakli, U.; Tsallis, C.; Lyra, M.L. Circular-like maps: sensitivity to the initial conditions, multifractality and
nonextensivity. Eur. Phys. J. B 1999, 11, 309–315.

26. Baldovin, F.; Robledo, A. Universal renormalization-group dynamics at the onset of chaos in logistic maps
and nonextensive statistical mechanics. Phys. Rev. E 2002, 66, R045104.

27. Baldovin, F.; Robledo, A. Nonextensive Pesin identity. Exact renormalization group analytical results for the
dynamics at the edge of chaos of the logistic map. Phys. Rev. E 2004, 69, R045202.

28. Mayoral, E.; Robledo, A. Tsallis’ q index and Mori’s q phase transitions at edge of chaos. Phys. Rev. E 2005,
72, 026209.

29. Tirnakli, U.; Tsallis, C.; Beck, C. A closer look at time averages of the logistic map at the edge of chaos.
Phys. Rev. E 2009, 79, 056209.

30. Luque, B.; Lacasa, L.; Robledo, A. Feigenbaum graphs at the onset of chaos. Phys. Lett. A 2012, 376, 3625,
doi:10.1016/j.physleta.2012.10.050.

31. Tirnakli, U.; Borges, E.P. The standard map: From Boltzmann–Gibbs statistics to Tsallis statistics. Nat. Sci. Rep.
2016, 6, 23644.

32. Douglas, P.; Bergamini, S.; Renzoni, F. Tunable Tsallis Distributions in Dissipative Optical Lattices.
Phys. Rev. Lett. 2006, 96, 110601.

33. Bagci, G.B.; Tirnakli, U. Self-organization in dissipative optical lattices. Chaos 2009, 19, 033113.
34. Lutz, E.; Renzoni, F. Beyond Boltzmann–Gibbs statistical mechanics in optical lattices. Nat. Phys. 2013, 9,

615–619.
35. Liu, B.; Goree, J. Superdiffusion and non-Gaussian statistics in a driven-dissipative 2D dusty plasma.

Phys. Rev. Lett. 2008, 100, 055003.
36. Bouzit, O.; Gougam, L.A.; Tribeche, M. Screening and sheath formation in a nonequilibrium mixed

Cairns-Tsallis electron distribution. Phys. Plasmas 2015, 22, 052112.
37. DeVoe, R.G. Power-law distributions for a trapped ion interacting with a classical buffer gas. Phys. Rev. Lett.

2009, 102, 063001.
38. Pickup, R.M.; Cywinski, R.; Pappas, C.; Farago, B.; Fouquet, P. Generalized spin glass relaxation. Phys. Rev. Lett.

2009, 102, 097202.
39. Tsallis, C.; de Souza, A.M.C.; Maynard, R. Derivation of Lévy-type anomalous superdiffusion from

generalized statistical mechanics. In Lévy Flights and Related Topics in Physics; Shlesinger, M.F.,
Zaslavsky, G.M., Frisch, U., Eds.; Springer: Berlin, Germany, 1995; p. 269.

40. Tsallis, C.; Levy, S.V.F.; de Souza, A.M.C.; Maynard, R. Statistical-mechanical foundation of the ubiquity of
Levy distributions in nature. Phys. Rev. Lett. 1995, 75, 3589–3593.

41. CMS Collaboration. Transverse-momentum and pseudorapidity distributions of charged hadrons in pp
collisions at

p
s = 0.9 and 2.36 TeV. J. High Energy Phys. 2010, 2, 41, doi:10.1007/JHEP02(2010)041.

42. CMS Collaboration. Transverse-momentum and pseudorapidity distributions of charged hadrons in pp
collisions at

p
s = 7 TeV. Phys. Rev. Lett. 2010, 105, 022002.

43. Marques, L.; Andrade, E., II; Deppman, A. Nonextensivity of hadronic systems. Phys. Rev. D 2013, 87, 114022.
44. Marques, L.; Cleymans, J.; Deppman, A. Description of high-energy pp collisions using Tsallis

thermodynamics: Transverse momentum and rapidity distributions. Phys. Rev. D 2015, 91, 054025.
45. Tsallis, C.; Arenas, Z.G. Nonextensive statistical mechanics and high energy physics. EPJ 2014, 71, 00132.
46. ALICE Collaboration. K⇤(892)0 and F(1020) meson production at high transverse momentum in pp and

Pb-Pb collisions at
p

sNN = 2.76 TeV. Phys. Rev. C 2017, 95, 064606.



Entropy 2017, 19, 457 15 of 17

47. Oliveira, H.P.; Soares, I.D. Dynamics of black hole formation: Evidence for nonextensivity. Phys. Rev. D 2005,
71, 124034.

48. Komatsu, N.; Kimura, S. Entropic cosmology for a generalized black-hole entropy. Phys. Rev. D 2013,
88, 083534.

49. Silva, V.H.C.; Aquilanti, V.; de Oliveira, H.C.B.; Mundim, K.C. Uniform description of non-Arrhenius
temperature dependence of reaction rates, and a heuristic criterion for quantum tunneling vs. classical
non-extensive distribution. Chem. Phys. Lett. 2013, 590, 201–207.

50. Antonopoulos, C.G.; Michas, G.; Vallianatos, F.; Bountis, T. Evidence of q-exponential statistics in Greek
seismicity. Physica A 2014, 409, 71–77.

51. Upadhyaya, A.; Rieu, J.-P.; Glazier, J.A.; Sawada, Y. Anomalous diffusion and non-Gaussian velocity
distribution of Hydra cells in cellular aggregates. Physica A 2001, 293, 549–558.

52. Bogachev, M.I.; Kayumov, A.R.; Bunde, A. Universal internucleotide statistics in full genomes: A footprint of
the DNA structure and packaging? PLoS ONE 2014, 9, e112534.

53. Burlaga, L.F.; Vinas, A.F. Triangle for the entropic index q of non-extensive statistical mechanics observed by
Voyager 1 in the distant heliosphere. Physica A 2005, 356, 375–384.

54. Burlaga, L.F.; Ness, N.F. Magnetic field strength fluctuations and the q-triplet in the heliosheath: Voyager 2
observations from 91.0 to 94.2 AU at latitude 30� S. Astrophys. J. 2013, 765, 35.

55. Moyano, L.G.; Tsallis, C.; Gell-Mann, M. Numerical indications of a q-generalised central limit theorem.
Europhys. Lett. 2006, 73, 813–819.

56. Thistleton, W.J.; Marsh, J.A.; Nelson, K.P.; Tsallis, C. q-Gaussian approximants mimic non-extensive
statistical-mechanical expectation for many-body probabilistic model with long-range correlations.
Cent. Eur. J. Phys. 2009, 7, 387–394.

57. Chavanis, P.-H. Nonlinear mean field Fokker–Planck equations. Application to the chemotaxis of biological
population. Eur. Phys. J. B 2008, 62, 179–208.

58. Umarov, S.; Tsallis, C.; Steinberg, S. On a q-central limit theorem consistent with nonextensive statistical
mechanics. J. Math. 2008, 76, 307–328.

59. Umarov, S.; Tsallis, C.; Gell-Mann, M.; Steinberg, S. Generalization of symmetric a-stable Lévy distributions
for q > 1. Math. Phys. 2010, 51, 033502.

60. Nelson, K.P.; Umarov, S. Nonlinear statistical coupling. Physica A 2010, 389, 2157–2163.
61. Hanel, R.; Thurner, S.; Tsallis, C. Limit distributions of scale-invariant probabilistic models of correlated

random variables with the q-Gaussian as an explicit example. Eur. Phys. J. B 2009, 72, 263–268.
62. Umarov, S.; Tsallis, C. The limit distribution in the q-CLT for q � 1 is unique and can not have a compact

support. J. Phys. A 2016, 49, 415204.
63. Andrade, J.S., Jr.; da Silva, G.F.T.; Moreira, A.A.; Nobre, F.D.; Curado, E.M.F. Thermostatistics of overdamped

motion of interacting particles. Phys. Rev. Lett. 2010, 105, 260601.
64. Vieira, C.M.; Carmona, H.A.; Andrade, J.S., Jr.; Moreira, A.A. General continuum approach for dissipative

systems of repulsive particles. Phys. Rev. E 2016, 93, 060103(R).
65. Caruso, F.; Tsallis, C. Nonadditive entropy reconciles the area law in quantum systems with classical

thermodynamics. Phys. Rev. E 2008, 78, 021102.
66. Carrasco, J.A.; Finkel, F.; Gonzalez-Lopez, A.; Rodriguez, M.A.; Tempesta, P. Generalized isotropic

Lipkin-Meshkov-Glick models: Ground state entanglement and quantum entropies. J. Stat. Mech. 2016,
2016, 033114.

67. Weinstein, Y.S.; Lloyd, S.; Tsallis, C. Border between between regular and chaotic quantum dynamics.
Phys. Rev. Lett. 2002, 89, 214101.

68. Betzler, A.S.; Borges, E.P. Nonextensive distributions of asteroid rotation periods and diameters.
Astron. Astrophys. 2012, 539, A158, doi:10.1051/0004-6361/201117767.

69. Betzler, A.S.; Borges, E.P. Nonextensive statistical analysis of meteor showers and lunar flashes. Mon. Not. R.
Astron. Soc. 2015, 447, 765–771.

70. Li, Y.; Li, N.; Tirnakli, U.; Li, B.; Tsallis, C. Thermal conductance of the coupled-rotator chain: Influence
of temperature and size. EPL 2017, 117, 60004.

71. Nivanen, L.; Le Mehaute, A.; Wang, Q.A. Generalized algebra within a nonextensive statistics. Rep. Math. Phys.
2003, 54, 437–444.



Entropy 2017, 19, 457 16 of 17

72. Borges, E.P. A possible deformed algebra and calculus inspired in nonextensive thermostatistics. Physica A
2004, 340, 95–101.

73. Tempesta, P. Group entropies, correlation laws, and zeta functions. Phys. Rev. E 2011, 84, 021121.
74. Ruiz, G.; Tsallis, C. Reply to comment on “towards a large deviation theory for strongly correlated systems”.

Phys. Lett. A 2013, 377, 491–495.
75. Jauregui, M.; Tsallis, C. New representations of p and Dirac delta using the nonextensive- statistical-mechanics

q-exponential function. Math. Phys. 2010, 51, 063304.
76. Sicuro, G.; Tsallis, C. q-Generalized representation of the d-dimensional Dirac delta and q-Fourier transform.

Phys. Lett. A 2017, 381, 2583–2587.
77. Nobre, F.D.; Rego-Monteiro, M.A.; Tsallis, C. Nonlinear relativistic and quantum equations with a common

type of solution. Phys. Rev. Lett. 2011, 106, 140601.
78. Costa Filho, R.N.; Almeida, M.P.; Farias, G.A.; Andrade, J.S., Jr. Displacement operator for quantum systems

with position-dependent mass. Phys. Rev. A 2011, 84, 050102(R).
79. Mazharimousavi, S.H. Revisiting the displacement operator for quantum systems with position-dependent

mass. Phys. Rev. A 2010, 85, 034102.
80. Nobre, F.D.; Rego-Monteiro, M.A.; Tsallis, C. A generalized nonlinear Schroedinger equation: Classical

field-theoretic approach. Europhys. Lett. 2012, 97, 41001.
81. Rego-Monteiro, M.A.; Nobre, F.D. Nonlinear quantum equations: Classical field theory. J. Math. Phys. 2013,

54, 103302.
82. Rego-Monteiro, M.A.; Nobre, F.D. Classical field theory for a non-Hermitian Schroedinger equation with

position-dependent masses. Phys. Rev. A 2013, 88, 032105.
83. Costa Filho, R.N.; Alencar, G.; Skagerstam, B.-S.; Andrade, J.S., Jr. Morse potential derived from first

principles. Europhys. Lett. 2013, 101, 10009.
84. Toranzo, I.V.; Plastino, A.R.; Dehesa, J.S.; Plastino, A. Quasi-stationary states of the NRT nonlinear

Schroedinger equation. Physica A 2013, 392, 3945–3951.
85. Curilef, S.; Plastino, A.R.; Plastino, A. Tsallis’ maximum entropy ansatz leading to exact analytical time

dependent wave packet solutions of a nonlinear Schroedinger equation. Physica A 2013, 392, 2631–2642.
86. Plastino, A.R.; Tsallis, C. Nonlinear Schroedinger equation in the presence of uniform acceleration.

J. Math. Phys. 2013, 54, 041505.
87. Plastino, A.R.; Souza, A.M.C.; Nobre, F.D.; Tsallis, C. Stationary and uniformly accelerated states in nonlinear

quantum mechanics. Phys. Rev. A 2014, 90, 062134.
88. Pennini, F.; Plastino, A.R.; Plastino, A. Pilot wave approach to the NRT nonlinear Schroedinger equation.

Physica A 2014, 403, 195–205.
89. Da Costa, B.G.; Borges, E.P. Generalized space and linear momentum operators in quantum mechanics.

J. Math. Phys. 2014, 55, 062105.
90. Nobre, F.D.; Rego-Monteiro, M.A. Non-Hermitian PT symmetric Hamiltonian with position-dependent

masses: Associated Schroedinger equation and finite-norm solutions. Braz. J. Phys. 2015, 45, 79–88.
91. Plastino, A.; Rocca, M.C. From the hypergeometric differential equation to a non-linear Schroedinger one.

Phys. Lett. A 2015, 379, 2690–2693.
92. Alves, L.G.A.; Ribeiro, H.V.; Santos, M.A.F.; Mendes, R.S.; Lenzi, E.K. Solutions for a q-generalized

Schroedinger equation of entangled interacting particles. Physica A 2015, 429, 35–44.
93. Plastino, A.R.; Tsallis, C. Dissipative effects in nonlinear Klein–Gordon dynamics. EPL 2016, 113, 50005.
94. Plastino, A.; Rocca, M.C. Hypergeometric connotations of quantum equations. Physica A 2016, 450, 435–443.
95. Bountis, T.; Nobre, F.D. Travelling-wave and separated variable solutions of a nonlinear Schroedinger

equation. J. Math. Phys. 2016, 57, 082106.
96. Nobre, F.D.; Plastino, A.R. A family of nonlinear Schroedinger equations admitting q-plane wave. Phys. Lett. A

2017, 381, 2457–2462.
97. Capurro, A.; Diambra, L.; Lorenzo, D.; Macadar, O.; Martin, M.T.; Mostaccio, C.; Plastino, A.; Rofman, E.;

Torres, M.E.; Velluti, J. Tsallis entropy and cortical dynamics: The analysis of EEG signals. Physica A 1998,
257, 149–155.

98. Mohanalin, J.; Beenamol; Kalra, P.K.; Kumar, N. A novel automatic microcalcification detection technique
using Tsallis entropy and a type II fuzzy index. Comput. Math. Appl. 2010, 60, 2426–2432.



Entropy 2017, 19, 457 17 of 17

99. Soares, D.J.B.; Tsallis, C.; Mariz, A.M.; Silva, L.R. Preferential attachment growth model and nonextensive
statistical mechanics. EPL 2005, 70, 70–76.

100. Thurner, S.; Tsallis, C. Nonextensive aspects of self-organized scale-free gas-like networks. Europhys. Lett.
2005, 72, 197–203.

101. Brito, S.G.A.; da Silva, L.R.; Tsallis, C. Role of dimensionality in complex networks. Nat. Sci. Rep. 2016,
6, 27992.

102. Borland, L. Closed form option pricing formulas based on a non-Gaussian stock price model with statistical
feedback. Phys. Rev. Lett. 2002, 89, 098701.

103. Tsallis, C.; Anteneodo, C.; Borland, L.; Osorio, R. Nonextensive statistical mechanics and economics.
Physica A 2003, 324, 89–100.

104. Osorio, R.; Borland, L.; Tsallis, C. Distributions of high-frequency stock-market observables. In Nonextensive
Entropy-Interdisciplinary Applications; Gell-Mann, M., Tsallis, C., Eds.; Oxford University Press: New York,
NY, USA, 2004.

105. Borges, E.P. Empirical nonextensive laws for the county distribution of total personal income and gross
domestic product. Physica A 2004, 334, 255–266.

106. Ludescher, J.; Tsallis, C.; Bunde, A. Universal behaviour of inter-occurrence times between losses in financial
markets: An analytical description. Europhys. Lett. 2011, 95, 68002.

107. Ludescher, J. (Institut fur Theoretische Physik, Justus-Liebig-Universitat, Giessen, Germany); Tsallis, C.
(Centro Brasileiro de Pesquisas Físicas and National Institute of Science and Technology for Complex
Systems, Rio de Janeiro, Brazil). Private Communications, 2011.

108. Queiros, S.M.D. On generalisations of the log-Normal distribution by means of a new product definition
in the Kapteyn process. Physica A 2012, 391, 3594–3606.

109. Bogachev, M.I.; Eichner, J.F.; Bunde, A. Effect of nonlinear correlations on the statistics of return intervals
in multifractal data sets. Phys. Rev. Lett. 2007, 99, 240601.

110. Ludescher, J.; Bunde, A. Universal behavior of the inter-occurrence times between losses in financial markets:
Independence of the time resolution. Phys. Rev. 2014, 90, 062809.

111. Perello, J.; Gutierrez-Roig, M.; Masoliver, J. Scaling properties and universality of first-passage-time
probabilities in financial markets. Phys. Rev. E 2011, 84, 066110.

112. Ruseckas, J.; Kaulakys, B.; Gontis, V. Herding model and 1/ f noise. EPL 2011, 96, 60007.
113. Ruseckas, J.; Gontis, V.; Kaulakys, B. Nonextensive statistical mechanics distributions and dynamics

of financial observables from the nonlinear stochastic differential equations. Adv. Complex Syst. 2012,
15, 1250073.

114. Gontis, V.; Kononovicius, A. A consentaneous agent based and stochastic model of the financial markets.
PLoS ONE 2014, 9, e102201.

115. Biondo, A.E.; Pluchino, A.; Rapisarda, A. Modeling financial markets by self-organized criticality.
Phys. Rev. E 2015, 92, 042814.

116. Biondo, A.E.; Pluchino, A.; Rapisarda, A. Order book, financial markets, and self-organized criticality.
Chaos Solitons Fractals 2016, 88, 196–208.

117. Biondo, A.E.; Pluchino, A.; Rapisarda, A. A multilayer approach for price dynamics in financial markets.
Eur. Phys. J. Spec. Top. 2017, 226, 477–488.

118. Ruiz, G.; Fernandez, A. Evidence for criticality in financial data. arXiv 2017, arXiv:1702.06191.
119. Tsallis, C.; Gell-Mann, M.; Sato, Y. Asymptotically scale-invariant occupancy of phase space makes

the entropy Sq extensive. Proc. Natl. Acad. Sci. USA 2005, 102, 15377–15382.
120. Tsallis, C. Generalization of the possible algebraic basis of q-triplets. Eur. Phys. J. Spec. Top. 2017, 226, 455–466.
121. Tsallis, C. Statistical mechanics for complex systems: On the structure of q-triplets. In Proceedings of the 31st

International Colloquium on Group Theoretical Methods in Physics, Rio de Janeiro, Brazil, 20–24 July 2016.
122. Tsallis, C. Dynamical scenario for nonextensive statistical mechanics. Physica A 2004, 340, 1–10,

doi:10.1016/j.physa.2004.03.072.

c� 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


