
European Options Pricing Using Monte Carlo Simulation

Alexandros Kyrtsos
Division of Materials Science and Engineering, Boston University

akyrtsos@bu.edu

European options can be priced using the analytical solution of the Black-Scholes-Merton dif-
ferential equation with the appropriate boundary conditions. A different approach and the one
commonly used in situations where no analytical solution is available is the Monte Carlo Sim-
ulation. We present the results of Monte Carlo simulations for pricing European options and
we compare with the analytical solution from the Black-Scholes Merton model. In addition, we
examine the effects of the different parameters of a Monte Carlo simulation.

I. Introduction

I.1. Options

An option is a type of security which gives the
owner the right buy (call option) or sell (put op-
tion) the underlying asset at a predefined strike
price. The one who issues an option, called
the writer, must deliver to the buyer a specified
number of shares if the latter decides to exercise
the option. The buyer pays the writer a premium
in exchange for writing the option.

The European option can only be exercised at
maturity which makes it a very simple kind of
derivative. European options can be priced us-
ing the analytical solution of the Black-Scholes-
Merton differential equation. However, MC is
another way to acquire the price of a European
option. The analytical result can be used as a
benchmark for the simulations.

Figure 1 presents the payoff and the profit of
the two types of the european option relative to
the price of the underlying asset at maturity. A
call option can be exercised if the asset price is
greater than the strike price of the option. Oth-
erwise, the asset can be acquired in the market
at a lower price. Even in the case where the asset
price is greater than the strike price, the option
may not yield positive profit because of the pre-
mium paid in order to buy the option. A put
option, shown in figure 1b, exhibits the opposite

(a) Payoff from buying a call option

(b) Payoff from buying a put option

Figure 1: Payoff and profit of a call and a put european
option with respect to the price of the underlying asset at
maturity
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behavior from a call option. Giving the owner the
right to sell the asset, this option yields higher
profit while the market price is less than the
strike price.

Price at
Maturity

Stock
Return

Option
Return

95 −5% −100%
100 0% −100%
105 5% −100%
110 10% 0%
115 15% 100%

Table 1: Comparison of the return of a call option and the
return of the underlying stock. The initial price is consid-
ered to be $100, the strike price is $105 and the premium
is $5.

Table 1 intends to show the high risk of deal-
ing with options. Options are favored by high
volatility because they yield great profits only
when the price of the stock at maturity is signif-
icantly different from the initial price. However,
a movement of the price in the wrong direction
could cause losses of 100% of the initial invest-
ment.

The risky nature of the options makes them
suitable for two situations. First, the correct
prediction of the magnitude and the timing of
the movement of the underlying asset can yield
tremendous profits. Second, options can be
used for hedging risk from other risky invest-
ments. For example, a put option could pro-
vide insurance to the buyer against a drop in
the price of the stock.

I.2. The Monte Carlo Approach

Monte Carlo (MC) simulation is a robust and
widely used method to price derivatives and es-
timate the risk of a portfolio [1]. The stochastic
nature of the MC simulation makes it a suitable
technique for problems with many sources of un-
certainty. Hence, MC is essential for pricing ex-
otic options like lookback and asian options or
options that are dependent on a basket of un-
derlying assets rather than just a single asset.

A MC simulation repeats a process many times
attempting to predict all the possible future out-

comes. At the end of the simulation, a number
of random trials produce a distribution of out-
comes that can be analyzed. In the case of op-
tion pricing, the outcomes are the future price of
the stock.

A model of the behavior of the stock price
needs to be specified in order to be used with the
MC simulation. One of the most common mod-
els in finance is the geometric Brownian motion
(GBM). In general, a quantity B is said to follow
a Wiener process if

� B(0) = x
� B(tn) − B(tn−1), B(tn−1) − B(tn−2), ...,
B(t1)−B(0) are independent random vari-
ables

� For all t ≥ 0 and ∆t > 0, B(t + ∆t) − B(t)
are normally distributed with expectation 0
and standard deviation

√
∆t

If Wt is a Wiener process, then a stochastic pro-
cess St is said to follow a GBM if it satisfies the
stochastic differential equation

dSt = µSt dt+ σSt dWt (1)

where µ is the drift used to model determinis-
tic trends and σ is the volatility used to model
unpredictable events. The stochastic process St
represents the price of the stock at any given
time t while µ and σ is the expected annual re-
turn and annual volatility of the stock respec-
tively.

In case the variable x follows the Ito process

dx = a(x, t) dt+ b(x, t) dz (2)

then a function G(x, t) follows the process

dG =

(
∂G

∂x
a+

∂G

∂t
+

1

2

∂2G

∂x2

)
dt+

∂G

∂x
bdW

(3)

Hence, using dS = µS dt+ σS dW , equation (3)
yields

dG =

(
∂G

∂S
µS +

∂G

∂t
+

1

2

∂2G

∂S2
σ2S2

)
dt

+
∂G

∂S
σS dW

(4)

Using equation (4) and G = lnS, it can be
readily shown that the change of lnS between



time t = 0 and a future time t = T is normally
distributed with mean (µ−σ2/2)T and variance
σ2T as described in equation (5)

lnST − lnS0 ∼ φ
[(
µ− σ2

2

)
T, σ
√
T

]
(5)

where φ denotes the normal distribution.
Since lnSt follows a normal distribution, the

stock price St follows a lognormal distribution
with expectation value E(St) = S0e

µT . The
expected return µ is driven by the riskiness of
the stock and the interest rates in the economy.
Higher risk causes higher expected returns by
the investors. Also, the higher the level of inter-
est rates in the economy the higher the expected
return required on any given stock.

I.3. The Black-Scholes-Merton Model

In the early 1970s, Black, Scholes and Merton
developed what has become known as the Black-
Scholes-Merton (BSM) model [2, 3]. This model
has had a huge influence on the pricing of op-
tions. In order to use the model, certain assump-
tions must be made. The assumptions are as
follows

1. The stock price follows the process given by
equation (1)

2. The short selling of securities with full use
of proceeds is permitted

3. There are no fees and taxes. All securities
are perfectly divisible

4. There are no dividends
5. There is no arbitrage
6. Trading is continuous
7. The risk free rate, r, is constant and the

same for all maturities
The BSM differential equation can be derived

using Ito’s lemma and a riskless portfolio. Sup-
pose that f is the price of a derivative of S. As a
result, the variable f must be some function of
S and t. Hence from Ito’s Lemma we get,

df =

(
∂f

∂S
µS +

∂f

∂t
+

1

2

∂2f

∂S2
σ2S2

)
dt

+
∂f

∂S
σS dW

(6)

Consider the portfolio which is short by one

derivative and long by
∂f

∂S
shares given by equa-

tion (7).

Π = −f +
∂f

∂S
S (7)

The change ∆Π in the value of the portfolio in
the time interval ∆t is given by

∆Π = −∆f +
∂f

∂S
∆S (8)

Using equations (1) and (6) into equation (8)
yields

∆Π =

(
−∂f
∂t
− 1

2

∂2f

∂S2
σ2S2

)
∆t (9)

This is a riskless portfolio because there is no
dependence on any stochastic variable. For a
risk-free portfolio the relationship ∆Π = rΠ∆t
holds. Hence, substituting in equation (9) the
Black-Scholes-Merton differential equation can
be written as

∂f

∂t
+ rS

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2
= rf (10)

This equation can be solved analytically for some
certain cases. The appropriate boundary condi-
tions for a European option are fcall = max(S −
K, 0) and fput = max(K − S, 0) where S is the
stock price and K is the strike price. Then, for a
non-dividend-paying stock, the prices of the call
and the put options at time t = 0 are

c = S0N(d1)−Ke−rTN(d2) (11)

and

p = −S0N(−d1) +Ke−rTN(−d2) (12)

where

d1 =
ln
(
S0
K

)
+
(
r + σ2

2

)
T

σ
√
T

d2 =
ln
(
S0
K

)
+
(
r − σ2

2

)
T

σ
√
T

= d1 − σ
√
T

N(x) is the cumulative probability distribution
function for a standardized normal distribution
φ(0, 1).



The variables of equation (10) are all indepen-
dent of the risk preferences of the investors. In
other words, the expected return µ is eliminated.
This is the basis of risk neutral valuation. In a
world where investors are risk neutral, the ex-
pected return on all investement assets is the
risk-free rate of interest, r.

A derivative that provides a payoff at one par-
ticular time can be valued using risk-neutral
valuation by assuming that the expected return
from the underlying asset is the risk-free rate
(i.e., assume µ = r). The calculated expected
payoff from the derivative should then be dis-
counted at the risk-free interest rate.

II. Simulation Methodology

The stock price is assumed to follow geometric
Brownian motion. Based on equation (1) and
for a finite time step ∆ t, the Wiener process is
ε
√

∆ t where ε is a number sampled from a stan-
dardized normal distribution. Hence,

St = St−1

(
1 + µ∆ t+ σε

√
∆ t

)
(13)

The stock price follows a series of steps, where
each step consists of a drift by the expected re-
turn µ and an upward or downward movement
based on the volatility scaled by the random
number ε. The expected return is considered to
be the risk-free rate in order to price the option
using risk neutral valuation.

The MC simulation consists of three main
steps. First, using the GBM defined by equa-
tion (13), we calculate the stock price at matu-
rity. Second, we calculate the payoff of the op-
tion based on the stock price and finally we dis-
count the payoff at the risk-free rate to today’s
price. Repeating the above procedure for a rea-
sonable number of times, gives a good estimate
of the average payoff and the price of the option.

The simulations were performed using eight
different input parameters. Those parameters
and their default values are given in table 2. Un-
less otherwise stated, these values were used in
all the simulations.

The expected annual return rate and the risk-
free annual rate should be the same in order
to get the correct estimation of the option. The

simulated results are compared and normalized
to the values given by equations (11) and (12).

Input Parameter Default Value

Initial price 100
Strike price 102
Expected annual return 1%
Risk-free annual rate 1%
Annual volatility 20%
Number of steps 252
Years to maturity 1
Number of trials 2500

Table 2: Default input parameters for the MC simulation

III. Results

A typical output of random paths is presented
in figure 2. The simulated stock prices at ma-
turity produce a lognormal distribution as pre-
dicted by equation (5). Figure 3 shows the log-
normal distribution of the stock prices at matu-
rity for 250000 trials. This is a very computation-
ally demanding calculation. In order to achieve
optimal efficiency, the convergence of the simu-
lations should be examined.

Convergence should be verified in all compu-
tational approaches. In the case of a MC sim-
ulation, the parameters that affect the conver-
gence are the number of time steps and the num-
ber of trials. A set of significant time steps are
{4, 52, 252, 500}. Using 1 year to maturity, 4 time
steps represent one movement per quarter, 52
time steps represent weekly movements and 252
time steps are used to account for the 252 trad-
ing days per year. An additional value of 500
time steps roughly accounts for two movements
per day.

First, the expected price of the stock for the
given GBM is given by E(S) = S0e

rT . Thus,
we examine the effects of the number of trials
for different time steps. Figure 4 shows that
even for the case of only 4 time steps, the av-
erage value of the simulations converges to the
expected value as the number of trials increases.
Figure 5 presents the case of the 252 time steps
for more trials. This figure also supports that
good convergence is achieved for more than 2500



trials. We also notice that the fluctuations of the
simulated price versus the BSM price are minute
above 2500 trials.

However, performing the same calculation for
the convergence of the call option price, reveals
that 4 time steps are insufficient to correctly val-
uate the option. In fact, the result is underesti-
mated as shown in figure 6. The underestima-
tion of the option price for few time steps can
be readily seen in figure 7. An important obser-
vation from this figure is that once convergence
is achieved, the number of time steps becomes
irrelevant to the result of the option price.

Another significant parameter is the strike
price K at maturity. In principle there are no
forbidden values for the strike price. However,
the strike price is closely related to the initial
price, the expected return and the volatility. For
example, if the initial price is $100, the expected
annual return is the risk-free rate 1% and the
annual volatility is 20%, a strike price of $102 for
a call option is perfectly justified. On the other
hand, a strike price of $150 is unreasonable be-
cause it is extremely unlikely for the stock price
to rise so much for the given expected return and
volatility.

Figure 8 shows the convergence of the call
price versus the time steps for different strike
prices. It can be seen that higher strike prices
not only cause slower convergence, but they also
result in higher fluctuations. Even though the
convergence is influenced, the change is minute
compare to the increase in the uncertainty of
the simulated price. The uncertainty can be
viewed by the fluctuations of the normalized op-
tion price.

A way to examine this effect is presented in
figure 9. In this case we compare the normal-
ized call price for different strike prices and dif-
ferent volatilities. Allowing the market to have
greater volatility, increases the probability that
the stock will reach the strike price if the strike
price is too high. Indeed, figure 9 shows that
if the volatility is 20%, the option price is esti-
mated adequately accurately if the strike price
is less than $120 which is 20% higher than the
initial price. However, for higher strike prices,
any ability to valuate the option is lost. If the
volatility is raised to 50% we observe the same

effect for strike prices greater than $150.
Figure 10 examines the case of 20% volatil-

ity for two different numbers of trials. Using
10000 trials instead of 2500 indeed improves the
fluctuations but the computational cost also in-
creases.

The number of trials plays a minor role in the
convergence of the option price versus the time
steps as seen in figures 11 and 12. The time
steps play the most important role in the con-
vergence of the option price, while the number
of trials affect the uncertainty of the result. The
uncertainty cannot be completely eliminated for
any number of trials because of the stochastic
nature of the simulation.

Last but not least, we examine the importance
of using the risk-free interest rate as the ex-
pected return (i.e., µ = r). Figure 13 shows that
the option price is correctly valuated only in the
case where µ = r. Otherwise, the price is ei-
ther overestimated if µ > r or underestimated if
µ < r.

Figure 14 shows the relationship between the
expected returns and the option price. As ex-
pected, higher expected returns increase the call
option price while decreasing the price of the put
option. The results from the BSM model and the
simulation exhibit perfect agreement.

The price of the option versus the initial and
the strike price are shown in figures 15 and 16
respectively. Again, the analytical and the sim-
ulated results show excellent agreement. The
price of the call option increases (decreases) if
the initial (strike) price increases because this
creates a low risk scenario and, thus, a very de-
sirable option. The opposite happens for the put
option.

The loss is always limited to the amount in-
vested but the profit can be huge if the stock
price is much higher (lower) than the strike price
for a call (put) option. For this to happen there
must be great volatility and in this case the op-
tion prices should increase. Indeed, figure 17
shows that both options increase if the volatility
is increased.



IV. Conclusion

The results of Monte Carlo simulations for pric-
ing European options are in excellent agree-
ment with the analytical solution from the Black-
Scholes Merton equation. The effects of the dif-
ferent parameters of a Monte Carlo simulation
were examined and the ones with the most pro-
found impact were found to be the number of
time steps and the number of trials.

The number of time steps is relevant in the
convergence of the results while the number of
trials affects the accuracy of the result. The un-
certainty can never be completely eliminated due
to the stochastic nature of the simulation. The
computational cost increases both with the time
steps and the number of trials. Thus, a trade-
off between good convergence and accuracy and
efficiency should be investigated before any cal-
culation.

The strike price is a parameter strongly af-
fected by the volatility on the market. The sim-
ulation performs well when the strike price is
within the volatility limits. Also, the strike price
affects the convergence versus the time steps.
However, this effect is not that important since
the time steps commonly used are more than
enough to avoid it.
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Figure 2: Typical output of the simulation for 1% drift

Figure 3: Lognormal distribution of the stock price at maturity



Figure 4: Time steps versus number of trials compared with E(ST ) = S0e
rT



Figure 5: Price versus number of trials



Figure 6: Time steps versus number of trials compared with the normalized call price



Figure 7: Options price versus time steps

Figure 8: Normalized call price versus time steps for different K-values



Figure 9: Normalized call price versus strike price

Figure 10: Normalized call price versus the strike price for different number of trials



Figure 11: Normalized call price versus steps for different K values and 2500 trials

Figure 12: Normalized call price versus steps for different K values and 10000 trials



Figure 13: Normalized expected return rate versus risk-free rate (µ/r)

Figure 14: Options Price versus Return Rate



Figure 15: Options Price versus Initial Price

Figure 16: Options Price versus Strike Price



Figure 17: Options Price versus Volatility
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