A Quantum-Mechanics Framework of Dynamic Economics

Xiangyi Meng Jing Ma

(EECS & School of Physics, Peking University)

Department of Physics, Boston University

Motivation & Outline

Motivation

Dynamic Economics [1]

Application of Quantum Mechanics in Finance [2]

Business Cycles	Time Series	Path Integral and Futures	
	Probability Theory	Quantum Field Theory and Interest Rates	
Option Pricing	Dynamic Systems		Hamiltonian Systems

^[1] T. J. Sargent, *Dynamic Macroeconomic Theory* (Harvard University Press, 1987).

^[2] B. E. Baaquie, *Quantum Finance: Path Integrals and Hamiltonians for Options and Interest Rates* (Cambridge University Press, 2004).

Motivation & OutlineOutline

Motivation & Outline

Framework

Summary

- **□** Dynamic Economics
- 1. Equilibrium Price
- 2. Damped Harmonic Oscillator
- □ Irrationality
- 1. Quantum Harmonic Oscillator Model
- 2. Quantum Brownian Motion Model (qBm(m))
- Data Analysis
- 1. "Fat Tail" and Non-Markovianity
- 2. Kurtosis and Autocorrelation of qBm(m)
- 3. Additional Less-Colored Noise

Dynamic Economics

Equilibrium Price

The equilibrium price is determined by the demand and supply [1], but how? (what about the timescales?)

Dynamic problems in economics can be sorted into two classes: propagation and impulsion [2].

1) How does external information propagate in a given financial structure?

(theory of dynamic systems)

(theory of stochastic process)

^[1] T. J. Sargent, *Dynamic Macroeconomic Theory* (Harvard University Press, 1987).

^[2] R. Frisch, in *Economic Essays in Honor of Gustav Cassel* (George Allen & Unwin, London, 1933), pp. 171.

Dynamic Economics

Damped Harmonic Oscillator

Damped Harmonic Oscillator [1]

The propagation problem can be modeled by a damped harmonic oscillator (overdamped or underdamped). New equilibriums can be reached within the machanism

External (Noise) Reservoir [1]

External **stochastic** impulsion produces random

T-0.175

±0+5.09

Quantum Harmonic Oscillator Model

Persistent Fluctuation

The classical model cannot explain why there exists **persistent fluctuation** of price [1,2].

The external (noise)
reservoir would be **too large**if the persistent fluctuation
was all produced by
stochastic information [1].

[2] C. Ye and J. P. Huang, Physica A **387**, 1255 (2008).

^[1] P. Chen, in *Nonlinear Dynamics and Economics*, edited by W. A. Barnett, A. P. Kirman, and M. Salmon (Cambridge University Press, Cambridge, 1996), pp. 307.

Quantum Harmonic Oscillator Model

Quantum Harmonic Oscillator Model [1]

A microscopic explanation of persistent fluctuation:

If transactions are completely rational, the price should be determined with **certainty**; however, the irrationality of transaction will introduce additional fluctuations of the price and thus will lead to finite small but persistent **uncertainty** [2].

Ground State (Gaussian wave packet)

$$|\varphi \downarrow 0 (x)| \uparrow 2 = \sqrt{m\omega/\pi\hbar}$$

 $\exp(-m\omega x \uparrow 2 /\hbar);$

$$\sigma lx 12 = \hbar/2 m\omega$$
,

$$E=\hbar\omega/2$$
.

[1]	C. Ye and J. P. Hua	ng, Ph
	_	

[2] X. Meng, J.-W. Zhang, H.

Quantum Closed System	Single Stock
Coordinate representation $X \downarrow i$	(logarithmic) Stock price $\ln \mathcal{S} \not \downarrow i$
Momentum representation $P \downarrow i$	Trend of stock price $m \downarrow i d(\ln s \downarrow i)/dt$
Mass <i>m↓i</i>	Inertia of stock \vec{l}
Energy $E \downarrow i$	Trading volume of stock \vec{l}
Wave function (amplitude) $ \varphi\downarrow i $ $(x,t) 12$	Probability density distribution of price
Uncertainty relation $[X,P]=i\hbar$	Uncertainty of irrational transaction

Quantum Brownian Motion Model (qBm(m))

Quantum Open System [1]

In physics, an **open quantum system** is a quantum-mechanical system which interacts with an external quantum system (with a large number of degrees of freedom), the **environment**.

In reality, every quantum system is open to some extent, causing **dissipation and fluctuation** in the quantum system.

For example: **spontaneous emission** in quantum optics (dissipation of photons).

Quantum Brownian Motion Model (qBm(m))

Quantum Brownian Motion Model

We regard the stock index as a free particle interacting with a large number of single stocks—a **thermal reservoir** [2].

The Hamiltonian of qBm:

[1]

[2]

$$H=H\downarrow A+H\downarrow E+H\downarrow I=1/2MP\uparrow 2+V(X)+\sum i\uparrow m(1/2m\downarrow i\ p\downarrow i\uparrow 2+1/2\ m\downarrow i\ \omega\downarrow i\uparrow 2\ x\downarrow i\uparrow 2\)$$
$$-X\sum i\uparrow m\kappa\downarrow i\ x\downarrow i\ .$$

The Caldeira-Leggett master equation [1]:

$$d/dt \rho \downarrow A(t) = -i/\hbar \left[H \downarrow A, \rho \downarrow A(t)\right] - i\gamma/\hbar \left[X, \{P, \rho \downarrow A(t)\}\right] - 2M\gamma kT/\hbar \uparrow 2 \left[X, [X, \rho \downarrow A(t)]\right].$$

Mapping between quantum open system and stock index [2]

Quantum Open System	Stock Index
Density operator (population) $\rho \downarrow A(x,x,t)$	Probability density distribution of stock index
Potential well $V(x)$	Macroscopic external influence on stock index
Thermal reservoir $ ho \! \downarrow \! E$	Large numbers of stocks
Temperature kT	Strength of fluctuation
Dissipation coefficient γ of thermal reservoir	Strength of dissipation
Spectral density $J(\omega)$ of thermal reservoir	Autocorrelation features

H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, 2002).

X. Meng, J.-W. Zhang, H. Guo, Physica A **452**, 281 (2016).

"Fat Tail" and Non-Markovianity

- a) Non-Gaussian distribution of log return $\Delta \ln S(\tau) \rightarrow$ the kurtosis is larger than 0.
- b) Non-zero autocorrelation (non-Markovianity) $R(\tau)$, not a Brownian motion
 - -> business cycles exist.

Kurtosis and Autocorrelation of qBm(m)

The kurtosis $\kappa \downarrow x \uparrow 4$ (t) of qBm has an **exponential decrease** as the actual kurtosis of the stock index (Shanghai Composite Index) does.

Kurtosis and Autocorrelation of qBm(m)

Fitting autocorrelation function +1),

$$R(\tau) = (\xi e \uparrow - \eta \tau / 2 \cos \Omega \tau) \uparrow 2 = 1/2 \xi \uparrow 2 e \uparrow - \eta \tau (\cos 2\Omega \tau)$$

Non-Markovian master equation of qBm:

$$d/dt \, \rho \downarrow A(t) = -i/\hbar \left[H \downarrow A, \rho \downarrow A(t) \right] + \mathcal{K}(t) \rho \downarrow A(t),$$

$$\mathcal{K}(t) \rho \downarrow A(t) = -i\gamma/\hbar \left[X, \{P, \rho \downarrow A(t)\} \right] - \Delta(t) \left[X, [X, \rho \downarrow A(t)] \right] + \Lambda(t) \left[X, [P, \rho \downarrow A(t)] \right].$$

Additional Less-Colored Noise

Non-Stationary → **Scaling in Detrended Fluctuation Analysis** [1]

$$F(L) = \left[\frac{1}{L} \sum_{j=1}^{L} (Y_j - ja - b)^2\right]^{\frac{1}{2}}.$$

$$F(L) \propto L^{\alpha}$$

 $\alpha=1/2$: white noise;

 α =1: pink noise;

 α =3/2: Brownian noise;

- The propagating noise is less-colored than Brownian noise.
- ◆ There exists additional less-colored intrinsic noise (simplest example: additional white noise)

Summary Summary

Take-home messages

☐ Irrationality relation.	y: ad	ditional	persistent	fluctuat	ions	from	quantı	um	uncertainty
☐ Quantum behaviors.	open	system	dynamics:	fat-tail	phei	nomena	a and	no	n- <mark>Markovi</mark> ar
□ Detrended	fluctu	ation ana	alvsis: less-	colored i	ntrins	sic nois	se in pro	opa	gation.

Summary Summary

Special thanks to...

- H. E. Stanley, Boston University
- J.-W. Zhang, Peking University
- H. Guo, Peking University
- B. E. Baaquie, National University of Singapore
- J. P. Huang, Fudan University
- P. Chen, Peking University

... and many others