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Outline

* Time series structure and prediction problems




Time series

Examples:

» Stock price
> Weather information
» Traffic current




Time series

Prediction inference:

Predict future value
according to past history




Time series

Typical Models for prediction:

» Auto Regression(AR)
» Moving average(MA)
» ARMA

» ARIMA

» ARCH

» GARCH




Time series

Challenge:

Real systems always have
high-order nonlinear dynamics,
especially worse for long-term
predictions
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* Recurrent Neural Network for time-series model




Recurrent Neural Network

* A type of neural network that is designed to capture
correlations in sequential data
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Recurrent Neural Network

* A type of neural network that is designed to capture
correlations in sequential data




Recurrent Neural Network

* Several popular RNN models:

»Echo State Network (ESN)

»Long Short-term Memory (LSTM)
» Gated Recurrent Unit (GRU)

»Neural history compressor

Example model: LSTM




Recurrent Neural Network

* Areas applied RNN successfully:

**Natural Language Processing(NLP); e.g. speech recognition (Soltau, 2016)
“*Demand Forecasting (Flunkert, 2017)
“*Video analysis (LeCun, 2015)

“*Nonlinear dynamics; e.g. traffic prediction, weather prediction (Yu, 2018)
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complicated nonlinear time correlation
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* Dimension-reduction and tensor-train decomposition




"Dimension curse” of highly nonlinear time-series




"Dimension curse” of highly nonlinear time-series

» Conventional RNN: only explicitly use data of last moment (t-1)
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» Conventional RNN: only explicitly use data of last moment (t-1)

Typical mathematical structure of conventional RNN:
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"Dimension curse” of highly nonlinear time-series

» Conventional RNN: only explicitly use data of last moment (t-1)

Typical mathematical structure of conventional RNN:

P
Jt

h: hidden (auxiliary) units

X: time series values

First-order Markov model
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"Dimension curse” of highly nonlinear time-series

» Conventional RNN: only explicitly use data of last moment (t-1)
* Current difficulty: complex correlation in TS = requires longer history & higher order

First order Markov model: [ht]a =f (WZJ Tx¢ + WQ hht—l)

[ht] @ :f(Wc};xxt+

L-th order Markov model: | Z ft—l;il Q- St—l;ip/)
1’1’... ’,l/p

"

P

Therefore increase the learning (modeling) difficulty.

More technically, searched parameter space would be way too large




"Dimension curse” of highly nonlinear time-series

* Dimension counting and difficulty analysis:

dim/parameter space /=

W. . (HL+1)7P
’Ll ooo’LP

H: number of hidden units
L: length of time-lag
P: order of polynomials




Dimension reduction

* Tensor-train decomposition:

2 : P
"40402101 ayigoy 'Aoép 1tpap

rxp—1

dim/parameter space/=HL+1)R72 P

H: number of hidden units
L: length of time-lag

P: order of polynomials

R: bond dimension




Dimension reduction

* Tensor-train decomposition:

Z Abgiras Adyizas

rxp—1

dim/parameter space/=HL+1)R72 P




Dimension reduction

* Tensor-train decomposition:

Daily max-temperature prediction:

It works!
At least captures the main trend

(Given 2 months input, predict 300 days ahead)

Yu, etc. (2017)
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* Matrix Product States and entanglement entropy area law




Tensor networks in condensed matter physics

e Matrix Product State of I-dim wave-functions:
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Tensor networks in condensed matter physics

e Matrix Product State of 1-dim wave-functions:

I =

. Z P
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Tensor networks in condensed matter physics

* General tensor-network wave-functions:

1-dim MPS: 2-dim PEPS:




Tensor networks in condensed matter physics

* General tensor-network wave-functions:

[y = tTe (T)*..(TN*)* By..Bn,) k1 .. . kn,)
(I}

Generally, tensor-network represents a tensor decomposition from
higher order (dimensional space) tensors to lower order tensors




Deep reason of “"decomposibility”

Why the heck can we do this ???




Deep reason of “"decomposibility”

* Von Neumann Entanglement Entropy:

Density Matrix:

PAB = |‘I’><‘I’\AB
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* Von Neumann Entanglement Entropy:

SUAxVIA




Deep reason of “decomposibility”

* Area-law of Entanglement Entropy of gapped many-body ground

SUAxVIA

SIAxIVIA




Deep reason of “"decomposibility”
* Area-law of Entanglement Entropy of gapped many-body ground

Many-body Hilbert space

1d Area-law states




Deep reason of “"decomposibility”
* Area-law of Entanglement Entropy of gapped many-body ground

Many-body Hilbert space

1d Area-law states

And it has been proved: MPS and PEPS wave-functions obey area law
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* Proposal




Application in time-series prediction

* Knowledge we have:
1. RNN works for non-linear time-series prediction
2. Tensor-train decomposition can simplify RNN
3. Decompositions correspond to MPS
4. MPS works when area law is satisfied

* Simple question we can ask:
* Given a time series, is there a "“area law” in the structure?
* Orinversely, what kind of time-series obey area law?




Global picture of entanglement
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General Optimization problem

It’s not a day-dream, seriously......

Example:

correspondence between image-classification problem and
tensor-network representation of many-body ground state

image-classification

tensor-network ground-state

real-space coordinates

—

T

—

T

Hilbert space basis

¢i(7)

target functions

F() = 3, F(s)si(7)

W(r) =22 M¢i)i(7)

coefficients value

F(s;) = Fo-Z(s; € targets)

)\((ﬁz) eC

normalization

> IF ()P =1

Zi |)‘(¢z‘)|2 =1

tuning parameters

hyper-parameters: W

tensors: w,u

approximating targets

Jwo (52)

)‘wo , U (¢z )

minimization

EW) ~ 35V [ fw(si) — fwo(si)]

E(w,u) ~ E(\ua, H)

density matrix

pij = fw(si) - fiy(s;)

Pij = )‘w,u(gbz) ) /\w,u(gbj)




Two more interesting topics...

* Network structural differences in decentralized systems:

% blockchain: difference network structure

personal credit records

micro-finance: loans for the poor, small volume

data: applied in Africa already

Question: what's the network structural impact on credit records?

L)

o
o
o3
o3

* Machine learning for crowd-funding

K/

% analyze historical info
% predict success rate of campaigns

/

¢ predict refunding probability
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General Optimization problem

* Find the proper function mapping from input to output:

‘\Ij> - Z Wil,i2"‘7:P‘i1> ® ‘Z2> ® - ® lip)

11,121 p




General Optimization problem

* Find the proper set of parameters:




General Optimization problem

* Find the proper set of parameters:

[y = > tTe (T .. (TN)*~ By ... By, ) k1 .. . kn,)
{ks}

Question:

Is there a lower-dim Hilbert space
for the parameter searching?




General Optimization problem

* Find the proper set of parameters:

[y = > tTe (T .. (TN)*~ By ... By, ) k1 .. . kn,)
{ks}

Idea:

Correlation/Entanglement structure is the key!!!




General Optimization problem

* Proposal:

> Set up the Hilbert space for a general optimization problem

» Analytical study:
s Analyze the Hilbert space according to correlation behavior

¢ Classify problems in restricted Hilbert space
» Empirical study:
¢ Test performance of tensor-decomposition in different NN

» Compare results from two sides



