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Introduction 

In economic terms, volatility describes the tendency of prices to change rapidly 

and unpredictably. This can be clearly seen in the stock market everyday. The prices go 

up and down, quickly, with seemingly random intervals and intensities. Even though 

randomness seems to govern this volatility, there are patterns that arise. Economics 

explains the reason for volatility as the response of consumers to their anticipations of 

future prices [1]. From an econophysics perspective, unlike the autocorrelation function 

of returns versus time lag, which is only short range correlated of about 4 minutes, the 

autocorrelation function versus the time of day for volatility is approximately linear on a 

log-log scale making it long range correlated based on a power-law [5]. Due to this 

correlation, and volatility clustering, several models, including ARCH and GARCH have 

been created to try to describe it [3].   

Volatility clustering is the idea that “large changes tend to be followed by large 

changes, of either sign, and small changes tend to be followed by small changes”, as first 

noted by Mandelbrot [2]. This has been already shown, but this made me interested in 

taking it a step further: is the time it takes for the large changes to go back to small 

changes dependent on the size of the change? 

 

Methods 

Volatility can be calculated several different ways including absolute value of 

returns, or log difference between consecutive returns. Unfortunately for long ranges 

simply doing the absolute values of returns is not ideal because as prices rise with natural 

inflation of the market, a higher change in price does not necessarily mean that the 

change in price is as impactful. This can be fixed by simply plotting the returns on a log-

log plot. For this investigation, I chose to look at daily data from the S&P 500 between 
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1950 and 2018, so absolute value of returns would not work without a log-log scale. 

Instead, I took the absolute value of the difference between opening prices of consecutive 

days and divided by the price of the earlier day in order to obtain the percent price 

difference between consecutive business days.  

Next, we need to have some sort of baseline for what we consider “normal 

volatility”, an area to which large fluctuations should return after some amount of time. 

To do this, I split up the S&P 500 data into groups of five years. The data between 

January 3, 1950 and December 31, 1954 was used only to create the baseline for the data 

going between January 3,1955 and December 31, 1959, which was the first set of data. 

Taking the mean plus one standard deviation of the data between 1950 and 1955 created 

the baseline or the "normal volatility". This became the baseline for the next five years of 

data (first set of data). Then the mean plus one standard deviation of the first set of data 

was the baseline for the second set of data and so on. 	

Assuming volatility values are normal (which they are not. They more closely 

resembles the student t distribution), this baseline would encompass approximately 84% 

of the data under this line, making the remaining approximate 16%, peaks. The next step 

is to calculate the amount of time, in days that it takes the volatility to go back under the 

set baseline for 7 consecutive days. This choice of 7 days is arbitrary but it made sense 

since that is a week. To explain further how the days count, let us assume you have one 

spike that is above the threshold, followed by one below, three above, and eight below. 

This would mean that our time until relaxation would be twelve days. Using this method, 

with the help of Python, the beginning, end, length, magnitude of the of the first point 

above the threshold, as well as maximum magnitude within each interval above the 

threshold were calculated. Using this data, scatter plots of Volatility spikes versus Time 

Until Stabilization were created for each five-year period and for the data as a whole (Fig 

1,2,5,6). For each of these, the linear correlation coefficient (r), and the coefficient of 

determination (r2) were calculated (Table 1). These two values tell us the following: “the 

greater the absolute value of a correlation coefficient, the stronger the linear relationship. 

The coefficient of determination indicates the extent to which the dependent variable is 

predictable. An R^2 of 0.10 means that 10 percent of the variance in Y is predictable 

from X” [4]. 
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Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
		

Figure	1.	Graph	of	the	initial	spike	in	volatility	versus	the	time	until	volatility	returns	back	to	“normal”.	The	
different	colors	represent	the	different	ranges	of	data	

Figure	2.	Graph	of	the	maximum	spike	in	volatility	versus	the	time	until	volatility	returns	back	
to	“normal”.	The	different	colors	represent	the	different	ranges	of	data	
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Simply looking at the first time the volatility is above the baseline and the time it 

takes for the volatility to get back to normal, the correlation is very weak (Fig 1). The R-

value is only .097, suggesting that while the correlation is positive, the linearity of the 

data is weak. Only about 1% (R^2=	0.00947) of the change in number of days until 

stability can be explained by the magnitude of the first spike in volatility, suggesting that 

there is no relationship between the two.  

When looking at the number of days until stability and the maximum magnitude 

of volatility on that interval, however, the relationship becomes much stronger (Fig 2). 

The R-value becomes .613, which suggests a stronger positive linear relationship and the 

R^2 value is .376, which means that now approximately 37.6% of the changes in length 

until return to “normal” can be explained by maximum volatility. This relationship is 

significantly stronger than the one with first peak volatility. This also suggests that most 

of the time, the initial point above the threshold is not the highest point, which possibly 

suggests that it takes some time for volatility to build up to its maximum point (as seen in 

Fig 3). 	

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure	3.		Example	of	in	initial	point	above	the	threshold	not	being	the	maximum	point	and	volatility	
taking	time	to	build	up	
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Years Correlation Coefficient (R) Coefficient of Determination (R2) 
1955-1960 0.558344093079  0.311748126277 
1960-1965 0.863066598421  0.744883953311 

1965-1970 0.795822519364  0.633333482327 
1970-1975 0.949725283344  0.901978113822 

1975-1980 0.560397618474  0.314045490792 

1980-1985 0.651637747868  0.424631754447 

1985-1990 0.893162354121  0.797738990819  

1990-1995 0.470754146424  0.221609466375 

1995-2000 0.531509544991  0.282502396417 

2000-2005 0.748289429409  0.559937070165 

2005-2010 0.972835822736  0.946409537998 

2010-2015 0.919399407487  0.845295270488 

2015-2018 0.465598641349  0.216782094826 
Table 1. Shows all the R and R^2 values for maximum volatility magnitude versus time until relaxation for each 5 year 
period  
 

The correlation was also calculated for each five-year period and is given in Table 

1. As can be seen, sometimes the correlation is very strong (Fig 5), while other times it is 

weak (Fig 6). Plotted against time, it appears that this correlation fluctuates with time, 

where periods of low correlation between maximum volatility magnitude and time until 

relaxation are followed by periods of very high correlation (Fig 4).  
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Figure	4.	Graph	of	R^2	values		for	maximum	volatility	magnitude	versus	time	until	
relaxation	for	each	5	year	period	

Figure	5.	An	example	of	a	5	year	period	with	a	strong	correlation.		R=	.950,	R^2	=	.90	
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Continued Work 

 This data only comes from one stock, the S&P 500. This work would need to be 

repeated on other stocks in order to see if the same findings hold true. Furthermore, there 

are several areas which analysis could be improved upon. Regardless of what the 

normalcy period is set to (here it was 7 days), problems can arise. When the period is set 

to 7 days, if the next spike is 8 days after the last spike, then it could still be related to the 

previous increase in volatility, but it is counted as being a part of a different set. On the 

other hand, if this value is set to be too high, then everything will end up being included 

in one set.   

 Another area of concern is that the threshold was only updated once for every 5 

year period. By updating the mean only every 5 years, at the beginning of the new 5 year 

period, the average is fresh, but at the end, it is already 5 years old. It might be better to 

have a 5 year running average instead as the threshold. The idea of breaking up the data 

into 5 year periods creates another problem: if there are peaks that go from the end of one 

  

Figure	6.	An	example	of	a	5	year	period	with	a	weak	correlation.		R=	.560,	R^2	=	.314	
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5 year period to the beginning of another 5 year period, this group gets cut off into two 

with this method and neither set has the correct relaxation length.  

Conclusion 

It appears that there is some correlation between maximum magnitude of 

volatility and the number of days until stability. This correlation itself seems to fluctuate 

with time. Furthermore, it can be seen by comparing Max Volatility Spikes and Initial 

Volatility Spikes that the maximum volatility is rarely the initial pass across the line of 

“normalcy”.  More data and a few changes to method of analysis are needed in order to 

make firm conclusions, but it does look like there are patterns that arise within volatility 

that go beyond its simple autocorrelation.  
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