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Walk
Fangda Xu, Xin Zhao
Notes: All contents below are coded by ourselves.
Background: Definition and Property of the Generating Function

Definition of the generating function:

(0]

G(s) = z s”an

n=0

If the sequence {a,} 1s the probability mass function of a random

variable X on the nonnegative integers (i.e.P(x = n) =a,), then
we call the generating function the probability generating function

of X, and we can write it as:
G(s) = E[s*]

It is obvious that if G, (s) is the generating function of a random

variable X, then,
Gy (1) = E[x]
since G’(S) = %(ao + a;s + azsz + )

= a; + 2a,s + 3azs? + -



then G'(1) = a; + 2a, + 3a; + - = E[x]

based on the assumption that P(x = n) =a,

Application of Generating Function on Simple Random Walk
The following content will be confined to the field of Simple

Random Walk.

Random Walk: A random walk is a stochastic sequence {S,,} with

So=0,defined by

n
Sn = z Xk
k=1

where {X, } are independent and identically distributed random

variables.

Simple Random Walk: The random walk is simple if X, =
+1 with P(X;,=1)=p and P(X,=-1)=q=1-p.

Figure 1: Simple random walk

Let us suppose that the random walk starts in state 0 at time 0:



T, =time(steps) that the walk first reaches state r, for r= 1
T, =time(steps) that the walk first returns to state 0

fr(n) = P(T, =n|X, =0) for r = 0and n = 0 and we let

(0]

6:(5) = ) s™f(m)

n=0

Then the key point is how we can obtain the G,(s) for r > 1.We

will start from G,(s) based on the Markov property below.

fr(0) = > P(T, = nITy = ()
k=0

= > P(T, =nlTy = )fi(K)
k=0

Now the focus turns to the P(T, = n|T; = k)(we truncate the sum
at n since P(T, = n|T; = k) =0 for k > n). By applying
temporal and spatial homogeneity (this is the same as the
probability that the first time we reach state r—1 is at time n—k

given that we start in state O at time 0), that is

P(T, =nl|Ty = k) = froa(n = k)



and so

F) =) fra(n =AM
k=0

Right now {f.(n)} depends on two other sequences: {f,_;(n)}
and {f;(n)}. By applying the convolution property of generating
function(which states that G.(s) = G,(s)G,(s), G,(s) is the
generating function of {a, } and G, (s) is the generating function
of {b,}, where ¢, = ayb, + a1by,_1 + -+ a by = X7 @i bn_),

we have

Gy () = Gr_1(5)G4(5)

Keep doing the decomposition on G,_;(s), we will finally reach:

Gr(s) = G1(s)"

Now the problem reduces to how to decompose the G,(s).
fitm) = P(T; = nlX; = Dp + P(T; =n|X; = —1)q

where P(T; = n|X; = —1) = f,(n — 1) (applying temporal and
spatial homogeneity again), therefore f;(n) can be written as

fin) = qf,(n—1)
Keep in mind that f;(1) = p and f;(0) = 0, then we can write



G,(s) in the form of:

G,(s) = z s"fi(n) =sf;(1) + z s fi(n)
n=0 n=2

(00]

= ps + z s"fo(n—1) =ps+ qsz s"f,(n—1)
n=2 n=2

oo

=ps+as ) s"fo(n) = ps + 456, (5)

n=1

But based on the previous result that G,.(s) = G,(s),
Go(s) = Gy (s)?
thus,
Gy(s) = ps + qsGy(s)?

then we can decompose the G;(s) in the form

1+ /1~ 4pqs?
G1(s) = 2qs

with the boundary condition that G,(0) = f;(0) = 0, the correct

form of Gy(s) should be G,(s) = “—VZ‘;W .

If we set s=1, we have

1—-,1—4pq

G1(1) = 2q




However, after so many steps, we should always keep in mind that
after so many steps, we haven’t solved the G,(s)! The leftover

part will focus on how to decompose the G(s).
Still, we start from the f;(n) to generate the G,(s).
fo(m) = P(Ty = n|X, = 0)
= P(walk first reurns to 0 at time n|X, = 0)
Based on the Markov property, we have that
fo(n) = P(Ty = n|X; = D)p + P(T, = n|X, = —1)q

Still, applying the temporal and spatial homogeneity again, we can

have

P(To=nlXo=-1)=P(T1=n—-1X,=0) = fi(n—-1)

Similarly we can have

P(To=nlXo =1 =P(T_1=n—-1[X,=0)=f_(n—-1)

Combine the above formulas, we obtain

fo) =f_i(n—Dp+ filn—1)q

if we denote f;"(n) = f_;(n), we will have



fo)=ff(n—Dp+ filn—1)q

Therefore, we will have

(0.0]

Gos) = ) s"fi(n=Dp+ Y s"filn—1)q
n=1

n=1

= PS Xp=1 Sn_lff(” — 1)+ X5, Sn_lfl(n - 1)
= psG;(s) + qsG;(s)

where G;(s) is the same function as G, (s) except with p and q

inter-changed.

[1— 2
With the result we already obtained, G, (s) = 1% 12qz:pqs we will
have
. 1+ \/ 1 — 4pgqs?
Gy (s) = 5
ps

combine those two formulas, we obtain

Go(s) = psG;(s) + qsGy(s) =1 — /1 — 4pqs?

Again, we set s=1,we obtain

Go(1) = Xo-q fo(n) = P(walk ever returns to 0| X, = 0)=

1—,1—4pq



Finally we summarize those key formulas we have reached,

Go(1) =1—-/1—4pq
1—-,1—-4pq

2q
G.(1) = 6, (1)

G1(1) =

Here we set s=1 then we obtain the meaning behind the G, (1):
G,.(1) = P(walk ever reaches tor|X, = 0)

Distribution of Steps from Level O to Level R: up till now, we used
the generating function to derive the possibility of random walk
reach to a certain level. It’s necessary to explore how the steps can
be distributed from level O to level r. Here we define n the steps a
simple random walk to take to reach position r. One can easily get
the formulas below: a represents the step to the right(or up) and b

represents the step to the left(or down).
a—b=r
at+b=n

ptq=1



After solving the equations above, one can easily obtain the

expressions for a and b respectively below:

_n+r
1T
b_n—r

2

The possibility of using n steps to reach position r is:

Mr oa4r n-r

P.(n) = C4,,p%q° =C ? pz q z (for n+r = even)

0; n+r = odd
F(n) =1 M7 nir nr
C,’p2q2z; nt+r=even
we can use the matlab to plot such relationship. See fig 1.Here

we set r=2, nMax=1000, which means the maximum step is

confined to 1000.
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Fig 1. The distribution of steps from O to 2. The maximum steps

are confined to 1000.

However, we haven’t used the generating function approach to
give a explicit expression of the distribution. But it is worth trying

in the future work.



