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VIDM2 is an attractive target for anti-
sancer drug development

Cytosol

Nucleus I

High affinity drug

\ilnds MDM?2
MDM?2 does
not bind p53

p53 binds oncogenic

(damaged) DNA “

“ Cancerous DNA

Anil, B.; Riedinger, C.; Endicott, J. A.; Noble, M. E., The structure of an MDM2-Nutlin-3a complex solved by the use of a validated MDM2 surface-entropy
reduction mutant. Acta crystallographica. Section D, Biological crystallography 2013, 69 (Pt 8), 1358-66.
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Nutlin-3a bound to MDM2 (PDB: 4HG7). A
drug currently in clinical trials.



Viany MDMZ2 inhibitor designs have been
nade, and have measured binding
affinities

ding DB has 2,389 entries for designs that bind MDM2 ";2; 20 nM GTP i
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Levin, Jules (2007) Discovery of a novel class of Hepatitis C Polymerase Inhibitor. http://www.natap.org/2007/HCV/101007_01.htm



Ne can define the similarity between molecules
Ising SMILES strings based on bit-wise
orrelations!

siven strings that are 2D descriptors of molecular structure, we could
string length-normalized string-similarity based method...

animoto coefficients (T)! (Jaccard index)

7=(ANB)/A+B—(ANB)

nere A is the number of bits that are valued “1” in string A, B is t
mber of bits that are valued “1” in string B, and A N B are the number
s that are valued “1” that intersect between strings A and B.

animoto similarity scores, T, vary from 0O to 1.



Jonnectivity of networks described using different
imilarity score linking cutoffs can give us a sense of a

lecent cutoff.

By constructing chemical similarity
networks of these MDM2 inhibitors

at many different similarity score
cutoff values, we get a sense of the
connectivity of the network for
each cutoff...

A similarity score linking cutoff of
0.65 was selected to ensure a high
connectivity while being far from a
complete graph and far from above
random.
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Phase diagram of MDM2 inhibitor chemical similarity
networks at different similarity score linking cutoffs.
Ng is the number of nodes in the largest connected
component, N is the number of nodes in the
network, and <k> is the average degree of nodes in
the network. ER graphs are constructed at each <k>
for comparison, and are represented in gray.
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our resulting network is large and

appears to contain distinct communities
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Ne partition our network into distinct
sommunities via the Louvain Method

)ptimizes the modularity, Q, a quantity that measures the density of links
vithin communities of a network.

Vhere i and j are the indices of nodes in the network, m is half the sum of
dge weights in the graph (weights = 1 here), ¢; and c; are the communities
vhich each node belongs, and A; is the edge weight between jand j (=1 here

he assignments of nodes to communities is accomplished by whate
iscretization of nodes into communities maximizes Q.



Jur network contains a handful of well-
bopulated communities
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Community
Representatives



Viotivation

Large number of members in a community.
Individual analysis is time consuming.
Chemical intuition is narrow with individual analysis.

Not member molecules but scaffolds (Functional groups, Steric
groups) deemed more interesting !
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Approach
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nvestigating network and chemical structures
n our communities may reveal interesting
and useful features...

Ve briefly investigate network and chemical structures in our four
nost-populated communities via the following:

1. Visualization with force-directed drawing.

2. Log-log degree distributions

3. Representative molecule structures

4

. Similarity maps for other molecules in communities in reference to
community representatives



niker and Landrum Journal of Cheminformatics 2013, 5:43

tp://www.jcheminf.com/content/5/1/43 Journal of

Cheminformatics

Similarity Maps

Advantage of Conversion

functional group ecomputationally e bits in vector

3D structure efficient e count in vector
ecompare similarity

FeatMorgan2
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eas BIT VECTOR (size=1024bit

eRemove bits of one atom

eGreen: positive difference
*Pink: negative difference

eGrey: no difference




_ommunity O appears to show no
additional partitions
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man-Reingold force-directed drawing shows no partitions.



~ommunity O similarity depends on aromatic
itrogen-containing scaffold and aromatic
hlorine-containing sidechains.

larity maps based on per-atom similarity with the representative molecule. 2"4, 374, 4th and 5t highest-
arity molecules presented from left to right.



_ommunity 1 appears to contain
additional partitions
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man-Reingold force-directed drawing shows possible further partitions.



_ommunity 1 similarity depends on
aromatic chlorine and fluorine-containing
side chains.

larity maps based on per-atom similarity with the representative molecule. 2"9, 379, 4t and most-
esentative molecules presented from left to right.

ible that molecules out of the top 3 most-representative molecules might be in need of further partitioning.



_ommunity 2 appears to show
addltlongll partltlons
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ommunity 2 is characterized by
itrogen-containing aromatic scaffolds.
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larity maps based on per-atom similarity with the representative molecule. 2"9, 374, 4th and 5% most-

esentative molecules presented from left to right.



_ommunity 6 appears to show no
additional partitions, but a handful of

a1 itliare
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‘man-Reingold force-directed drawing shows no partitions — shows outliers.



_ommunity 6 contains well-defined
aIromatic side chains.

larity maps based on per-atom similarity with the representative molecule. 2"9, 374, 4th and 5% most-
esentative molecules presented from left to right.



-uture work(?)

Building a small molecule inhibitor network where links are weighted b
similarity score and there is no similarity score cutoff — would th
communities be any more well-defined?

Using a different algorithm for partitioning molecules into communities?

Characterizing small molecules within communities in terms of their IC
and unique molecular structure.

Generating semi-random new 2D molecular designs that would fall int
our communities. Binding affinity could be approximately predicted usin
molecular docking to the p53 binding site on MDM2... Can we generat
potent new designs algorithmically using our communities?



