I WANT TO GET OUT OF THIS CLASS.

- Introduction to a possible new area.
- Knowledge of a new field.
Gary Delong

I hope to learn more about how interactions impact individual behavior and functioning.
NAME: Jingjin Wei

WHY THIS COURSE, topic: systems in real world

BACKGROUND: Network. Extract data and explain in mathematics.
Name: Shibai Song, China.

Research background: computational chemistry

reverse micelle

why not drug inside

water

protein
Network application in finance

Asanga, Sri Lanka

Molecular dynamics
Classical simulation
Biophysics simulation

Chemist
Jack macau Particle physics
Finance / Networks

REVERSE MICELL -

Asanga Bandara
-
-
-
-
Thomas Henry

Basics of Networks to understand papers I may be interested in.

Applications of Network science to problems applicable to chemistry and reactions.

New frontiers in network science that may be broadly applicable.

I prefer homework/project based.
I am a PhD student in Electrical Engineering and I studied Physics in Greece. Currently, I am doing computational materials science studying migration of defects in semiconductors. I took the Econophysics course last semester and it had a great impact on my thoughts on my future career. I am interested in Finance and I am interested in seeing the applications of Networks in Finance.
This course is the first interdisciplinary course I took at Bilkent. As for me, I would expect that I will learn something new in finance, and how physics can be applicable to treat this field, and also I would expect to find common things between different sciences.
- I know nothing about network, I'm very interested to learn some!
- Networks applied to phase transitions
- Networks applied to molecular dynamics in general.
- Off-Topic:
- Macro-scale networks, like you briefly mentioned in Medicine, Evolution, etc....
George Pantelopoulos

- Undergrad research based in applying network theory constructing Markov State Models to describe protein folding & ligand binding. Essentially, these are network models where nodes are similar conformations (by some criterion such as backbone atom RMSD) and links are the probability of transitioning between these conformations. These conformations are derived from Molecular Dynamics simulations.

- My understanding is entirely applied. I would like to gain a much stronger understanding of network theory.
Adrian Yi

To see if interested in data science field.

Experimental biophysics.