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• The entire distribution of US city size is neither a Pareto one nor a lognormal one.
• Based on multiple tests, we find that the largest US cities are not Pareto distributed.
• Tests on real data and samples draws from a lognormal distribution yield similar Pareto tails.
• Bootstrap exercises show that the length of the Pareto tail shrinks by increasing sample size.
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a b s t r a c t

We question the claim that the largest US cities are Pareto distributed. We show that results of multiple
tests on real data are similar to those obtainedwhen the true distribution is lognormal, and largely depend
on sample sizes.
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1. Introduction

Recently, a lively debate has emerged on whether city size data
are better approximated by a Pareto distribution or by a lognormal
one (Eeckhout, 2004; Levy, 2009; Eeckhout, 2009; Malevergne
et al., 2011; Rozenfeld et al., 2011; Ioannides and Skouras, 2013).

Beside the specific intellectual curiosity the issue may raise,
there are broader theoretical reasons for investigating the matter,
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as competing models yield different implications. Indeed, while
the seminal paper by Gabaix (1999) predicts a Zipf’s law, Eeckhout
(2004) proposes an equilibrium theory to explain the lognormal
distribution of cities. This debate is hampered by the difficulty to
distinguish lognormal versus Pareto tails (Embrechts et al., 1997;
Bee et al., 2011). Moreover, the contention is partly based on the
difficulty of properly defining what a city is and, empirically, what
is the correct measure to use.1

1 This point is made in Rozenfeld et al. (2011), who propose a new methodology
to define cities based on microdata and a clustering algorithm that identifies a city
as the maximal connected cluster of populated sites. By applying this methodology
to both US and UK data, the authors find that a Zipf’s law approximates well the
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While early studies focus on the largest US Metropolitan
Statistical Areas (MSAs) only, recent contributions use data for
all the populated places of the US and other countries. By so
doing, Eeckhout (2004) shows that the size distribution of US
cities is a lognormal one, not a power-law one as previously
thought (at least since Zipf, 1949). A few years later, Levy (2009)
acknowledged that the body of the city size distribution is well
approximated by a lognormal distribution, but claimed that there
are significant departures in the upper tail. In particular, the top
0.6% of the distribution, i.e., theMSAs, appear to fit better a power-
law distribution. Eeckhout (2009) replied to these new findings
by highlighting potential problems associated with the procedures
used by Levy (2009) to identify the power-law tail.2 Recently
Malevergne et al. (2011) have suggested that the debate rests on
the small power of the tests employed by both Eeckhout (2004)
and Levy (2009). They claim the issue can be definitely settled by
adopting a better testing procedure, namely the uniformly most
powerful unbiased test of the exponential versus truncated normal
distribution in log-scale developed by del Castillo and Puig (1999).
Last, Ioannides and Skouras (2013) applied a switching model and
found that the distribution is lognormal in the body, but robustly
Pareto in the upper tail (top 5%).

We contribute to this debate by providing new evidence based
on a through analysis of the tail behavior of the distribution
and a number of counterfactual exercises. We conclude that the
power-law behavior of the upper tail is less robust than previously
claimed, due to the limited power of the available statistical tests
(Perline, 2005).

2. Data and methodology

2.1. Data

We analyze the distribution of US city size: information
is derived from the 2010 Census Data collected by the US
Census Bureau. The elementary unit of analysis, corresponding to
disaggregate data, is the population of 6 127259 census blocks.
These figures are then aggregated into administrative units that
represent populated places. As in Eeckhout (2004), we take
populated places as the unit of analysis at the aggregate level.3
Since it has been argued that the way cities are defined (i.e., the
way elementary units are aggregated) is not neutral with respect
to the shape of the resulting city size distribution, we perform our
analysis using both the administrative definition of cities and the
clusters identified by Rozenfeld et al. (2011).4

2.2. Testing for a power-law tail

Discriminating between power-law (Pareto) and lognormal
tail behavior is a difficult task. Although asymptotically the two
distributions are mathematically different, the convergence of
the lognormal to the asymptotic distribution is extremely slow
(Perline, 2005), so the difference may be very small, to the extent
that they are often practically indistinguishable for any finite
sample size.

distribution of 1947 US cities with more than 12,000 inhabitants (about 1000 cities
with more than 5000 inhabitants for the UK).
2 Specifically, Eeckhout (2009) suggests that the graphical procedure based on

visual inspection of a log–log plot introduces significant biases in the right tail of
the distribution.
3 In the rest of the paper, the terms city and populated place are used

interchangeably.
4 Data on clusters are available at http://lev.ccny.cuny.edu/∼hmakse/soft_data.

html.
Given these difficulties, several tests have been proposed: the
uniformly most powerful unbiased (UMPU) test developed by del
Castillo and Puig (1999) and used by Malevergne et al. (2011);
the maximum entropy (ME) test by Bee et al. (2011); and the test
proposed by Gabaix and Ibragimov (GI henceforth; see Gabaix and
Ibragimov, 2011).

The UMPU test is based on the fact that the logarithm of a
truncated lognormal distribution is truncated normal, and the
logarithm of a Pareto distribution is exponential. del Castillo
and Puig (1999) have shown that the likelihood ratio test for
the null hypothesis of exponentiality against the alternative of
truncated normality is given by the clipped sample coefficient of
variation c̄ = min{1, σ̂ /µ̂} of the logarithms of the observations,
where µ and σ are the parameters of the truncated normal. The
UMPU test only compares the null of a power-law distribution
against the alternative of a lognormal distribution, and rejects the
null hypothesis for small values of the coefficient of variation c .
However, the coefficient of variation does not uniquely identify
distributions with power-law tails. This implies that the UMPU
test works well (i.e., its power is high) in cases such as the
lognormal–Pareto mixture, namely when the data-generating
process is such that c ≥ 1 above the threshold that separates
the lognormal and the Pareto distributions and c < 1 below the
threshold (Bee et al., 2011). On the other hand, if the distribution
below the threshold is not a power-law one but nonetheless has
c ≥ 1, as happens, for example, for the Weibull distribution
with shape parameter equal to 1, the UMPU test is completely
unreliable. A case that illustrates this point is the aggregate city
size distribution studied below (see Section 3).

The ME approach entails maximizing the Shannon information
entropy under k moment constraints µi

= µ̂i (i = 1, . . . , k),
where µi

= E[T (x)i] and µ̂i
=

1
n


j T (xj)i are the ith theoretical

and samplemoments, n is the number of observations, and T is the
function defining the characterizing moment.5 The solution (that
is, the ME density) takes the form f (x) = e−

k
i=0 λiT (x)i . If T (x) = x,

the logarithm of the Pareto (i.e., the exponential) distribution is an
ME density with k = 1, whereas the logarithm of the lognormal
(i.e., the normal) distribution is an ME with k = 2. A log-likelihood
ratio (llr) test of the null hypothesis k = k∗ against k = k∗

+ 1 is
given by

llr = −2n


k∗+1
i=0

λ̂iµ̂
i
−

k∗
i=0

λ̂iµ̂
i


.

From standard limiting theory, the llr test is asymptotically χ2
1 and

is optimal (Cox and Hinkley, 1974; Wu, 2003).6

The ME test is a by-product of a more general non-parametric
approach to density estimation. It can indeed be shown that, when
the whole distribution is of interest, the method can be used for
fitting the best approximating density, with the optimal k found
by the llr test (Bee, 2013). Referring the interested reader to Wu
(2003) for details, themain advantages of the technique are that (i)
it delivers the best (according to the ME criterion) approximating
density, and allows one to assess whether it belongs to certain
parametric families; (ii) if the true distribution is a Pareto one,
it provides an estimate of the shape parameter; (iii) it does not
consider a single alternative model, so pitfalls such as the one
discussed for the UMPU test in Section 3 below are avoided.

5 The two most common cases are T (x) = x and T (x) = log(x), corresponding
respectively to arithmetic and logarithmic moments.
6 The routines for implementing the UMPU and ME tests are available at

https://sites.google.com/site/sschiavo7788/home/software.
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Fig. 1. Maximum entropy estimates of empirical distributions: cities (left) and city clusters (right). The sample sizes reported above the panels stands for the number of
observations used to fit the ME distribution and generate the plots (k value in parentheses).
Finally, the GI test is based on the following intuition. Estimate
by ordinary least squares (OLS) the regression

log

r −

1
2


= constant − ξ log(xr) + q[log(xr) − γ ]

2, (1)

where ξ is the Pareto shape parameter, q is the quadratic deviation
from a Pareto distribution, r is the rank, xr is the rth order statistic,
and γ

def
= cov((log(xr))2, log(xr))/2var(log(xr)) is a recentering

term needed for guaranteeing that ξ is the same whether the
quadratic term is included or excluded. Asymptotically, for the
Pareto distribution, q = 0, so a large value of |q| points towards
rejection of the null hypothesis of a power-lawdistribution. Gabaix
and Ibragimov (2011) show that, under the null hypothesis of a
Pareto distribution, the statistic

√
2nqn/ξ 2 converges to a standard

normal distribution,which can therefore be used to find the critical
points of the test.

To further assess the accuracy of the tests, in this paper we
conduct an experiment based on Monte Carlo simulation: we
randomly draw from a lognormal distribution with sample size
and parameters derived from the data and estimate the probability
of obtaining a power-law tail at least as long as the one found by
the tests. Hence, for each test, we run N Monte Carlo replications
(with N equal to 500) and obtain the same number of independent
realizations t1, . . . , tN of the discrete random variable B taking
value r , where r is the rank such that the test is below the 95%
critical value for ranks 1, . . . , r − 1 and above this value for ranks
r, r + 1, . . . , n. We then compute the quantity

p̂ =
#{ti > t∗}

N
,

where t∗ is the rank obtained applying the test to the observed
data. A small value of p̂ implies that the data display a tail
which is significantly longer than the lognormal one used in the
simulation.7

As a second robustness check, we perform a parametric
bootstrap exercise. We simulate the ME distribution that best fits
the populated places data and apply the tests to the resulting
samples.8

7 In the following, we apply a 5% significance level (p̂ < 0.05).
8 The ME distribution is simulated by means of the inverse distribution function

method, where the ME distribution function is obtained by numerical integration
of the ME density.
Table 1
Test results.

Cities (n = 28 916) Clusters (n = 17 569)
5% 1% 5% 1%

ME 870 890 1180 1300
(3.01) (3.08) (6.72) (7.40)

UMPU 760 870 13110 13310
(2.63) (3.01) (74.62) (75.76)

GI 962 1181 1219 1566
(3.33) (4.08) (6.94) (8.91)

Rank (percentile) after which the power-law hypothesis is rejected. Boldface
indicates a tail significantly longer than the one obtained simulating from a
lognormal distribution with parameters estimated from the data.

3. Empirical analysis

In this section, we applymultiple tests to cities and city clusters
to investigate the tail behavior of the distributions. First, we fit the
ME density to the whole distribution. Next we run the statistical
tests described above. Finally, to control of the presence of a Pareto
tail, we perform a set of robustness checks.

3.1. Test results

We start the analysis by fitting the ME density to the empirical
distributions of both cities and clusters. Results are displayed in
Fig. 1. The fit with the ME distribution reveals that k > 2 for all
the distributions; thus the best fit for the whole distributions is
significantly different from a Pareto distribution (k = 1) and a
lognormal distribution (k = 2).

Table 1 reports results of three statistical tests (UMPU, ME,
GI) on cities and city clusters. The table shows the highest
numerical values of the rank associated with rejection of the
null hypothesis of a power-law tail, as well as the associated
percentile in parentheses.9 Furthermore, boldface indicates that
the length of the tail found in the data is significantly longer
than the one found by applying the tests to a sample drawn
from a lognormal distributionwith parameters estimated from the

9 This means that the figures represent the length of the Pareto tail in terms of
number of observations (and in percentage of the sample size). We report the rank
at which the tests crosses the significance level and never go back to the acceptance
region, sowe disregard instanceswhere a test goes in the critical region but bounces
back once we increase the sample size. In so doing, we are giving more chances to
the null hypothesis, which implies a possible overestimation of the length of the
power-law tail.
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Fig. 2. Left panel: complementary cumulative distribution of cluster size. The vertical lines mark the power-law cutoffs identified by the tests. The dotted reference line has
slope equal to the shape parameter as estimated by the ME procedure (α = 0.884). Right panel: histogram of the cluster data with superimposed fitted densities.
data (see Section 2.2). Since the big picture is unaffected by the
significance level, in what follows we concentrate on 5%, and only
discuss other results when they convey specific information.

When we look at populated places, the power-law tail appears
to be limited to the top 760 (UMPU), 870 (ME), or 960 (GI)
observations. All tests show good agreement on this. The power-
law tail starts at a population of about 51500, 45200, and 41100
inhabitants, and it covers between 2.63% and 3.33% of the whole
sample.10 These results are in line with previous findings by
Malevergne et al. (2011), Rozenfeld et al. (2011), and Ioannides and
Skouras (2013). Note, however, that only the GI test finds a power-
law tail significantly longer than the one we would observe if the
true data-generating process were a lognormal one.

When we move to the 17569 city clusters (Rozenfeld et al.,
2011), we note that the UMPU test displays a rather odd behavior,
as it identifies a power-law tail spanning 75% of the sample (13110
observations). Results for ME and GI in contrast are in line with
those obtained using populated places: according to them, the
power-law tail starts at ranks 1180 and 1219 (about 15400 and
15000 inhabitants), respectively. The share of population that
lives in the clusters comprised in the power-law tail is around
71–73%, significantly larger than the corresponding percentage for
populated places (52–60%).

The difference between the results obtained with the UMPU
test and the other two tests is macroscopic. To further investigate
this behavior, in Fig. 2 (left panel) we plot the complementary
cumulative distribution function (CDF) in double log scale, along
with the thresholds identified by different tests. As a power-
law relationship should result in a straight line, we also plot a
reference line with slope equal to the shape parameter estimated
by the ME method (0.884). The graph shows a marked departure
from linearity for population values well above the threshold
found by the UMPU test. The right panel of Fig. 2 illustrates
this finding by showing the histogram of the logs of city cluster
sizes corresponding to the power-law tail found by the UMPU
test (rank 13130) together with the optimal ME density (k =

6), the exponential (log of Pareto) and the truncated normal
(log of lognormal). The last two are almost indistinguishable and
fit the data rather poorly, whereas the optimal ME provides a
very good fit. The sample coefficient of variation ĉ of the largest
13110 observations is equal to 0.983 (and is even larger for
larger thresholds); hence, being based only on ĉ , the UMPU test

10 As noted elsewhere (e.g. Ioannides and Skouras, 2013), the skewness of the
distribution implies that cities in the power-law tail account for a large chunk of
total population, in this case 52–60% of inhabitants.
Table 2
Estimates of the shape parameter.

Cities Clusters
5% 1% 5% 1%

ME 1.30 1.27 0.87 0.89
UMPUa 1.32 1.30 1.24 1.23
GI 0.92 0.94 0.95 0.93
a These results are computed at the threshold found by the UMPU test, which is

unreliable.

overestimates the length of the power-law tail.11 Graphically, in a
complementary CDF log–log plot such as the left panel of Fig. 2,
this means that the UMPU test rejects the null of a power-law
distribution for departures from linearity below the straight line,
but not for those above. This example is a clear illustration of the
limitations of the UMPU test discussed in Section 2.2.

An important part in the debate on the size distribution of cities
has been played by the value of the shape parameter associated
with the power-law tail. This value has important implications,
since Gabaix’s model implies a shape parameter equal to 1 (Zipf’s
law). This prediction finds empirical support both in Gabaix (1999)
and more recently in Rozenfeld et al. (2011); on the other hand,
Eeckhout (2004) finds that the value of the shape parameter
changes significantly at different cutoffs, inferring from this that
the distribution cannot be truly a power-law one. Finally, both
Malevergne et al. (2011) and Ioannides and Skouras (2013) report
a coefficient significantly larger than 1.

Table 2 shows the estimates of the shape parameter obtained
using the methodologies associated with the three tests, per-
formed at the cutoff identified by each of them. In particular, the
estimate of the shape parameter is a byproduct of both theME and
GI testing procedures, whereas in the case of the UMPU testwe rely
on the Hill estimator, as done by Malevergne et al. (2011). Differ-
ent tests yield different estimates, with the ME and UMPU values
being larger than 1 and close to each other, whereas the GI result
is more in line with the findings in Rozenfeld et al. (2011). When
we shift the analysis to clusters, we need to take into consideration
that the estimate corresponding to the UMPU test is unreliable, as
it is computed at the threshold found by the test, which identifies
a power-law tail spanning 75% of the data. Apart from this caveat,
the most notable change occurs for the estimate obtained with the
ME procedure, which falls significantly from 1.3 to 0.89, closer to
the value implied by Zipf’s law.

11 Recall from Section 2.2 that the UMPU test rejects the null of a power-law
distribution for values of ĉ smaller than 1.
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So far, our results closely match what has already been found in
the literature. However, we show that the UMPU test results leads
to the misleading conclusion that almost the entire distribution of
the city clusters is approximately of Pareto type. Moreover, in five
out of six cases, the tests do not find a significant power-law tail
when the results are compared to those obtained from a lognormal
distribution.

To further investigate the role of sample size, we run now the
tests on a random sample of census blocks data of the same size
of cities. Since there is no theoretical prior that blocks should
be power-law distributed, and indeed the same tests find almost
none, this exercise allows us to single out the effect of sample size
on the length of the observed power-law tail.12

Results are displayed in Table 3: the sampled data show –
at least according to the UMPU and ME tests – a much longer
Pareto tail than the one found for actual observations. Indeed,
these two tests identify a power-law tail spanning roughly 3000
observations, i.e., more than 10% of the sample. This seems to imply
that the reduction in the power of the tests associatedwith smaller
sample size accounts formost of the power-law tail observed in the
data. Indeed, the Pareto tail detected by both the ME and UMPU
tests is longer than the one observed when simulating from a
lognormal distribution. Hence, although a reduction of the sample
size yields an increase in the length of the tail evenwhendata come
from a pure lognormal distribution, this effect is magnified in our
city data. Such a conclusion is partially tempered by the results of
the GI test, which finds a power-law tail limited to the top 655
observations in the sampled dataset, which is longer than in the
case of census blocks, but still shorter than the one found for city
sizes.

Table 3 suggests that, in the case of cities, the impact of sample
size could be substantial, and could explain a great deal of the
length of the power-law tail found in the data. In this respect,
the debate appears far from being closed, as claimed elsewhere
(Malevergne et al., 2011), and a test on a larger sample of world
cities should be performed.

Similar results are found in the case of city clusters: the
beginning of the Pareto tail is set at ranks 810 (ME), 13 130 (UMPU),
and 2002 (GI). Once again, this evidence suggests that sample size
plays a relevant role in determining the power-law tail found in the
distribution of city size. If possible, this conclusion is even stronger
than before, as now all three tests point in the same direction.

3.2. Simulation experiments

To provide further backing to our results, we run another
sampling exercise. This time, we start from the ME distributions
that best fit the city data, and sample by means of a parametric
bootstrap exercise;we then apply the tests to the resulting samples
with 50000, 100000, and 200000 observations. Table 4 reports
results obtained with 100 replications.13

We first consider a sample of equal size as the actual data
(n = 28 916) in order to check that the estimated ME distribution
approximates them well and does not generate any bias. Indeed,
the outcomeswith the bootstrapped sample are analogous to those
we get with the actual data (see Table 1): the power-law tail is
limited to the largest 500–1000 observations (corresponding to the
top 2.0–3.7% of the distribution) depending on the test and the

12 When applied to census blocks, our tests find a power-law tail limited to the top
0.06% of the distribution. Additional details about these results are available upon
request.
13 Results using city clusters are qualitatively similar, although less clear-cut. This
is due to the fact that the ME distribution does not provide a good fit for the whole
distribution of city clusters (see Fig. 1). Results are available upon requests.
Table 3
Test results on synthetic datasets obtained by random sampling from census blocks
the same number of observations as for cities.

Cities (n = 28 916) City clusters (n = 17 569)
5% 1% 5% 1%

ME 3000 3200 810 970
(10.37) (11.07) (4.61) (5.52)

UMPU 3000 3200 13130 13230
(10.37) (11.07) (74.73) (75.30)

GI 655 885 2002 2322
(2.27) (3.06) (11.40) (13.22)

Rank (percentile) after which the power-law hypothesis is rejected. Boldface
indicates a tail significantly longer than the one obtained simulating from a
lognormal distribution with parameters estimated from the data.

Table 4
Test results obtained by parametric bootstrap from the fitted ME density on city
data, for different sample sizes (n).

n = 28 916 n = 50 000 n = 100 000 n = 200 000
5% 1% 5% 1% 5% 1% 5% 1%

ME 816.5 930 1107.5 1235 1617 1725.5 3059.5 3279.5
(2.82) (3.22) (2.22) (2.47) (1.62) (1.73) (1.53) (1.64)

UMPU 581.5 753.5 784.5 1006.5 1148.5 1419.5 1909.5 2405
(2.01) (2.61) (1.57) (2.01) (1.15) (1.42) (0.95) (1.20)

GI 837.45 1088.6 1138.04 1425.94 1470.31 1794.13 1961.8 2619.51
(2.90) (3.76) (2.28) (2.85) (1.47) (1.79) (0.98) (1.31)

significance level.14 More interestingly, the table shows that, as
expected, the length of the power-law tail decreases substantially
by increasing the sample size.15 Already for n = 50 000we observe
a decline in the share of observations found to follow a power-law
distribution, and the fall increases with the rise in the sample size.
When we apply the tests to a sample of 200000 observations, the
relative length of the power-law tail drops by roughly one half in
the case of theME andUMPU tests, and by two thirds for theGI test.
Correspondingly, the share of the population living in the cities
belonging to the power-law tail according to the GI test decreases
from around 55% to 37%. Similar results are found using theME and
UMPU tests.

4. Discussion and conclusion

Our results cast newdoubts on the existence of a genuine Pareto
distribution of city sizes. Irrespective of the empirical definition of
a city, either as a populated place or as a city cluster, and using
different statistical tests, we confirm that the power-law behavior
is limited to a very small fraction of the largest cities. Hence, a first
strong result is that thewhole city size distribution is surely neither
a Pareto one nor a Zipf one.

All in all, models predicting either a lognormal or a Pareto
distribution for city size do not perform well in fitting the whole
distribution. Sometimes, the latter hypothesis is preferred in the
literature on the ground that the largest cities belonging to the
power-law tail account for the majority of total population. Here,
however, we find that even the power-law behavior of the upper
tail is questionable, since it may well be due to sample size issues
and the associated weaknesses of the testing procedures.

14 To measure the goodness of fit, we count how many times (out of the 100
replications) the rank obtained by each test on the simulated data is larger (smaller)
than the rank obtained by the same test on the actual data. In all cases the numbers
range between 16% and 62%,merely reflecting statistical noise, not a significant bias
in the procedure.
15 To check the significance of the reduction in the length of the tail, we compute
90% confidence intervals for the mean quantile. As the confidence intervals do not
overlap, we can conclude that there is a significant difference between the quantiles
corresponding to increasing sample sizes.
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The argument developed in the paper is threefold. First, test
results on the actual data are rarely different from those obtained
from a lognormal distribution. Second, starting from a distribution
that displays almost no power-law behavior (that of census blocks)
and reducing the sample size to match actual city data, the
available tests find a power-law tail longer than in the real data
themselves. Finally, when increasing the sample size by means of
a parametric bootstrap exercise, the length of the power-law tail
decreases, and the majority of the population is no more living in
the Pareto upper tail of the distribution. This implies that deeper
investigation on larger samples of world cities should further
confine the range of validity of the Pareto behavior.

Overall, based on the best available data and statistical
methods, we conclude that the Pareto distribution should not be
considered a good first-cut approximation of the shape of the
city size distribution. More in general, since Pareto behavior and
lognormal behavior are universal properties of size distributions
(Gabaix, 2009), and the discriminatory power of statistical tests
is limited, theoretical model predictions should be evaluated
on an extended set of empirical regularities specific to city
growth.
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