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We first review the most important “stylized facts” of financial time series, that turn out to be, to a
large extent, universal. We then recall how the multifractal random walk of Bacry, Muzy, and
Delour generalizes the standard model of financial price changes and accounts in an elegant way for
many of their empirical properties. In a second part, we provide empirical evidence for a very subtle
compensation mechanism that underlies the random nature of price changes. This compensation
drives the market close to a critical point, that may explain the sensitivity of financial markets to
small perturbations, and their propensity to enter bubbles and crashes. We argue that the resulting
unpredictability of price changes is very far from the neoclassical view that markets are informa-
tionally efficient. © 2005 American Institute of Physics. #DOI: 10.1063/1.1889265$

It is known since Bachelier (1900) that price changes are
nearly uncorrelated, leading to a random-walk-like be-
havior of prices. However, compared to the simplest
Brownian motion, price statistics reveal a large number
of anomalies, such as fat tails and long memory in the
volatility. Understanding and modelling these statistical
anomalies is of crucial importance both from the point of
view of theoretical economics and of financial engineer-
ing. Tools from physics, in particular from turbulence
theory, seem to be particularly relevant to describe the
self-similar statistics of volatility clustering, in strong
analogy with the statistics of turbulent patches. Trade by
trade analysis, now possible thanks to the availability of
high frequency data, allows one to uncover the intimate
mechanisms of price formation. Quite remarkably, the
unpredictable nature of price changes results from a very
subtle compensation mechanism, between liquidity takers
and liquidity providers, that drives markets close to a
dynamical critical point. This may explain naturally the
sensitivity of financial markets to small perturbations,
the presence of power laws and scaling, and the propen-
sity to enter bubbles and crashes. The mechanism that we
observe is very far from the neoclassical view that mar-
kets are informationally efficient; quite on the contrary,
we believe that markets are by construction prone to sys-
tematic mispricing.

I. INTRODUCTION

Financial time series represent an extremely rich and fas-
cinating source of questions. A quantitative trace of human
activity is recorded and stored, in some cases every second.
Some of these records span two centuries. These time series,
perhaps surprisingly, turn out to reveal a very rich and non-
trivial statistical structure, that is to some degree universal,
across different assets !stocks, commodities, currencies,
rates, etc.", regions !U.S., European, Asian" and epochs. Sta-
tistical models that describe these fluctuations have a long
history, which dates back to Bachelier’s “Brownian walk”
model for speculative prices first published in 1900.1 Bach-

elier’s thesis is the first attempt to describe the endless fluc-
tuations of stock markets in a scientific way. Many concepts
of modern theoretical finance were largely anticipated by
Bachelier, as was Einstein’s celebrated theory of Brownian
motion, that only came five years after Bachelier’s remark-
able insights.

Much more sophisticated models are however needed to
describe faithfully the empirical data. For example, the tails
of the distribution of price changes are, as is now well
known, much fatter than Gaussian. Many recent empirical
studies have shown that financial data share many statistical
properties with turbulent flows, where the velocity reveals
strong, intermittent fluctuations, much as the volatility of fi-
nancial markets. In spite of its shortcomings, the model of
Bachelier gets one important fact right: price changes are to
a first approximation uncorrelated, which makes the predic-
tion of stock markets difficult. However, the mechanism that
converts a rather predictable human behavior into a sequence
of !nearly" unpredictable price changes, has not been inves-
tigated in details until recently. The availability of high-
frequency, trade by trade data, and the shift of paradigm from
efficient markets by fiat to agent based, bounded rationality
models, have motivated a series of exciting studies, that most
probably anticipate an important revolution of ideas in eco-
nomics. The aim of this paper is !a" to review the basic
properties of financial time series !Sec. II", !b" to insist on
the need to construct phenomenological models that go much
beyond the Bachelier–Einstein random walk !Sec. III", and
!c" to provide evidence for a very subtle compensation
mechanism that underlies the random nature of price changes
!Sec. IV". This compensation drives the market close to a
critical point, a possibility conjectured in different contexts
to explain the presence of power laws and scale invariance in
the statistics of financial time series. The proximity of a criti-
cal point might also explain the enhanced sensitivity of fi-
nancial markets to small perturbations, and its propensity to
enter bubbles and crashes. We argue that the resulting unpre-
dictability of price changes is very far from the neoclassical
view that markets are informationally efficient.
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II. UNIVERSAL FEATURES OF RETURN TIME SERIES

The modeling of random fluctuations of asset prices is of
primary importance in finance, with many applications to
risk control, derivative pricing, and systematic trading. Dur-
ing the last decade, the availability of huge data sets of high
frequency time series has promoted intensive statistical stud-
ies that invalidate the classic and popular “Brownian walk”
model, and to uncover many new and robust features. In this
section, we briefly review the main statistical properties of
asset prices that can be considered as universal, in the sense
that they are common across most markets and epochs.2–4

Let us first define some basic notions. If one denotes p!t"
the price of an asset at time t, the return r!!t", at time t and
scale ! is simply the relative variation of the price from t to
t+!, r!!t"= #p!t+!"−p!t"$ /p!t". If ! is small enough, one has
approximately r!!t"% ln p!t+!"− ln p!t".

We show in Fig. 1 the level of the Dow-Jones index over
the last century. One can see that price fluctuations organize

around a mean !super-"exponential trend. In Fig. 1!b", we
have plotted the logarithmic price time series x!t"=ln p!t", in
that case, the fluctuations are seen to be stationary around a
mean return where the drift m is around 5% per year, but has
slowly increased during the whole century. Note that the cur-
rent level of the Dow-Jones !after the Internet crash" is, per-
haps anecdotally, very close to its historical extrapolation.

The simplest universal feature of financial time series,
uncovered by Bachelier in 1900, is the linear growth of the
variance of the return fluctuations with time scale. More pre-
cisely, if m! is the mean return on scale !, the following
property holds, to a very good approximation:

&#r!!t" − m!$2'e % "2! , !1"

where &¯'e denotes the sample average. This behavior typi-
cally holds for ! between a few minutes to a few years, and
is equivalent to the statement that relative price changes are,
in a first approximation, uncorrelated. Very long time scales
!beyond a few years" are difficult to investigate, in particular
because the average drift m becomes itself time dependent,
but there are systematic studies suggesting some degree of
mean reversion on these long time scales5 !see the conclu-
sion for a discussion of this particular point". The absence of
linear correlations !Bachelier’s first law" in financial time
series is often related to the so-called market efficiency ac-
cording to which one cannot make anomalous profits by pre-
dicting future price values.

The root mean square per unit time, " in the above equa-
tion, is called the volatility. Volatility is the simplest quantity
that measures the amplitude of price fluctuations and there-
fore quantifies the risk associated with some given asset. A
linear growth of the variance of the fluctuations with time is
typical of the Brownian motion for the log-price x, and, as
mentioned above, was proposed as a model of market fluc-
tuations by Bachelier. !In Bachelier’s model, absolute price
changes, rather than relative returns, were considered; there
are however only minor differences between the two at short
time scales, !# 1 month, see, e.g., the detailed discussion of
that point in Ref. 4." In this model, that became the standard
of modern finance after the work of Black and Scholes, re-
turns are not only uncorrelated but in fact independent and
identical Gaussian random variables. However, this model
completely fails to capture many other statistical features of
financial markets that even a rough analysis of empirical data
allows one to identify, at least qualitatively.

!i" The distribution of returns is in fact strongly non-
Gaussian and its shape continuously depends on the
return period !: for ! large enough !around few
months", one observes quasi-Gaussian distributions
while for small ! values, the return distributions have
fat tails !see Fig.3". Several studies actually suggest
that these distributions can be characterized by Pareto
!power-law" tails (r!(−1−$ with an exponent $ close to
3 even for liquid markets such as the US stock index,
major currencies, or interest rates.6,7,2,8 Emerging
markets have even more extreme tails, with an expo-
nent $ that can be less than 2—in which case the
volatility is formally infinite.

FIG. 1. !a" Evolution of the Dow-Jones index price over the last century
!1900–2003". !b" Same data in a linear-log !base 10" representation. The full
line is a parabolic fit, which shows that the average annual return has actu-
ally increased with time.
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!ii" Another striking feature is the intermittent and corre-
lated nature of return amplitudes. At some given time
period !, a proxy for the local volatility can be defined
in various ways, the simplest one being the absolute
return (r!!t"(. The volatility signal is characterized by
self-similar outbursts !see Fig. 2" that are reminiscent
of intermittent variations of dissipation rate in fully
developed turbulence.9 The occurrence of such bursts
are strongly correlated and high volatility periods tend
to persist in time. This feature is known as volatility
clustering.10–12,4 This effect can be analyzed more
quantitatively, the temporal correlation function of the
!e.g., daily" volatility can be fitted by an inverse
power %−& of the lag %, with a rather small exponent
& in the range 0.1–0.3.11,13–15

!iii" One observes a nontrivial “multifractal”
scaling,16,17,15,18 in the sense that higher moments of
price changes scale anomalously with time,

Mq!!" = &(r!!t" − m!(q'e % Aq!'q, !2"

with 'q#q /2, as one would have expected for a
Brownian random walk. As will be discussed more
precisely below, this behavior is intimately related to
the intermittent nature of the volatility process.

!iv" Past price changes and future volatilities are nega-
tively correlated—this is the so-called leverage effect,
which reflects the fact that markets become more ac-
tive after a price drop, and tend to calm down when
the price rises. This correlation is most visible on
stock indices.19 This leverage effect leads to an
anomalous negative skew in the distribution of price
changes.4

The most important message of these empirical studies is
that price changes behave very differently from the simple
geometric Brownian motion description. Extreme events are
much more probable, and interesting nonlinear correlations
!volatility–volatility and price–volatility" are observed.
These “statistical anomalies” are very important for a reliable
estimation of financial risk and for quantitative option pric-
ing and hedging !see, e.g., Ref. 4", for which one often re-
quires an accurate model that captures the statistics of returns
on different time horizons !. It is rather striking that empiri-
cal properties !i"–!iv" are, to some extent, also observed on
experimental velocity data in fully developed turbulent flows
!see Fig. 3". The framework of scaling theory and multifrac-
tal analysis, initially proposed to characterize turbulent
signals,9 may therefore be well suited to further characterize
statistical properties of price changes on different time
periods.16,15,17,18 In particular, a beautiful multifractal ran-
dom walk model, that we review next, was constructed by
Bacry, Muzy, and Delour15,20 to account for the statistical
anomalies of price changes !see also Refs. 21 and 22 for
alternative formulations".

III. THE MULTIFRACTAL RANDOM WALK

Mandelbrot cascades23 are considered to be the paradigm
of multifractal processes and have been extensively used for
modeling scale-invariance properties in many fields, in par-
ticular statistical finance.17,18 However, as discussed in Refs.
15 and 20, this class of model has several drawbacks; in
particular they violate causality. In that respect, it is difficult
to see how such models could arise from a realistic !agent
based" description of financial markets.

Recently, Bacry, Muzy, and Delour !BMD"15,20 intro-
duced a model that does not possess the limitations of Man-
delbrot’s cascades while capturing their essential ingredient,
and generalizes the usual geometric random walk model of
prices in a natural way.

Let us first show, from a general point of view, how
volatility fluctuations and correlations can induce multiscal-
ing. We will then discuss the BMD model where multifrac-
tality is indeed exact. As we mentioned in Sec. II, the em-

FIG. 2. !a" Absolute value of the daily returns r! for the Dow-Jones index
over a century !1900–2000", and zoom on different scales !1990–2000, left
inset and 1995, right inset". Note that the volatility can remain high for a
few years !like in the early 1930s" or for a few days. This volatility cluster-
ing can also be observed on high frequency !intraday" data. !b" Same plot
for a Brownian random walk, which shows a featureless pattern in this case.
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pirical volatility correlation function decays slowly, as a
power law. More precisely, if the correlation function of the
square returns !which serves as a proxy for the true volatil-
ity" decays as a function of the lag % as %−& with &# 1, it is
quite easy to obtain explicitly the fourth moment of the price
return for large !,4

M4!!" ) "4!2!1 + A!−&" , !3"

where A measures the amplitude of the long range part of the
square volatility correlation. The fourth moment of the price
difference therefore behaves as the sum of two power laws,
not as a unique power law as for a multifractal process, for
which by definition Mq!!" * !'q exactly. However, when & is
small and in a restricted range of !, this sum of two power
laws is indistinguishable from a unique power law with an
effective exponent '4,eff somewhere in-between 2 and 2−&;
therefore '4,eff# 2'2=2.

In the BMD model, the key ingredient is the volatility
correlation shape that mimics that arising in cascade models.
Indeed, as remarked in Ref. 24, the treelike structure under-
lying a Mandelbrot cascade, implies that the volatility loga-
rithm covariance decreases very slowly, as a logarithm func-
tion, i.e.,

&ln#"!!t"$ln#"!!t + %"$' − &ln#"!!t"$'2 = C0 − (2 ln!% + !" .
!4"

The BMD model involves Eq. !4" within the continuous
time limit of a discrete stochastic volatility model. One first
discretizes time in units of an elementary time step !0 and set
t + i!0. The volatility "i at “time” i is a log-normal random
variable such that "i="0 exp )i, where the Gaussian process
)i has the same covariance as in Eq. !4",

&)i' = − (2 ln, T
!0
- + $0,

&)i) j' − $0
2 = (2 ln, T

!0
- − (2 ln!(i − j( + 1" , !5"

for (i− j(!0* T. Here T is a large cutoff time scale beyond
which the volatility correlation vanishes. In the above equa-
tion, the brackets stands for the mathematical expectation.
The choice of the mean value $0 is such that &"2'="0

2. As
before, the parameter (2 measures the intensity of volatility
fluctuations !called in the finance jargon the “vol of the
vol”", and corresponds to the intermittency parameter.

Now, the price returns are constructed as

x#!i + 1"!0$ − x!i!0" = r!0
!i" + "i+i = "0e)i+i, !6"

where the +i are a set of independent, identically distributed
random variables of zero mean and variance equal to !0. One
also assumes that the +i and the )i are independent !but see
Ref. 25 for a generalization that accounts for the leverage
effect". In original BMD model, +i’s are Gaussian, and the
continuous time limit !0=dt→0 is taken. Since x=ln p,
where p is the price, the exponential of a sample path of the
BMD model is plotted in Fig. 4!a", which can be compared
to the real price charts of Fig. 1!a".

The multifractal scaling properties of this model can be
computed explicitly. Moreover, using the properties of mul-
tivariate Gaussian variables, one can get closed expressions
for all even moments Mq!!" !q=2k". In the case q=2 one
trivially finds

M2!! = !!0" = "0
2!!0 + "0

2! , !7"

independently of (2. For q#2, one must distinguish between
the cases q(2# 1 and q(2, 1. For q(2# 1, the correspond-
ing moments are finite, and one finds, in the scaling region
!0- !* T, a true multifractal behavior,15,20

Mq!!" = Aq!'q, !8"

where 'q=q!1/2+(2"−q2(2 /2, and Aq a prefactor that can
be exactly calculated. For q(2, 1, on the other hand, the
moments diverge, suggesting that the unconditional distribu-
tion of x!t+!"−x!t" has power-law tails with an exponent
$=1/(2 !possibly multiplied by some slow function, but see
Ref. 26". These multifractal scaling properties of BMD pro-
cesses are numerically checked in Figs. 4!b" and 4!c" where
one recovers the same features as for the S&P 500 index.
Since volatility correlations are absent for !. T, the scaling
becomes that of a standard random walk, for which 'q
=q /2. The corresponding distribution of returns thus be-
comes progressively Gaussian. An illustration of the progres-
sive deformation of the distributions as ! increases, in the
BMD model is reported in Fig. 4!d". This figure can be di-
rectly compared to Fig. 3.

To summarize, the BMD process is attractive for model-
ing financial time series since it reproduces in a parsimoni-
ous way many of the stylized facts reviewed in Sec. II and
has a rich mathematical structure, in particular exact multi-
fractal properties. Moreover, this model has stationary incre-

FIG. 3. Continuous deformation of
turbulent velocity increments and fi-
nancial returns distributions from
small !top" to large !bottom" scales. !a"
Standardized probability distribution
functions of spatial velocity incre-
ments at different length scales in a
high Reynolds number wind tunnel
turbulence experiment. The distribu-
tions are plotted in logarithmic scale
so that a parabola corresponds to a
Gaussian distribution. !b" Standard-
ized pdf of S&P 500 index returns at
different time scales from few minutes
to one month. From Ref. 15.
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ments, and can be formulated in a purely causal way, the log
volatility )i can be expressed as a sum over past random
shocks, with a memory kernel that decays as the inverse
square root of the time lag.27 It would be interesting to give
a precise economic justification to this causal construction.

Let us end this section with several remarks.

!i" Direct studies of the empirical distribution of the
volatility is indeed compatible with the assumption of
log-normality, although an inverse gamma distribu-
tion also fits the data very well.28,4

!ii" One of the predictions of the BMD model is the
equality between the intermittency coefficient esti-
mated from the curvature of the 'q function and the
slope of the log-volatility covariance logarithmic de-
crease. The direct study of various empirical log-
volatility correlation functions show that they can in-
deed be fitted by a logarithm of the time lag, with a
slope that is roughly equal to the corresponding inter-
mittency coefficient (2. These empirical studies also
suggest that the integral time T is a few years.

!iii" On the other hand, the empirical tail of the distribu-
tion of price increments is described by a power law
with an exponent $ in the range 3–5,6,7,2 much
smaller than the value $=1/(2 * 10–100 predicted
by the BMD model. However, this issue is extremely
subtle, as the model exhibits quasinonergodic
properties,26 and it might well be that the apparent
exponent produced by the model is in the correct
range.

!iv" One can extend the above symmetric multifractal

model to account for a skewed distribution of returns
and the return-volatility correlations mentioned in
Sec. II !see also Ref. 19". In the BMD model, one has
by symmetry that all odd moments of the process van-
ish. A simple possibility, recently investigated in Ref.
25, is to correlate negatively the variable )i with past
values of the variables + j, j# i, through a kernel that
decays as a power law. In this case, the multifractality
properties of the model are preserved, but the expres-
sion for 'q is different for q even and for q odd.

!v" Finally, even if the BMD model can be formulated in
a purely causal way, it is in fact statistically invariant
under time reversal symmetry !TRS", in stark contrast
with Zumbach’s mug-shots of empirical data,29 that
reveals significant violations of TRS. The construc-
tion of a model displaying multifractal features com-
patible with the absence of TRS is still a theoretical
challenge !see Refs. 29 and 30 for some recent steps
in that direction".

IV. THE SUBTLE NATURE OF MARKET EFFICIENCY

We now want to come back to a simpler question, which
may shed light to the volatility puzzle discussed above: why
are price changes nearly uncorrelated, as postulated by Bach-
elier? The efficient market hypothesis !EMH" posits that all
available information is included in prices, which emerge at
all times from the consensus between fully rational agents,
that would otherwise immediately arbitrage away any devia-
tion from the fair price.31,32 Price changes can then only be

FIG. 4. Multifractal properties of
BMD model. !a" Exponential of a
BMD process realization, with param-
eters calibrated on the S&P 500. !b"
Multifractal scaling of BMD return
moments for q=1,2 ,3 ,4 ,5. !c" Esti-
mated 'q spectrum !!" compared with
the log-normal analytical expression
!solid line". !d" Evolution of the return
probability distributions across scales,
from nearly Gaussian at coarse scale
!bottom" to fat tailed law at small
scales !top". !e" Log-volatility covari-
ance as a function of the logarithm of
the lag %. From Ref. 15.

026104-5 Subtle nature of financial random walks Chaos 15, 026104 !2005"



the result of unanticipated news and are by definition totally
unpredictable. However, as pointed out by Shiller, the ob-
served volatility of markets is far too high to be compatible
with the idea of fully rational pricing.33 More fundamentally,
the assumption of rational, perfectly informed agents seems
intuitively much too strong, and has been criticized by
many.34–36 There is a model at the other extreme of the spec-
trum where prices also follow a pure random walk, but for a
totally different reason.37–39 Assume that agents, instead of
being fully rational, have “zero intelligence” and randomly
buy or to sell. Suppose also that their action is interpreted by
all the others agents as potentially containing some informa-
tion. Then, the mere fact of buying !or selling" typically
leads to a change of the ask a!t" #or bid b!t"$ price and hence
of a change of the midpoint m!t"= #a!t"+b!t"$ /2. In the ab-
sence of reliable information about the true price, the new
midpoint is immediately adopted by all other market partici-
pants as the new reference price around which next orders
are launched. In this case, the midpoint will also follow a
random walk !at least for sufficiently large times", even if
trades are not motivated by any rational decision and devoid
of meaningful information. Of course, reality should lie
somewhere in the middle, clearly, the price cannot wander
arbitrarily far from a reasonable fundamental value, and
trades cannot all be random. Here, we want to argue, based
on a series of detailed empirical results obtained on trade by
trade data, that the random walk nature of prices is in fact
highly nontrivial and results from a fine-tuned competition
between two populations of traders, liquidity providers !or
market makers", and liquidity takers. Liquidity providers act
such as to create antipersistence !or mean reversion" in price
changes that would lead to a subdiffusive behavior of the
price, whereas liquidity takers’ action leads to long range
persistence and superdiffusive behavior. Both effects very
precisely compensate and lead to an overall diffusive behav-
ior, at least to a first approximation, such that !statistical"
arbitrage opportunities are absent, as expected. We argue that
in a very precise sense, the market is operating at a critical
point;40,41 the dynamical compensation of two conflicting
tendencies is similar to other complex systems such as the
heart,42 driven by two antagonist systems !sympathetic and
parasympathetic", or certain human tasks, such as balancing
of a long stick.43 The latter example illustrates very clearly
the idea of dynamical equilibrium, and shows how any small
deviation from perfect balance may lead to strong instabili-
ties. This near instability may well be at the origin of the fat
tails and volatility clustering observed in financial data men-
tioned in Sec. II above. Note that these two features are
indeed present in the balancing stick time series studied in
Ref. 43.

A. The market response function and trade
correlations

The last quote before a given trade allows one to define
the sign of each trade, if the traded price is above the last
midpoint m= !a+b" /2, this means that the trade was trig-
gered by a market order to buy, and we will assign to that
trade a variable += +1. If, one the other hand the traded price
is below the last midpoint m= !a+b" /2, then +=−1.

The simplest quantity to study is the average mean
square fluctuation of the price between !trade" time n and
n+!,

D!!" = &!pn+! − pn"2' . !9"

As emphasized above, in the absence of any linear-
correlations between successive price changes, D!!" has a
strictly diffusive behavior, D!!"=D!. On liquid stocks one
finds a remarkably linear behavior for D!!" !see Fig. 5", even
for small !. The absence of linear correlations in price
changes is compatible with the idea that !statistical" arbitrage
opportunities are absent, even for high frequency trading.

In order to better understand the impact of trading on
price changes, one can study the following response function
R!!", defined as

R!!" = &!pn+! − pn" · +n' , !10"

where +n is the sign of the nth trade. The quantity R!!"
measures how much, on average, the price moves up condi-
tioned to a buy order at time 0 !or a sell order moves the
price down" a time ! later. We show in Fig. 5 the temporal
structure of R!!" for France Telecom, for different periods.
Note that R!!" increases by a factor * 2 between !=1 and
!=!*)1000, before decreasing back. Including overnights
allow one to probe larger values of ! and confirm that R!!"
decreases, and even becomes negative beyond !%5000.
Similar results have been obtained for many different stocks
as well. However, in some cases the maximum is not ob-
served and rather R!!" keeps increasing mildly.40,41 The
model discussed below does in fact allow for monotonous
response functions.

All the above results are compatible with a zero intelli-
gence picture of financial markets, where each trade is ran-
dom in sign and shifts the price permanently, because all
other participants update their evaluation of the stock price

FIG. 5. Average response function R!!" for FT, during three different pe-
riods !black symbols". We have given error bars for the 2002 data. For the
2001 data, the y axis has been rescaled to best collapse onto the 2002 data.
Using the same rescaling factor, we have also shown the data for
#D!!" /!$1/2 !white symbols, same coding", which shows that !i" the process
is indeed nearly diffusive and !ii" D * R2, indicating a sort of fluctuation-
response relation !Ref. 40".
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as a function of the last trade. This model of a totally random
model of stock market is however qualitatively incorrect for
the following reason. Although, as mentioned above, the sta-
tistics of price changes reveals very little temporal correla-
tions, the correlation function of the sign +n of the trades,
surprisingly, reveals very slowly decaying correlations as a
function of trade time, as discovered in Refs. 40, 44, and 41.
More precisely, one can consider the following correlation
function:

C0!!" = &+n+!+n' − &+n'2. !11"

If trades were random, one should observe that C0!!" decays
to zero beyond a few trades. Surprisingly, this is not what
happens, on the contrary, C0!!" is strong and decays very
slowly toward zero, as an inverse power-law of ! !see Refs.
40, 44, and 41",

C0!!" %
C0
!/ !! 0 1" . !12"

The value of / seems to be somewhat stock dependent, but is
consistently found to be smaller than unity, leading to a non-
integrable correlation function. This in general leads to su-
perdiffusion, and is the main puzzle to elucidate: how can
one reconcile the strong, slowly decaying correlations in the
sign of the trades with the nearly diffusive nature of the price
fluctuations, and the nearly structureless response function?

B. A micromodel of price fluctuations

In order to understand the above results, we will postu-
late the following trade superposition model, where the price
at time n is written as a sum over all past trades, of the
impact of one given trade propagated up to time n,

pn = .
n!# n

G0!n − n!"+n!f!Vn!" + .
n!# n

1n!, !13"

where Vn! is the volume of the n!th trade, f a certain concave
function,45–47,40 and G0!." is the bare impact function !or
propagator" of a single trade. The 1n are also random vari-
ables, assumed to be independent from the +n and model all
sources of price changes not described by the direct impact
of the trades, the bid-ask can change as the result of some
news, or of some order flow, in the absence of any trades.

The bare impact function G0!!" represents by definition
the average impact of a single trade after ! trades. In order to
understand the temporal structure of G0!!", note that a single
trade first impacts the midpoint by changing the bid !or the
ask". But then the subsequent limit order flow due to that
particular trade might either center on average around the
new midpoint #in which case G0!!" would be constant$, or,
as we will argue below, tend to mean revert toward the pre-
vious midpoint #in which case G0!!" decays with !$. If the
signs +n were independent random variables, both the re-
sponse function and the diffusion would be very easy to
compute. For example, one would have

R!!" = &f!V"'G0!!" , !14"

i.e., the observed impact function and the bare response
function would be proportional. This case !no correlations

between the +’s and a constant bare impact function" corre-
sponds to the simplest possible zero intelligence market,
where agents are memoryless, and the price is obviously a
random walk. However, we have seen that in fact the +’s
have long range correlations. In this case, the average re-
sponse function reads

R!!" = &ln V'G0!!" + .
0# n# !

G0!! − n"C1!n"

+ .
n, 0

#G0!! + n" − G0!n"$C1!n" , !15"

where

C1!!" = &+n+!+nf!Vn"'c. !16"

If the impact G0 is constant and C1!n" decays as a power law
with an exponent /# 1, then the average impact R!!" should
grow like !1−/, and therefore be amplified by a very large
factor as ! increases, at variance with empirical data. Simi-
larly, diffusion should be anomalously enhanced, D!!"
* !2−/, instead of Bachelier’s first law D!!" * !. The only
way to resolve this paradox is to assume that G0!!" itself
should decay with time, in such a way to offset the amplifi-
cation effect due to the trade correlations. If we make the
ansatz that the bare impact function G0!!" also decays as a
power law for large !, as !−2, then one can estimate D!!"
and R in the large ! limit. When /# 1, one finds D
* !2−22−/, provided 2# 1. Therefore, the condition that the
fluctuations are diffusive at long times imposes a relation
between the decay of the sign autocorrelation / and the de-
cay of the bare impact function 2: 2=2c= !1−/" /2. For 2
, 2c, the price is subdiffusive, which means that price
changes show antipersistence; while for 2# 2c, the price is
superdiffusive, i.e., price changes are persistent.

For the response function, one finds for large !,

R!!" 3
4!1 − /"

4!2"4!2 − 2 − /"

5 , 6

sin 62
−

6

sin 6!1 − 2 − /"-!1−2−/. !17"

Therefore, only when 2=2c, is the prefactor exactly zero,
and leads to the possibility of a nearly constant impact func-
tion. Since the dominant term is zero for the critical case 2
=2c, and since we are interested in the whole function R!!"
!including the small ! regime", one can compute R!!" nu-
merically, by performing the discrete sum Eq. !15" exactly,
and fit to the empirical responseR. The value of 2 is a fitting
parameters, and we show in Fig. 6 the response function
computed for different values of 2 in the vicinity of 2c
=0.38. The results are compared with the empirical data for
FT, showing that one can indeed satisfactorily reproduce,
when 2)2c, a weakly increasing impact function that
reaches a maximum and then decays. One also sees, from
Fig. 6, that the relation between 2 and / must be quite ac-
curately satisfied, otherwise the response function shows a
distinct upward trend !for 2# 2c" or a downward trend !2
, 2c". Both shapes are actually observed on other stocks, see
Ref. 41.
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C. Discussion: Critical balance of market orders vs
limit orders

Although trading occurs for a large variety of reasons, it
is useful to recognize that traders organize in two broad
categories:

!i" One is that of liquidity takers, that trigger trades by
putting in market orders. The motivation for this cat-
egory of traders might be to take advantage of some
information, and make a profit from correctly antici-
pating future price changes. Information can in fact be
of very different nature, fundamental !firm based",
macroeconomical, political, statistical !based on regu-
larities of price patterns", etc. Unfortunately, informa-
tion is often hard to interpret correctly—except of
course for insiders—and it is probable that many of
these information driven trades are misguided !on this
point, see Refs. 48 and 49 and references therein". For
example, systematic hedge funds which take decisions
based on statistical pattern recognition have a typical
success rate of only 52%. There is no compelling rea-
son to believe that the intuition of traders in markets
room fares much better than that. Since market orders
are immediately executed, many impatient investors,
who want to liquidate their position, or hedge, etc.,
might be tempted to place market orders, even at the
expense of the bid-ask spread s!t"=a!t"−b!t".

!ii" The other category is that of liquidity providers !or
market makers, although on electronic markets all
participants can act as liquidity providers by putting
in limit orders", who offer to buy or to sell but avoid
taking any bare position on the market. Their profit
comes from the bid-ask spread s: the sell price is al-
ways slightly larger than the buy price, so that each
round turn operation leads to a profit equal to the
spread s, at least if the midpoint has not changed in
the mean time !see below".

This is where the game becomes interesting. Assume
that a liquidity taker wants to buy, so that an increased num-
ber of buy orders arrive on the market. The liquidity provid-
ers are tempted to increase the offer !or ask" price a because
the buyer might be informed and really know that the current
price is too low and that it will most probably increase in the
near future. Should this happen, the liquidity provider, who
has to close his position later, might have to buy back at a
much higher price and experience a loss. In order not to
trigger a sudden increase of a that would make their trade
costly, liquidity takers obviously need to put on not too large
orders. This is the rationale for dividing one’s order in small
chunks and disperse these as much as possible over time so
as not to reveal their intentions. Doing so liquidity takers
necessarily create some temporal correlations in the sign of
the trades. Since these traders probably have a somewhat
broad spectrum of volumes to trade,50 and therefore of trad-
ing horizons !from a few minutes to several weeks", this can
easily explain the slow, power-law decay of the sign corre-
lation function C0!!" reported above.

Now, if the market orders in fact do not contain useful
information but are the result of hedging, noise trading, mis-
guided interpretations, errors, etc., then the price should not
move up on the long run, and should eventually mean revert
to its previous value. Liquidity providers are obviously the
active force behind this mean reversion, again because clos-
ing their position will be costly if the price has moved up too
far from the initial price. However, this mean reversion can-
not take place too quickly, again because a really informed
trader would then be able to buy a large volume at a modest
price. Hence, this mean reversion must be slow enough.

These are the basic ingredients ruling the game between
liquidity providers and liquidity takers. The subtle balance
between the positive correlation in the trades !measured by
/" and the liquidity molasses induced by liquidity providers
!measured by 2" is a self-organized dynamical equilibrium,
if the liquidity providers are too slow to revert the price #2
# !1−/" /2$, then the price is superdiffusive and liquidity
providers lose money. If they are too fast #2# !1−/" /2$, the
residual anticorrelations can be used by liquidity takers to
buy larger quantities of stocks at a low price in a given time
interval, which is an incentive to speed up the trading and
increase /. A dynamical equilibrium where 2)!1−/" /2
therefore establishes itself spontaneously, with clear eco-
nomic forces driving the system back towards this equilib-
rium see Fig. 7". Interestingly, fluctuations around this equi-
librium leads to fluctuations of the local volatility, since
persistent patches correspond to high local volatility and
anti-persistent patches to low local volatility. The extreme
crash situations are well known to be liquidity crisis, where
the liquidity molasses effect disappears temporarily, destabi-
lizing the market !on that point, see the detailed recent study
of Refs. 51 and 52".

To summarize, liquidity takers must dilute their orders
and create long range correlations in the trade signs, whereas
liquidity providers must correctly handle the fact that liquid-
ity takers might either possess useful information !a rare situ-
ation, but that can be very costly since the price can jump as
a result of some significant news", or might not be informed

FIG. 6. Theoretical impact function R!!", from Eq. !15", and for different
values of 2 close to 2c=0.38. The shape of the empirical response function
can be quite accurately reproduced using 2=0.42. Note that for 2, 2c, the
response function actually becomes negative at long times, as indeed ob-
served empirically for !, 5000.
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at all and trade randomly. By controlling the order flow such
as to slowly mean reverting the price, liquidity providers
minimize the probability that they either sell too low, or have
to buy back too high. The delicate balance between these
conflicting tendencies conspire to put the market at the bor-
der between persistence !if mean reversion is too weak, i.e.,
2# 2c" or antipersistence !if mean reversion is too strong,
i.e., 2, 2c", and eliminate arbitrage opportunities. Therefore,
the mere fact of trading such as to minimize impact for li-
quidity takers, and to optimize gains for liquidity providers,
does lead to a random walk dynamics of the price, even in
the absence of any real information.

V. CONCLUSION

The delicate competition between liquidity takers and
liquidity providers is at the heart of Bachelier’s first law, i.e.,
that price changes are nearly uncorrelated. The resulting ab-
sence of linear correlations in price changes, and therefore of
arbitrage opportunities is often postulated a priori in the eco-
nomics literature, but the details of the mechanism that re-
moves these arbitrage opportunities are left rather obscure.
The main message of our work is that the random walk na-
ture of price changes on short time scales may not be due to
the unpredictable nature of incoming news, but appears as a
dynamical consequence of the competition between antago-
nist market forces. In fact, the role of real !and correctly
interpreted" information appears to be rather thin, the fact
that the intraday volatility of a stock is nearly equal to its
long time value suggests that the volatility is mostly due to
the trading activity itself, which is dominated by noise
trades. This result is most probably one of the mechanism
needed to explain the excess volatility puzzle first raised by
Shiller,33 and the anomalous, long ranged dynamics of the
volatility leading to the multifractal properties reviewed in
Secs. II and III.

The conclusion that price changes are to a large extent
induced by the trading activity itself seems to imply that the
price random walk will, on the long run, wander arbitrarily
far from the fundamental price, which would be absurd. But
even if one assumes that the fundamental price is indepen-
dent of time, a typical daily 3% noise trading volatility
would lead to a significant !say a factor 2" difference be-
tween the traded price and the fundamental price only after a
few years.53 Since the fundamental price of a company is
probably difficult to determine better than within a factor 2,
say !see, e.g., Refs. 35 and 54", one only expects fundamen-
tal effects to limit the volatility on very long time scales as
indeed suggested by the empirical results of de Bondt and
Thaler,5 but that these are probably negligible on the short
!intraday" time scales of interest in most statistical analysis
of financial markets.

From a more general standpoint, the finding that the ab-
sence of arbitrage opportunities results from a critical bal-
ance between antagonist effects is quite interesting. It might
justify several claims made in the !econo-"physics literature
that the anomalies in price statistics !fat tails in returns de-
scribed by power laws, long range self-similar volatility cor-
relations, the long ranged correlations in signs reported here,
and many others" are due to the presence of a critical point in
the vicinity of which the market operates !see, e.g., Ref. 55,
and in the context of financial markets.56,57". If a fine-tuned
balance between two competing effects is needed to ensure
absence of arbitrage opportunities, one should expect that
fluctuations are crucial, since a local unbalance between the
competing forces can lead to an instability. In this respect,
the analogy with the balancing of a long stick is quite
enticing.43 In more financial terms, the breakdown of the
conditions for this dynamical equilibrium is, for example, a
liquidity crisis, a sudden cooperativity of market orders, that
lead to an increase of the trade sign correlation function, can
out-weight the liquidity providers stabilizing !mean-
reverting" role, and lead to crashes. This suggests that one
should be able to write a mathematical model, inspired by
our results, to describe this on–off intermittency scenario,
advocated !although in a different context" in Refs. 43, 58,
and 59.
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