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This review covers recent results concerning the estimation of large covariance matrices
using tools from Random Matrix Theory (RMT). We introduce several RMT methods
and analytical techniques, such as the Replica formalism and Free Probability, with an
emphasis on the Marčenko–Pastur equation that provides information on the resolvent
of multiplicatively corrupted noisy matrices. Special care is devoted to the statistics of the
eigenvectors of the empirical correlation matrix, which turn out to be crucial for many
applications. We show in particular how these results can be used to build consistent
‘‘Rotationally Invariant’’ estimators (RIE) for large correlation matrices when there is no
prior on the structure of the underlying process. The last part of this review is dedicated
to some real-world applications within financial markets as a case in point. We establish
empirically the efficacy of the RIE framework, which is found to be superior in this case
to all previously proposed methods. The case of additively (rather than multiplicatively)
corrupted noisy matrices is also dealt with in a special Appendix. Several open problems
and interesting technical developments are discussed throughout the paper.
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1. Introduction

1.1. Motivations

In the present era of ‘‘Big Data’’, new statistical methods are needed to decipher large dimensional datasets that are
now routinely generated in almost all fields—physics, image analysis, genomics, epidemiology, engineering, economics and
finance, to quote only a few. It is very natural to try to identify common causes (or factors) that explain the joint dynamics
of N quantities. These quantities might be daily returns of the different stocks of the S&P 500, temperature variations in
different locations around the planet, velocities of individual grains in a packed granular medium, or different biological
indicators (blood pressure, cholesterol, etc.) within a population, etc. The simplest mathematical object that quantifies the
similarities between these observables is an N × N correlation matrix C. Its eigenvalues and eigenvectors can then be used
to characterize the most important common dynamical ‘‘modes’’, i.e. linear combinations of the original variables with the
largest variance. This is the well known ‘‘Principal Component Analysis’’ (or PCA) method. More formally, let us denote by
y ∈ RN the set of demeaned and standardized1 variables which are thought to display some degree of interdependence.
Then, one possible way to quantify the underlying interaction network between these variables is through the standard,
Pearson correlations:

Cij = E

yiyj

, i, j ∈ [[1,N]]. (1.1)

We will refer to the matrix C as the population correlation matrix throughout the following.
Themajor concern in practice is that the expectation value in (1.1) is rarely computable precisely because the underlying

distribution of the vector y is unknown and is what one is struggling to determine. Empirically, one tries to infer the
matrix C by collecting a large number T of realizations of these N variables that defines the input sample data matrix
Y = (y1, y2, . . . , yT ) ∈ RN×T . Then, in the case of a sufficiently large number of realizations T , one tempting solution
to estimate C is to compute that sample correlation matrix estimator E, defined as:

Eij :=
1
T

T
t=1

Yit Yjt ≡
1
T


YY∗


ij , (1.2)

where Yit is the realization of the ith observable (i = 1, . . . ,N) at ‘‘time’’ t (t = 1, . . . , T ) that will be assumed in the
following to be demeaned and standardized (see previous footnote).

1 This apparently innocuous assumption will be discussed in Section 3.
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Indeed, in the case where N ≪ T , it is well known using result of classical multivariate statistics that E converges
(almost surely) to C [1]. However, when N is large, the simultaneous estimation of all N(N − 1)/2 the elements of C – or in
fact only of its N eigenvalues – becomes problematic when the total number T of observations is not very large compared
to N itself. In the example of stock returns, T is the total number of trading days in the sampled data; but in the biological
example, T would be the size of the population sample, etc. Hence, in themodern framework of high-dimensional statistics,
the empirical correlation matrix E (i.e. computed on a given realization) must be carefully distinguished from the ‘‘true’’
correlationmatrix C of the underlying statistical process (thatmight not even bewell defined). In fact, thewhole point of the
present review is to characterize the difference between E and C, and discuss howwell (or how badly) one may reconstruct
C from the knowledge of E in the case where N and T become very large but with their ratio q = N/T not vanishingly small;
this is often called the large dimension limit (LDL), or else the ‘‘Kolmogorov regime’’.

There are numerous situations where the estimation of the high-dimensional covariance matrix is crucial:2 Let us give
some well-known examples:
(i) Generalized least squares (GLS): Suppose we try to explain the vector y using a linear model

y = Xβ + ε, (1.3)

where X is a N × k design matrix (k > 1), β denotes the regression coefficients to these k factors, and ε denotes the
residual. Typically, one seeks to find β that best explains the data and this exactly is the purpose of GLS. Assume that
E[ε|X] = 0 and V[ε|X] = C the covariance matrix of the residuals. Then GLS estimates β as (see [2] for a more detailed
discussion):β = X∗CX−1 X∗C−1y. (1.4)

We shall investigate this estimator in Section 7.
(ii) Generalizedmethods ofmoments (GMM): Suppose onewants to calibrate the parametersΘ of amodel on somedataset.

The idea is to compute the empirical average of a set of k functions (generalized moments) of the data, which should
all be zero for the correct values of the parameters, Θ = Θ0. The distance to zero is measured using the covariance of
these functions. A precise measurement of this k × k covariance matrix increases the efficiency of the GMM—see [3].
Note that GLS is a special form of GMM.

(iii) Classification [4]: Suppose that we want to classify the variables y between two Gaussian populations with different
mean µ1 and µ2, priors π1 and π2, but same covariance matrix C. The Linear Discriminant Analysis rule classifies y to
class 2 if

x∗C−1(µ1 − µ2) >
1
2
(µ2 + µ1)

∗C−1(µ2 − µ1)− log(π2/π1). (1.5)

(iv) Large portfolio optimization [5]: Suppose we want to invest on a set of financial assets y in such a way that the overall
risk of the portfolio is minimized, for a given performance target ν. According to Markowitz’s theory, the optimal
investment strategy is a vector of weights w := (w1, . . . , wp)

∗ that can be obtained through a quadratic optimization
program where we minimize the variance of the strategy ⟨w, Cw⟩ subject to a constraint on the expectation value
⟨w, g⟩ > µ, with g a vector of predictors andµ fixed. (Other constraints can also be implemented.) The optimal strategy
reads

w = ν
C−1g

g∗C−1g
. (1.6)

As we shall see in Section 7, a common measure of the ‘‘risk’’ of estimation in high-dimensional problems like (i) and
(iv) above is given by TrE−1/TrC−1, which turns out to be very close to unity T is large enough for a fixed N , i.e. when
q = N/T → 0. However, when the number of observables N is also large, such that the ratio q is not very small, we will
find below that TrE−1 = TrC−1/(1 − q) for a wide class of processes. In other words, the out-of-sample risk TrE−1 can
excess by far the true optimal risk TrC−1 when q > 0, and even diverge when q→ 1. Note that for a similar scenario when
Value-at-Risk is minimized in-sample was elicited in [6] and in [7] for the Expected Shortfall. Typical number in the case
of stocks is N = 500 and T = 2500, corresponding to 10 years of daily data, already quite a long strand compared to the
lifetime of stocks or the expected structural evolution time of markets, but that corresponds to q = 0.2. For macroeconomic
indicators—say inflation, 20 years of monthly data produce a meager T = 240, whereas the number of sectors of activity
for which inflation is recorded is around N = 30, such that q = 0.125. Clearly, effects induced by a non zero value of q are
expected to be highly relevant in many applications.

1.2. Historical survey

The rapid growth of RMT (Random Matrix Theory) in the last two decades is due both to the increasing complexity of
the data in many fields of science (the ‘‘Big Data’’ phenomenon) and to many new, groundbreaking mathematical results

2 See the monograph [8] for other examples.
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that challenge classical results of statistics. In particular, RMT has allowed a very precise study of large sample covariance
matrices and also the design of estimators that are consistent in the large dimensional limit (LDL) presented above. The aim
of this review is to provide the reader an introduction to the different RMT inspired techniques that allow one to investigate
problems of high-dimensional statistics, with the estimation of large covariance matrices as the main thread.

The estimation of covariance matrices is a very old problem in multivariate statistics and one of the most influential
work goes back to 1928 with John Wishart [9] who investigated the distribution of the sample covariance matrix E in the
case of i.i.d Gaussian realizations y1, y2, . . . , yT . In particular, Wishart obtained the following explicit expression for the
distribution of E given C [9]:

PW (E|C) =
TNT/2

2NT/2ΓN(T/2)
det(E)

T−N−1
2

det(C)T/2
e−

T
2 TrC−1E, (1.7)

where ΓN(·) is the multivariate Gamma function with parameter N .3 In Statistics, one says that E follows a Wishart(N,
T , C/T ) distribution and it is often referred to as one of the first result in RMT. Note that for a finite N and T , the marginal
probability density distribution of the eigenvalues is known [10]:

ρN(λ) =
1
N

N−1
k=0

k!
T − N + k


LT−Nk (λ)

2
λT−Ne−λ, (1.8)

where we assumed that T > N and Llk are the Laguerre polynomials.4

Even though the Wishart distribution gives us many important properties concerning E, the behavior of the sample
estimator as a function of N was understood much later with the pioneering work of Charles Stein in 1956 [11]. The most
important contribution of Stein can be summarized as follows: when the number of variables N > 3, there exist combined
estimators more accurate in terms of mean squared error than any method that handles the variables separately (see [12]
for an elementary introduction). This phenomenon is called Stein’s paradox and establishes in particular that the sample
matrix E becomes more and more inaccurate as the dimension of the system N grows. The idea of ‘‘combined’’ estimators
has been made precise with the James–Stein estimator [13] for the mean of a Gaussian vector that outperforms traditional
methods such asmaximum likelihood or least squares wheneverN > 3. To achieve this, the authors used a Bayesian point of
view, i.e. by assuming some prior probability distribution on the parameters that we aim to estimate. For sample covariance
matrices, Stein’s paradox also occurs for N > 3 as shown by using properties of the Wishart distribution and the so-called
conjugate prior technique (see Section 5). This was first shown for the precision matrix C−1 in [14,15] and then for the
covariance matrix C in [16] and lead to the famous linear shrinkage estimator

Ξ = αsE+ (1− αs)IN , (1.9)

whereΞ denotes, here and henceforth, an estimator of C and αs ∈ (0, 1) is the shrinkage intensity parameter. In [16], Haff
proposed to estimate αs using the marginal probability distribution of the observed matrix Y as advocated in the so-called
empirical Bayes framework. We see that this shrinkage estimator interpolates between the empirical ‘‘raw’’ matrix E (no
shrinkage, αs = 1) and the null hypothesis IN (extreme shrinkage, αs = 0). This example illustrates the idea of a combined
estimator, not based only on the data itself, that offers better performance when the dimension of the system grows. The
improvement made by using the simple estimator (1.9) rather than the sample covariance matrix E has been precisely
quantified much later in 2004 [17] in the asymptotic regime N → ∞, with an explicit and observable estimator for the
shrinkage intensity αs. To summarize, the Bayesian approach turns out to be a cornerstone in estimating high dimensional
covariance matrices and will be discussed in more details in Section 5.

Interestingly, the first result on the behavior of sample covariance matrices in the LDL did not come from the statistics
community. It is due to the seminalwork ofMarčenko and Pastur in 1967 [18]where they obtained a self-consistent equation
for the spectrum of E given C as N goes to infinity. In particular, the influence of the quality ratio q appears precisely. Indeed,
it was shown in the classical limit T → ∞ and N fixed in 1963 by Anderson that the sample eigenvalues converge to
the population eigenvalues [19], a result indeed recovered by the Marčenko–Pastur formula for q = 0. However, when
q = O(1), the same formula shows that all the sample eigenvalues become noisy estimators of the ‘‘true’’ (population) ones
no matter how large T is. This is also called the curse of dimensionality. More precisely, the distortion of the spectrum of E
compared to the ‘‘true’’ one becomes more and more substantial as q becomes large (see Fig. 1). The heuristic behind this
phenomenon is as follows. When the sample size T is very large, each individual coefficient of the covariance matrix C can
be estimated with negligible error (provided one can assume that C itself does vary with time, i.e. that the observed process
is stationary). But if N is also large and of the order of T , as is often the case in many situations, the sample estimator E
becomes ‘‘inadmissible’’. More specifically, the large number of simultaneous noisy variables creates important systematic
errors in the computation of the eigenvalues of the matrix.

3 ΓN (u) = πN(N−1)/4N
j=1 Γ (u+ (1− j)/2).

4 Llk(λ) =
eλ

k!λl
dk

dλk
(e−λλk+l).
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Fig. 1. Plot of the sample eigenvalues and the corresponding sample eigenvalues density under the null hypothesis with N = 500. The blue line (q = 0)
corresponds to a perfect estimation of the population eigenvalues. The larger is the observation ratio q, the wider is the sample density. We see that even
for T = 4N , the deviation from the population eigenvalues is significant.

TheMarčenko–Pastur result had a tremendous impact on the understanding the ‘‘curse of dimensionality’’. Firstly, it was
understood in 1995 that this result is to a large degree universal when N → ∞ and q = O(1), much as the Wigner semi-
circle law is universal: the Marčenko–Pastur equation is valid for a very broad range of random measurement processes
and for general population covariance matrix C [20–22]. This property is in fact at the core of RMT which makes this theory
particularly appealing. At the same time, some empirical evidences of the relevance of these results for sample covariance
matrices were provided in [23,24] using financial datasets, which are known to be non-Gaussian [25]. More precisely, these
works suggested that most of the eigenvalues (the bulk) of financial correlation matrices agrees, to a first approximation,
with the null hypothesis C = I, while a finite number of ‘‘spikes’’ (outliers) reside outside of the bulk. This observation is
the very essence of the spiked covariance matrix model named after the celebrated paper of Johnstone in 2001 with many
applications in principal components analysis (PCA) [26]. Indeed, the author showed another manifestation of universal
properties of RMT, namely the Tracy–Widom distribution for the top bulk eigenvalues in the spiked covariance matrix
[27,26]. This result suggest that the edge of the bulk of eigenvalues is very rigid in the sense that the position of the edge
has very small fluctuations of order T−2/3. This provides a very simple recipe to distinguishmeaningful eigenvalues (beyond
the edge) from noisy ones (inside the bulk) [28,24]. This method is known as ‘‘eigenvalue clipping ’’: all eigenvalues in the
bulk of the Marčenko–Pastur spectrum are deemed as noise and thus replaced by a constant value whereas the principal
components outside of the bulk (the spikes) are left unaltered. This very simple method provides robust out-of-sample
performance [29] and emphasizes that the notion of regularization – or cleaning – is very important in high-dimension.

Even if the spiked covariance matrix model provides quite satisfactory results in many different contexts [29], one
may want to work without such an assumption on the structure of C using the Marčenko–Pastur equation to reconstruct
numerically the spectrum of C [30]. However, this is particularly difficult in practice since the Marčenko–Pastur equation is
easy to solve in the other direction, i.e. knowing the spectrum of C, we easily get the spectrum of E. In that respect, many
studies attempting to ‘‘invert’’ the Marčenko–Pastur equation appeared since 2008 [29,31–33]. The first one consists in
finding a parametric ‘‘true’’ spectral density that fits the data [29]. Themethod of [31], further improved in [32], is completely
different. Under the assumption that the spectrum of C consists of a finite number of eigenvalues, an exact analytical
estimator of each population eigenvalue is provided. However, this method requires some very strong assumptions on
the structure of the spectrum of C. The last approach can be considered as a nonparametric method and seems to be very
appealing. Indeed, El Karoui proposed a ‘‘consistent’’ numerical scheme to invert the Marčenko–Pastur equation using the
observed sample eigenvalues [33]. Nevertheless, while the method is very informative, it turns out that the algorithm also
needs prior knowledge on the location of the true eigenvalues which makes the implementation difficult in practice.

These inversion schemes thus allow in principle to retrieve the spectrum of C but as far as estimating high-dimensional
covariance matrices is concerned, merely substituting the sample eigenvalues by the estimated ‘‘true’’ ones does not give a
satisfactory answer to our problem. Indeed, the Marčenko–Pastur equation only describes the spectrum of eigenvalues of
large sample covariance matrices but does not yield any information about the eigenvectors of E. In fact, except for some
work by Jack Silverstein around 1990 [34,35], most RMT results about sample covariance matrices were focused on the
eigenvalues, as discussed above. The first fundamental result on the eigenvectors of E was obtained in [36] in the special
case of the spiked covariance matrix model, but is somehow disappointing for inference purposes. Indeed, Paul noticed that
outliers’ eigenvectors obey a cone concentration phenomenon with respect to the true eigenvectors whereas all other ones
retain very little information [36]. Differently said, the eigenvectors of E are not consistent estimators of the eigenvectors
of C in the high-dimensional framework. A few years later, these observations were generalized to general population
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Fig. 2. Three shrinkage transformations: ‘‘cleaned’’ eigenvalues on the y-axis as a function of the sample eigenvalues (see Section 8 for more details). This
figure is a quick summary the evolution of shrinkage estimators starting with the linear method (green), then the heuristic eigenvalues clipping method
(red) to the optimal RIE (blue). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

covariance matrices C [37–41]. When dealing with the estimation of C, information about eigenvectors has to be taken
into account somehow in the inference problem. Clearly, the above ‘‘eigenvalue substitution’’ method cannot be correct as
it proposes to take the best estimates of the eigenvalues of C but in an unknown eigenvalue basis. Consequently, a different
class of estimators flourished very recently that we shall refer to as rotational invariant estimators5 (RIE) [37–39]. In this
particular class of estimators, the main assumption is that any estimator Ξ of C must share the same eigenvectors as E
itself. This hypothesis has a very intuitive interpretation in practice as it amounts to posit that one has no prior insights
on the structure of C, i.e. on the particular directions in which the eigenvectors of C must point. It is easy to see that the
linear shrinkage estimator (1.9) falls into this class of estimators. Compared to the aforementioned RMT-based methods,
RIE explicitly uses the information on the eigenvectors of E, in particular their average overlap with the true eigenvectors.
It turns out that one can actually obtain an optimal estimator of C in the LDL for any general population covariance matrix
C [39]. Note that the optimal estimator is in perfect agreement with Stein’s paradox, that is to say, the optimal cleaning
recipe takes into account about the information of all eigenvectors and all eigenvalues of E. The conclusion is therefore
that combining all the information’s about E always provide more accurate prediction than any method that handles the
parameters separatelywithin themodern era of ‘‘BigData’’.We summarize the above long journey concerning the estimation
of large sample covariance matrices in Fig. 2, which can be seen as a thumbnail picture of the present review. Note that a
very recent work [41] attempts to incorporate prior information on the true components. While it remains unclear how to
use this framework for the estimation of correlation, this may allow one to construct ‘‘optimal’’ non-rotational invariant
estimators. We shall address this issue at the end of this review.

1.3. Outline

Our aim is to review several RandomMatrix Theory (RMT) results that take advantage of the high-dimensionality of the
problem to estimate covariance matrices consistently, spanning nearly fifty years of research from the result of Marčenko
and Pastur [18] to the very recent ‘‘local’’ optimal RIE for general population covariance matrices [39]. We emphasize that
this review is not intended to provide detailed proofs (in the mathematical sense) but we will include references to this
mathematical literature as often as possible for those who might be interested.

In Section 2, we begin with a detailed but still incomplete introduction to RMT and some of the analytical methods
available to study the behavior of large random matrices in the asymptotic regime. In fact, most of the computations in
Section 2 will be performed under very general model of random matrices and will be used throughout the following. The
first method is arguably the most frequently used in the Physics literature known as the Coulomb gas analogy [42]. This
is particularly useful to deal with invariant ensembles, leading to Boltzmann-like weights that allows one to recover very
easily well-known results such asWigner’s semicircle law [43] orMarčenko–Pastur density [18]. This is themain purpose of
Section 2.2. The second method is Voiculescu’s free probability theorywhich was originally proposed in 1985 to understand
a special class of von Neumann algebras through the concept of freeness [44]. Loosely speaking, two matrices A and B are
mutually free if their eigenbasis are related to one another by a random rotation, or said differently if the eigenvectors of A

5 This is sometimes called rotation-equivariant estimators.
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and B are almost surely orthogonal. Voiculescu discovered in 1991 [45] that some randommatrices do satisfy asymptotically
the freeness relation, which considerably influenced RMT. We present in Section 2.3 a precise definition of the concept of
freeness and then provide some applications for the computations of the spectral density of a large class of randommatrices.
In Section 2.4, we present a more formal tool known as the Replica method in statistical physics of disordered systems
[46,47]. While being less rigorous, this method turns out to be very powerful to compute the average behavior of large
complex systems (see [48] for a recent review). In our case, we shall see how this method allows us to compute the resolvent
of a large class of randommatrices which will be especially useful to deal with the statistics of eigenvectors.

In Sections 3 and 4, we study in details the different properties of large sample covariancematrices. Section 3 is dedicated
to the statistics of the eigenvalues of E, and in particular we propose a very simple derivation of the Marčenko–Pastur
equation using tools from free probability theory. Then, we review different properties that we can learn about C using E
such as the moment generating functions, or the edges of the support of the spectral density of E. We discuss the properties
of the edges of the distribution for finite N and also the outliers. In Section 4, we focus the recent results concerning the
eigenvectors of E for a generalC.We distinguish twodifferent cases. The first one is the angle between the true and estimated
eigenvectors and we shall see that the initial results of [36] hold for a general C. The second case is the angle between two
independent sample eigenvectors, a result that allows one to infer interesting properties about the structure of C.

After these three relatively technical sections, we then turn on the main theme of this review which is the estimation of
large sample covariance matrices. In Section 5, we formalize the Bayesian method for covariance matrices. We present the
class of conjugate prior from which we re-obtain the linear shrinkage (1.9) initially derived by Haff [16]. Next, we consider
the class of Boltzmann-type, rotational invariant prior distributions. We then relate the Bayes optimal estimator with the
least squares optimal oracle estimator of C. The so-called oracle estimator is the main quantity of interest in the following
Section 6. In particular, we show that this estimator converges to a limiting and – remarkably – fully observable function in
the limit of large dimension using the results on eigenvectors obtained in Section 4. Hence, there exists an optimal estimator
of large population covariance C depending only on E inside the class of RIEs. The rest of Section 6 is dedicated to some
theoretical and numerical applications of the optimal RIE.

Section 7 concerns the applications of the optimal RIE for Markowitz optimal portfolio. In particular, we characterize
explicitly, under some technical assumptions, the danger of using the sample covariance matrix E in a large scale and out-
of-sample framework. As alluded to above, we shall see that if E has no exact zero mode (i.e. when q = N/T < 1), the
realized risk associated to this ‘‘naive’’ estimator overestimates the true risk by a factor (1 − q)−1. Also, we shall see that
the best we can do in order to minimize the out-of-sample risk is actually given by the optimal RIE of Section 6. Several
alternative cleaning ‘‘recipes’’, proposed in previous work, are also reviewed in that section.

Finally, Section 8 contains empirical results using real financial datasets. We give further evidence that using a correctly
regularized estimator of C is highly recommended in real life situations. Moreover, we discuss about the implementation of
the optimal RIE in the presence of finite size effects, to wit, when N is large but finite.

The appendices contain auxiliary results which are mentioned in the paper. The first appendix copes with the so-called
Harish-Chandra–Itzykson–Zuber (HCIZ) integral which routinely appears in calculations involving sums or products of free
randommatrices. The HCIZ is an integral over the group of orthogonal matrices for which explicit and analytical results are
scarce. The second appendix is a reminder on some results of linear algebra which are particularly useful for the study of
eigenvectors. The third appendix is another analytical tool in RMT to establish self-consistent equations for the resolvent
(or the Stieltjes transform) of large random matrices. This technique is very convenient when working with independent
entries and it provides a nice illustration of the Central Limit Theorem for random matrices. However, the formalism is not
as synthetic as the method provided in Section 2 but is now standard in the RMT literature, which is why we relegate its
presentation to an appendix. Finally, we devote a full appendix to the case where the noise in the matrix is additive, rather
thanmultiplicative for correlationmatrices. Although not directly relevant to themain issue discussed in the present review,
the additive noise model is interesting in itself and finds many applications in different fields of science.

2. RandomMatrix Theory: overview and analytical tools

2.1. RMT in a nutshell

2.1.1. Large dimensional random matrices
As announced in the introduction, the main analytical tool that we shall review in this article is Random Matrix Theory

(RMT). In order to be as self-contained as possible, we recall in this section some of the basic results and techniques of
RMT. The study of random matrices began with the work of Wishart in 1928, who was interested in the distribution of the
so-called empirical (or sample) covariance matrices, which ultimately lead to the Marčenko–Pastur distribution in 1967.
RMT was also introduced by Wigner in the 1950s as a statistical model for the energy levels of heavy nuclei, and leads to
the well-known Wigner semi-circle distribution, as well as Dyson’s Brownian motion (see e.g. [49,50] for comprehensive
reviews). Branching off from these early physical and statistical applications, RMT has become a vibrant research field of its
own, with scores of beautiful results in the last decades—one of the most striking being the discovery of the Tracy–Widom
distribution of extreme eigenvalues, which turns out to be related to a large number of topics in statistical mechanics and
probability theory [51,52]. Here, wewill only consider the results of RMT that pertain to statistical inference, and leave aside
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many topics—see e.g. [50,53–56] or [57] formore detailed and rigorous introductions to RMT.Wewill also restrict to square,
symmetric correlation matrices, even though the more general problem of rectangular correlation matrices (measuring the
correlations between M input variables and N output variables) is also extremely interesting. This problem leads to the
so-called Canonical Component Analysis [58] and can be dealt with the Singular Value Decomposition, for which partial
results are available, see e.g. [59,60].

We begin with a formal definition of ‘‘large’’ random matrices. A common assumption in RMT is that the matrix under
scrutiny is of infinite size. However, this is obviously not a realistic assumption for practical problemswhere one rather deals
with large but finite N dimensionalmatrices. Nonetheless,we shall see thatworking in theN →∞ limit leads to very precise
approximations of the properties of large but finite matrices. More precisely, it is well known that probability distributions
describing the fluctuations of macroscopic observables often converge to limiting laws in the limit of large sizes. Hence,
we expect that the statistical properties (say the distribution of eigenvalues) of a random matrix M of dimension N shows,
to a certain extent, a deterministic or self-averaging behavior6 when the dimension N goes to infinity. These deterministic
features can be used to characterize thematrix under scrutiny, provided it is large enough. This is whywe consider the limit
N →∞ from now on.

The limiting behavior of ‘‘large’’ random matrices is in fact at the heart of RMT, which predicts that infinite dimensional
matrices do display universal features, both at the macroscopic and at the microscopic levels. To be more precise, we define
a N × N random matrix7 M with a certain probability measure Pβ(M), where β is the Dyson’s threefold way index and
specifies the symmetry properties of the ensemble (β = 1 for Orthogonal, β = 2 for Unitary and β = 4 for Symplectic
ensembles). A property is said to be universal if it does not depend on the specific probability measure Pβ(M). One well
known example of universality pertains to the distribution of the distance s between two successive eigenvalues (see [61]
for an extended discussion).

The ensemble most relevant for our purpose is the Orthogonal one, which deals with real symmetrical matrices. In this
case, the matrix M is said to be rotationally invariant if the probability is invariant under the transformation M→ ΩMΩĎ

for any matrix Ω belonging to the Orthogonal group O(N), i.e. Pβ(M) = Pβ(ΩMΩĎ), ∀Ω ∈ O(N). A typical example of
invariant measure in the physics literature is that Pβ(M) is of the form of a Boltzmann distribution:

Pβ(M)DM ∝ e−
βN
2 TrV (M)DM (2.1)

with V the so called potential function and DM =
N

i=1 dMii
N

i<j dMij denotes the (Lebesgue) flat measure. The rotational
invariant property is evident since the above parametrization only involves the trace of powers ofM. Already at this stage, it
is interesting to notice that the distribution (2.1) can alternatively be rewritten in terms of the eigenvalues and eigenvectors
ofM as:

Pβ(M)DM ∝ e
−
βN
2

N
i=1

V (νi) N
i<j

|νi − νj|
β
 N

i=1

dνi


dΩ

, (2.2)

where the Vandermonde determinant (

|νi− νj|

β )comes from the change of variables (from theMij to the νi andΩij). This
representation is extremely useful, as will be illustrated below.

What kind of universal properties can be of interest in practice? Let us consider a standard problem in multivariate
statistics. Suppose that we have a very large dataset with correlated variables. A common technique to deal with this
large dataset is to reduce the dimension of the problem using for instance a principal component analysis (PCA), obtained
by diagonalizing the covariance matrix of the different variables. But one can wonder whether the obtained eigenvalues
νi and their associated eigenvectors are reliable or not (in a statistical sense). Hence, the characterization of eigenvalues
(and eigenvectors) is an example of features that one would like to know a priori. In that respect, RMT provided (and
continues to provide)many groundbreaking results on the eigenvalues and the eigenvectors ofmatrices belonging to specific
invariant ensembles (Unitary, Orthogonal and Symplectic). The distribution of the eigenvalues {νi} : i = {1, . . . ,N} can be
characterized through the Empirical Spectral Distribution (ESD) (also known as the ‘‘Eigenvalue Distribution’’):

ρN
M(x) =

1
N

N
i=1

δ(x− νi) (2.3)

with δ the Dirac delta function. Note that the symmetry of the considered matrices ensures that the eigenvalues of M are
defined on the real line (complex eigenvalues are beyond the scope of this review, but see [56,57,62] for more on this).
One of the most important property of large random matrices is that one expects the ESD to converge (almost surely in
many cases) to a unique and deterministic limit ρN

M → ρM as N →∞. Note that it is common to refer to this deterministic
density function ρM as the Limiting Spectral Density (LSD), or else the ‘‘Eigenvalue Spectrum’’ of the matrix. An appealing
feature of RMT is the predicted self-averaging (sometimes call ergodicity or concentration) property of the LSD: when the

6 i.e. independent of the specific realization of the matrix itself.
7 Boldface letters will refer throughout this paper to matrices.
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dimension N becomes very large, a single sample of M spans the whole eigenvalue density function, independently of the
specific realization ofM. The consequence of this self-averaging property is that we can replace the computation of the ESD
(2.3) for a specificM by the average according to the probability measure ofM (e.g. over the measure (2.1)):

ρM(x) = lim
N→∞

ρN
M(x), with ρN

M(x) =


1
N

N
i=1

δ(x− νi)


M

. (2.4)

For real life data-sets, it is often useful to distinguish the eigenvalues that lie within the spectrum of ρM from those that
are well separated from it. We will refer to the first category as the bulk of the eigenvalues with a slight abuse of notation.
We will call the second type of eigenvalues outliers or spikes. Throughout this work, we assume the LSD that describes the
bulk of ρM to be a non-negative continuous function, defined on a unique compact support – denoted supp[ρM] – meaning
that supp[ρM] consists of a single ‘‘bulk’’ component (often called the one-cut assumption). Moreover, we allow the presence
of a finite number r ≪ N of outliers, which are of crucial importance inmany fields. Throughout this section, we shall denote
by ν1 ≥ ν2 ≥ · · · ≥ νN the eigenvalues of M. We furthermore define the associated eigenvectors by w1,w2, . . . ,wN . For N
that goes to infinity, it is often convenient to index the eigenvectors by their corresponding eigenvalues, i.e. wi ≡ wνi for
any integer 1 ≤ i ≤ N , and this is the convention that we adopt henceforth.

2.1.2. Various RMT transforms
We end this section with an overview of different transforms that appear in the RMT literature. These transforms are

especially useful to study the spectral properties of randommatrices in the limit of large dimension, and to deal with sums
and products of randommatrices.
Resolvent and Stieltjes transform. We start with the resolvent ofM which is defined as8

GM(z) := (zIN −M)−1, (2.5)

with z := x− iη ∈ C−, where C− = {z ∈ C : Im(z) < 0}. We define accordingly C+ = {z ∈ C : Im(z) > 0}. This quantity
displays several interesting properties, making it the relevant object to manipulate. First, it is a continuous function of z and
is easy to differentiate (compared to working directly on the ESD), providing a well-defined tool for mathematical analysis.
Furthermore, it contains the complete information about the eigenvalues {νi} and the eigenvectors {wi} since it can be
rewritten as:

GM(z) =
N
i=1

wiw∗i
z − νi

. (2.6)

It is easy to see that the number of singularities of the resolvent is equal to the number of eigenvalues of M. Suppose that
z → νi for any i ∈ [[N]], then the residue of the pole defines a projection operator onto the eigenspace associated to the
eigenvalues νi. We will show in Section 4 how this property can be used to study the statistics of the eigenvectors.

While the statistics of the eigenvectors is an interesting and non-trivial subject in itself, we focus for now on the statistics
of the eigenvalues through the ESD (2.4). For this aim, we define the normalized trace of Eq. (2.5) as

gNM(z) :=
1
N
Tr [GM(z)] . (2.7)

We shall skip the index M as soon as there is no confusion about the matrix we are dealing with. In the limit of large
dimension, one has

gN(z) ∼
N→∞

g(z), g(z) :=


ρ(u)
z − u

du (2.8)

which is known as the Stieltjes (or Cauchy) transform of ρ. The Stieltjes transform has a lot of appealing properties.
For instance, if the density function ρ does not contain Dirac masses, then this is the unique solution of the so-called
Riemann–Hilbert problem, i.e.:

(i) g(z) is analytic in C+ except on its branch cut on the real axis inside supp[ρM];
(ii) lim|z|→∞ zg(z) = 1;
(iii) g(z) is real for z ∈ R\ supp[ρM];
(iv) when near the branch cut, two different values for g(z) are possible, depending on whether the cut is approached from

above or from below, i.e.:

lim
η→0+

g(x± iη) = h(x)∓ iπρ(x), x ∈ supp[ρ] and ρ(x) ∈ R+, (2.9)

8 Note that in the mathematical and statistical literature, the resolvent differs from ours by a minus sign.
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where the function h denotes the Hilbert transform of ρ defined by

h(x) := −

supp[ρ]

ρ(u)
x− u

du (2.10)

with −


denoting Cauchy’s principal value.

It is now immediate to see that if one knows g(z) in the complex plane, the density ρ can be retrieved by inverting the last
property of the Riemann–Hilbert problem:

ρ(x) ≡
1
π

lim
η→0+

Im(g(x− iη)), x ∈ supp[ρ]. (2.11)

The continuous limit of g(z) in the large N limit thus allows to investigate the distribution of the eigenvalues that lie in the
bulk component.

Another interesting property is to study the asymptotic expansion of g(z) when z is large (and outside of Supp[ρ]).
Expanding g(z) in powers of z−1 yields:

g(z) =
z→∞

1
z


ρ(u)

∞
k=0

u
z

k
du.

To leading order, we get, in agreement with property (ii) above:

g(z) ∼
1
z


ρ(u)du ≡

1
z
,

where the last equality comes from the fact that the ESD is normalized to unity. The other terms of the expansion are also
of particular interest. Indeed, we see that

g(z) =
z→∞

1
z
+

1
N

∞
k=1

TrMk

zk+1
≡

1
z
+

∞
k=1

ϕ(Mk)

zk+1
, (2.12)

where we defined the kth moment of the ESD by ϕ(Mk) := N−1TrMk. We see that the Stieltjes transform is related to
the moment generating function of the random matrix M. This is another illustration of the fact that the Stieltjes transform
contains the complete information about the eigenvalues density. Inversely, if one can measure the moments of the
eigenvalues distribution, it is possible to reconstruct a parametric eigenvalues density function that matches the empirical
data. This nice property is an important feature of the Stieltjes transform for statistical inference purposes. Note that wewill
sometimes abbreviate ϕ(Mk) ≡ ϕk when there is no confusion about the matrix we are studying.

Last but not least, it is easy to check the following scaling property

gaM(z) =
1
a

gM

 z
a


, (2.13)

for any a ∈ R\{0}. Moreover, suppose thatM is invertible, then using (2.7) we also have

zgM(z)+
1
z
gM−1


1
z


= 1, (2.14)

so that we are able to compute the Stieltjes transform ofM−1 given the Stieltjes transform ofM.
Blue function and R-transform. There are many other useful RMT transforms, some of themwill turn out to be important
in the next section.We beginwith the free cumulant generating functionwhich is known as theR-transform in the literature
[63,55,64]. To define this quantity, it is convenient to introduce the functional inverse of the Stieltjes transform, also known
as the Blue transform [65]

B(g(z)) = z, (2.15)

and the R-transform is simply defined by

R(ω) = B(ω)−
1
ω
. (2.16)

Note that one may deduce from (2.13) the following property

RaM(ω) = aRM(aω), (2.17)

for any a ∈ R. One very nice property is that the R-transform admits a Taylor expansion in the limit ω → 0. Indeed, by
plugging ω = g(z) into Eq. (2.16), we obtain the formula

R(g(z))+
1

g(z)
= z. (2.18)
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Then, one can find after expanding the Stieltjes transform in powers of z−1 that R(ω) can be expanded as

R(ω) =
∞
ℓ=1

κℓ(M)ωℓ−1 (2.19)

where the sequence {κℓ}ℓ≥0 denotes the free cumulant of order ℓ which are expressed as a function of the moments of the
matrix. For completeness, we give the first four free cumulants:

κ1 = ϕ1

κ2 = ϕ2 − ϕ
2
1

κ3 = ϕ3 − 3ϕ2ϕ1 + 2ϕ3
1

κ4 = ϕ4 − 4ϕ3ϕ1 − 2ϕ2
2 + 10ϕ2ϕ

2
1 − 5ϕ4

1 . (2.20)
Note that the first three cumulants are equivalent to the ‘standard’ cumulants of ordinary random variables and only differ
from ℓ > 4. Note for example that when ϕ1 = 0, one finds κ4 = ϕ4 − 2ϕ2

2 , whereas the standard kurtosis would read
ϕ4− 3ϕ2

2 . It will turn out that the free cumulants of the sum of independent – in a sense specified below – randommatrices
are given by the sum of the cumulants of these randommatrices, i.e. κℓ(M) = κℓ(A)+ κℓ(B), see Section 2.3.
Moment generating function and S-transform. The moment generating function of the LSD ρ is obtained by considering

T (z) := zg(z)− 1 =


duρ(u)u
z − u

, (2.21)

frequently known as the T (or sometimes η [55]) transform [40]. Indeed, by taking z →∞, one readily finds

TM(z) =
∞
k=1

ϕ(Mk)

zk
. (2.22)

We can then introduce the so-called S-transform as [63]:

S(ω) :=
ω + 1

ωT −1(ω)
(2.23)

where T −1(ω) is the functional inverse of the T -transform. Using the series expansion of TM(z) in powers of z−1 and
Eq. (2.20), one finds that the S-transform also admits a Taylor series which reads:

SM(ω) =
1
ϕ1
+
ω

ϕ3
1
(ϕ2

1 − ϕ2)+
ω2

ϕ5
1
(2ϕ2

2 − ϕ2ϕ
2
1 − ϕ3ϕ1)+ O(ω3)

=
1
κ1
−
κ2

κ3
1
ω +

2κ2
2 − κ1κ3

κ5
1

ω2
+ O(ω3). (2.24)

From this last equation, it is not hard to see that the S-transform of a matrix M which has a zero trace is ill-defined. Hence,
the S-transform of a Wigner matrix does not make sense, but it will be very useful when manipulating positive definite
covariance matrices (see Section 2.3.3)

Note finally that there exists a relation between the R-transform and the S-transform

R(ω) =
1

S(ωR(ω))
, S(ω) =

1
R(ωS(ω))

(2.25)

which allows one to deduce R(z) from S(z) and vice versa. Other properties on the R and S transforms can be found
e.g. in [66].

Let us show the second equality of (2.25) for the sake of completeness. The derivation of the first identity is similar andwe omit details.
Using (2.16) and (2.23), one obtains

R(ωS(ω)) = B


ω + 1

T −1(ω)


−

T −1(ω)

ω + 1
. (2.26)

Next, by setting z = T −1(ω), we can rewrite (2.21) as

ω + 1
T −1(ω)

= g

T −1(ω)


. (2.27)

Hence, we conclude that

R(ωS(ω)) = T −1(ω)−
1

g

T −1(ω)

 = ω

g

T −1(ω)

 . (2.28)

The conclusion then follows from (2.27).
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2.2. Coulomb gas analogy

There exists several techniques to compute the limiting value of the Stieltjes transform: (i) Coulomb gas methods,
(ii) method of moments, (iii) Feynman diagrammatic expansion, (iv) Dyson’s Brownian motion, (v) Replicas, (vi) Free
probability, (vii) recursion formulas, (viii) supersymmetry... We devote the rest of this section to provide the reader with
a brief introduction to (i), (v) and (vi). Dyson’s Brownian motion (iv) and the recursion method (vii) are mentioned in
Appendices C and D.1.2. We refer to [53] for the moment methods (ii), to [42,67] for Feynman diagrams (iii) or to [68] and
references therein for symmetry applied to RMT. Again, we emphasize that this presentation is not intended to be rigorous
in a mathematical sense, and we refer to standard RMT textbooks such as [50,53,54,57] for more details.

We begin with the Coulomb gas analogy that, loosely speaking, consists in considering the eigenvalues of M as the
positions of fictitious charged particles, repelling each other via a 2-d Coulomb (logarithmic) potential (see [69] for a self-
contained introduction or to e.g. [42,51,70] for concrete applications). We shall highlight in this section the strong link
between the potential function and the Stieltjes transform g(z)whenever the probabilitymeasure over thematrix ensemble
is rotationally invariant, i.e. of the form Eq. (2.1).

2.2.1. Stieltjes transform and potential function
First, we write from (2.1) the partition function of the model as

Z ∝


e−

βN
2 TrV (M)DM,

and this can be used as a starting point to obtain the LSD – or rather its Stieltjes transform – using a saddle point method.
This relation has first been obtained in the seminal paper of Brézin–Itzykson–Parisi–Zuber [42] andwe repeat here themain
idea of the derivation (see also [71, Section 2.1]). Let us first express the partition function in terms of the eigenvalues and
eigenvectors ofM, using (2.2):

Z ∝

  N
i=1

dνi

exp


−N

N
i=1


V (νi)−

β

2N


i≠j

log |νi − νj|


,

up to a constant factor that comes from integrating over the Haar measure dΩ . It is then customary to introduce the action
S({νi}) ≡ S(ν1, ν2, . . . , νN) such that we can rewrite the partition function as:

Z ∝

 N
i=1

dνie−N
2S({νi}) with S({νi}) =

1
N

N
i=1

V (νi)−
β

2N2


i≠j

log |νi − νj|. (2.29)

Note that the action is normalized so that its large N limit is of order 1. The eigenvalues can be seen as a thermal gas of
one-dimensional particles in an external potential V (z) and subject to a (logarithmic) ‘‘electrostatic’’ repulsive interaction:
this is the Coulomb gas analogy. At thermal equilibrium, the eigenvalues typically gather in potential well(s), but cannot
accumulate near the minimum due to the repulsive force, which keeps them at distance of order O(N−1). For instance, if
we take a quadratic potential function V (x) = x2/2, then all the particles tend to gather around zero as it is shown in Fig. 3.
We recall that we consider only densities which are defined on a unique compact support (one-cut assumption) and we
thus require that the fictitious particles evolve in a confining convex potential V (z). The class of potential function that we
consider is such that its derivative gives a Laurent polynomial, i.e., V ′(z) =


k ckz

k with k integers that can be negative.
Sincewe can always rewrite V ′(z) = z−ℓP(z), with the ‘‘order’’ ℓ the lowest (negative) power of V ′(z) and P(z) a polynomial,
we define by d the ‘‘degree’’ of V ′(z) which corresponds to the degree of P(z). In particular, if V ′(z) is a polynomial, then
ℓ = 0.

In the largeN limit, the integral over eigenvalues can be computed by the saddle-pointmethodwhich yields the following
‘‘force equilibrium’’ condition9:

V ′(νi) =
β

N

N
j=1;j≠i

1
νi − νj

, ∀ i = 1, . . . ,N. (2.30)

It seems hopeless to find the eigenvalues {λi} that solve these N equations. However, we may expect to find the LSD ρM in
the limit N →∞, corresponding to configuration of the eigenvalues that satisfies these saddle-point equations. In the case
of the one-cut assumption, the result reads [42]:

g(z) = V ′(z)− Q (z)

(z − ν+)


(z − ν−), (2.31)

9 The reader might wonder why a system in thermal equilibrium ends up being described by simple mechanical equilibrium, as at zero temperature. It
turns out that the system is effectively at very low temperatures and that entropy effects are of order N−1 compared to interaction effects, see e.g. [70] for
a detailed discussion. Entropy effects start playing a role for extended β ensembles where β = c/N where c is finite, see [72].
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Fig. 3. Typical configuration of a repulsive Coulomb gas with N = 20 particles (red dots) in the potential V (x) = x2/2 as a function of x.

where ν− < ν+ denote the edges of supp[ρ] and Q (z) is also a Laurent polynomial with degree d−1 and order ℓ. Therefore,
we see that we have d+ 1 unknowns to determine, namely the coefficients of Q (z), ν− and ν+ which are determined using
the series expansion (2.12). We shall give a detailed illustration of this procedure in Section 2.2.3.10

We observe that as soon as we can characterize the potential function of V (z) that governs the entries ofM, we are then
able to find the corresponding LSD ρM. We will show in the rest of this section that this Coulomb gas analogy allows one to
retrieve some important laws in RMT.

Let us show how to obtain (2.31). In the following we set β = 1. First, we introduce the normalized trace of the resolvent g(z) in (2.30)
by multiplying on both sides by N−1(z − νi)−1 and summing over all i, which yields

1
N

N
i=1

V ′(νi)
z − νi

=
1
N2

N
i=1

N
j=1;j≠i

1
(z − νi)(νi − νj)

. (2.32)

Notice that this last equation is indeed an analytical function for z ∈ C\Supp[ρM]. Then, we rewrite the LHS using some algebraic
manipulations that leads to

1
N

N
i=1

V ′(νi)
z − νi

= V ′(z)g(z)−
1
N

N
i=1

V ′(z)− V ′(νi)
z − νi

,

and for the RHS, we obtain

1
N2

N
i=1

N
j=1;j≠i

1
(z − νi)(νi − νj)

≡
1
2


g2(z)+

1
N

g′(z)

.

Regrouping these last two equations into the saddle-point equation (2.32) gives

1
2


g2(z)+

1
N

g′(z)

= V ′(z)g(z)−

1
N

N
i=1

V ′(z)− V ′(νi)
z − νi

.

Since we are interested in the limit of large N , we thus have to solve for g(z) the following quadratic equation

g2(z)− 2V ′(z)g(z)+
2
N

N
i=1

V ′(z)− V ′(νi)
z − νi

= 0. (2.33)

The most difficult term is the last one because the sum is not explicit. For the sake of simplicity, we consider the case where V ′(z) is
a polynomial of degree d > 0 as the extension to Laurent polynomial, i.e. polynomial with negative powers, is immediate. For V ′(z) a
polynomial function in z, we have that

P(z) :=
1
N

N
i=1

V ′(z)− V ′(νi)
z − νi

10 In the case of positive definite covariance matrices, we can use the series (3.23) that corresponds to the limit z → 0.
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is also a polynomial butwith a degree d−1whose coefficients can be determined later by the normalization constraint, or bymatching
some moments. Then, the solution of Eq. (2.33) is such that:

g(z) = V ′(z)±

V ′(z)2 − 2P(z).

The nice property in the one-cut framework (i.e., a unique compact support for ρ) is that the above expression can be simplified to
(when d > 1):

g(z) = V ′(z)± Q (z)

(z − ν+)(z − ν−)

where ν− and ν+ denote the edges of supp[ρ] and Q (z) is a polynomial with degree d− 1 and this gives (2.31).

2.2.2. Wigner’s semicircle law
As a warm-up exercise, we begin with Wigner’s semi-circle law [43], one of the most important result in RMT. Note

that this result has first been obtained in the case of Gaussian matrix with independent and identically distributed entries
(while preserving the symmetry of the matrix). For real entries, we refer to this class of random matrices as the Gaussian
Orthogonal Ensemble (GOE). It has been proved, see e.g. [53], that the semi-circle law can be extended to a broader class of
random matrices, known as the Wigner Ensemble that deals with a matrix M with independent and identically distributed
entries such that11:

E

Mij

= 0, and E


M2

ij


= σ 2/N. (2.34)

Let us consider here the specific case of a GOEmatrix. For Gaussian entries, it is not hard to see that the associated probability
measurePβ(M) is indeed of the Boltzmann typewith a potential function V (M) = M2/2σ 2. From Eq. (2.31), we remark that
the unknown polynomial Q (z) is simply a constant because the derivative of the potential has degree d = 1. To determine
this constant, we enforce the property (ii) of the Riemann–Hilbert problem which enable us to get by identification:
Q (z) = 1, ν± = ±2σ . We thus finally obtain:

gW (z) =
z −
√
z + 2σ

√
z − 2σ

2σ 2
, (2.35)

where
√
· denotes throughout the following the principal square root, that is the non-negative square root of a non-negative

real number. Eq. (2.35) is indeed the Stieltjes transform ofWigner’s semi-circle law. Note that it is frequent to see the above
result written as

gW (z) =
z ±
√
z2 − 4σ 2

2σ 2
,

where the convention ‘‘±’’ refers to the fact thatwe have to chose the correct sign such that g(z) ∼ z−1 for large |z| (property
(ii) of the Riemann–Hilbert problem). The density function is then retrieved using the inversion formula (2.11) that yields
the celebratedWigner’s semicircle law:

ρW (x) =
1

2πσ 2


4σ 2 − x2, |x| < 2σ . (2.36)

We plot in Fig. 4 the density of the semi-circle and compared with the ESD obtained from a GOE matrix of size N = 500. As
stated at the beginning of this section, we see that the limiting density agrees well with the ESD of the large but finite size
matrix. In fact, one can rigorously estimate the expected difference between the ESD at finite N and the asymptotic LSD for
N = ∞, which vanishes as N−1/4 as soon as the Mij’s have a finite fourth moment, and as N−2/5 if all the moments of the
Mij are finite (see [76]).

Due to the relative simplicity of the expression of Eq. (2.35), one can easily invert this expression to find theBlue transform
to find that the R-transform of the semicircle law reads

RW (z) = σ 2z. (2.37)

Since the average trace ϕ1 is exactly 0, the S-transform of a Wigner matrix is an ill-defined object.

2.2.3. The Marčenko–Pastur law
As stated in the introduction, the study of randommatrices began with John Wishart [9]. More precisely, let us consider

the N × T matrix Y consisting of T independent realizations of random centered Gaussian vectors of size N and covariance

11 The case where the variance of the matrix elements diverge corresponds to Lévy matrices, introduced in [73]. For a rigorous approach, we refer the
readers to [74]. For recent developments, see [75].
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Fig. 4. Wigner semi-circle density (2.36) compared with empirical results with N = 500 (histogram) from one sample, illustrating the convergence of the
ESD at finite N to the asymptotic LSD.

C, then the Wishart matrix is defined as the N × N matrix M as M := T−1YY∗. In multivariate statistics, this matrix M is
better known as the sample covariance matrix (see Section 3). For any N and T > N , Wishart derived the exact PDF of the
entriesM which reads:

Pw(M|C) =
1

2NT/2ΓN(T/2)
det(M)

T−N−1
2

det(C)T/2
e−

T
2 TrC−1M. (2.38)

As alluded in the introduction, we say that M (given C) follows a Wishart(N, T , C/T ) distribution. In the ‘‘isotropic’’ case,
i.e., when C = IN , we can deduce from (2.38)

Pw(M|IN) ∝ det(M)
T−N−1

2 e−
T
2 TrM
:= e−

T
2 TrM+ T−N−1

2 Tr logM, (2.39)

which clearly belongs to the class of Boltzmann ensembles (2.1). Throughout the following, we shall denote byW the N×N
matrix whose distribution is given by (2.39). Ignoring sub-leading terms, the corresponding potential function is given by:

V (z) =
1
2q

[z − (1− q) log z] , with q := N/T . (2.40)

It is easy to see that the derivative indeed gives a Laurent polynomial in z as we have

V ′(z) =
1

2qz
[z − (1− q)] .

Following our convention, V ′(z) is a Laurent polynomial of degree 1 and order ℓ = −1 so that we deduce Q (z) in (2.32) is of
the form c/z with c a constant to be determined using (2.12). We postpone the computation of the Stieltjes transform g(z)
to the end of this section. The final result reads:

g(z) =
(z + q− 1)−

√
z − ν−

√
z − ν+

2qz
, ν± := (1±

√
q)2, (2.41)

and this is the solution found by Marčenko and Pastur in [18] in the special case C = IN . We can now use the inversion
formula (2.11) to find the celebrated Marčenko–Pastur (MP) law (for q ∈ (0, 1))

ρMP(ν) =


4νq− (ν + q− 1)2

2qπν
, ∀ ν ∈


ν−, ν+


. (2.42)

Note that for q > 1, it is plain to see thatM hasN−T zero eigenvalues that contribute (1−q)δ0 to the density Eq. (2.42). Note
that the convergence of the ESD towards the asymptotic MP law occurs, for q < 1, at the same speed as in the Wigner case,
i.e. as N−2/5 in the present case where the random elements of Y are Gaussian (for a full discussion of this issue, see [77]).

Again, the expression of g(z) is simple enough to obtain a closed formula for the Blue transform, and deduce from
Eq. (2.41) the R-transform of the MP law:

RMP(ω) =
1

1− qω
. (2.43)
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One can compute the S-transform of the MP law using the relation (2.25):

SMP(ω) =
1

1+ qω
. (2.44)

We now derive the Stieltjes transform (2.41) through a complete application of the BIPZ formalism introduced in Eq. (2.32). As alluded
to above, the Stieltjes transform (2.32) for the isotropic Wishart matrix has the form

g(z) =
1
2q


1−

1− q
z


−

c
z
√
z − ν+

√
z − ν−, (2.45)

and the constants that we have to determine are c, ν+ and ν−. To that end, we use (2.12) that tells us that when |z| → ∞

g(z) =
1
z
+
ϕ(M)
z2
+ O(z−3). (2.46)

On the other hand, one finds by taking the limit z →∞ into (2.45) that

g(z) =
1
2q


1−

1− q
z


− c


1−

ν+ + ν−

2z
−
(ν+ − ν−)

2

8z2


+ O(z−3). (2.47)

Then, by comparing this last equation to (2.46), we may fix c by noticing that we have a leading order

1
2q
− c = 0,

since g(z) behave as O(z−1) for very large z and therefore we have

c =
1
2q
. (2.48)

Next, we find at order O(z−1):

1 = −
(1− q)

2q
+
ν+ + ν−

4q
, (2.49)

that is to say

ν+ = 2(1+ q)− ν−. (2.50)

Finally, the last constant is determined with the condition at order O(z−2),

ϕ(M) =
(ν+ − ν−)

2

16q
, (2.51)

which is equivalent to

ν− = ν+ − 4

qϕ(M) = (1+ q)− 2

√
q = (1−

√
q)2, (2.52)

where we used (2.50) and ϕ(M) = 1 in the third step. Consequently, we deduce from (2.50) that ν+ = (1+
√
q)2 and the result (2.41)

follows from the Eqs. (2.48), (2.50) and (2.52).

2.2.4. Inverse Wishart matrix
Another very interesting case is the inverse of a Wishart matrix, simply named the ‘‘inverse Wishart’’ matrix. The

derivation of the corresponding eigenvalue density is straightforward from the Marčenko–Pastur law (2.42). Indeed, one
just needs to make the change of variable u = ((1− q)ν)−1 into Eq. (2.42) to obtain12:

ρIMP(u) =
κ

πu2


(u+ − u)(u− u−), u± :=

1
κ


κ + 1±

√
2κ + 1


, (2.53)

where the subscript IMP stands for ‘‘Inverse Marčenko–Pastur’’ and κ is related to q through

q =
1

2κ + 1
∈ (0, 1). (2.54)

In particular, one notices that u± = (1 − q)/ν∓ where ν∓ is defined in Eq. (2.41). We plot in Fig. 5 the density of the
Marčenko–Pastur (2.42) and of its inverse (2.53) both with parameter q = 0.5.

12 The factor (1− q)−1 is introduced to keep the mean at one as will be explained below.
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Fig. 5. The red dotted curve corresponds to the Marčenko–Pastur density (2.42) with q = 0.5. We repeat the experiment with the Inverse Wishart matrix
still with q = 0.5 (plain blue curve).

In addition to the eigenvalue density (2.53), one can also derive explicit expressions for the other transforms presented
in Section 2.1.2. For the Stieltjes transform, it suffices to apply the same change of variable u = ((1− q)z)−1 and to use the
properties (2.13) and (2.14) to obtain:

giw(u) =
u(κ + 1)− κ − κ

√
u− u−

√
u− u+

u2
, (2.55)

where the bounds u± are given in Eq. (2.53). One can easily check with the inversion formula (2.9) that we indeed retrieve
the density of states (2.53) as expected.

Using the Stieltjes transform (2.55), one can then compute the R-transform of the Inverse Marčenko–Pastur density to
find

RIMP(ω) =
κ −
√
κ(κ − 2ω)
ω

, κ > 0, (2.56)

and then, from (2.25), the S-transform reads

SIMP(ω) = 1−
ω

2κ
. (2.57)

In statistics, the derivation of the inverseWishart distribution is slightly different. LetM be aN×N real symmetricmatrix
that we assume to be invertible and suppose thatM−1 follows aWishart(N, T , C−1) and C is a N×N real symmetric positive
definite ‘‘reference’’ matrix and T > N − 1. In that case, it turns out that the PDF ofM is also explicit. More precisely, we say
thatM is distributed according to an Inverse-Wishart(N, T , C)whose PDF is given by [10]:

Piw(M−1|C) =
1

2NT/2ΓN(T/2)
det(C)T/2

det(M)((T+N+1)/2)
e−

1
2 Tr CM−1 . (2.58)

In order to get that distribution, one should note that the Jacobian of the transformationM→ M−1 is equal to (detM)−N−1,
as can be derived by using the eigenvalue/eigenvector representation of the measure, see Eq. (2.2). A detailed derivation of
this change of variable may be found e.g. in [78, Eq. (15.15)].

An important property of the Inverse-Wishart distribution is the following closed formula for the expectation value:
M

Piw
=

C
T − N − 1

. (2.59)

The derivation of this result can be obtained using the different identities of [79].
We may now explain the factor (1− q) in the above change of variable. If we consider C = IN/T , we deduce from (2.59)

that 
M

Piw
=

T
T − N − 1

IN ∼
LDL

1
1− q

IN . (2.60)

In order to have a normalized spectral density, i.e. N−1TrM = 1, we see that we need to apply M̃ = (1 − q)M so that
⟨M̃⟩ = IN . This was exactly the purpose of the change of variable u = ((1− q)ν)−1 in Eq. (2.53).

We conclude this section by stating that one can characterize entirely the eigenvalue density function of a broad class of
randommatricesM through a potential function. This allows one to reproduce a large variety of empirical spectral densities
by adequately choosing the convex confining potential.
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2.3. Free probability

We saw in the previous two examples that one can derive, from the potential function, some analytical results about
the ESD which can be very interesting for statistical purposes (e.g. the inverse Wishart density). However, the Coulomb gas
method does not allow one to investigate the spectrum of a matrix that is perturbed by some noise source. This is a classical
problem in Statistics where one is often interested in extracting the ‘‘true’’ signal from noisy observations. Standard models
in statistics deal with either an additive ormultiplicative noise (aswill be the case for empirical correlationmatrices). Unless
one canwrite down exactly the PDF of the entries of the corruptedmatrix, which is rarely the case, the Coulomb gas analogy
is not directly useful.

This section is dedicated to a short introduction to free probability theory, which is an alternative method to study the
asymptotic behavior of some large dimensional random matrices. More precisely, free probability provides a robust way
to investigate the LSD of either sums or products of random matrices with specific symmetry properties. We will only give
here the basic notions of free probability applied to symmetric real random matrices and we refer to e.g. [64] or [66] for a
more exhaustive presentation.

2.3.1. Freeness
Free probability theory was initiated in 1985 by Dan Voiculescu in order to understand special classes of von Neumann

algebras [44], by establishing calculus rules for non commutative operators relying on the notion of freeness, defined below
for the special case ofmatrices. A few years later, Voiculescu [63] and Speicher [80] found that rotationally invariant random
matrices asymptotically satisfy the freeness criteria, and this has had a tremendous impact on RMT.

Roughly speaking, two matrices A and B are mutually free if their eigenbasis are related to one another by a random
rotation, i.e. when their eigenvectors are almost surely orthogonal. For random matrices, we rather use the notion of
‘‘asymptotic’’ freeness. The precise statement is as follows [63]: let A and B be two independent self-adjoint matrices of
size N . If the spectral density of each matrix converges almost surely in the large N limit and if B is invariant under rotation,
then A and B are asymptotically free. This statement can also be found in a different context in [80].

The notion of freeness for random matrices is the counterpart of independence for random variables. Indeed, recall that
the normalized trace operator, defined as

ϕ(M) :=
1
N
TrM, (2.61)

is equal to the firstmoment of ρM. Then, provided that ϕ(A) = ϕ(B) = 0, we say thatA and B are free if the so-called freeness
property is satisfied, to wit:

ϕ

An1Bm1An2Bm2 . . .AnkBmk


= ϕ(An1)ϕ(Bm1)ϕ(An2)ϕ(Bm2) . . . ϕ(Ank)ϕ(Bmk), (2.62)

for any integers n1, . . . , nk and m1, . . . ,mk with k ∈ N+. Note that if ϕ(A) ≠ 0 and ϕ(B) ≠ 0, then it suffices to consider
the centered matrices A− ϕ(A)IN and B− ϕ(B)IN .

Let us explore (2.62) in the simplest case. For any free matrices A and B defined as above, one has

ϕ ((A− ϕ(A))(B− ϕ(B))) = 0, (2.63)

from which we deduce ϕ (AB) = ϕ(A)ϕ(B). Hence, if one thinks of the trace operator (2.61) as the analogue of the
expectation value for non commutative random variables, the freeness property is the analogue of themoment factorization
property. More generally, freeness allows the computation of mixed moments of products of matrices from the knowledge
of the moments of A and B, similar to classical independence in probability theory. For example, from

ϕ ((A− ϕ(A))(B− ϕ(B))(A− ϕ(A))) = 0, (2.64)

we can deduce that

ϕ (ABA) = ϕ(A2B) = ϕ(A2)ϕ(B). (2.65)

One typical example of free pairs of matrices is when A is a fixed matrix and when B is a random matrix belonging to a
rotationally invariant ensemble, i.e. B = ΩBdiagΩ

∗, where Bdiag is diagonal and Ω distributed according to the Haar (flat)
measure over the orthogonal group, in the limitwhereN is infinitely large. This concept of asymptotic freeness is also related
to the notion of vanishing non-planar diagrams [81]. As we shall see in Section 7, the computation of mixed moments will
be used to derive some useful relations for estimating over-fitting for statistical estimation problems.

2.3.2. Sums of free matrices
In addition to the computation of mixed moments such as Eq. (2.64), free probability theory allows us to compute the

LSD of sums and products of invariant randommatrices, as we discuss now.
Let us look at the additive case first. Suppose that we observe a matrix M which is built from the addition of a fixed

‘‘signal’’ matrix A and a noisy (or random) matrix B that we assume to be invariant under rotation, i.e.,

M = A+ΩBΩ∗,
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for any N × N matrix Ω that belongs to the orthogonal group O(N). A typical question is to evaluate the LSD of M and
estimate the effect of the noise on the signal in terms of the modification of its eigenvalues. Assuming that the ESD of A and
B converge to a well defined limit, the spectral density ofM can be computed using the law of addition for non commutative
operators, namely Voiculescu’s free addition

RM(ω) = RA(ω)+RB(ω). (2.66)

Hence,we can interpret theR-transform (2.16) as the analogue in RMTof the logarithmof the Fourier transform for standard
additive convolution. It is possible to rewrite Eq. (2.66) as a function of the Stieltjes transform of M that contains all the
information about the spectral density ofM. Eq. (2.66) is equivalent to

BM(ω) = BA(ω)+RB(ω).

Next, we introduce ω = gM(z) that yields

BA(gM(z)) = z −RB(gM(z)).

It now suffices to apply the function gA on both sides to obtain

gM(z) = gA(z −RB(gM(z))). (2.67)

This last relation establishes the influence of the additive noise coming from thematrixBon the ‘‘signal’’ (or true) eigenvalues
of A.

To gain more insight on this result, let us assume that the noise matrix B is a simple GOE matrix with centered elements
of variance σ 2/N. We know from Eq. (2.37) that RB(z) = σ 2

B z. Hence, the spectrum of the sample matrixM is characterized
by the following fixed-point equation13:

gM(z) = gA(z − σ 2
B gM(z)). (2.68)

This is the Stieltjes transform of the deformed GOEmatrix14 which is awell-knownmodel in statistical physics of disordered
systems. Indeed, this model can be seen as a Hamiltonian that consists of a fixed source subject to an external additive
perturbation B [83]. Taking A to be a GOE as well, we find thatM is a GOE with variance σ 2

A + σ
2
B , as expected. In a inference

theory context, this model might be useful to describe general linear model where the signal we try to infer is corrupted by
an additive noise.

Another interesting application is when the matrix B has low rank, frequently named a factor model. In the example of
stocks market, this model can be translated into the fact that there exist few common factors to all stocks such as global
news about the economy for instance. For the sake of simplicity, we consider the rank-1 case but the following argument
can be easily generalized to a finite rank r ≪ N . Let us denote the unique nontrivial eigenvalue of B as β > 0 and ask
ourselves how adding a (randomly oriented) rank-1 matrix affects the spectrum ofM. This problem can be solved explicitly
using freematrix tools in the LDL. Indeed, as we show below, the largest eigenvalue pops out of the spectrum of Awhenever
there exists z ∈ R\ supp[ρA] such that

gA(z) =
1
β
. (2.69)

For instance, if A is a Wigner matrix with variance σ 2 > 0, one can easily check from (2.69) and (2.37) that the largest
eigenvalue ν1 ofM is given by

ν1 =


β + σ 2/β if β > σ
2σ otherwise. (2.70)

When β > σ , we say that ν1 is an outlier, i.e. it lies outside the spectrum of ρA. Hence, we see that free probability allows
one to find a simple criterion for the possible presence of outliers.

Let us now derive the criterion (2.69). First we need to compute the R-transform of the rank one matrix B in order to use (2.66). From
(2.8), we easily find that

gB(u) =
1
N

1
u− β

+


1−

1
N


1
u
=

1
u


1+

1
N

β

1− u−1β


. (2.71)

Using perturbation theory, we can invert this last equation to find the Blue transform, and this yields at leading order,

BB(ω) =
1
ω
+

β

N(1− ωβ)
+ O(N−2). (2.72)

13 This equation can also be interpreted as the solution of a Burgers equation, that appears within the Dyson Brownian motion interpretation of the same
problem—see Appendix D for more about this.
14 This result can be generalized to the class of deformedWignermatrices, i.e. where the noise is given by (2.34) but not necessarily Gaussian, see e.g. [82].
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Wemay therefore conclude from (2.16) that

RB(ω) =
β

N(1− βω)
+ O(N−2). (2.73)

Hence, we obtain by applying (2.66) and (2.16) that

BM(ω) = BA(ω)+
β

N(1− βω)
+ O(N−2). (2.74)

Next, we set ω = gM(z) so that this latter equation becomes

z = BA(gM(z))+
β

N(1− βgM(z))
+ O(N−2). (2.75)

From this equation, we expect the Stieltjes transform of ρM to be of the form

gM(z) = g0(z)+
g1(z)
N
+ O(N−2). (2.76)

By plugging this ansatz into (2.75), we see that g0(z) and g1(z) satisfy

z = BA(g0(z))

g1(z) = −
β

B ′A(g0(z))(1− g0(z)β)
. (2.77)

It is easy to find that g0(z) = gA(z) as expected. We now focus on the 1/N correction term and using that B ′A(gA(z)) = 1/gA(z), we
conclude that

g1(z) = −
βg′A(z)

1− gA(z)β
. (2.78)

Finally, we obtained that

gM(z) ≈ gA(z)−
1
N

βg′A(z)
1− gA(z)β

, (2.79)

and we see that the correction term only survive in the large N limit if gA(z) = β−1 has a non trivial solution. Differently said, z is an
eigenvalue ofM and not of A if there exists z ∈ R\ supp[ρA] such that gA(z) = β−1 and this leads to the criterion (2.69).

2.3.3. Products of free matrices
Similar results are available for free multiplicative convolution. Before showing how to obtain the LSD of the product of

free matrices, we first emphasize that one has to carefully define the product of free matrices. Indeed, the naive analogue
of the free addition would be to define M = AB. However the product AB is in general not self-adjoint when A and B are
self-adjoint but not commuting. In the case where A is positive definite, we can see that the product A1/2BA1/2 makes sense
and share the same moments than the product AB. Therefore, we define the product of free matrices by

M :=
√
AB
√
A. (2.80)

Note that in this case, B need not be necessarily positive definite but must have a trace different from zero (see the
Taylor expansion below). For technical reason, we need the LSD of B to be well-defined. Under this assumption, the free
multiplicative convolution rule for randommatrices is given by

SM(ω) = SA(ω)SB(ω). (2.81)

This is the so-called free multiplication, which has been first obtained by Voiculescu [63] and then by [84] in a physics
formalism.

Again, if one is interested in the limiting spectral density of M, one would like to write (2.81) in terms of its Stieltjes
transform. Using the very definition of the S-transform, we rewrite (2.81) as

1

T −1M (ω)
=

SB(ω)

T −1A (ω)
.

The trick is the same as above so we therefore set ω = TM(z) to find

T −1A (TM(z)) = zSB(TM(z)). (2.82)

It is now immediate to get the analogue of (2.67) for the multiplicative case

TM(z) = TA (zSB(TM(z))) , (2.83)
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that gives in terms of the Stieltjes transform

zgM(z) = Z(z)gA (Z(z)) , Z(z) := zSB(zgM(z)− 1). (2.84)

This is certainly one the most important results of RMT for statistical inference. It allows one to generalize the
Marčenko–Pastur law for sample covariance matrices to arbitrary population covariance matrices C (see next section), and
obtain results on the eigenvectors aswell.We emphasize that the literature on free products canbe adapted to nonHermitian
matrices, see [66] or [85] for a recent review on the multiplication of randommatrices.

2.4. Replica analysis

2.4.1. Resolvent and the Replica trick
As we noticed above (Eq. (2.6)), information about the eigenvectors can be studied through the resolvent. However,

both the Coulomb gas analogy and free probability tools are blind to the structure of eigenvectors since these only give
information about the normalized trace of the resolvent. In order to study the resolvent matrix, we need to introduce other
tools, for example one borrowed from statistical physics named the Replica method. To make it short, the Replica method
allows one to rewrite the expectation value of a logarithm in terms of moments, expressed as expectation values of many
copies, named the replicas, of the initial system. This method has been extremely successful in various contexts, including
RMT and disordered systems, see e.g. [47,46], or [48] for a more recent review. We stress that even if this method turns out
to be a very powerful heuristic, it is not rigorous mathematically speaking (see below). Therefore, it is essential to verify
the result obtain from the Replica method using other methods, for example numerical simulations. Note that a rigorous
but more difficult way to deal with resolvent is the recursion technique that uses linear algebra results, as explained in
Appendix C. Other available techniques include Feynman diagrams [67,86].

As a warm-up exercise, we present briefly the approach for the Stieltjes transform and then explain how to extend it to
the study of full resolvent. We notice that any Stieltjes transform can be expressed as

g(z) =
N
i=1

1
z − νi

=
∂

∂z
log

N
i=1

(z − νi) =
∂

∂z
log det(zI −M). (2.85)

Then, using the Gaussian representation of det(zI −M)−1/2, we have that

Z(z) ≡ (det(zI −M))−1/2 =


exp

−

1
2

N
i,j=1

ηi(zI −M)ijηj
 N

j=1


dηj
√
2π


. (2.86)

Plugging this last equation into (2.85) and assuming that the Stieltjes transform is self-averaging, we see that we need to
compute the average of the logarithm of Z(z):

g(z) = −2
∂

∂z
E logZ(z), (2.87)

where the average is taken over the probability distribution PM. However, it would be easier to compute the moments
EZn(z) instead of E logZ(z) and this is precisely the purpose of the Replica trick which was initially formulated as the
following identity

logZ = lim
n→0

Zn
− 1
n

, (2.88)

so that one formally has

g(z) = lim
n→0

∂

∂z
EZn
− 1

n
. (2.89)

We have thus transformed the problem (2.87) into the computation of n replicas of the system involved in Zn(z). The non-
rigorous part of this method is quite obvious at this stage. While the integer moments of Z can indeed be expressed as an
average of the replicated system, the identity (2.88) requires vanishingly small, real values of n. Typically, one works with
integer n’s and then perform an analytical continuation of the result to real values of n before taking the limit n→ 0 (after, as
it turns out, sending the size of the matrix N to infinity!). Therefore, the main concern of this method is that we assume that
the analytical continuation poses no problem, which is not necessarily the case. It is precisely this last step that could lead
to uncontrolled approximations in some cases [87], which is why numerical (or other) checks are mandatory. Nonetheless,
the Replica trick gives a simple heuristic to compute the Stieltjes transform g(z) which, as shown below, is exact for the
quantities considered in this review.
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For our purposes, we need to extend the above Replica formalism for the entire resolvent and not only its normalized
trace. In that case, we will need a slightly different Replica identity, extending (2.88), that we shall now present. The starting
point is to rewrite the entries of the resolvent matrix G(z) using the Gaussian integral representation of an inverse matrix

(zIN −M)−1ij =

  N
k=1

dηk


ηiηj exp


−

1
2

N
k,l=1

ηk(zδkl −Mkl)ηl


  N

k=1
dηk


exp


−

1
2

N
k,l=1

ηk(zδkl −Mkl)ηl

 . (2.90)

As explained in Appendix C, we expect that (2.90) is self-averaging in the LDL thanks to the Central Limit Theorem, so that:

(zIN −M)−1ij =


1
Z

 
N

k=1

dηk


ηiηj exp


−

1
2

N
k,l=1

ηk(zδkl −Mkl)ηl


PM

, (2.91)

where Z is as above the partition function, i.e. the denominator in Eq. (2.90). The replica identity for resolvent is given by

Gij(z) = lim
n→0


Zn−1

 
N

k=1

dηk


ηiηj exp


−

1
2

N
k,l=1

ηk(zδkl −Mkl)ηl


PM

= lim
n→0

 
N

k=1

n
α=1

dηαk


η1i η

1
j

 n
α=1

exp


−

1
2

N
k,l=1

ηαk (zδkl −Mkl)η
α
l


PM

. (2.92)

Again, we managed to rewrite the initial problem (2.91) as the computation of n replicas. We emphasize that (2.92) is valid
for any random matrix M, and is useful provided that we are able to compute the average over the probability density PM.
The identity (2.92) is the central tool of this section. In particular, it allows one to study the asymptotic behavior of the
resolvent entry-wise, which contains more information about the spectral decomposition of M than just the normalized
trace [38]. As will become apparent below, we consider a model of random matrices inspired by Free Probability theory,
i.e. M = A+ΩBΩ∗ and M = A1/2ΩBΩ∗A1/2 (see Section 2.3 above for a more details). We shall focus on the model of free
multiplication since the arguments below may be repeated almost verbatim for the free additive case (see Appendix D).

2.4.2. Matrix multiplication using replicas
We reconsider the model (2.80) and assume without loss of generality that A is diagonal. In that case, we see that PM is

simply the Haar measure over the orthogonal group O(N). We specialize the replica identity (2.92) to M = A1/2ΩBΩ∗A1/2

so that we get

Gij(z) = lim
n→0

 
N

k=1

n
α=1

dηαk


η1i η

1
j e
−

z
2

n
α=1

N
k=1

(ηαk )
2

I1

 n
α=1


ηαA1/2ηαA1/2∗, B, (2.93)

where

Iβ(A′, B) :=


exp

−
βN
2

TrA′ΩBΩ∗

DΩ, (2.94)

is the so-called Harish-Chandra–Itzykson–Zuber integral [88,89]. Explicit results for this integral are known for Hermitian
matrices (β = 2) for any integer dimension N , but not for real orthogonal matrices. Even the study of (2.94) in the limit
N →∞ is highly non trivial (see Appendix A). Nevertheless, in the case where A′ is of finite rank, the leading contribution
for N →∞ is known for any symmetry group. Fortunately, we see that A′ in our case is of rank n and the result is obtained
from Eq. (A.5) in Appendix A15:

I1

 n
α=1


ηαA1/2ηαA1/2∗, B ∼

N→∞
exp


N
2

n
α=1

WB


1
N

N
i=1

(ηαi )
2ai


, (2.95)

with

W ′

B(.) = RB(.), (2.96)

15 Recall that we work with n as an integer throughout the intermediate steps of the computation.
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and where we assume that the vectors [ηα]nα=1 are orthogonal to each other, which is generically true provided n ≪ N .
We then plug this result into (2.93) and introduce an auxiliary variable pα = 1

N

N
i=1(η

α
i )

2ai that we enforce using the
exponential representation of a Dirac delta function

δ

pα −

1
N

N
i=1

(ηαi )
2ai

=


1
2π

exp

iζ α

pα −

1
N

N
i=1

(ηαi )
2ai


dζ α, (2.97)

for each α = 1, . . . , n. This allows to retrieve a Gaussian integral on ηα . Renaming ζ α = −2iζ α/N yields the result

Gij(z) ∝
  

n
α=1

dpαdζ α


δij

z − ζ 1ai
exp


−

Nn
2

F0(pα, ζ α)


(2.98)

where F0 is the free energy given by

F0(pα, ζ α) =
1
n

n
α=1


1
N

N
k=1

log(z − ζ αak)+ ζ αpα −WB(pα)


. (2.99)

Now, one sees that the integral over dpαdζ α involves the exponential of Nn/2 times the free energy, which is of order unity.
Provided that n is non-zero, one can estimate this integral via a saddle point method (but of course n will be sent to zero
eventually...). We assume a replica symmetric ansatz for the saddle point, i.e. pα = p∗ and ζ α = ζ ∗, ∀α = 1, . . . , n. This is
natural since F0 is invariant under the permutation group Pn. Note however that the replica symmetric ansatz can lead to
erroneous results and this phenomenon is known as replica symmetry breaking, see e.g. [47,87] or [90] and references therein
for amathematical formalism. The rest of the calculation relies on a saddle-point analysis whose details we postpone below,
and we finally obtain a so-called ‘‘global law’’ for the resolvent ofM16:

zGM(z)i,j ∼
N→∞

Z(z)GA(Z(z))i,j, Z(z) := zSB(zgM(z)− 1), (2.100)

which is often referred to as a subordination relation between the resolvent of M and A. Taking the trace of both sides of
the above equation, one notices that (2.100) is a generalization of the formula (2.84) as a matrix. We should emphasize that
Eq. (2.100) is self-averaging element by element for the matrix GM(z), i.e. Gij(z) = ⟨Gij(z)⟩ + O(N−1/2). The matrix GM(z)
taken as a whole cannot be considered deterministic, for example ⟨GM(z)⟩2 is in general different from ⟨G2

M(z)⟩. When
considering the whole matrix GM(z) one should rather write:

z ⟨GM(z)⟩ ∼
N→∞

Z(z)GA(Z(z)), Z(z) := zSB(zgM(z)− 1). (2.101)

Note that the average resolvent ⟨GM(z)⟩ is diagonal in the eigenbasis of A, as expected by symmetry.
We can redo the exact same calculations for the free addition modelM = A+ΩBΩ∗, still with A = diag(a1, a2, . . . , aN)

(see Appendix D). Starting from the replica identity (2.92) and then applying (A.5), we obtain the following expression [38]:

Gij(z) ∝
  

n
α=1

dpαdζ α


δij

z − ζ 1 − ai
exp


−

Nn
2

F a
0 (p

α, ζ α)


, (2.102)

where the ‘free energy’ F a
0 is given by

F a
0 (p, ζ ) :=

1
Nn

n
α=1


N

k=1

log(z − ζ α − ak)−WB(pα)+ pαζ α

. (2.103)

Invoking once again the replica symmetric ansatz, the subordination for the resolvent under the free additionmodel follows
from a saddle-point analysis [38]

GM(z)i,j ∼
N→∞

GA(Za(z))i,j, Za(z) := z −RB(gM(z)), (2.104)

which is exactly the result obtained in [92] in amathematical formalism. Again taking the trace of both sides of this equation
allows one to recover the relation (2.67) between Stieltjes transforms.

16 The term ‘‘global’’ assumes that the imaginary part of z is much larger than N−1 , in contrast to many different studies of the resolvent at a ‘‘local’’ scale
(see [91] for a detail presentation of this concept for Wigner matrices).
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2.4.3. Free multiplication: replica saddle-point analysis
We now present the derivation of (2.100) from (2.98). We shall see that it actually provides an elementary derivation of the free
multiplication formula (2.81). Under the replica symmetric ansatz, the free energy becomes

F0(pα, ζ α) ≡ F0(p, ζ ) =
1
N

N
k=1

log(z − ζak)+ ζp−WB(p),

which needs to be extremized. We first consider the first order condition with respect to pwhich leads to

ζ ∗ = RB(p∗). (2.105)

The other derivative with respect to ζ gives:

p∗ =
1
ζ ∗N

N
k=1

ak
z/ζ ∗ − ak

=

TA


z

RB(p∗)


RB(p∗)

. (2.106)

Hence, plugging (2.105) and (2.106) into (2.98), we get in the large N limit and then the limit n→ 0 by

Gij(z)ij =
δij

z −RB(p∗)ci
. (2.107)

We can find a genuine simplification of the last expression using the connection with the free multiplication convolution. By taking
the normalized trace of GM(z), we see that we have

zgM(z) = ZgA(Z), with Z ≡ Z(z) =
z

RB(p∗)
, (2.108)

which can rewrite as

TM(z) = TA(Z).

Let us define

ω = TM(z) = TA(Z). (2.109)

Using Eq. (2.106), this latter equation implies p∗ = ω/RB(p∗). Let us now show how to retrieve the free multiplicative convolution
(2.81) from (2.108) in the large N limit. Indeed, let us rewrite (2.109) as

zTM(z) = ZTA(Z)RB(p∗), (2.110)

and it is trivial to see that using (2.109) that this last expression can be rewritten as ωT −1M (ω) = ωT −1A (ω)RB(p∗). Finally, using the
definition of the S-transform (2.23), this yields

SM(ω) = SA(ω)
1

RB(p∗)
. (2.111)

Using (2.25), we also have

1
RB(p∗)

= SB(p∗RB(p∗)), (2.112)

But recalling that p∗ = ω/RB(p∗), we conclude from (2.105), (2.109) and (2.112) that

1
ζ ∗
= RB(p∗) = SB(TM(z)). (2.113)

Going back to (2.111), we see that the spectral density ofM is given by Voiculescu’s free multiplication formula

SM(ω) = SA(ω)SB(ω), (2.114)
confirming that the replica symmetry ansatz is indeed valid in this case. Finally, by plugging (2.113) into (2.107), we get the result
(2.100).

3. Spectrum of large empirical covariance matrices

3.1. Sample covariance matrices

3.1.1. Setting the stage
After a general introduction to RMT and to some of the many different analytical tools, we are now ready to handle

the main issue of this review, which is the statistics of sample covariance matrices. As a preliminary remark, note that we
assume that the variance of each variable can be estimated independently with great accuracy given that we have T ≫ 1
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observations for each of them. Consequently, all variables will be considered to have unit variance in the following and we
will not distinguish further covariances and correlations henceforth.

As stated in the introduction, the study of correlation matrices has a long history in statistics. Suppose we consider
a (random) vector y = (y1, y2, . . . , yN). One standard way to characterize the underlying interaction network between
these variables is through their correlations. Hence, the goal is to measure as precisely as possible the true (or population)
covariance matrix, defined as

Cij = E

yiyj

, i, j ∈ [[1,N]] (3.1)

wherewe assumed that the {yi}i∈[[1,N]] have zeromeanwithout loss of generality (see below). It is obvious from the definition
of C that the covariance matrix is symmetric. Throughout the following, we shall define the spectral decomposition of C as

C =
N
i=1

µiviv∗i , (3.2)

with µ1 > µ2 > · · · > µN the real eigenvalues and v1, . . . , vN the corresponding eigenvectors.
As illustrated in the introduction, the concept of covariance is of crucial importance in a wide range of applications. For

instance, let us consider an example that stems from financial applications. The probability of a large loss of a diversified
portfolio is dominated by the correlated moves of its different constituents (see Section 7.1 for more details). In fact, the
very notion of diversification depends on the correlations between the assets in the portfolio. Hence, the estimation of the
correlations between the price movements of these assets is at the core of risk management policies.

The major concern in practice is that the true covariance matrix C is in fact unknown. To bypass this problem, one often
relies on a large number T of independent measurements, namely the ‘‘samples’’ y1, . . . , yT , to construct empirical estimates
of C. We thus define the N × T matrix Yit ∈ RN×T , whose elements are the tth measurement of the variable yi. Within our
example from finance, the random variable Yit would be the return of the asset i at time t . Eq. (3.1) is then approximated by
an average value over the whole sample data of size T , leading to the sample (or empirical) covariance matrix estimator:

Eij =
1
T
(YY∗)ij =

1
T

T
τ=1

YitYjt . (3.3)

In the statistical literature, this estimator is known as Pearson estimator and in the RMT community, the resulting matrix
sometimes referred to as the Wishart Ensemble. Whereas the Wigner Ensemble has been the subject of a large amount
of studies in physics [50], results on the Wishart Ensemble mostly come from mathematics & statistics [18,56,93,94],
telecommunication [57] or the financial/econophysics literature [24,29,67], although some work in the physics literature
also exists [95–98]—to cite a few.

In what we call the ‘‘classical’’ statistical limit, i.e. T → ∞ with N fixed, the law of large numbers tells us that E
converges to the true covarianceC. However, as recalled in the introduction, in the present ‘‘BigData’’ erawhere scientists are
confrontedwith large data-sets such that the sample size T and the number of variablesN are both very large, specific issues
arise when the observation ratio q = N/T is of order unity. This setting is known in the literature as the high-dimensional
limit or Kolmogorov regime (or more commonly called the Big Data regime). This regime clearly differs from the traditional
large T , fixedN situation (i.e. q→ 0), where classical results ofmultivariate statistics apply. The setting q ∼ O(1) is precisely
where tools from RMT can be helpful to make precise statements on the empirical covariance matrix (3.3).

A typical question would be to study the ESD of E in order to quantify its deviation from the true covariance matrix C.
More precisely, does the ESD converges to an explicit LSD? If it does, can we get a tractable expression for this LSD? In
the case where the samples {yt}Tt=1 are given by a multivariate Gaussian distribution with zero mean and covariance C, the
distribution of the matrix E is exactly known since Wishart [9], and is given by Eq. (2.38) above, with M → E. In the case
where C = T−1IN , we retrieve the isotropic Wishart matrix above that we fully characterized in the previous section. The
aim is now to provide the LSD of E for an arbitrary true covariance matrix C. More specifically, we shall look at linear models
where the data matrix Y can be decomposed as

Y =
√
CX, (3.4)

where X is a N × T randommatrix with uncorrelated entries satisfying

E[Xit ] = 0, E[X2
it ] =

1
T
. (3.5)

The above decomposition is always possible for multivariate Gaussian variables. Otherwise, the above framework assumes
that our correlated random variables yi are obtained as linear combinations of uncorrelated random variables. In addition,
we also require that the random variables

√
TXit have a bounded 4th moment, in other words that the distribution cannot

be extremely fat-tailed.
Next, we introduce the spectral decomposition of E,

E =
N
i=1

λiuiu∗i , (3.6)
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with λ1 > λ2 > · · · > λN the eigenvalues and u1, . . . ,uN the corresponding eigenvectors. Let us now list the main
assumptions on the spectrum of E, that we shall suppose to hold throughout this review:
(i) The support of ρE consists of r+1 (connected) componentswith r > 0.We call the r largest components the outliers and

the smallest component the bulk. The boundary points of the bulk component are labeled λ− and λ+ (with λ− 6 λ+).
(ii) We suppose that the outliers are separated from each other and from the bulk (non-degeneracy).
(iii) We suppose that the bulk is regular in the sense that the density of ρE vanishes as a square root at the boundary points

λ−, λ+.

In this section, we will look at the statistics of the eigenvalues of this model and the following one will be devoted to the
eigenvectors.

We end up this short introduction with two different remarks. The first one comments the zero-mean assumption made
above, while the second one is concerned with the possible fat-tailed nature of the random variables under scrutiny.

3.1.2. Zero-mean assumption
In real data-sets, sample vectors yt usually have a non-zero mean (even if the true underlying distribution is of zero

mean). One can therefore choose to shift the sample vectors in such a way that the empirical mean is exactly zero. This leads
to the following definition of the empirical correlation matrix, often found in the literature:

Ĕij =
1

T − 1

T
t=1


Yit − Yi


Yjt − Yj


, Yi =

1
T

T
τ=1

Yiτ (3.7)

which is clearly unbiased as for T →∞with N fixed. This can be rewritten as:

Ĕ =
1

T − 1
Y

IT − ee∗


Y∗, e := (1, 1, . . . , 1)∗/

√
T ∈ RT .

Still, the asymptotic properties of the eigenvalues (and eigenvectors) of E and of Ĕ are identical, up to a possible extra outlier
eigenvalue located at zero when q > 1. The simplest way to understand that the outlier has no influence on the asymptotic
behavior of the spectrum iswhenY is a Gaussianmatrix. In this case, we know that a Gaussianmatrix is statistically invariant
under rotation so one can always rotate the vector e in the T dimensional space such that it becomes, say, (1, 0, . . . , 0). Then
one has:

Ĕij ∼
1

T − 1

T
t=2

YitYjt

which means that Ĕ and E share identical statistically properties when N, T → ∞ up to a rank one perturbation of
eigenvalue ∼T−1 → 0 (see Section 2.3.2 for a related discussion). For q < 1, this has no influence at all on the spectrum
since the corresponding eigenvalue is reabsorbed in the bulk. The possible spike associated to the rank-one perturbation
only survives when N > T , and it leads to an extra zero eigenvalue from the last equation. But in the case where q > 1,
we know that there are (N − T ) additional zero eigenvalues, meaning that the extra spike at the origin is harmless. The
case where Y is not rotationally invariant is harder to tackle and needs more sophisticated arguments for which we refer
the reader to [99, Section 9] for more details. As a consequence, all the results concerning the statistics of the eigenvalues
of E that we shall review below hold for Ĕ as well. From a practical point of view, it is indifferent to consider raw data or
demeaned data. We will henceforth assume that the samples data (y1, . . . , yT ) has exactly zero mean and will work with
the corresponding E in the next sections.

3.1.3. Distribution of the data entries
The second remark dealswith the distribution of the entries of thematrixY given in Eq. (3.5). It iswell-known for instance

that financial returns are strongly non-Gaussian, with power-law tails [25], and hence, the condition of a sufficient number
of bounded moments can be seen as restrictive. What can be said in the case of entries that possess extremely fat tails?
This is the main purposes of the theory of robust estimators [100,101] where the RMT regime N ≍ T has been subject to
a lot studies in the past few years, especially in the case of elliptical distributions [57,102–104]. In particular, the so-called
Maronna robustM-estimator of C is the (unique) solution of the fixed point equation

M :=
1
T

T
t=1

U
 1
N
y∗t M

−1yt

yty∗t , (3.8)

where U is a non-increasing function. It was shown recently [105] that the matrix M converges to a matrix of the form
encountered in Eq. (2.80) and thus different from E. However, tractable formulae are scarce except for the multivariate
Student distribution where U(x) ∼ x−1 [102,103,106,107]. In that case, we have from [108] that the LSD of M converges
(almost surely) to that of standard Wishart matrix E as N →∞. Therefore, all the results that we will present below holds
for the robust estimator of C under a multivariate Student framework (see also [102]). We postpone discussions about other
class of distributions to Section 9.
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3.2. Bulk statistics

3.2.1. Marčenko–Pastur equation
As we alluded to in the introduction, the fundamental tool to analyze the spectrum of large sample covariance matrices

is the Marčenko–Pastur equation [18]. We actually have already encountered a special case of this equation in Section 2.2.3
where we consider the LSD of E under the null hypothesis C = IN (isotropic case). In this section, we allow the population
correlation matrix C to be anisotropic, that is to say not proportional to the identity matrix. As we shall see, the final result
is not as simple as Eq. (2.41) but many properties can be inferred from it.

The Marčenko–Pastur (MP) equation dates back to their seminal paper [18] which gives an exact relation between
the limiting Stieltjes transforms of E and C. This result is at the heart of many advances in statistical inference in high
dimension (see Section 7 for some examples or [93] and references therein). There are several ways to obtain this result,
using e.g. recursion techniques [109], Feynman diagram expansion [67], replicas (see [22] or Section 2.4 for a generalization)
or free probability. We will present this last approach, which is perhaps the simplest way to derive the MP equation.

The key observation is that, for linear models, we can always rewrite E using Eq. (3.4) as

E =
√
CW
√
C, W := XX∗,

where the matrix X satisfies Eq. (3.5) and is independent from C. The model falls into the model of free multiplication
encountered in Section 2.3 since E is the free multiplicative convolution of Cwith a whiteWishart kernel for N →∞ [110].
Therefore, the Stieltjes transform of E is exactly given by Eq. (2.84) that we specialize to

zgE(z) = Z(z)gC (Z(z)) , with Z(z) := zSW (zgE(z)− 1). (3.9)

Moreover, the S-transform of W was obtained in Eq. (2.44), i.e. SW (z) = (1+ qz)−1 for any q > 0. Thus, we can re-express
Z(z) as:

Z(z) =
z

1− q+ qzgE(z)
, (3.10)

which is exactly the Marčenko–Pastur self-consistent equation which relates the Stieltjes transforms of E and C. The
remarkable thing is that the RHS of Eq. (3.9) is ‘‘deterministic’’ as C is fixed in this framework. Note that this equation is
often written in the mathematical and statistical literature in an equivalent form as:

gE(z) =


ρC(µ)dµ
z − µ(1− q+ qzgE(z))

. (3.11)

There are two ways to interpret the above Marčenko–Pastur equation:

1. the ‘direct’ problem:we knowC andwewant to compute the expected eigenvalues densityρE of the empirical correlation
matrix;

2. the ‘inverse’ problem: we observe E and try to infer the true C that satisfies Eq. (3.9).

Obviously, the inverse problem is the one of interest formany statistical applications, but ismuchmore difficult to solve than
the direct one as themapping between gC from gE is numerically unstable. Still, thework of El-Karoui [33] and,more recently,
of Ledoit and Wolf [111] allows one to make progress in this direction with a numerical scheme that solves a discretized
version of the inverse problem Eq. (3.11). On the other hand, the direct problem leads to a self-consistent equation, which
can be exactly solved numerically and sometimes analytically for some special forms of gC (see next section).

Let us finally make a remark that we have not seen in the literature before. Enhancing Z(z) to Z(z, q) to emphasize its
dependence on q, one can check that this object obeys the following simple PDE [112]:

q
∂Z(z, q)
∂q

= (Z(z, q)− z)
∂Z(z, q)
∂z

, (3.12)

with initial condition Z(z, q→ 0) = z+qz(1−zgC(z)). This representation can be given a direct interpretation butwhether
it is useful numerically or analytically remains to be seen.

3.2.2. Spectral statistics of the sample covariance matrix
For statistical purposes, the Marčenko–Pastur equation provides an extremely powerful framework to understand the

behavior of large dimensional sample covariance matrices, despite the fact that the inverse problem is not numerically
stable. As we shall see in this section, one can infer many properties of the spectrum of E knowing that of C, using the
moment generating function. Recall the definition of the T -transform in Eq. (2.21), it is easy to see that we can rewrite
Eq. (3.9) as

TE(z) = TC(Z(z)), Z(z) =
z

1+ qTE(z)
. (3.13)
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We know from Eq. (2.22) that the T -transform can be expressed as power series for z →∞, hence we have

TE(z) =
z→∞

∞
k=1

ϕ(Ek)z−k, (3.14)

where ϕ(.) = N−1Tr(.) is the normalized trace operator. We thus deduce that

Z(z) =
z→∞

z

1+ q
∞
k=1
ϕ(Ek)z−k

.

Therefore we have for z →∞

TC(Z(z)) =
z→∞

∞
k=1

ϕ(Ck)

zk


1+ q

∞
ℓ=1

ϕ(Eℓ)z−ℓ
k

. (3.15)

All in all, one can thus relate the moments of ρE with the moments of ρC by taking z →∞ in Eq. (3.13) which yields

∞
k=1

ϕ(Ek)

zk
=

∞
k=1

ϕ(Ck)

zk


1+ q

∞
ℓ=1

ϕ(Eℓ)z−ℓ
k

, (3.16)

which was first obtained in [67]. In particular, we infer from Eq. (3.16) that the first three moments of ρE satisfy

ϕ(E) = ϕ(C) = 1
ϕ(E2) = ϕ(C2)+ q

ϕ(E3) = ϕ(C3)+ 3qϕ(C2)+ q2. (3.17)

We thus see that the variance of the LSD of E is equal to that of C plus q, i.e. the spectrum of the sample covariance matrix E
is always wider (for q > 0) than the spectrum of the population covariance matrix C. This is an alternative way to convince
ourselves that E is a noisy estimator of C in the high-dimensional regime.

Note that we can also express the Marčenko–Pastur equation in terms of a cumulant expansion. Indeed, we can rewrite
Eq. (3.9) in terms of the R-transform (see below for a derivation)

ωRE(ω) = ζ (ω)RC(ζ (ω)), ζ (ω) = ω

1+ qωRE(ω)


. (3.18)

Using the cumulants expansion of the R-transform, given in Eq. (2.19), we obtain for ω→ 0

ωRE(ω) =

∞
ℓ=1

κℓ(E)ωℓ, (3.19)

and

ζ (ω)RC(ζ (ω)) =

∞
ℓ=1

κℓ(C)ωℓ

1+ q

∞
m=1

κm(E)ωm
ℓ
. (3.20)

By regrouping these last two equations into Eq. (3.18), the analogue of Eq. (3.16) in terms of free cumulants reads:

∞
ℓ=1

κℓ(E)ωℓ =
∞
ℓ=1

κℓ(C)ωℓ

1+ q

∞
m=1

κm(E)ωm
ℓ
, (3.21)

which would allow one to express the cumulants of E in terms of the cumulants of C.
Another interesting expansion is the case where q < 1, meaning that E is invertible. Hence g(z) for z → 0 is analytic and

one can readily find

g(z) =
z→0
−

∞
k=1

ϕ(E−k)zk−1. (3.22)

This allows one to study the moment of the LSD of E−1 and this turns out to be an important quantity in many applications
(see Section 7). Using Eq. (3.9), we can actually relate themoments of the spectrum E−1 to those of C−1 as one has, for z → 0:

Z(z) =
z

1− q− q
∞
k=1
ϕ(E−k)zk

.
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Hence, we obtain the following expansion for Eq. (3.9) at z → 0 and q ∈ (0, 1):

∞
k=1

ϕ(E−k)zk =
∞
k=1

ϕ(C−k)


z
1− q

k 1

1− q
1−q

∞
ℓ=1
ϕ(E−ℓ)zℓ

k

, (3.23)

that is a little bit more cumbersome than the moment generating expansion Eq. (3.16) or the cumulant expansion (3.21).
Still, we get at leading order that

ϕ(E−1) =
ϕ(C−1)
1− q

, ϕ(E−2) =
ϕ(C−2)
(1− q)2

+
qϕ(C−1)2

(1− q)3
. (3.24)

We will see in Section 7.1 that the first relation (that can be found in [67]) has direct consequences for the out-of-sample
risk of optimized portfolios.

Let us now give a formal derivation of Eq. (3.18). Let us define

ω = gE(z), ζ = gC(Z), (3.25)

which allows us to rewrite Eq. (3.9) as

ωBE(ω) = ζBC(ζ ), Z ≡ BC(ζ ) =
BE(ω)

1− q+ qωBE(ω)
. (3.26)

Then, using the definition (2.16) of the R-transform, we can rewrite this last equation as

ωRE(ω) = ζRC(ζ ), RC(ζ )+
1
ζ
=

RE(ω)+ 1/ω
1+ qωRE(ω)

. (3.27)

We deduce that

RC(ζ ) =
RE(ω)+ 1/ω
1+ qωRE(ω)

−
1
ζ
, (3.28)

which yields

ωRE(ω) = ζ


RE(ω)+ 1/ω
1+ qωRE(ω)

−
1
ζ


. (3.29)

By re-arranging the terms in this last equation, we obtain

ωRE(ω)+ 1 =
ζ

ω


ωRE(ω)+ 1
1+ qωRE(ω)


, (3.30)

that is to say

ζ ≡ ζ (ω) = ω

1+ qωRE(ω)


, (3.31)

and Eq. (3.18) immediately follows by plugging this last equation into Eq. (3.28).

3.2.3. Dual representation and edges of the spectrum
Although a lot of information about the spectrum of E can be gathered from the Marčenko–Pastur equation (3.9), the

equation itself is not easy to solve analytically. In particular, what can be said about the edges of the spectrum of E?We shall
see that one can answer some of these questions by using a dual representation of Eq. (3.9).

The ‘‘dual’’ representation that we are speaking about comes from studying the T × T matrix S:

S :=
1
T
Y∗Y ≡ X∗CX, (3.32)

where we used Eq. (3.4) in the last equation. The dual matrix S can also be interpreted as a correlation matrix. In a financial
context, E tells us how similar is the movement of two stocks over time, while S tells us how similar are two dates in terms
of the overall movements of the stocks on these two particular dates. Using a singular value decomposition, it is not difficult
to show that S and E share the same non-zero eigenvalues—hence the ‘‘duality’’. In the case where T > N , the matrix S has
a zero eigenvalue with multiplicity T − N in addition to the eigenvalues {λi}i∈[1,N] of E. Therefore, it is easy to deduce the
Stieltjes transform of S:

gS(z) =
1
T


T − N

z
+ NgE(z)


=

1− q
z
+ qgE(z) =

1
Z(z)

. (3.33)
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Fig. 6. The function BE(x)with population eigenvalues density given by 0.002 δ15 + 0.002 δ8 + 0.396 δ3 + 0.3 δ1.5 + 0.3 δ1 . Here T = 1000, N = 500 and
we have 3 connected components. The vertical asymptotes are located at each−x−1 for x ∈ {1, 1.5, 3, 8, 15}. The support of ρS is indicated with thick blue
lines on the vertical axis. The inverse of gS|R\supp ρS is drawn in red. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

The introduction of this dual representation of the empirical matrix allows one to get the following expression from
Eq. (3.11):

gS(z) =
1
z


1− q+ q


ρC(µ)dµ
1− µgS(z)


.

After some manipulations, we can rewrite this last equation as

z =
1

gS(z)
+ q


ρC(µ)dµ
µ−1 − gS(z)

. (3.34)

Writing ω = BS(gS(z)) in the above equation, we obtain a characterization of the functional inverse of gS as

BS(ω) :=
1
ω
+ q


ρC(µ)dµ
µ−1 − ω

, (3.35)

and this is the dual representation of the Marčenko–Pastur equation (3.9). The analytic behavior of this last equation has
been the subject of several studies, especially in [30]. In particular, it was proved that there exists a unique ω ∈ C+ that
solves Eq. (3.35). This yields the Stieltjes transform of S fromwhichwe re-obtain the Stieltjes transform of E using Eq. (3.33).
We will see in the next section that the dual representation (3.35) of the Marčenko–Pastur equation is particularly useful
when we will try to solve the direct problem.

In addition, the position of the edges of the LSD of E can be inferred from Eq. (3.35). Within a one cut-assumption, the
edges of the support of ρE are given by:

λE
±
= BS(ω±) where ω± ∈ R+ is such that B ′S(ω±) = 0. (3.36)

Indeed, knowing the spectral density of S allows us to get the spectral density of E since from Eq. (3.33) one gets:

ρS(λ) = qρE(λ)+ (1− q)+δ0, (3.37)

for any λ ∈ supp ρS. Next, one easily obtains

g′S(z) = −

ρS(x)dx
(z − x)2

< 0, (3.38)

for any z ∉ supp[ρS], meaning that it is strictly decreasing outside of the support. We saw in Section 2.1.2 that the
Stieltjes transform g(z) is analytical and positive for any z ∈ R outside of the support. Moreover, for z → ∞, we
have gS(z) ∼ z−1 + O(z−2) so that we deduce gS(z) is a bijective decreasing function. Its inverse function BS therefore
also decreases in those same intervals. Consequently, the union of intervals where BS(x) is decreasing will lead to the
complement of the support and the edges of the support of ρS are thus given by the critical points of BS, as in Eq. (3.36).
If one assumes that there are a finite number r of (non-degenerate) spikes, we can readily generalize the above arguments
and find that there will be 2(r + 1) critical points (see Fig. 6 for an illustration with two non-degenerate spikes).
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Fig. 7. Typical position of the sample eigenvalues under the Marčenko–Pastur law (2.42) with a finite observation ratio q = 0.25 (red line) and q = 0.5
(blue line). The dotted line corresponds to the locations of the population eigenvalues andwe see a significant deviation. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

3.2.4. Solving Marčenko–Pastur equation
In this section, we investigate the direct problem of solving the Marčenko–Pastur equation (3.9) for gE given gC. We will

discuss briefly the inverse problem at the end of this section.
Exactly solvable cases. As far as we know, there are only a few cases where we can find an explicit expression for the LSD
of E. The first one is trivial: it is when one considers the ‘‘classical’’ limit in statistics where T →∞ for a fixed value of N . In
this case q = 0 in (3.11), and obviously gE(z) = gC(z) in this case, as expected.

However, for any finite observation ratio q > 0, we anticipate from the discussion of Section 3.2.2 that the LSD of E will
be significantly different from that of C. The influence of q can be well understood in the simple case where C = IN . We
know from Section 2.2.3 that this case is exactly solvable and the LSD of E is the well-known Marčenko–Pastur law (2.42),
that we recall here:

gE(z) =
z + q− 1−


z − λmp

−


z − λmp

+

2qz
, λ

mp
± = (1±

√
q)2. (3.39)

In words, the sample eigenvalues spans the interval [(1−
√
q)2, (1+

√
q)2]while the population eigenvalues are all equal to

unity.We therefore deduce that the variance of the sample eigenvalue distribution is order q, highlighting the systematic bias
in the estimation of the eigenvalues using Ewhen q = O(1). This effect can be visualized using the quantile representation
of the spectral distribution. Indeed, it is known since [99,113] that the bulk eigenvalues [λi]i∈[[r+1,N]] converge in the high-
dimensional regime to their ‘‘quantile positions’’ [γi]i∈[[r+1,N]]. More precisely, this reads:

λi ≈ γi, where
i
N
=

 γi

ρE(λ)dλ, i > r + 1. (3.40)

We plot the γi’s of the Marčenko–Pastur law in Fig. 7 for q = 1/4 and q = 1/2, and observe systematic and significant
deviations from the ‘‘classical’’ positions γ q=0

i ≡ 1. This again illustrates that E is an untrustworthy estimator when the
sample size is of the same order of magnitude as the number of variables.

Now that the qualitative impact of the observation ratio q iswell understood, a natural extensionwould be to examine the
Marčenko–Pastur equation for a non trivial correlation matrix C. To this aim, we now consider another interesting solvable
case, especially for statistical inference, which is the case and of an (isotropic) inverseWishart matrix with hyper-parameter
κ > 0. From Section 2.2.4, we recall that

SC(ω) = 1−
ω

2κ
,

for κ > 0. Then, using the freemultiplication formula (2.81), we have SE(ω) = SC(ω)SW (ω)where SW (ω) is given in (2.44),
which yields a quadratic equation in TE(z). This implies that gE reads:

gE(z) =
z(1+ κ)− κ(1− q)±


(κ(1− q)− z(1+ κ))2 − z(z + 2qκ)(2κ + 1)

z(z + 2qκ)
, (3.41)

from which we can retrieve the edges of the support:

λiw
±
=

1
κ


(1+ q)κ + 1±


(2κ + 1)(2qκ + 1)


. (3.42)
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Fig. 8. Solution of the Marčenko–Pastur equation for the eigenvalue distribution of E when C is an inverse Wishart matrix with parameter κ = 1.0 for
q = 0.25 (red line) and q = 0.5 (blue line). The black dotted line corresponds to the LSD ρC .

One can check that the limit κ → ∞ recovers the null hypothesis case C = IN ; the lower κ , the wider the spectrum of C.
We plot in Fig. 8 the spectral density ρC and ρE for q = 0.25 and q = 0.5 as a function of the eigenvalues. Again, we see
that the spectral density of E puts significant weights on regions of the real axis which are outside the support of ρC, due to
the measurement noise. From an inference theoretic viewpoint, the interest of the Inverse-Wishart ensemble is to provide
a parametric prior distribution for C where everything can be computed analytically (see Section 5 for some applications).

There exist several other examples where the Marčenko–Pastur equation is exactly solvable even though the Stieltjes transform is not
explicit. For instance, if we consider C to be a Wishart matrix of parameter q0 independent fromW, then we have from (2.81) that

SE(ω) =
1

(1+ q0ω)(1+ qω)
.

It is then easy to see from the definition (2.23) that TE(z) ≡ ω(z) is solution of the cubic equation,

z(1+ ω(z))(1+ q0ω(z))(1+ qω(z))− ω(z) = 0, (3.43)

fromwhichwe obtain gE(z) thanks to (2.21) and by choosing the unique solution of the latter equation inC+ (see the following section
for details on this point). Another toy example that uses the Marčenko–Pastur with the R-transform formalism is when C is a GOE
centered around the identity matrix. In this case we have

RC(ω) = 1+ σ 2ω, (3.44)

where we add the constraint σ 6 0.5 such that C remains a positive semi-definite matrix. Then, by plugging this formula into (3.18),
we find that gE(z) = ω is the solution of quartic equation:

σ 2ω2(1+ qωRE(ω))
2
+ ω(1+ qωRE(ω))− ωRE(ω) = 0, (3.45)

and as above, we take the unique solution in C+ in order to get the right Stieltjes transform.

The general case: numerical method. Apart from the very specific cases discussed above, finding an explicit expression
for gE(z) is very difficult. This means that we have to resort to numerical schemes in order to solve the Marčenko–Pastur
equation. In that respect, the dual representation (3.35) of Eq. (3.9) comes to be particularly useful. To solve theMP equation
for a given z, we seek a certain g ≡ gS such that17

z = BS(g), g ∈ C+, (3.46)

where the expression of BS in terms of ρC is explicit and given in Eq. (3.35). Numerically, the above equation is easily solved
using a simple gradient descent algorithm, i.e. find g ∈ C+ such that

Re(z) = Re

BS(g)


Im(z) = Im


BS(g)


.

(3.47)

It then suffices to use Eq. (3.33) in order to get gE(z) for any z ∈ C−. Hence, if one wants to retrieve the eigenvalues density
ρE at any point on the real line, we simply have to set z = λ − iε with λ ∈ Supp(E) and ε an arbitrary small real positive

17 Recall that S is the T × T equivalent of E defined in Eq. (3.32).
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Fig. 9. Resolution of the Marčenko–Pastur equation when ρC is given a power law density with parameter λ0 = 0.3 and a finite observation ratio q = 0.5
and N = 500. The dotted line corresponds to the LSD of C while the plain line corresponds to the LSD of E. The histogram is the ESD when we compute E
from the definition (3.3). The main figure covers the bulk of the eigenvalues while the inset zooms in the region of very large eigenvalues.

number into Eq. (3.47). Note that in the case where gC is known, one can rewrite Eq. (3.35) as

BS(x) =
1
x


1− q+

q
x
gC


1
x


, (3.48)

which is obviously more efficient since we avoid to compute the integral over eigenvalues.
In order to illustrate this numerical scheme, let us consider a covariance matrix whose LSD has a heavy right tail. One

possible parametrization is to assume a power-law distribution of the form [29]:

ρC(λ) =
sA

(λ+ λ0)1+s
Θ(λ− λmin), (3.49)

whereΘ(x) = x+ is the Heaviside step function, s is an exponent that we choose to be s = 2 [29], and λmin the lower edge of
the spectrum below which there are no eigenvalues of C. A, λmin are then determined by the two normalization constraints
ρC(x)dx = 1 and


xρC(x)dx = 1. This leads to: λmin = (1 − λ0)/2 and A = (1 − λmin)

2. We restrict to λ0 > −11 such
that λmin < 1. From the density Eq. (3.49), one can perform the Stieltjes transform straightaway to find

gC(z) =
1

z + 1− 2λ0
+

2(1− λ0)
(z + 1− 2λ0)2

+
2(1− λ0)2

(z + 1− 2λ0)3


log


λ0 − z
1− λ0


, (3.50)

which allows one to solve Eq. (3.48) for gE(z) with only a few iterations. As we observe in Fig. 9, the theoretical value
obtained from the numerical scheme (3.47) agrees perfectly with the empirical results, obtained by diagonalizing matrices
of size N = 500 matrices obtained as

√
CW
√
C, where W is a Wishart matrix. This illustrates the robustness of the above

numerical scheme, even when the spectrum of C is fat-tailed. In addition, we can notice that the more we add structure in
the true covariance C, the wider is the empirical distribution as in the above case, where the spectrum of E embraces nearly
all the positive real number line. Note that an ODE approach to solveMarčenko–Pastur equation has been proposed recently
in [114]. While this is a bit more complicated to implement, numerical simulations in [114] show that it yields more robust
results than the simple newton approach.

3.3. Edges and outliers statistics

As we alluded to several times above, the practical usefulness of the theoretical predictions for the eigenvalue spectra
of random matrices is (i) their universality with respect to the distribution of the underlying random variables and (ii) the
appearance of sharp edges in the spectrum, meaning that the existence of eigenvalues lying outside the allowed region is
a possible indication against simple ‘‘null hypothesis’’ benchmarks. Illustrating the last point, Fig. 10 shows the empirical
spectral density of the correlation matrix corresponding to N = 406 and T = 1300 so that q ≈ 0.31, compared to the
simplest Marčenko–Pastur spectrum in the null hypothesis case C = IN . While the bulk of the distribution is roughly
accounted for (but see Section 7.2 for a much better attempt), there seems to exist a finite number of eigenvalues lying
outside the Marčenko–Pastur sea, which may be called outliers or spikes. However, even if there are no such spikes in the
spectrum of C, one expects to see, for finite N some eigenvalues beyond the Marčenko–Pastur upper edge. The next two
subsections are devoted first to a discussion of these finite size effects, and then to a model with ‘‘true’’ outliers that survive
in the large N limit.
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Fig. 10. Test of the null hypothesis on the empirical correlation matrix E using US stocks’ data with N = 406 and T = 1300.

3.3.1. The Tracy–Widom region
This existence of sharp edges delimiting a regionwhere one expects to see a non zero density of eigenvalues from a region

where there should be none is only true in the asymptotic N, T →∞, and in the absence of ‘‘fat-tails’’ in the distribution of
matrix elements (see [74,115]). For large but finiteN , on the other hand, one expects that the probability to find an eigenvalue
beyond the Marčenko–Pastur sea is very small but finite. The width of the transition region, and the tail of the density of
states was investigated already a while ago [116], culminating in the beautiful results by Tracy &Widom on the distribution
of the largest eigenvalue of a random matrix [27]. The Tracy–Widom result is actually a very nice manifestation of the
universality phenomenon that describes the fluctuations of macroscopic observables in many large dimensional systems
(see the recent paper [117] on this topic). The derivation of the Tracy–Widom distribution mainly relies on Orthogonal
polynomials that we will not discuss in this review (see e.g. [27,118]) but there also exists an alternative approach [119].
The link between this limiting law and the largest eigenvalue of large sample covariancematrices has been subject to a large
amount of studies that we will not attempt to cover here (see e.g. [26,51,52,120–122] for details and references).

The Tracy–Widom result characterizes precisely the distance between the largest eigenvalue λ1 of E and the upper edge
of the spectrum that we denoted by λ+. This result can be (formally) stated as follows: the rescaled distribution of λ1 − λ+
converges towards the Tracy–Widom distribution, usually noted F1,

P

λ1 6 λ+ + γN−2/3u


= F1(u), (3.51)

where γ is a constant that depends on the problem. For the isotropic Marčenko–Pastur problem, λ+ = (1 +
√
q)2 and

γ =
√
qλ2/3+ , whereas for the Wigner problem, λ+ = 2 and γ = 1. We stress that this result holds for a large class of N ×N

matrices (e.g. symmetric randommatrices with IID elements of a finite fourth moment, see [115,74]).
Everything is known about the Tracy–Widom density f1(u) = F ′1(u), in particular its left and right far tails:

ln f1(u) ∝ −u3/2, (u→+∞); ln f1(u) ∝ −|u|3, (u→−∞). (3.52)

One notices that the left tail is much thinner: pushing the largest eigenvalue inside the allowed band implies compressing
the whole Coulomb gas of repulsive charges, which is difficult. Using this analogy, the large deviation regime of the
Tracy–Widom problem (i.e. for λ1 − λ+ = O(1)) can also be obtained [51].

Note that the distribution of the smallest eigenvalue λmin around the lower edge λ− is also Tracy–Widom, except in the
particular case of Marčenko–Pastur matrices with q = 1. In this case, λ− = 0 which is a ‘hard’ edge since all eigenvalues of
the empirical matrix must be non-negative. This special case is treated in, e.g. [123].

3.3.2. Outlier statistics
Now, there are cases where a finite number of eigenvalues genuinely reside outside the Marčenko–Pastur sea (or more

generally outside of the bulk region) even when N →∞. For example, the empirical data shown in Fig. 10 indeed suggests
the presence of true outliers, that have a real financial interpretation in terms of economic sectors of activity. Therefore,
we need a framework to describe correlation matrices that contain both a bulk region and a finite number of spikes. The
purpose of this section is to study the statistics of these eigenvalues from an RMT point of view.
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The standardway to treat outliers is to ‘‘blow out’’ a finite number of eigenvalues of a given (spikeless) correlationmatrix
C, that we construct as:

C =
N
i=1

µiviv∗i , where µi =


µ0 if i 6 r
µi if i > r + 1. (3.53)

We choose the eigenvalue µ0 within the spectrum of C such that there is no outliers initially. Here we fix µ0 = µr+1 for
simplicity, but any other choice in the set [µi]i>r+1 would do equally well. Then with this prescription, we may rewrite C
as a small rank perturbation of C. Indeed, since each outlier [µi]i6r is well separated from the bulk by assumption, we may
parametrize each spike µi by a positive real number di for any i 6 r as follows:

µi = µ0(1+ di) ≡ µr+1(1+ di), di > 0, i 6 r. (3.54)

Hence, the population covariance matrix C is given by:

C =
N
i=1

µiviv∗i , where µi =


µ0(1+ di) if i 6 r
µi if i > r + 1. (3.55)

More synthetically, one can write C as:

C = C

IN + V(r)DV(r)∗


, (3.56)

where V(r) := [v1, . . . , vr ] ∈ RN×r and D := diag(d1, . . . , dr) is a diagonal matrix that characterizes the spikes. We also
define a fictitious spikeless sample covariance matrix as E = C1/2XX∗C1/2 and denote by S = X∗CX the T × T ‘‘dual’’ matrix.
As noticed in [39], the statistics of the outliers of E can be investigated through that of E. Let us consider the rank-one r = 1
case for the sake of simplicity (see [39] for the general case). Then, we have

det(zIN − E) = det(zIN − X∗C(IN + d1v1v∗1)X) = det(zIN − XX∗C(IN + d1v1v∗1))

which can be transformed into:

det(zIN − E) = det(zIN − E) det(IN − d1(zIN − E)−1v1v∗1E). (3.57)

We can conclude that λ1 in an eigenvalue of E and not of E if and only if the second determinant vanishes, i.e. if
d1(λ1IN − E)−1v1v∗1E has an eigenvalue equals to unity. To find λ1, we remark that this second determinant is simply a
rank-one update, meaning that it has only one non-trivial eigenvalue given by the equation:

d1

λ1⟨v1,GE(λ1)v1⟩ − 1


= 1, (3.58)

where GE is the resolvent of E. The difficult part of (3.58) is to find an (asymptotic) expression for the scalar product
⟨v1,GEv1⟩. Let us assumewithout loss of generality18 that C is Gaussian, which allows us to arbitrarily set v1 = (1, 0, . . . , 0).
Then the equation we try to solve is:

λ1GE(λ1)11 = d−11 + 1. (3.59)

As we shall see in the next section, the entries of GE actually converges to a deterministic quantity for N → ∞ and one
obtains using Eq. (4.6) (see (C.19) for an alternative derivation). The result reads

GE(z)11 ≈
1

z − µ1(1− q+ qzgE(z))
=

1
z(1− µr+1gS(z))

,

where we used the identity (3.33) and that µ1 ≡ µr+1 by construction of (3.56) in the last step. If λ1 is not an eigenvalue of
E, we find that Eq. (3.59) becomes in the LDL

1
1− µr+1gS(λ1)

= d−11 + 1, (3.60)

which is equivalent to:

gS(λ1) =
1

µr+1(1+ d1)
≡

1
µ1
, (3.61)

where we used (3.54) in the last step. Hence, we see that λ1 is an outlier if it satisfies for large N:

λ1 = θ(µ1) := BS


1
µ1


, (3.62)

18 The extension to non-Gaussian entries can be done using standard comparison techniques, see e.g. [113] for details.
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This result is very general and can be extended for any outlier λi with i ∈ [[1, r]]. Moreover, we see that for N → ∞, the
(random) outlier λ1 converges to a deterministic function of µ1. Hence, the function (3.62) depicts the ‘‘classical location’’
at which an outlier sticks and can therefore be interpreted as the analog of (3.40) for outliers. Note however that (3.62)
requires the knowledge of the spikeless matrix S (or E). In practice, one should make some assumptions to decide whether
a given empirical eigenvalue should be considered as a spike.

The result (3.62) generalizes the result of Baik–Ben Arous–Péché for the spiked covariance matrix model [121]. Indeed,
let us assume that the eigenvalues of the true covariance matrix C is composed of one outlier and N − 1 eigenvalues at
unity. Then, one trivially deduces that µi = 1 for all i = 1, . . . ,N which implies that the spectrum of E is governed by the
Marčenko–Pastur law (2.42). In fact, in the limit N →∞, the spectra of E and E are equivalent since the perturbation is of
finite rank. Therefore, we can readily compute the Blue transform of the dual matrix S from (3.35) to find

BS(x) =
1
x
+

q
1− x

. (3.63)

Applying this formula to Eq. (3.62) then leads to the so-called BBP phase transition
λ1 = µ1 + q

µ1

µ1 − 1
if µ1 > 1+

√
q;

λ1 = λ+ = (1+
√
q)2 if µ1 6 1+

√
q,

(3.64)

where µ1 = µ0(1 + d1) is the largest eigenvalue of C, which is assumed to be a spike. Note that in the limit µ1 →∞, we
get λ1 ≈ µ1 + q+ O(µ−11 ). For rank r perturbation, all eigenvalues such that µk > 1+

√
q, 1 6 k 6 r will end up isolated

above the Marčenko–Pastur sea, all others disappear below λ+. All these isolated eigenvalues have Gaussian fluctuations
of order T−1/2 [121]. The typical fluctuation of order T−1/2 is also true for an arbitrary C [39], and is much smaller than the
uncertainty in the bulk of the distribution, of order

√
q. Note that a naive application of Eq. (3.9) to outliers would lead to

a ‘‘mini-Wishart’’ distribution around the top eigenvalue, which is incorrect (the distribution is Gaussian) except if the top
eigenvalue has a degeneracy proportional to N .

4. Statistics of the eigenvectors

We saw in the previous section that tools from RMT allow one to infer many properties of the (asymptotic) spectrum of
E, be it for the bulk or for more localized regions of the spectrum (edges and outliers). These results allow us to characterize
in great detail the statistics of the eigenvalues of large sample covariance matrices. In particular, it is clear that in the high-
dimensional limit, the use of sample covariance matrices is certainly not recommended as each sample eigenvalue [λi]i∈[[N]]
converges to a non-deterministic value, but this value is different from the corresponding ‘‘true’’ population eigenvalue
[µi]i∈[[N]]. Note that the results presented above only cover a small part of the extremely vast literature on this topic, including
the study microscopic/local statistics (down to the N−1 scale) [97,98,113,124].

On the other hand, results concerning the eigenvectors are comparatively scarce. One reason is that most studies
in RMT focus on rotationally invariant ensembles, such that the statistics of eigenvectors is featureless by definition.
Notwithstanding, this question turns out to be very important for sample covariancematrices since in this case, the direction
of the eigenvectors of the ‘‘population’’ matrix must somehow leave a trace. There are, at least, two natural questions about
the eigenvectors of the sample matrix E:

(i) How similar are sample eigenvectors [ui]i∈[[N]] and the true ones [vi]i∈[[N]]?
(ii) What information can we learn about the population covariance matrix by observing two independent realizations –

say E =
√
CW
√
C and E′ =

√
CW ′
√
C – that remain correlated through C?

The aim of this section is to present some of the most recent results about the eigenvectors of large sample covariance
matrices that will allow us to answer these two questions. More precisely, we will show how the tools developed in
Section 2 can help us extract the statistical features of the eigenvectors [ui]i∈[[1,N]]. Note that we will discuss these issues
for a multiplicative noise model (see (2.80)), but the same questions can be investigated for additive noise as well, see
[40,113,125–127] and Appendix D.

A natural quantity to characterize the similarity between two arbitrary vectors – say ξ and ζ – is to consider the scalar
product of ξ and ζ. More formally, we define the ‘‘overlap’’ as ⟨ξ, ζ⟩. Since the eigenvectors of real symmetric matrices are
only defined up to a sign, we shall in fact consider the squared overlaps ⟨ξ, ζ⟩2. In the first problem alluded to above, we
want to understand the relation between the eigenvectors of the population matrix [vi]i∈[[N]] and those of the sample matrix
[ui]i∈[[N]]. The matrix of squared overlaps is defined as ⟨ui, vj⟩2, it forms a so-called bi-stochastic matrix (positive elements
with the sums over both rows and columns all equal to unity).

In order to study these overlaps, the central tool of this section will be the resolvent (and not its normalized trace as in
the previous section). Indeed, if we choose the v’s to be our reference basis, we find from (2.6):

⟨v,GE(z)v⟩ =
N
i=1

⟨v,ui⟩
2

z − λi
, (4.1)
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for v a deterministic vector in RN of unit norm. Note that we can extend the formalism to more general entries of GE(z) of
the form:

⟨v,GE(z)v′⟩ =
N
i=1

⟨v,ui⟩⟨ui, v′⟩
z − λi

, (4.2)

for v and v′ two unit norm deterministic vectors in RN .
We see from Eqs. (4.1) and (4.2) that each pole of the resolvent defines a projection onto the corresponding sample

eigenvectors. This suggests that the techniqueswe need to apply are very similar to the ones used above to study the density
of states. However, one should immediately stress that contrarily to eigenvalues, each eigenvectorui for any given i continues
to fluctuate when N → ∞,19 and never reaches a deterministic limit. As a consequence, we will need to introduce some
averaging procedure to obtain a well defined result. We will thus consider the following quantity,

Φ(λi, µj) := NE[⟨ui, vj⟩2], (4.3)

where the expectation E can be interpreted either as an average over different realizations of the randomness or, perhaps
more meaningfully for applications, as an average for a fixed sample over small intervals of eigenvalues of width dλ = η
that we choose in the range 1 ≫ η ≫ N−1 (say η = N−1/2) such that there are many eigenvalues in the interval dλ, while
keeping dλ sufficiently small for the spectral density to be constant. Interestingly, the two procedures lead to the same
result for large matrices, i.e. the locally ‘‘smoothed’’ quantityΦ(λ, µ) is self averaging. We emphasize that we consider the
population eigenvectors to be deterministic throughout this section. Only the sample eigenvectors are random. Note also
the factor N in the definition above, indicating that we expect typical square overlaps to be of order 1/N , see below.

For the second question, themain quantity of interest is, similarly, the (mean squared) overlap between two independent
noisy eigenvectors

Φ(λi, λ̃j) := NE[⟨ui, ũj⟩
2
], (4.4)

where [λ̃i]i∈[[N]] and [ũi]i∈[[N]] are the eigenvalues and eigenvectors of Ẽ, i.e. another sample matrix that is independent from
E (but with the same underlying population matrix C).

We end this introduction with a short remark on the somewhat vague definitions (4.3) and (4.4). As explained above,
we index the eigenvectors by their corresponding eigenvalues and this allows us to consider the continuous limit of (4.3).
However, a more precise definition should be that Φ(λ, µ) := E


N−1

N
i,j=1⟨ui, b̃j⟩

2δ(λ − λi)δ(µ − µi)

but we keep the

notation (4.3), with a slight abuse of notation, as it will be more convenient to separate the analysis between an outlier or
bulk eigenvalue. We emphasize that this remark also holds for the overlaps (4.4) as well.

4.1. Asymptotic eigenvectors deformation in the presence of noise

We consider in this section the first question, that is: can we characterize the effect of the noise on the eigenvectors?
Differently said, how do the sample eigenvectors deviate from the population ones? In order to answer to this question,
Eq. (4.3) seems to be a good starting point since it allows one to extract exactly the projection of the sample eigenvectors
onto the population ones. We shall now show that Eq. (4.3) converges to a deterministic quantity in the large N limit; more
precisely, we can summarize the main results of this section as follows:

(i) Any bulk sample eigenvectors is delocalized in the population basis, i.e. Φ(λi, µj) ∼ O(1) (and not O(N)) for any
i ∈ [[r + 1,N]] and j ∈ [[N]];

(ii) For any outlier (i.e. i 6 r), ui is concentrated within a cone with its axis parallel to vi but is completely delocalized in any
direction orthogonal to the spike direction vi.

Therefore, these results look quite disappointing for a inference standpoint. Indeed, for the bulk eigenvectors, we discover
that projection of the estimated eigenvectors and their corresponding ‘‘true’’ directions converges almost surely to zero for
large N; i.e. sample eigenvectors appear to contain very little information about the true eigenvectors (on this point, see
however [41]). Still, as we will see below, the squared overlaps are not all equal to 1/N but some interesting modulations
appear, that we compute below by extending the Marčenko–Pastur equation to the full resolvent. For the outliers, on the
other hand, the global picture is quite different. In particular, the phase transition phenomenon alluded in Section 3 also
holds for the projection of the sample spike eigenvector onto its parent population spike: as soon as an eigenvalue pops out
from the bulk, the square overlap becomes of order 1, as noticed in e.g. [36,40,128]. In fact, the angle between the sample
spike eigenvectors with the parent spike can be computed exactly, see below.

19 Recall that we have indexed the eigenvectors by their associated eigenvalue.
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4.1.1. The bulk
Let us focus on the bulk eigenvectors first, i.e. eigenvectors associated to eigenvalues lying in the bulk of the spectral

density when the dimension of the empirical correlation matrix grows to infinity. This question has been investigated very
recently in [37,38] and we repeat the different arguments here. The first step is to characterize the asymptotic behavior of
the resolvent of sample covariance matrices. This can be done by specializing Eq. (2.100) for the resolvent of the product
of free matrices to the case where A = C and B = XX∗. In words, A is the population matrix while B is a white Wishart
matrix that plays the role of the noisymultiplicative perturbations. Using (2.44), we know the S-transform of whiteWishart
matrices explicitly so that one finds from Eq. (2.44), for N →∞:

zGE(z)ij = Z(z)GC(Z(z))ij, with Z =
z

1− q+ qzgE(z)
. (4.5)

In the literature, such a limiting result is referred to as a ‘‘deterministic equivalent’’, as the RHS depends only on deterministic
quantities,20 and this is another evidence of the self-averaging property for large randommatrices.

One should notice that (4.5) is a relation between resolvent matrices that generalizes the scalar Marčenko–Pastur
equation (3.9) (which can be recovered by taking the trace on both sides of the equation). This relation first appeared in [67],
obtained using a planar diagram expansion valid for Gaussian entries. A few years later, that result was proven rigorously in
Ref. [113] in a much more general framework, highlighting again the universal nature of the resolvent of random matrices,
down to the local scale.21 Choosing to work in the basis where C is diagonal, Eq. (4.5) reduces to:

GE(z)ij =
δij

z − µi(1− q+ qzgE(z))
. (4.6)

This deterministic equivalent holdswith fluctuations of orderN−1/2. This can be deduced e.g. from the Central Limit Theorem
(CLT) (see Appendix C). Quite interestingly, an explicit upper bound for the error term is provided in [113]. In particular, the
authors showed that Eq. (4.5) holds at a local scale η =ηN−1 withη ≫ 1, with an error term bounded from above by:

Ψ (z) :=


q
Im gS(z)η +

qη , (4.7)

provided that N is large enough. We give an illustration of this ergodic behavior in Fig. 11, and we see the agreement is
excellent.

How can we compute the mean squared overlap using (4.5)? The idea is to derive an inversion formula similar to (2.11)
for the full resolvent. More specifically, we start from (2.6) for a given v = vj and notice that the true eigenvectors are
deterministic. Therefore, the sum on the RHS of the latter equation is expected to converge in the large N limit provided z is
outside of the support of the spectrum of E. Moreover, the eigenvalues in the bulk converge to their classical position (3.40)
so that we obtain for N →∞ that

⟨vj,GE(z)vj⟩ ∼
N↑∞


Φ(λ, µj)ρE(λ)

λi − λ− iη
dλ (4.8)

where we have set z = λi − iη, η ≫ N−1 and Φ(λ, µj) is the smoothed squared overlap, averaged over a small interval of
width η around λ. Therefore, the final inversion formula is obtained using the Sokhotski–Plemelj identity as:

Φ(λi, µj) =
1

πρE(λi)
lim
η→0+

Im⟨vj,GE(λi − iη)vj⟩, (4.9)

where the assumption that λi lies in the bulk of the spectrum is crucial here. This last identity thus allows us to compute
the squared overlapΦ(λi, µj) from the full resolvent GE, for any i in the bulk (i > r + 1) and a fixed j ∈ [[1,N]]. Specializing
to the explicit form of GE(z) given in Eq. (4.6), we finally obtain a beautiful explicit result for the (rescaled) average squared
overlap:

Φ(λi, µj) =
qµjλi

(µj(1− q)− λi + qµjλihE(λi))2 + q2µ2
j λ

2
i π

2ρ2
E(λi)

, (4.10)

with i ∈ [[r + 1,N]], j ∈ [[1,N]] and hE(λi) denotes the real part of the Stieltjes transform gE (see Eq. (2.9)). This relation
is exact in the limit N → ∞ and was first derived by Ledoit and Péché in [37]. We emphasize again that this expression
remains correct even if µj is an outlier. SinceΦ(λi, µj) is of order unity whenever q > 0, we conclude that the dot product
between any bulk eigenvector ui of E and the eigenvectors vj of C is of order N−1/2, i.e vanishes at large N , and therefore
non-outlier sample eigenvectors retain very little information about their corresponding true eigenvectors. This implies that

20 Recall that gE(z) is the limiting Stieltjes transform.
21 Note that the Gaussian assumption is not needed either within the Replica method presented in Section 2.
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(a) Diagonal entry of Im[GE(z)]with i = j = 1000. (b) Off diagonal entry of Im[GE(z)]with i = 999 and j = 1001.

(c) Diagonal entry of Re[GE(z)]with i = j = 1000. (d) Off diagonal entry of Re[GE(z)]with i = 999 and j = 1001.

Fig. 11. Illustration of Eq. (4.6). The population matrix is an Inverse Wishart matrix with parameter κ = 5 and the sample covariance matrix is generated
using a Wishart distribution with T = 2N and N = 2000. The empirical estimate of GE(z) (blue line) is computed for any z = λi − iN−1/2 with i ∈ [[1,N]]
comes from one sample and the theoretical one (red line) is given by the RHS of Eq. (4.5). The green dotted corresponds to the confidence interval whose
formula is given by Eq. (4.7). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

any bulk eigenvector is a extremely poor estimator of the true one in the high-dimensional regime. We provide in Fig. 12
an illustration of Eq. (4.10) for N = 500 and C an Inverse Wishart matrix with κ = 1. The empirical average comes from
500 independent realization of E and we see that it agrees perfectly with the asymptotic theoretical prediction, Eq. (4.10).
Note that in the limit q → 0, Φ(λi, µj) becomes more and more peaked around λi ≈ µj, with an amplitude that diverges
for q = 0. Indeed, in this limiting case, one should find that ui → ±vjδij, i.e. the sample eigenvectors become equal to the
population ones.

4.1.2. Outliers
By construction, the spiked correlation model of Section 3.3.2 is such that the top r eigenvalues [λi]i∈[[1,r]] lie outside

the spectrum of ρE. What can be said about the statistics of the associated spike eigenvectors [ui]i∈[[1,r]]? If we think
of these outliers as a finite-rank deformation of a (fictitious) spikeless matrix E, then by Weyl’s eigenvalue interlacing
inequalities [129], the asymptotic density ρE is not influenced by the presence of non-macroscopic spikes, by which we
mean that ρE(λi) = 0 for any outlier eigenvalues.We saw in the previous section that for non-outlier eigenvectors, themain
ingredients to compute the overlap are (i) the self-averaging property and (ii) the inversion formula (4.9). Both implicitly
rely on the continuous limit being valid, which is however not the case for outliers. Hence, we expect the statistics of outlier
eigenvectors to be quite different from the bulk eigenvectors as confirmed for the null hypothesis case C = IN [128,93].
In this section, we present the analytical tools to analyze these overlaps for outliers in the case of an arbitrary population
covariance, following the lines of [39].

From Eq. (3.62) we saw that each outlier eigenvalues [λi]i∈[[1,r]] of E converges to a deterministic limit θ(µi), where µi is
the corresponding population spike and θ is a certain function related to the Marčenko–Pastur equation. Consequently, for
isolated spikes i ∈ [[1, r]] we can define the closed disc Di in the complex plane, centered at θ(µi) with radius chosen such
that each it encloses no other point in the set [θ(µj)]j∈[[1,r]] (see [39] for details). Then, defining Γi to be the boundary of the
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Fig. 12. Rescaledmean squared overlapsΦ(λi, µj) as a function of λi . We choose C as an inverse-Wishartmatrix with parameter κ = 1.0 and setN = 500,
q = 0.5. The empirical average (red points) comes from 500 independent realizations of E. The theoretical prediction (blue line) is given by Eq. (4.10). The
peak of the mean squared overlap is in the vicinity of λi ≈ µj ≈ 4.

closed disc Di, we can obtain the squared overlap for outlier eigenvectors using Cauchy’s integral formula

⟨ui, vj⟩2 =
1

2π i


Γi

⟨vj,GE(z)vj⟩dz, (4.11)

for i, j ∈ [[1, r]]. We emphasize there is no expectation value in Eq. (4.11) (compare to our definition of the overlap in
Eq. (4.3)). The evaluation of the integral is highly non-trivial since GE is singular in the vicinity of θ(µj) for any j ∈ [[1, r]]
and finite N . To bypass this problem, we reconsider the spikeless population covariance matrix C defined in (3.56) and the
corresponding spikeless sample covariance matrix by E. Clearly, the resolvent GE is no longer singular in the vicinity of
θ(µj), by construction. Moreover, as we said above, the global statistics of the eigenvalues of E and E are identical in the
limit N → ∞. Lastly, we can relate any projection of GE onto the outlier population covariance eigenbasis using Schur
complement formula (see Appendix B for a reminder):

V(r)∗GE(z)V(r) = −
1
z


D−1 −

√
IN + D
D


D−1 + IN − zV(r)∗GEV(r)

−1√IN + D
D


. (4.12)

This identity has been used in several studies that deal with related problems [99,39] and references therein. Its derivation
only needs linear algebra arguments and can be found in Section 4.1.3. With this identity, we see that the statistics of the
outliers can be expressed through the spikeless matrix E. In particular, the integrand of (4.11) can be rewritten using the
spikeless resolvent which is analytic everywhere outside the spectrum of E. Since the global law of resolvent of E is the same
than E in the large N limit, we can again use the estimate (4.5). By plugging (4.5) into (4.12), one obtains

⟨ui, vj⟩2 = −
1

2π i


θ(Γi)

1
z


1
dj
−

1+ dj
d2j

1

d−1j + 1− z⟨vj,GE0(z)vj⟩


dz. (4.13)

Then, using Eq. (3.58) and Cauchy’s theorem, one eventually finds [39]

⟨ui, vj⟩2 = δijµi
θ ′(µi)

θ(µi)
+ O(N−1/2) = δijµi

θ ′(µi)

λi
+ O(N−1/2), (4.14)

for any i, j ∈ [[1, r]] and where we used (3.62) in the denominator in the last step. Therefore, we conclude that the sample
outlier eigenvector ui is concentrated on a cone around vi with aperture 2 arccos(µiθ

′(µi)/θ(µi)). We also deduce from
Eq. (4.14) that ui is delocalized in all directions vj associated to different spikes µj ≠ µi.

An interesting application of (4.14) is to reconsider the spiked covariance matrix model introduced in the previous
section. Let us assume for simplicity a single spike (r = 1) and from Eq. (3.63), one gets, for µ1 > 1+

√
q

θ(µ1) = µ1 + q+
q

µ1 − 1
,

and plugging this result into equation (4.14) yields

⟨u1, v1⟩2 =
µ1

θ(µ1)


1−

q
(µ1 − 1)2


+ O(T−1/2), (4.15)
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Fig. 13. Rescaled mean squared overlap Φ(λ1, µj) as a function of µj for j > 1. We chose the spikeless population matrix C to be an Inverse-Wishart
matrix with parameter κ = 1.0 and N = 500. We add a rank one perturbation such that λ1 ≈ 10 is isolated from the others. The sample matrix E is
given by a Wishart matrix with q = 0.5. We compare the empirical average (blue points) comes from 200 independent realizations of E. The theoretical
prediction (red line) is given by Eq. (4.16).

which is the expected result [36,40,99,115,41]. This result shows that the coherence between the population spike and its
sample counterpart becomes progressively lost when µ1 → 1+

√
q as it should be from the result (3.64).

The same analysis can be applied for the overlap between the sample spikes and the population bulk eigenvalues j > r .
The details can be found in [39] and the final result reads

Φ(λi, µj) = q
µj

λi(1− µj/µi)2
, i ∈ [[1, r]], j ∈ [[r + 1,N]]. (4.16)

As expected, any outlier eigenvector ui has only∼N−1/2 overlap with any eigenvector of C except its ‘‘parent’’ from vi. We
illustrate Eq. (4.16) in Fig. 13 as a function of the population eigenvalues µi with i > 2 in the case where r = 1: in our
example C is an Inverse Wishart matrix with parameter κ = 1 and we add a rank one perturbation such that λ1 ≈ 10.
The empirical average comes from 200 realizations of E and we see that the agreement with the theoretical prediction is
excellent.

4.1.3. Derivation of the identity (4.12)
The derivation of the identity (4.12) is the central tool in order to deal with the outliers of the sample covariance matrix E. It relies
purely on linear algebra arguments (see Appendix B for a reminder). In order to lighten the notations, let us rename V ≡ V(r) in this
section. The first step is to write the following identity from Eq. (3.56):

C C−1

C− IN = (IN + VDV∗)−1 − IN

= −(IN + VDV∗)−1VDV∗

= −VD(Ir + D)−1V∗ (4.17)

where we used the resolvent identity (4.32) in the second line. This allows us to get (omitting the argument z)

C−1/2C1/2GEC1/2C−1/2 = C−1/2

zC−1 − XX∗

−1C−1/2
=

z(C1/2C−1C1/2

− IN)+ zIN − E
−1

=

−zVD(I + D)−1V∗ + G−1E

−1
, (4.18)

where we invoked the previous identity Eq. (4.17) in the last step. From (B.8), we have with A ≡ zIN −E, B ≡ −zV, D ≡ D(Ir +D)−1

and C ≡ V∗:

C−1/2C1/2GEC1/2C−1/2 = GE + zGEV

D−1 + Ir − zV∗GEV

−1
V∗GE. (4.19)

From there, one has

(IN + D)1/2V∗GEV(IN + D)1/2 = V∗GEV+ zV∗GEV

D−1 + Ir − V∗GEV

−1
V∗GEV. (4.20)
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We then use the identity

A− A(A+ B)−1A = B− B(A+ B)−1B, (4.21)

with A = V ∗GEV and B = −(D−1 + Ir )/z to obtain

(Ir + D)1/2V∗GEV(Ir + D)1/2 = −
1
z


Ir + D

D
+

Ir + D
D


−(D−1 + Ir)+ zV∗GEV

−1 Ir + D
D


. (4.22)

By rearranging the terms, we finally get

V∗GEV = −
1
z


D−1 −

√
Ir + D
D


D−1 + Ir − zV∗GEV

−1√Ir + D
D


, (4.23)

which is precisely Eq. (4.12).

4.2. Overlaps between the eigenvectors of correlated sample covariance matrices

We now consider the second problem of this section, that is to say how much information can we learn about the
structure of C from the sample eigenvectors? Differently said, imagine one measures the sample covariance matrix of the
same process but on two independent time intervals, how close are the corresponding eigenvectors expected to be? To
answer this question, let us denote by E and Ẽ the independent sample estimates of the same population matrix C defined
as

E :=
√
CW
√
C, Ẽ :=

√
CW̃
√
C, (4.24)

where W and W̃ are two independent whiteWishart matrix with parameter q and q′ respectively. As in Section 4.1, we can
investigate this problem through the mean squared overlaps.

In this section, we provide exact, explicit formulas for these overlaps in the high dimensional regime, and perhaps
surprisingly, wewill see that theymay be evaluatedwithout any prior knowledge on the spectrumof C. More specifically, we
will show that Eq. (4.4) exhibits yet again a self-averaging behavior in the largeN limit, i.e. independent from the realization
of E and Ẽ. We will moreover see that the overlaps (4.4) significantly depart from the trivial null hypothesis as soon as the
population C has a non-trivial structure. Hence, this suggests that wemight be able to infer the correlation structure of very
large databases using empirical quantities only.

All these results have been obtained in the recent work [127] and we shall only give here the main steps. For the sake
of clarity, we use the notations λ̃1 > λ̃2 > · · · > λ̃N to denote the eigenvalues of Ẽ and by ũ1, ũ2, . . . , ũN the associated
eigenvectors. Note that we will again index the eigenvectors by their corresponding eigenvalues for convenience.

The central tool in this section is an inversion formula for (4.4) as it is usually done in RMT. To that end, we define the
bivariate complex function

ψ(z, z̃) :=

1
N

Tr

(z − E)−1(z̃ − Ẽ)−1


P

, (4.25)

where z, z̃ ∈ C and ⟨·⟩P denotes the average with respect to probability measure associated to E and Ẽ. Then, by a spectral
decomposition of E and Ẽ, one has

ψ(z, z̃) =

1
N

N
i,j=1

1
z − λi

1

z̃ − λ̃j
⟨ui, ũj⟩

2

P

, (4.26)

where P denotes the probability density function of the noise part of E and Ẽ. For large random matrices, we expect the
eigenvalues of [λi]i∈[[1,N]] and [λ̃i]i∈[[1,N]] stick to their classical locations, i.e. smoothly allocated with respect to the quantile
of the spectral density (see Section 3.2.1) so that the sample eigenvalues become deterministic in the large N limit. Hence,
we obtain after taking the continuous limit

ψ(z, z̃) ∼
 

ρ(λ)

z − λ
ρ̃(λ̃)

z̃ − λ̃
Φ(λ, λ̃)dλdλ̃, (4.27)

where ρ and ρ̃ are respectively the spectral density of E and Ẽ, and Φ denotes the mean squared overlap defined in (4.4).
Then, it suffices to compute

ψ(x− iη, y± iη) ∼
 

(x− λ+ iη)
(x− λ)2 + η2

(y− λ̃∓ iη)

(y− λ̃)2 + η2
ρ(λ)ρ̃(λ̃)Φ(λ, λ̃)dλdλ̃ (4.28)
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from which, one deduces that

Re

ψ(x− iη, y+ iη)− ψ(x− iη, y− iη)


∼ 2

 
ηρ(λ)

(x− λ)2 + η2
ηρ̃(λ̃)

(y− λ̃)2 + η2
Φ(λ, λ̃)dλdλ̃. (4.29)

Finally, the inversion formula follows from Sokhotski–Plemelj identity

lim
η→0+

Re

ψ(x− iη, y+ iη)− ψ(x− iη, y− iη)


∼ 2π2ρ(x)ρ̃(y)Φ(x, y). (4.30)

Note that the derivation holds for any models of E and Ẽ as long as its spectral density converges to a well-defined
deterministic limit.

The inversion formula (4.30) allows us to study the mean squared overlap (4.4) through the asymptotic behavior of the
bivariate function ψ(z, z̃). Moreover, since we are able to control each entry of the resolvent of E and Ẽ (see Eq. (4.5)), the
evaluation of Eq. (4.25) is immediate and leads to

ψ(z, z̃) ∼
1
zz̃

1
N

Tr

Z(z)(Z(z)− C)−1Z̃(z̃)(Z̃(z̃)− C)−1


, (4.31)

where Z(z) is defined in (4.5) and Z̃(z) is obtained from Z by replacing q and gE by q̃ and gẼ. Then, we use the identity
Z(z)− C

−1
Z̃(z̃)− C

−1
=

1

Z̃(z̃)− Z(z)


Z(z)− C

−1
−


Z̃(z̃)− C

−1
(4.32)

to obtain

ψ(z, z̃) ∼
Z(z) Z̃(z̃)

zz̃
1

Z̃(z̃)− Z(z)

1
N

Tr


Z(z)− C
−1
−


Z̃(z̃)− C

−1
. (4.33)

From this last equation and using Marčenko–Pastur equation (3.9), we finally conclude that

ψ(z, z̃) ∼
1

Z̃(z̃)− Z(z)


Z̃(z̃)
z̃

gE(z)−
Z(z)
z

gẼ(z̃)


. (4.34)

One notices that Eq. (4.34) only depends on a priori observable quantities, i.e. they do not involve explicitly the unknown
matrix C. Once we characterized the asymptotic behavior of the bivariate functionψ(z, z̃), we can then apply the inversion
formula Eq. (4.30) in order to retrieve the mean squared overlap (4.4). Before stating the main result of this section, we first
rewrite (4.34) as a function of the Stieltjes transform gS of the T × T dual matrix S = T−1X∗CX that satisfies XX∗ = W

and Eq. (3.33). Similarly, we define S̃ = T−1X̃∗CX̃ with X̃X̃∗ = W̃ . Using (3.33) and omitting the argument z and z̃, we can
rewrite (4.34) as

ψ(z, z̃) ∼
1

qq̃zz̃


(q̃z − qz̃)g2

S̃

gS − gS̃
+
(q− q̃)gS̃
gS − gS̃


+

gS + gS̃

qz̃
−

1− q
qzz̃

. (4.35)

We see from (4.30) that it now suffices to consider the limit η → 0+ in order to get the desired result. To lighten the
notations, let us define

m0(λ) ≡ lim
η→0+

gS(λ− iη) = mR(λ)+ imI(λ) (4.36)

with

mR(λ) = qhE(λ)+
1− q
λ

, mI(λ) = qρE(λ)+ (1− q)δ0, (4.37)

where hE is the Hilbert transform of ρE. Note that this relation follows from Eq. (3.9). We also define m̃0(λ) = limη→0 gS̃(λ−
iη) and denote by m̃R, m̃I the real and imaginary part, respectively. Then, the asymptotic behavior of Eq. (4.4) for any
λ ∈ supp ϱ and λ̃ ∈ ϱ̃ is given by (see [127] for a detailed derivation)

Φq,q̃(λ, λ̃) =
2(q̃λ− qλ̃)


mR|m̃0|

2
− m̃R|m0|

2

+ (q̃− q)


|m̃0|

2
− |m0|

2


λλ̃

(mR − m̃R)2 + (mI + m̃I)2


(mR − m̃R)2 + (mI − m̃I)2

 . (4.38)

An interesting consistency check is when q̃ = 0 in which case the sample eigenvalues coincide with the true ones for the
tilde matrices, i.e. λ̃ → µ. In this case we fall back on the framework of the previous section, i.e. obtaining the overlaps
between the eigenvectors of E and C. One can easily check that m̃R = 1/µ and m̃I = 0. Hence, we deduce from (4.38) that

Φq,q̃=0(λ, µ) =
q

λµ

(mR − 1/µ)2 +m2

I

 = qµ
λ|1− µm0(λ)|2

, (4.39)
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which is another way to write (4.10) after applying the formula (3.33) in the limit η→ 0+. It therefore shows that the result
(4.38) generalizes Eq. (4.10) in the sense that we are able to study the mean squared overlaps between two possibly noisy
sample estimates. Note that in the case q̃ = q, Eq. (4.38) can be somewhat simplified to:

Φ(λ, λ̃) =
q(λ− λ̃)


mR(λ)|m0(λ̃)|

2
−mR(λ̃)|m0(λ)|

2


λλ̃

(mR − m̃R)2 + (mI + m̃I)2


(mR − m̃R)2 + (mI − m̃I)2

 , (4.40)

that becomes when λ̃ = λ [127],

Φ(λ, λ) =
q

2λ2
|m0(λ)|

4∂λ

mR(λ)/|m0(λ)|

2


m2
I (λ)|∂λm0(λ)|2

. (4.41)

This last ‘‘self-overlap’’ result quantifies the stability of the eigenvectors ui and ũj associated to the very same eigenvalue λ
when they both come from the same population matrix C. Any statistically significant deviation between this predicted
overlap and empirical results can be interpreted as a violation of the hypothesis that the ‘‘true’’ population matrices
corresponding toE and Ẽ are in fact different. This is extremely interesting from thepoint of viewof applications, in particular
to financial data where nothing ensures that C is time independent.

Now that we have all these theoretical results, let us now give some applications of the formula (4.40) as they will
highlight that we can indeed find genuine information about the spectrum of C from the mean squared overlap (4.4). We
emphasize that all the following applications are performed in the case q = q̃ in order to give more insights about the
results. As usual, we begin with the null hypothesis C = IN as it will serve as the benchmark when we shall deal with more
structured spectrum. As we shown in Section 2.2.3, the Stieltjes transform gE, and thus gS is explicit and obtained from the
Marčenko–Pastur density. More precisely, we deduce from Eqs. (2.41) and (3.33) that gS is given by

gS(z) =
z + q− 1− i


4zq− (z + q− 1)2

2z
(4.42)

for any z ∈ C−. It is easy to see using the definition (4.36) that we have

mR(λ) =
λ+ q− 1

2z
, mI(λ) =


4λq− (λ+ q− 1)2

2λ
. (4.43)

Hence, one obtains |m0(λ)|
2
= λ−1 and |m′0(λ)|

2
= q/(2λ2), and by plugging this expressions into Eq. (4.41), we eventually

get

Φq,q(λ, λ) = 1, (4.44)

for any λ ∈ [(1 −
√
q)2, (1 +

√
q)2]. This simple result was expected as it corresponds to the case where the spectrum of

C has no genuine structure, so all the anisotropy in the problem is induced by the noise, which is independent in the two
samples.

Next, we consider a more structured example of a population correlation matrix C. A convenient case that can be treated
analytically is when C to be an inverseWishartmatrix, i.e. distributed according to (2.58) with κ > 0 defined in Eq. (2.54). As
we saw in the previous section, the Stieltjes transform gE(z) is explicit in this case (see Eq. (3.41)). Going back to Eq. (4.41),
one can readily obtain from Eq. (3.41),

mR(λ) =
λ(1+ qκ)+ qκ(1− q)

λ(λ+ 2qκ)
, mI(λ) = q


λ− λiw−


λiw+ − λ

λ(λ+ 2qκ)
, (4.45)

with λ ∈ [λiw
−
, λiw
+
] where λiw

±
is defined in (3.42). Plugging these expressions into Eq. (4.41) and after elementary

computations, one finds

Φq,q(λ, λ) =
(1+ qκ)(λ+ 2qκ)2

2qκ

2λ(1+ κ(1+ q))− λ2κ + κ(−1+ 2q(1+ qκ))

 . (4.46)

The immediate consequence of this last formula is that in the presence of anisotropic correlations, themean squared overlap
(4.4) clearly deviates from the null hypothesis Φ(λ, λ) = 1. In the nearly isotropic limit κ → ∞, that corresponds to the
limit C→ IN , one gets [127]

Φ(λ, λ̃) ∼
κ→∞


1+

(λ− 1)(λ̃− 1)
2q2κ

+ O(κ−2)


, (4.47)

which is in fact universal in this limit (i.e. independent of the precise statistical properties of the matrix C), provided the
eigenvalue spectrumof Chas a variance given by (2κ)−1 → 0+ [127]. In the general case,we provide a numerical illustration
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Fig. 14. Evaluation ofNE⟨ui, ũi⟩
2 withN = 500 and q = q̃ = 0.5. The populationmatrix C is given by an Inverse-Wishartwith parameter κ and the sample

covariance matrices S and S̃ are generated from amultivariate Gaussian distribution. The empirical average (blue points) is taken over 200 realizations and
the theoretical prediction Eq. (4.41) (red line) is evaluated for all [λi]e .

of this last statement in Fig. 14 with κ = 5, N = 500 and q = 0.5. As we expect λi ≈ λ̃i for any i ∈ [[1,N]], we compare our
theoretical result (4.46)with the empirical average [⟨ui, ũi⟩

2
]e taken over 200 realizations ofE andwe see that the agreement

is again excellent. We therefore conclude that a possible application of (4.38) is to estimate directly the statistical texture of
C using only sample eigenvectors: see Section 7 for an interesting example.

We now present an alternative derivation of Φq,q̃ that uses the result of Section 4.1. The following argument is very
general and might be useful when considering the overlaps between the eigenvectors of more general random matrices.
The starting point is the orthonormality of the true eigenbasis, i.e. VV∗ = IN for V := [v1, . . . , vN ]. Hence, we may always
write

⟨ui, ũj⟩ =


ui ,

 N
k=1

vkv∗k


ũj


=

N
k=1

⟨ui, vk⟩⟨vk, ũj⟩ (4.48)

Using the results of Section 4.1, we rename the overlaps ⟨ui, vk⟩ =

Φq(λi, µk)/N × ε(λi, µk) where Φq(λ, µ) is defined

in (4.3) and ε(λ, µ) are random variables of unit variance. Hence, we have

⟨ui, ũj⟩ =
1
N

N
k=1


Φq(λi, µk)Φq̃(λ̃j, µk) ε(λi, µk)ε(λ̃j, µk). (4.49)

As noticed in [127], by averaging over the noise and making an ‘‘ergodic hypothesis’’ [130] – according to which all signs
ε(µ, λ) are in fact independent from one another in the large N limit – one ends up with the following rather intuitive
convolution result for the square overlaps:

Φq,q̃(λi, λ̃j) =
1
N

N
k=1

Φq(λi, µk)Φq̃(λ̃j, µk). (4.50)

It turns out that this expression is completely general and exactly equivalent to Eq. (4.40) if we replace the overlaps function
Φ by (4.10). However, whereas this expression still contains some explicit dependence on the structure of the pure matrix
C, it has completely disappeared in Eq. (4.40). An interesting application of the formula (4.50) is when the spectrum of E
(and Ẽ) contains a finite number of outliers. Using the results (4.14) and (4.16) yields in the LDL and for i 6 r:

Φq,q̃(λi, λ̃i) ≈ µ
2
1
θ ′(µ1)θ̃

′(µ1)

θ(µ1)θ̃(µ1)
, (4.51)

where we recall that the function θ is defined in (3.62) and we define θ̃ accordingly by replacing qwith q̃. Note that we can
express (4.51) in terms of observable variables by noticing that

µ1 =
1

gS(λ1)
, θ ′(µ1) =

−1
g′S(θ(µ1))µ

2
i
, (4.52)
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that we plug into (4.51) to conclude that

Φq,q̃(λ1, λ̃1) ≈
gS(λ1)

λ1g
′

S(λ1)

gS̃(λ1)

λ̃1g
′

S̃
(λ1)

. (4.53)

This expression becomes even simpler when q = q̃ as it becomes

Φq,q(λ1, λ̃1) ≈


gS(λ1)

λ1g
′

S(λ1)

2

. (4.54)

One further deduces from (4.14) and (4.16) that for i 6 r ,Φq,q̃(λi, λ̃j) ∼ O(N−1) for any j ≠ i.

5. Bayesian randommatrix theory

We saw in the previous sections that RMT allows one to make precise statements about large empirical covariance
matrices. In particular, we emphasized that the classical sample estimator E is not consistent in the high-dimensional limit
as the sample spectral density ρE deviates significantly from the true spectrum whenever q = O(1). There has been many
attempts in the literature to correct this ‘‘curse of dimensionality’’ using either heuristics or decision theoretic arguments
(see Section 7.2 for a summary of these attempts). Despite the strong differences in these approaches, all of them fall into
the class of so-called shrinkage estimators, to wit, one seeks the best way to ‘‘clean’’ the sample eigenvalues in such a way
that the estimator is as robust as possible to the measurement noise.

In the previous section, we insisted that the bulk sample eigenvectors are delocalized, with a projection of order N−1/2
in all directions, which means that they are extremely noisy estimators of the population eigenvectors. As a consequence,
the naive idea of replacing the sample eigenvalues by the estimated true ones, obtained by inverting the Marčenko–Pastur
equation,will not necessarily lead to satisfactory results—itwould only be the optimal strategy ifwehad a perfect knowledge
of the eigenvectors of C. Hence, we are left with a very complicated problem: how can we estimate ‘‘accurately’’ the matrix
C in the high-dimensional regime knowing that the eigenvalues are systematically biased and the eigenvectors nearly
completely unknown?

The aim of the present section and the following one is to answer this question by developing an optimal strategy to
estimate C, consistent with the quality ratio q. By optimal, we mean that the estimator we aim to construct has to minimize
a given loss function. A natural optimality criteria is the squared distance between the estimator – called Ξ(E) henceforth
– and the true matrix C. As for the James–Stein estimator, we expect that ‘‘mixed’’ estimators provide better performance
than ‘‘classical’’ ones (like the Pearson estimator) in high-dimension. In that respect, we introduce a Bayesian framework
which, loosely speaking, allows one to introduce probabilistic models that encode the available data through the notion of
prior belief.

The fact that probabilities represent degrees of belief is at the heart of Bayesian inference. As explained in the introduction
to this review, this theory has enjoyed much success, especially in a high-dimensional framework. The central tool of this
theory is the well known Bayes formula that allows one to introduce the concept of conditional probability. There are many
different ways to make use of this formula and the corresponding schools of thought are referred to as empirical, subjective
or objective Bayes (see e.g. [131] for an exhaustive presentation). Herewe shall not discuss these different points of view but
rather focus on the inference part of the problem. More precisely, our aim in this section is to construct a Bayesian estimator
for Ξ(E). We therefore organize this section as follows. In the first part, we recall some basic results on Bayesian inference
and introduce the estimator thatwill interest us.We then re-consider the famous ‘‘linear shrinkage’’ estimator,mentioned in
Eq. (1.9), that interpolates linearly between the sample estimator and the identitymatrix through the notion of conjugate pri-
ors. Finally, we consider the class of rotational invariant prior where the RMT formalism introduced in the previous sections
is applied to derive an optimal estimator for C, which will turn out to be more efficient that all past attempts—see Section 8.

5.1. Bayes optimal inference: some basic results

5.1.1. Posterior and joint probability distributions
Bayesian theory allows one to answer, at least in principle, the following question: given the observation matrix Y, how

canwebest estimateC if someprior knowledge of the statistics ofC is available? This notion of prior information has been the
subject of many controversies but is a cornerstone to Bayes inference theory. More precisely, the main concept of Bayesian
inference is the well-known Bayes formula

P (C|Y) =
P (Y|C)P (C)

P (Y)
(5.1)

where

I P (C|Y) is the posterior probability for C given the measurements Y.
I P (Y|C) is the likelihood function, modeling the measurement process.
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I P (C) is called the prior probability of C, that is to say the prior belief (or knowledge) about C.
I P (Y) is the marginal distribution, sometimes called the evidence.

Note that the marginal distribution is often considered as a mere normalization constant (or partition function) since it is
given by

P (Y) =


DCP (C)P (Y|C). (5.2)

Furthermore, we shall often use the concept of joint probability distribution defined by

P (C, Y) = P (Y|C)P (C). (5.3)

Thus, the two crucial inputs in a Bayesian model are the likelihood process and the prior distribution. Learning using a
Bayesian framework can actually be split in two different steps, which in our context are:

1. Set a joint probability distribution P (C, Y) defined as the product of the prior distribution and the likelihood function,
i.e.

P (C, Y) = P (Y|C)P (C). (5.4)

2. Test the consistency of the posterior distribution P (C|Y) on the available data.

We emphasize that the presence of a prior distribution does not imply that C is stochastic, it simply encodes the degree
of belief about the structure of C. The main advantage of adopting this point of view is that it facilitates the interpretation
of the statistical results. For instance, a Bayesian (probability) interval tells us how probable is the value of a parameter we
attempt to estimate. This is in contrast to the frequentist interval, which is only definedwith respect to a sequence of similar
realizations (confidence interval). We will discuss the difference between these points of view in the next section.

5.1.2. Bayesian inference
The notion of Bayesian inference is related to the concept of the so-called Bayes risk. In our problem, wewant to estimate

the true covariance matrix C given our sample data Y; we shall denote byΞ(Y) this estimator. There are two ways to think
about this problem: the frequentist and the Bayesian approach. We will detail the difference between these two in this
section.

Let us introduce a loss function L(C,Ξ(Y)) that quantifies how far the estimator is from the true quantity C. In general,
this loss function is assumed to be a non-negative convex function with L(C, C) = 0. The traditional frequentist approach
is to evaluate the performance of a given estimator by averaging the loss function over different sets of observations, for a
fixed C.

An alternative point of view is to think that the precise nature of C is unknown. This change in the point of view has to be
encoded in the inference problem and one way to do it is to look at the average value of the loss function over all the a priori
possible realizations of C, and not on the realizations of Y itself. This is Bayes optimization strategy and the corresponding
the decision rule is the so-called Bayes risk function that is defined as:

RBayes(L(C,Ξ(Y))) :=

L(C,Ξ(Y))


P (C,Y)

, (5.5)

where, unlike the frequentist approach, the expectation value is taken over the joint probability of Y and C. One of the most
commonly used loss function is the squared Hilbert–Schmidt (or Euclidean) L2 norm, i.e.,

LL2(C,Ξ(Y)) = Tr

(C− Ξ(Y))(C− Ξ(Y))∗


. (5.6)

By using the fact that covariance matrices are symmetric and then applying Bayes rule, we see that

RBayes
=


Tr

(C− Ξ(Y))2


P (Y|C)


P (C)

=


Tr

(C− Ξ(Y))2


P (C|Y)


P (Y)

, (5.7)

where we have used that marginal distributions are positive in order to interchange the order of integration in the second
line.

The optimal Bayes estimator is defined as follows: let us denote by MN(Y) is the set of N × N positive definite matrices
which are functions of Y. This defines the set of admissible estimators of C. Then the Bayes estimator associated to the loss
function (5.6) is given by theminimum mean squared error (MMSE) condition, i.e.

ΞMMSE
≡ ΞMMSE(Y) := argmin

Ξ(Y)∈MN (Y)


LL2(C,Ξ(Y))


P (C,Y)

, (5.8)
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Expanding (5.7), it is readily seen that the MMSE estimator is given by the posterior mean:

ΞMMSE
= ⟨C⟩P (C|Y). (5.9)

Note that the natural choice of the loss function may depend on the nature of the problem. Other loss functions often lead
to different Bayes estimators, but we do not investigate such generalizations here.

5.2. Setting the Bayesian framework

Now that we have derived the optimal estimator we are looking for, we still need to parametrize the joint probability
function P (C, Y). There are thus two inputs in the Bayesian model: the likelihood function and the prior distribution, and
we focus on the former quantity in this section.

In a multivariate framework, the most common assumption (but not necessarily the most realistic) is that the
measurement process Y is Gaussian, that is to say,

P(Y|C) =
1

(2π)
NT
2 det(C)

T
2
exp


−

1
2

T
t=1

N
i,j=1

YitC−1i,j Yjt


. (5.10)

It is easy to see that this is of the Boltzmann type, as in Eq. (2.1).More precisely, using the cyclic property of the trace operator
one gets

T
t=1

N
i,j=1

YitC−1ij Yjt = Tr

YC−1Y∗


= TTr


EC−1


.

Thus, the N-variate Gaussian likelihood function can be written as

P (Y|C) =
1

(2π)
NT
2

exp

−

T
2
Tr

log(C)+ EC−1


≡ P (E|C), (5.11)

where we used Jacobi’s formula det(A) = exp[Tr logA] for any square matrix A. As a result, we can rewrite the inference
problem as a function of the sample covariance matrix E, and in particular, the MMSE estimator becomes

ΞMMSE
≡ ΞMMSE(E) := ⟨C⟩P (C|E). (5.12)

After a little thought, this set-up agrees perfectly with the framework developed in Sections 3 and 4. Indeed, in those
sections we studied the spectral properties of the sample covariance matrix E given the limiting spectral distribution of
C (the so-called ‘‘direct problem’’ introduced in Section 3.2.1). Differently said, the Marčenko–Pastur equation (3.9) has a
natural Bayesian interpretation: it provides the (limiting) spectral density of E conditional to a population covariancematrix
C that we choose within a specific prior probabilistic ensemble.

5.3. Conjugate prior estimators

Once we have set the likelihood function, the next step is to focus on the prior distribution P (C), keeping in mind that
the ultimate goal is to compute the Bayes posterior mean estimator (5.12). Unfortunately, the evaluation of the posterior
distribution often leads to non trivial computations and closed-form estimators are thus scarce. Nonetheless, there exists
some classes of prior distributions where the posterior distribution can be computed exactly. The one that interests us is
known as the class of ‘conjugate priors’ in Statistics. Roughly speaking, suppose that we know the likelihood distribution
P (E|C), then the prior distribution P (C) and the posterior distribution P (C|E) are said to be conjugate if they belong to the
same family of distributions.

As an illustration, let us consider a warm-up example before going back to the estimation of the covariance. Suppose
that we want to estimate the mean vector – say µ – given the N-dimensional vector data y we observe. Moreover, assume
that the likelihood function is a multivariate Gaussian distribution with a known covariance matrix σ 2IN . Then, by taking a
Gaussian prior on µ with zero ‘‘mean’’ and ‘‘covariance’’ matrix τ 2IN , one can easily check that

P (µ|y) = NN


τ 2

τ 2 + σ 2
y,

τ 2σ 2

τ 2 + σ 2
IN

. (5.13)

Therefore, the Bayes MMSE (5.9) of µ is given by

⟨µ⟩P (µ|y) =


1−

σ 2

σ 2 + τ 2


y, (5.14)

that is – loosely speaking – the celebrated James–Stein estimator [13]. In fact, the James–Stein estimator follows using the
evidence P (y), and this approach is known as empirical Bayes (see at the end of this section for more details).
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One can nowwonder whether we can generalize this conjugate prior property to the case of covariancematrices under a
measurement process characterized by the likelihood function P (E|C) given in Eq. (5.11). Again, we will see that conjugate
prior approach yields a very interesting result. Using the potential theory formalism introduced in (2.1) and in Section 2.2,
it is easy to see from Eq. (5.11) that the potential function associated to a Gaussian likelihood function reads

Vq(E, C) =
1
2q


log(C)+ EC−1


, (5.15)

that is clearly the Inverse-Wishart distribution encountered in (2.58) in the presence of an external field E. Hence, let us
introduce an inverse-Wishart ensemble with two hyper-parameters {γ , κ} as a prior for C22:

P (C) = Z exp

−NTr


γ log C+ κC−1


,

with Z a normalization constant that depends on γ , κ and N . For simplicity, we impose that ⟨C⟩P (C) = IN and easily obtain
(omitting term in O(N−1)) that γ = κ + 1. This is the convention that we adopt henceforth. Using Bayes rule and the
Gaussian likelihood function (5.11), we find that the posterior distribution is also an inverse-Wishart distribution of the
form:

P (C|E) ∝ exp

−

1
2
Tr

(T + ν + N + 1) log C+ T (2qκIN + E)C−1


, (5.16)

where we defined ν := N(2κ + 1)− 1. As a consequence, we expect the Bayes estimator to be explicit like the James–Stein
estimator (5.14) and the final result forΞMMSE is obtained from (2.59):

ΞMMSE
=

T
T + ν − N − 1

(2qκIN + E). (5.17)

This estimator is known as the linear shrinkage estimator, first obtained in [16],

Ξ lin
:=

T
T + ν − N − 1

(2qκIN + E) ≈
1

1+ 2qκ
E+

2qκ
1+ 2qκ

IN + O(T−1), (5.18)

where we used that T →∞with q = N/T finite in the RHS. All in all, we have derived the linear shrinkage estimator:

Ξ lin
= αsE+ (1− αs)IN where αs :=

1
1+ 2qκ

∈ [0, 1], κ > 0. (5.19)

As for the James–Stein estimator, this estimator tells us to shrink the sample covariance matrix E toward the identity matrix
(our prior) with an intensity given by αs. We give a simple illustration of how this estimator transforms the eigenvalues
in Fig. 15. In particular, we see that small eigenvalues are lifted upwards while the top ones are pulled downwards.
Furthermore, it is easy to see this estimator shares the same eigenvectors than the sample covariancematrix E. This property
will be important in the following.

The remaining question is how can we consistently choose the parameter κ (or directly αs) in order to use this estimator
in practice? In [16], Haff promoted an empirical Bayes approach similar to the work of James and Stein [13]. In the high-
dimensional regime, Ledoit &Wolf [17] noticed that this approachmay suffer from the fact that classical estimators become
unreliable and consequently proposed a consistent estimator of αs. There also exist more straightforward methods to
estimate the parameter κ directly from the data, using RMT tools. We summarize all these approaches in Section 7.2.1.

One may finally remark that the above derivation of the linear shrinkage estimator can be extended to the case where
the prior is different from the identity matrix. Suppose that the prior distribution of C is a generalized inverse-Wishart
distribution:

P (C) = Z exp

−NTr


γ log C+ κC0C−1


,

where C0 is a certain matrix (referred as a fundamental or prior matrix) with a possibly non-trivial structure encoding what
we believe about the problem at hand. In this case, it is easy to see that the above linear estimator still holds, with:

Ξ lin
= αsE+ (1− αs)C0 αs ∈ [0, 1]. (5.20)

Note that when C0 ≠ IN , P (C) is no longer rotationally invariant. A simple example is to choose C0 = (1−ρ)IN +ρJ, where
J has all its elements equal to unity. This corresponds to a one-factor model in financial applications, where the correlations
between any pair of stocks are constant. This can also be seen as a spike correlation model, as was shown in (3.56), with
C = IN , r = 1, v1 = (1, 1, . . . , 1) and d1 = (N − 1)ρ.

22 More precisely, it is an inverse Wishart distribution IWN (N,N(2γ − 1)− 1, 2NκIN ) defined in Eq. (2.58).
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Fig. 15. Impact of the linear shrinkage (5.19) with αs = 0.5 on the eigenvalues (blue line), compared to the sample eigenvalues (black line). We see that
the small eigenvalues are shifted upward and the large ones are pulled downward. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Wenowpresent the empirical Bayes approach through the ‘‘non-observable’’ James–Stein estimator (5.14). This approach can be useful
in order to estimate parameters directly from the data but it requires that the marginal distribution can be computed exactly. If we
reconsider the framework of the estimator (5.14), it is not hard to see that the evidence P (y), defined in (5.2), is given by

P (y) ∼ NN(0, (σ 2
+ τ 2)IN). (5.21)

Recall from (5.14) that our aim is to estimate the ratio σ 2/(σ 2
+ τ 2)where σ 2 is known. To that end, we notice from (5.21) thaty22 ∼ (σ 2

+ τ 2)χ2
N , (5.22)

where
 ·2 is the L2 norm and χ2

N is the chi-square distribution with N degrees of freedom. Therefore, we can conclude bymaximum
likelihood estimation that

σ 2
×max(N − 2, 0)y22 ≈

σ 2

σ 2 + τ 2
, (5.23)

which yields an estimator of the unobservable term in Eq. (5.14). Hence, if we plug this sample estimate into (5.14), it yields the
celebrated James–Stein estimator:

µ̂JS =


1−

σ 2
×max(N − 2, 0)y22


y, (5.24)

that provides an improvement upon the maximum likelihood estimator of the mean of a Gaussian population whenever N > 3.

5.4. Rotational invariant prior estimators

The major drawback of the above conjugate prior class of estimator is that it does not make use of the enormous amount
of information contained, for large N , in the observed spectral density of the sample correlation matrix E. In fact, we know
that its Stieltjes transform gE(z) must obey the Marčenko–Pastur equation relating it to gC(z), and there is no guarantee
whatsoever that this relation can be obeyed for any C belonging to an Inverse-Wishart ensemble. More precisely, the
likelihood that gE(z) indeed corresponds to a certain gC(z) with C an Inverse-Wishart matrix is exponentially small in N ,
even for the optimal choice of the parameter κ . This is the peculiarity of the Bayesian approach in the large N limit: the
ensemble to which C belongs is in fact extremely strongly constrained by the Marčenko–Pastur relation. In this section
and in the next section, we discuss how these constraints can be implemented in practice, allowing us to construct a truly
consistent estimator of C.

Let us consider a class of rotationally invariant prior distributions that belong to the Boltzmann class, Eq. (2.1), i.e.
P (C) ∝ exp[−N Tr V0(C)] (5.25)

where V0 denotes the potential function. Therefore, it is easy to see that C law
= ΩCΩ∗ for any N × N orthogonal matrix

Ω ∈ O(N). In other words, the eigenbasis of C is not biased in any specific direction. Moreover, using the Gaussian likelihood
function (5.11), the posterior distribution reads:

P (C|E) =
1
Z
exp


−N TrV(C, E)


, V(C, E) := Vq(C, E)+ V0(C), (5.26)
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where Vq is defined in Eq. (5.15). As a result, one can derive the identity:

P (C|E) = P (ΩCΩ∗|ΩEΩ∗), (5.27)

Therefore, the Bayes MMSE estimator Eq. (5.9) obeys the following property:

⟨C⟩P (C|E) =


ΩC′Ω∗P (ΩC′Ω∗|E)DC′

= Ω


C′P (C′|Ω∗EΩ)DC′


Ω∗ ≡ Ω⟨C⟩P (C|Ω∗EΩ)Ω

∗ (5.28)

where we changed variables C → ΩC′Ω∗ and used Eq. (5.27) in the last step. Now we can always choose Ω = U such
that U∗EU is diagonal. In this case, it is not difficult to convince oneself using symmetry arguments that ⟨C⟩P (C|U∗EU) is then
also diagonal. The above result then simply means that in general, the MMSE estimator of C is diagonal in the same basis as
E – see Takemura [132] and references therein:

ΞMMSE
= UΓ (Λ)U∗, (5.29)

where U ∈ RN×N is the eigenvectors of E and Γ (Λ) = diag(γ1(Λ), . . . , γN(Λ)) is a N × N diagonal matrix whose entries
are functions of the sample eigenvalues Λ = diag(λ1, λ2, . . . , λN). We see that assuming a rotationally invariant prior,
the Bayesian estimation problem is reduced to finding a set of optimal eigenvalues γi(Λ). This framework agrees perfectly
with the linear shrinkage estimator (5.19), for which γi(Λ) := αsλi + (1− αs), and can be seen as a generalized shrinkage
estimator.

Before going into details on the explicit form of the Γ (Λ), let us motivate the assumption of rotational invariance for the
prior distribution of C. Suppose that we have no prior information on possible privileged directions in the N-dimensional
space that would allow one to bias the eigenvectors of the estimatorΞMMSE in these special directions. In this case, it makes
sense that the only reasonable eigenbasis for our estimator ΞMMSE must be that the (noisy) observation E at our disposal.
Any estimator satisfying Eq. (5.28) will be referred to as a Rotational Invariant Estimator (RIE). However, we emphasize
that such an assumption is not optimal when the components of E reveal some non-trivial structures. One example is the
top eigenvector of financial correlation matrices, which is clearly biased in the (1, 1, . . . , 1) direction. Dealing with such
non-rotational invariant objects is however more difficult (see [39,41] and Section 9 for a discussion on this topic).

We are now in a position to derive the explicit form of our optimal Bayes estimator within the class of RIEs. The eigen
decomposition (5.29) of the estimatorΞMMSE states that the eigenvalues of γi ≡ γi(Λ) can be written as

γi = ⟨ui, ⟨C⟩P (C|E)ui⟩,

where we have used the fact that ⟨C⟩P (C|E) is diagonal in the U basis. After a little thought, one can see that the following
identity holds:

1
N
Tr

(zIN − E)−1⟨C⟩P (C|E)


=

1
N

N
i=1

γi

z − λi
, (5.30)

which will allow us to extract the γi we are looking for, i.e. determine the optimal shrinkage function of the Bayes estimator
(5.29). To that end, we invoke the usual self-averaging property that holds for very large N , so that we can take the average
value over the marginal probability of E in the LHS of the last equation, yielding:

Tr

(zIN − E)−1⟨C⟩P (C|E)


=


Tr

(zIN − E)−1⟨C⟩P (C|E)


P (E)

,

=


Tr

(zIN − E)−1C


P (C|E)


P (E)

. (5.31)

Using Bayes formula (5.1), we rewrite this last equation as

Tr

(zIN − E)−1⟨C⟩P (C|E)


=


Tr

(zIN − E)−1C


P (E|C)


P (C)

,

=


Tr

(zIN − E)−1


P (E|C)C


P (C)

. (5.32)

We recognize in the last line the definition of the Stieltjes transform of E for a given population matrix C, which allows
us to use the Marčenko–Pastur formalism introduced in Sections 3 and 4. Therefore, since the eigenvalues [λi]i become
deterministic in the limit N →∞ (see Section 3), we deduce that for large N

1
N
Tr

(zIN − E)−1⟨C⟩P (C|E)


≈


ρE(λ)dλ
z − λ

 N
j=1

µjΦ(λ, µj)


C
, (5.33)
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Fig. 16. Comparison of our analytical RI-Bayes estimator (5.34) (red dots) with the theoretical result Eq. (5.19) (blue line) when the prior distribution is
an inverse Wishart (2.58). The parameters are N = 500, q = 0.5 and αs = 0.5.

whereΦ(λ, µ) is themean squared overlap defined in Eq. (4.3). By comparing Eqs. (5.30) and (5.33), we can readily conclude
that

γ (Λ) ≡ γ (λ) =

 N
j=1

µjΦ(λ, µj)


C
∼


µΦ(λ, µ)ρC(µ)dµ, (5.34)

where we used again an ‘‘ergodic hypothesis’’ [130] as N →∞ in the last step. Hence, we see that in the large N limit, we
are able to find a closed formula for the optimal shrinkage function γ of the Bayes estimator (5.29) that depends on themean
squared overlap, studied in Section 4, and the prior spectral density ρC. Said differently the final result Eq. (5.34) is explicit
but still seems to depend on the prior we choose for C. In fact, as we shall see in the next section, Eq. (5.34) can be estimated
from the knowledge of E itself, i.e. without making any explicit choice for the prior! This is in line with our discussion at the
beginning of this section: for large N , the observation of the spectral distribution of E is enough to determine the correct
prior ensemble to which Cmust belong.

We end this sectionwith a self-consistency check in order to illustrate the result (5.34). As alluded to above, the nonlinear
shrinkage function (5.34) generalizes the linear shrinkage (5.19). To highlight this, we assume that C is an isotropic Inverse
Wishart matrices, such that the prior spectral density ρC is given by Eq. (2.53). We plot in Fig. 16 the eigenvalues we obtain
using our Bayes estimator (5.19) (red dots) coming from a single realization of E with C an inverse Wishart matrix of size
N = 500. The parameter of the prior distribution has been chosen such that the shrinkage intensity is equal to one half. We
see that the agreement is excellent, showing the validity of the ergodic hypothesis and at the same time, of the RI-Bayes
estimator (5.34) in this particular case. In Section 6.4.2, we will show explicitly that Eq. (5.33) reproduces Eq. (5.19) when C
is an isotropic Inverse Wishart matrix.

6. Optimal rotational invariant estimator for general covariance matrices

6.1. Oracle estimator

In the previous section, we introduced a Bayesian framework to build an estimator of the population correlation matrix
C using the data Y at our disposal. We showed that using a conjugate prior assumption naturally leads to the class of linear
shrinkage estimators, which is arguably among the most influential contributions to this topic. It was used successfully
in many contexts as a simple way to provide robustness against the noise in high dimensional settings (see e.g. [11,16]
or [133] for amore recent review). However, themain concern regarding this estimator is that the conjugate prior ensemble
is expected to be exponentially improbable (for large N) with the data at hand. In order to make full use of the information
of the spectral density of the sample correlation matrix, we introduced a class of rotational invariant prior distributions.
Within this framework, we have derived an explicit formula for theminimummean squared error (MMSE) estimator valid in
the limit of large dimension, which can be seen as a non-linear shrinkage procedure. In this section, we want to show that
the resulting estimator can be also understood as a so-called ‘‘oracle’’ estimator. This change of viewpoint is quite interesting
as it shows that the above Bayes estimator has a much wider basis than anticipated.

Imagine that one actually knows the population matrix C – hence the name ‘‘oracle’’ – but that one decides to create
an estimator of C that is constrained to have a predetermined eigenbasis U. (In practice, this eigenbasis will be that of the
sample correlation matrix E). What is the best one can do to estimate the true matrix C? The basic idea might look strange
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at first sight, since we do not know C at all! But as we shall see below, the oracle estimator will turn out to coincide with the
MMSE estimator which is, for largeN , entirely expressible in terms of observable quantities. More precisely, let us introduce
the set M(U) of real symmetric definite positive N × N matrices that are diagonal in the basis U = [ui]i∈[[1,N]]. The optimal
estimator of C in M(U) in the L2 sense is given by:

Ξ ora.
= argmin

Ξ∈M(U)

Ξ − C
2
L2
. (6.1)

It is trivial to find that the solution of this quadratic optimization problem, as:

Ξ ora.
=

N
i=1

ξ ora.i uiu∗i , ξ ora.i = ⟨ui, Cui⟩. (6.2)

This provides the best possible estimator of C given that we are ‘‘stuck’’ with the eigenbasis [ui]i∈[[1,N]]. The meaning of this
estimator is better understood if we rewrite it a function of the eigenvectors of C, to wit:

ξ ora.i =

N
j=1

µj⟨ui, vj⟩2. (6.3)

Indeed, we see from this last equation that the oracle estimator is given by aweighted average of the population eigenvalues
with weights given by the transition from the imposed basis ui to the true basis vj with j ∈ [[1,N]]. Hence, the ‘‘oracle’’
estimator (6.2) explicitly uses the fact that the estimator lies in a wrong basis.

Coming back to our estimation of C given a sample matrix E, it is clear that if we have no information whatsoever on
the true eigenbasis of C, the only possibility is to use the eigenbasis of E itself as U. This is equivalent to the assumption of
a rotationally invariant prior distribution for C, but we do not rely on any Bayesian argument here. Now, one notices that
in the limit N → ∞, the oracle eigenvalues of [ξ ora.i ]i∈[[1,N]] are indeed equivalent to the RI-Bayes MMSE formula (5.34),
except that in Eq. (6.2), the population matrix C is a (deterministic) general covariance matrix. The equivalence between
Bayes estimator (5.34) and unconditional estimator is not that surprising in the large N limit and has been mentioned in
different contexts [133,134].

6.2. Explicit form of the optimal RIE

For practical purposes, the oracle estimator (6.2) looks useless since it involves the matrix C which is exactly the
quantity we wish to estimate. But in the high-dimensional limit a kind of ‘‘miracle’’ happens in the sense that the oracle
estimator converges to a deterministic RIE that does not involve the matrix C anymore. Let us derive this formula first
for bulk eigenvalues, then for outliers — with the further surprise that the final expression is exactly the same in the two
cases.

6.2.1. The bulk
The derivation of the optimal nonlinear shrinkage function for the bulk eigenvalues in the limit of infinite dimensionwas

considered in different recent works. The first one goes back to the work of Ledoit & Péché [37]. More recently, this oracle
estimator was considered in a more general framework [38] (including the case of additive noise models, see Appendix D)
with the conclusion was that the oracle estimator can be easily computed as soon as the convergence of the mean squared
overlapΦ(λi, µj) defined in Eq. (4.3) can be established.

More precisely, let us fix i > r + 1,23 we expect that in the limit of large dimension, the squared overlaps ⟨ui, vj⟩2 for
any j = 1, . . . ,N will display asymptotic independence so that the law of large number applies, leading to a deterministic
result for ξ ora.i . Hence, for large N , we have that for any i > r ,

ξ ora.i =

N
j=1

µjΦ(λi, µj) ≈
1

NπρE(λi)
lim
η→0+

Im


N
j=1

µj (ziIN − E)−1jj


, (6.4)

where we have used the result Eq. (4.9) with zi = λi − iη. One finds using the Marčenko–Pastur relation (3.11) and after
simple algebraic manipulations that

ξ ora.i ∼
1

qπρE(λi)
lim
η→0+

Im

1−

1
1− q+ qzigE(zi)


,

which can be further simplified to the final Ledoit–Péché formula for the oracle estimators [ξ ora.i ]i∈[[r,N]]:

ξ ora.i ∼ ξ̂ (λi) with ξ̂ (λ) :=
λ1− q+ qλ lim

η→0+
gE(λ− iη)

2 , (6.5)

23 Recall that the largest r eigenvalues are assumed to be outliers.
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where | · | denotes the complexmodulus.We notice that the RHS of this last equation does not involve thematrix C anymore
and depends only on deterministic quantities. This is the ‘‘miracle’’ of the large N limit we alluded to above: the a priori non-
observable oracle estimator converges to a deterministic quantity that may be estimated directly from the data.

6.2.2. Outliers
As usual, the arguments needed to derive the limiting value of the oracle estimator for outlier eigenvalues, i.e., ξ ora.i for

i 6 r , are a little bit different from those used above for bulk eigenvalues. Indeed, the latter explicitly needs the density of
ϱE(λi) to be non-vanishing (for N →∞) and as we know from Section 3, this is not the case for outliers. Hence, the method
of [37] and [38] are not valid anymore. Surprisingly, though, the final result happens to be identical to Eq. (6.5)! This has
been established recently in [39] and the starting point of the method is to rewrite the oracle solution as

ξ ora.i =

r
j=1

µj⟨vj,ui⟩
2
+

N
j=r+1

µj⟨vj,ui⟩
2, (6.6)

from which we conclude, using also the results of Section 4, that if r is finite both terms above will have a non-vanishing
contribution for i 6 r . Roughly speaking, the first sum will contribute in O(1) for j = i and the second sum gives a term of
order O((N − r)× 1/N) ∼ O(1).

We begin with the easy term which is the first one in the RHS of Eq. (6.6). Indeed, recall from Eq. (4.14) that any outlier
eigenvector ui is concentrated on a cone with its axis parallel to vi and completely delocalized in any direction orthogonal
vj with j ∈ [[1,N]], j ≠ i fixed. Hence, the only term that contributes to leading order will be ⟨vi,ui⟩

2 and we therefore
conclude that

r
j=1

µj⟨vj,ui⟩
2
∼ µ2

i
θ ′(µi)

θ(µi)
(6.7)

where we used Eq. (3.62) in the last step. The second term in Eq. (6.6) is trickier to handle. As r is finite and thus much
smaller than N , we can assume that the second sum will concentrate around its mean value, i.e.

N
j=r+1

µj⟨vj,ui⟩
2
∼

N
j=r+1

µjE⟨vj,ui⟩
2.

The mean squared overlap in the RHS for j > r + 1 and i 6 r has been evaluated in Section 4 and the result is given in
Eq. (4.16) that we recall here for convenience:

E[⟨ui, vj⟩2] =
µ2

i

θ(µi)

µj

T (µi − µj)2
, i 6 r, j > r + 1.

Therefore we find for r ≪ N [39]

N
j=r+1

µj⟨vj,ui⟩
2
∼

µ2
i

θ(µi)

1
T

N
j=1

µ2
j

(µi − µj)2
, (6.8)

where one notices that the sum of the RHS goes from j = 1 to N . We can simplify the sum in the RHS of this last equation by
using the Marčenko–Pastur equation (3.35). Indeed, by setting z = θ(µi) with i 6 r and θ defined in Eq. (3.62), Eq. (3.35),
becomes

θ(µi) = µi +
1
T

N
j=1

1

µ−1j − µ
−1
i

(6.9)

and by taking the derivative with respect to µi, this yields

1
T

N
j=1

µ2
j

(µi − µj)2
= 1− θ ′(µi), (6.10)

for any i 6 r . By plugging this identity into Eq. (6.8), we then obtain

N
j=r+1

µj⟨vj,ui⟩
2
∼

µ2
i

θ(µi)


1− θ ′(µi)


, (6.11)

for any i 6 r . All in all, we see by plugging Eqs. (6.7) and (6.11) into Eq. (6.6) that we finally get

ξ ora.i ∼
µ2

i

θ(µi)
, (6.12)
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i.e. the oracle estimator for outliers also converge to a deterministic value which is very simple, but depends on the
population eigenvalues which are not observable. However, using Eq. (3.62), we can rewrite the RHS of Eq. (6.12) as a
function of the sample eigenvalues. Firstly, one notices that θ(µi) = λi for N → ∞ thanks to Eq. (3.62). Moreover, we
can also invert Eq. (3.62) to find

µi ∼
1

gS(λi)
=

λi

1− q+ qλigE(λi)
,

for any i 6 r and where we use relation Eq. (3.33) in the last step. Therefore, we deduce that in the high dimensional limit,
we can rewrite Eq. (6.12) as

ξ ora.i ∼
λi1− q+ qλigE(λi)

2 . (6.13)

We see that the result is similar to the result for the bulk eigenvalues except that for outliers, we need the Stieltjes transform
of the spikeless, fictitious sample covariance matrix E. But as we consider the limit N →∞, we easily deduce using Weyl’s
interlacing inequalities [129] that we can replace it by the Stieltjes transform of E so that we finally conclude that for any
outlier i 6 r ,

ξ ora.i ∼ ξ̂ (λi), (6.14)

where the optimal shrinkage function ξ̂ is defined in (6.5). We see that the outliers of oracle estimator also converge to a
deterministic function which is exactly the same than for bulk eigenvalues (6.5) in the large N →∞.

To conclude, we found that the oracle estimator converges to a limiting function that does not explicitly require the
knowledge of C and is identical to the Bayes-MMSE estimator obtained in the previous section. Moreover, this function is
‘‘universal’’ in the sense that the optimal non linear shrinkage needed to clean bulk eigenvalues and outliers is given by
the very same function in the limit N → ∞, which is very appealing for practical applications. This function is defined in
Eqs. (6.5) or (6.14) and only requires the knowledge of the Stieltjes transform of E, which is observable—see below.

6.3. Some properties of the ‘‘cleaned’’ eigenvalues

Even though the optimal nonlinear shrinkage function (6.26) seems relatively simple, it is not immediately clear what
is the effect induced by the transformation λi → ξ̂ (λi). In this section, we thus give some quantitative properties of the
optimal estimatorΞ ora. to understand the impact of the optimal nonlinear shrinkage function ξ̂ (λ).

First let us consider the moments of the spectrum ofΞ ora.. From Eq. (6.3) we immediately derive that:

TrΞ ora.
=


j=1

µjv∗j


i=1

uiu∗i


vj = TrC, (6.15)

meaning that the cleaning operation preserves the trace of the populationmatrix C, as it should be. For themoment of order
2 of the oracle estimator, we have:

Tr(Ξ ora.)2 =

N
j,k=1

µjµk


i=1

⟨ui, vj⟩2⟨ui, vk⟩2.

Now, if we define the matrix P as {


i=1⟨ui, vj⟩2⟨ui, vk⟩2} for j, k = 1,N , it is not hard to see that it is a square matrix
with non-negative entries and whose rows all sum to unity. The matrix P is therefore a (bi)stochastic matrix and the
Perron–Frobenius theorem tells us that its largest eigenvalues are equal to unity. Hence, we deduce the following general
inequality

N
j,k=1

Pj,kµjµk ≤

N
j=1

µ2
j ,

which implies that

Tr(Ξ ora.)2 6 TrC2 6 TrE2, (6.16)

where the last inequality comes from Eq. (3.17). In words, this result states that the spectrum of Ξ ora. is narrower than the
spectrum of C, which is itself narrower than the spectrum of E. The optimal RIE therefore tells us thatwe better be evenmore
‘‘cautious’’ than simply bringing back the sample eigenvalues to their estimated ‘‘true’’ locations. This is because we have
only partial information about the true eigenbasis of C. In particular, one should always shrink downward (resp. upward) the
top (resp. small) eigenvalues compared to their ‘‘true’’ locations µi for any i ∈ [[1,N]], except for the trivial case C = IN . As
a consequence, estimating the population eigenvalues [µi]i∈[[1,N]] is not what one should do to obtain an optimal estimator
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Fig. 17. Evaluation of the eigenvalue density of the signal, sample and cleaned density for q = 0.5 when the prior is an inverse Wishart of parameter
κ = 1. We see that the cleaned density is the narrowest one, while the sample is the widest, as expected.

of C when there is only partial information about its eigenvectors. We provide an illustration in Fig. 17 where we consider
C to be an inverse-Wishart matrix with parameter κ = 1.

Next, we consider the asymptotic behavior of the oracle estimator for which we recall from Eqs. (6.5) and (6.14) that

ξ ora.i ∼ ξ̂i, with ξ̂i :=
λi

|1− q+ qλi lim
η↓0

gE(λi − iη)|2
.

Throughout the following, suppose that we have an outlier at the left of the lower bound of supp ρE and let us assume q < 1
so that E has no exact zero mode.24 We know since Section 6.2.2 that the estimator (6.5) holds for outliers. Moreover, we
have that limλ→0+ gE(λ) is real and analytic so that we have from Eq. (3.23) that λgE(λ) = O(λ) for λ→ 0+. This allows us
to conclude from Eq. (6.5) that for very small outliers,

lim
λ→0+

ξ̂ (λ) =
λ

(1− q)2
+ O(λ2), (6.17)

which is in agreement with Eq. (6.16): small eigenvalues are enhanced for q ∈ (0, 1).
The other asymptotic limit λ→∞ is also useful since it gives us the behavior of the nonlinear shrinkage function ξ̂ for

large outliers. In that case, we know from Eq. (3.16) that limλ↑∞ λgE(λ) ∼ 1 + λ−1ϕ(E), where ϕ denotes the normalized
trace operator (2.61). Therefore, we conclude that

lim
λ→∞

ξ̂ (λ) ≈
λ

1+ qλ−1ϕ(E)+ O(λ−2)
2 ∼ λ− 2qϕ(E)+ O(λ−1), (6.18)

and if we use that Tr E = Tr C = N , we simply obtain

lim
λ→∞

ξ̂ (λ) ≈ λ− 2q+ O(λ−1). (6.19)

It is interesting to compare this with the well-known ‘‘Baik–Ben Arous–Péché’’ (BBP) result on large outliers [121], which
reads (see Eq. (3.64)) λ ≈ µ+ q for λ→∞. As a result, we deduce from Eq. (6.19) that ξ̂ (λ) ≈ µ− q and we therefore find
the following ordering relation

ξ̂ (λ) < µ < λ, (6.20)

for an isolated and large eigenvalues λ and for q > 0. Again, this result is in agreement with Eq. (6.16): large eigenvalues
should be reduced for any q > 0, even below the ‘‘true’’ value of the outlier µ. More generally, the non-linear shrinkage
function ξ̂ interpolates smoothly between λ/(1− q)2 for small λ’s to λ− 2q for large λ’s. Even though we did not manage
to prove it, we believe that this is another manifestation of the fact that the limiting optimal nonlinear shrinkage function
(6.5) is monotonic with respect to the sample eigenvalues.

24 Recall that we assume C to be positive definite for the sake of simplicity.
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Fig. 18. Evaluation of the optimal RIE’s eigenvalues for C = IN as a function of the sample eigenvalues [λi]i∈[[1,N]] for q = 1/2. The nonlinear shrinkage
function is plottedwith the plain blue line.We see that for λ > (1+

√
q)2 , a phase transition occurs and the corresponding ‘‘cleaned’’ eigenvalues converge

for large λ to λ − 2q (the red dotted line shifted down by 2q = 1). Note the square-root singularity of the estimator as one gets close to the edge of the
spectrum. There is a similar phase transition for outliers λ < (1−

√
q)2 (see Fig. 20).

6.4. Some analytical examples

The general properties of the oracle shrinkageprocedure described above canbe givenmore flesh in someexactly solvable
cases. In this section we provide two simple toy models where the function ξ̂ (λ) can be characterized explicitly, before
turning to numerical illustrations.

6.4.1. Null hypothesis
The first one is the null hypothesis C = IN where we shall see that, as expected ξ ora.(λi) = 1 for any eigenvalues [λi]i>r+1

in the bulk of the distribution. Outside of the spectrum, we observe a ‘‘phase transition’’ phenomena similar to the BBP
transition [121], that leads to a non-trivial shrinkage formula.

We begin with the outliers of E. By assumption of our model, all the outliers have a contribution of order N−1 so that
in the limit N → ∞, gE is real and analytic for any λi with i 6 r . Hence, the estimator is easily obtained by plugging the
Stieltjes transform (2.41) into Eq. (6.5), with a result shown in Fig. 18.

For bulk eigenvalues, the computation can be done more explicitly. First, using Eq. (2.41), one finds

1− q+ qzgE(z) =
(z + 1− q)±


(z + q− 1)2 − 4zq
2

.

For z = λ − iη with λ ∈

(1 −
√
q)2, (1+

√
q)2

, we know that the square root in the latter equation becomes imaginary

for η→ 0+. Hence, if we take the square modulus, one gets

lim
η→0

1− q+ qλgE(λ− iη)
2 = (z + 1− q)2 +


4λq− (λ+ q− 1)2


4

,

from which we readily find

lim
η→0

1− q+ qλgE(λ− iη)
2 = λ,

and this gives the expected answer

ξ̂ (λ) = 1, λ ∈

(1−
√
q)2, (1+

√
q)2

. (6.21)

We provide an illustration of this phase transition in Fig. 18 in the case where C = IN , corresponding to a matrix E is
generated using an isotropic Wishart matrix with q = 0.5. It also confirms the asymptotic prediction for large and isolated
eigenvalue Eq. (6.19).

6.4.2. Revisiting the linear shrinkage
In Section 5, we saw that the linear shrinkage (towards the identitymatrix) is equivalent to assuming that C itself belongs

to an Inverse-Wishart ensemble with some parameter κ . We want to revisit this result within the framework of the present
section, and we will see that in the presence of extra spikes, the optimal shrinkage function (6.5) again shows a phase
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Fig. 19. Evaluation of the optimal RIE’s eigenvalues for an InverseWishart prior with κ = 2 as a function of the sample eigenvalues [λi]i∈[[1,N]] . The matrix
E is generated using Wishart matrix with parameter N = 500 and q = 0.5. The nonlinear shrinkage function is plotted with the plain blue line and it
coincides with the estimator Eq. (5.19) (red dotted line). We nonetheless see that for λ > λiw

+
, a phase transition occurs and the two estimators split up.

The same phenomenon is observed for λ < λiw
+

(see Fig. 20).

transition phenomenon and therefore differs from the linear estimator Eq. (5.19) for eigenvalues lying outside the spectrum
of E.

As for the null hypothesis case above, there is no particular simplifications for outliers and the numerical result is
immediately obtained from Eqs. (6.5) and (3.41). For the bulk component, the square root term in Eq. (3.41) becomes
imaginary. Hence, setting z = λ− iη into Eq. (3.41) with λ ∈ [λiw

−
, λiw
+
] and λiw

±
, defined in Eq. (3.42), one obtains1− q+ qλ lim

η→0+
gE(λ− iη)

2 =

λ(1+ qκ)+ κq(1− q)

2
+ q2


2λκ(κ(1+ q)+ 1)− κ2(1− q)2 − λ2κ2


(λ+ 2qκ)2

,

with κ > 0. This can be rewritten after expanding the square as1− q+ qλ lim
η→0+

gE(λ− iη)
2 = λ(1+ 2qκ)

(λ+ 2qκ)
. (6.22)

By plugging this last equation into Eq. (6.5) gives for any λ ∈ [λiw
−
, λiw
+
]

ξ ora.(λ) =
λ+ 2qκ
1+ 2qκ

, (6.23)

and if we recall the definition αs = 1/(1 + 2qκ) ∈ [0, 1] of Eq. (5.19), we retrieve exactly the linear shrinkage estimator
(5.19),

ξ ora.(λ) ∼ αsλ+ (1− αs), λ ∈ [λiw
−
, λiw
+
]. (6.24)

This last result illustrates in a particular case the genuine link between the optimal RIE Ξ ora. and Bayes optimal inference
techniques in the LDL. In particular, we show that for an isotropic Inverse Wishart matrix, the estimator Ξ ora. gives the
same result than the conjugate prior approach in the high dimensional regime. Nevertheless, this is valid only for the bulk
component as the presence of outliers induces a phase transition for the optimal RIE, which is absent within the conjugate
prior theory that is blind to outliers. We illustrate this last remark in Fig. 19 where C is an Inverse-Wishart matrix of
parameter κ = 2. The link between Bayesian statistics and RIE in the high-dimensional regime has been noticed in [38]
where the case of an additive noise is also considered—see Appendix D, yielding a generalization of thewell-knownWiener’s
signal-to-noise ratio optimal estimator [135].

We also illustrate in Fig. 20 the phase transition observed for outliers at the left of the lower bound of the spectrum for
both analytical examples. We see that for very small eigenvalues, the theoretical prediction (6.17) is pretty accurate. This
prediction becomes less and less effective as λmoves closer to the left edge.

6.5. Optimal RIE at work

In order to conclude this section, we now consider different cases where gE(z) is not explicit, and where the problem
must be solved numerically. In that case, the main question is to estimate the function gE(z) without imposing any ‘‘prior’’
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Fig. 20. Comparison of the prediction Eq. (6.17) (red dashed line) compared to the analytical solution of the null hypothesis (6.21) (green dash-dotted
line) and the InverseWishart prior (6.24) with parameter κ = 2 (blue plain line). In both cases, wet set q = 0.5. The asymptotic prediction (6.17) becomes
less and less accurate as λmoves closer to the left edge and the analytic solution (blue line) depicts a phase transition.

on C. Indeed, even though the function ξ ora. only depends on observable quantities, we still need to estimate the function
gE(z) using only a finite (and random) set of sample eigenvalues.

This question has been addressed recently in [39], where apart from extending the result of [37] to outliers (as reviewed
above), the mathematical technique used in [39] provides a derivation of Eq. (6.5) at a local scale and for any large but finite
N . As alluded to in Section 4, the local scale can be understood as an average over small intervals of eigenvalues of width
η = dλ > N−1. The main result of [39] can be summarized as follows: the limiting Stieltjes transform gE(z) can be replaced
by its discrete form

gNE (z) =
1
N

N
i=1

1
z − λi

, (6.25)

with high probability (see e.g. [113] for the exact statement). Therefore, this yields a fully observable nonlinear shrinkage
function and moreover, the choice η = N−1/2 gives a sharp upper error bound for any finite N and T . Precisely, for
zi = λi − iN−1/2, there exists a constant K such that for large enough T ,

ξ ora.i − ξ̂
N
i

 6
K
√
T
, ξ̂Ni ≡ ξ̂

N(λi) :=
λi1− q+ qzigNE (zi)

2 , (6.26)

provided that λi is not near zero [39].We see that Eq. (6.26) is extremely simple to implement numerically as it only requires
to compute a sum over N terms.

We now test numerically the accuracy of the finite N , observable optimal nonlinear shrinkage function (6.26) in four
different settings for the population matrix C. We choose N = 500, T = 1000 (which are quite reasonable numbers in real
cases, not too small nor too large) and consider the following four different cases:

(i) Diagonal matrix whose ESD is composed of multiple sources with ‘‘spikes’’,

ρC = 0.002δ15 + 0.002δ8 + 0.396δ3 + 0.3δ1.5 + 0.3δ1. (6.27)

(ii) Deformed GOE, i.e C = IN + GOE (of width σ = 0.2) with extra spikes located at {3, 3.5, 4.5, 6}.

(iii) Toeplitz matrix with entries Cij = 0.6|i−j| with spikes located at {7, 8, 10, 11};

(iv) Power-law distributed eigenvalues (see [29] and Section 3) with λ0 = −0.6 (or λmin = 0.8). Using a large N proxy for
the classical positions of the µi, one gets [29]:

µi = −λ0 +
(1+ λ0)

2


N
i

i ∈ [[1,N]]. (6.28)
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(a) Multiple sources (case (i)). (b) Deformed GOE (case (ii)).

(c) Toeplitz (case (iii)). (d) Power law (case (iv)).

Fig. 21. Comparison of numerically estimated oracle estimator (6.26) (red line) with the exact oracle RIE estimator (6.2) (blue points) for the four cases
presented at the beginning of Section 6.5 with N = 500 and T = 1000. The results come from a single realization of E using a multivariate Gaussian
measurement process.

Note that the last power law distribution automatically generates a bounded number of outliers. Moreover, since we work
with N and T bounded, the largest eigenvalue of C remains bounded. We plot the results obtained with the estimator
Eq. (6.26) and the oracle estimator Eq. (6.2) in Fig. 21.

Overall, the estimator (6.26) gives accurate predictions for both the bulk eigenvalues and outliers. We have considered
several configurations of outliers. For the case (i), we see that the two isolated outliers are correctly estimated. For the
deformed GOE or the Toeplitz case, the outliers are chosen to be a little bit closer to one another and again, the results
agree well with the oracle estimator. For the more complex case of a power law distributed spectrum, where there is no
sharp right edge, we see that (6.26) matches again well with the oracle estimator. We nevertheless notice that the small
eigenvalues are systematically underestimated by the empirical optimal RIE (6.26). This effect will be investigated in more
details in Section 8.

As a further check, we provide here a numerical test of the ‘‘optimal’’ scale η. As explained above, it was shown in [39]
that the value η = N−1/2 gives the upper bound in (6.26). However, one might wonder if this value is indeed optimal with
real (or synthetic) data. To test this, we study the estimator (6.26) as a function of η and compute the corresponding mean
squared error with respect to the oracle estimator Ξ ora. for η = αN−1/2 and α ∈ [0.01, 50]. For each C, we evaluate the
error for 100 different realizations of E using amultivariate Gaussian process. The results are reported in Fig. 22. The optimal
value of α ≈ 1.5 for all the examples except when C is a Toeplitz matrix (yellow dots) where the optimal value of α ≈ 8.4.

6.6. Extension to the free multiplicative model

As highlighted in [38], the evaluation of the optimal RIE for bulk eigenvalues can be extended to more general multiplicative random
matrix models (for additive noise models, see Appendix D). In particular, it is possible to derive (formally) the optimal nonlinear
shrinkage function (6.5) for the bulk eigenvalues of the measurement model (2.80) which generalizes the case of sample covariance
matrices (see Section 3.2.1).
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Fig. 22. Mean squared difference between the optimal estimator (6.26) and the oracle estimator. The estimator (6.26) is now studied as a function of η.
The x-axis (in logarithm scale) shows the value of α =

√
Nη for the sake of clarity. We consider five different examples for C (same configuration as in

Fig. 21 and the identity matrix). For each example, we generate 100 independent realizations of E with N = 500 and T = 1000.

To that end, let us define M := C1/2ΩBΩ∗C1/2 where B is a N × N symmetric rotational invariant noise term and Ω is a N × N
random rotation matrix that is distributed according to the Haar measure. One can easily check from Eq. (2.100) that

Tr [GM(z)C] = N(zgM(z)− 1)SB(zgM(z)− 1). (6.29)

Using the analyticity of the S-transform, we define the function γB and ωB such that:

lim
z→λ−i0+

SB(zgM(z)− 1) := γB(λ)+ iπρM(λ)ωB(λ), (6.30)

and as a result, the optimal RIE for bulk eigenvalues of the free multiplicative noise model (2.80) may be inferred from (6.4):

ξ ora.i ∼ F2(λi); F2(λ) = λγB(λ)+ (λhM(λ)− 1)ωB(λ). (6.31)
Note that one retrieves the estimator (6.5) by plugging Eqs. (2.44) and (6.30) into Eq. (6.31). We omit details, which can be found
in [38], and we conclude that the formula (6.31) indeed generalizes Eq. (6.5). Again, we see that the final solution does not depend
explicitly on C but somehow requires a prior on the spectral distribution of the matrix B. It would be quite satisfying to find models in
which we may obtain an explicit formula for Eq. (6.31) (see Section 9 for some relevant applications of this model).

We emphasize in passing that we may also derive the mean squared overlap (4.3) in the bulk of the distribution using Eq. (2.100).
To that end, we invoke the relation (4.9) and Eq. (2.100) to obtain [38]:

Φ(λ, µ) =
µβm(λ)

(λ− µαm(λ))2 + π2µ2βm(λ)2ρM(λ)2
, (6.32)

where we defined the functions αm and βm as
αm(λ) := lim

z→λ−i0+
Re


1
SB(zgM(z)− 1)


βm(λ) := lim

z→λ−i0+
Im


1
SB(zgM(z)− 1)


1

πρM(λ)
,

(6.33)

and the subscriptm stands for ‘‘multiplication’’.
We conclude this technical section by mentioning one open problem which is the extension of these results in the presence of

outliers. Indeed, it would be interesting to see whether the optimal RIE formula (6.31) remains universal (as we believe it is) in the
sense that the cleaning formula for bulk eigenvalues and outliers is identical. The block matrix representation (C.8) might be useful in
that respect.

7. Application: Markowitz portfolio theory and previous ‘‘cleaning’’ schemes

7.1. Markowitz optimal portfolio theory

For the reader not familiar with Markowitz’s optimal portfolio theory [5], we recall in this section some of the most
important results. Suppose that an investor wants to invest in a portfolio containing N different assets, with optimal
‘‘weights’’ to be determined. An intuitive strategy is the so-called mean–variance optimization: the investor seeks an
allocation such that the overall quadratic risk of the portfolio is minimized given an expected return target. It is not hard
to see that this mean–variance optimization can be translated into a simple quadratic optimization program with a linear
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constraint. Before going into more mathematical details, let us introduce some notations that will be used in the following.
We suppose that we observe the return time series of N different stocks. For each stock, we observe a time series of size T ,
where T is often larger than N in practice. This yields the (normalized) N × T return matrix Y = (Yit) ∈ RN×T whose true
correlation matrix is defined by

⟨YitYjt ′⟩ = Cijδtt ′ , (7.1)

where the absence of correlations in the time direction is only a first approximation since weak, but persistent linear
correlations are known to exist in stock markets.

As natural in the present ‘‘Big Data’’ era, we place ourselves in the high-dimensional regimeN, T →∞with a finite ratio
q = N/T . Markowitz’s optimal portfolio amounts to solving the following quadratic optimization problemmin

w∈RN

1
2
w∗Cw

s.t. w∗g ≥ G
(7.2)

where g is aN-dimensional vector of predictors (assumed to be deterministic and given by, e.g. in depth analysis of economic
data) and G is the expected gain. This mathematical problem can be easily solved by introducing a Lagrangian multiplier γ
to rewrite this constrained optimization problem as an unconstrained one25:

min
w∈RN

1
2
w∗Cw− γw∗g. (7.3)

Assuming that C is invertible, it is not hard to find the optimal solution and the value of γ such that overall expected return
is exactly G. It is given by

wC = G
C−1g

g∗C−1g
, (7.4)

that requires the knowledge of both C and g, which are a priori unknown. As mentioned above, forming expectations of
future returns is the job of the investor or of the financial analyst, based on his/her information and anticipations, so we
assume that g is given. Even if these predictions were completely wrong, it would still make sense to look for the minimum
risk portfolio consistent with these expectations. We are still left with the problem of estimating C, or maybe C−1 before
applyingMarkowitz’s formula, Eq. (7.4). Wewill see belowwhy one should actually find the best estimator of C itself before
inverting it and determining the weights.

What is theminimum risk associated to this allocation strategy,measured as the variance of the returns of the portfolio?26
If one knew the population correlation matrix, C, the true optimal risk associatedwC would be given by

R2
true := ⟨wC, CwC⟩ =

G2

g∗C−1g
. (7.5)

However, the optimal strategy (7.4) is not attainable in practice as thematrix C is unknown.What can one do then, and how
badly is the realized risk of the portfolio estimated?

7.1.1. Predicted and realized risk
One very naive way to use the Markowitz optimal portfolio is to apply (7.4) using the empirical matrix E instead of C.

Recalling the results of Sections 3 and 4, it is not hard to see that this strategy should suffer from strong biases whenever T is
not sufficiently large compared toN , which is precisely the case we consider here. Notwithstanding, the optimal investment
weights using the empirical matrix E read:

wE = G
E−1g

g∗E−1g
, (7.6)

and the minimum risk associated to this portfolio is thus given by

R2
in = ⟨wE, EwE⟩ =

G2

g∗E−1g
, (7.7)

which is known as the ‘‘in-sample’’ risk, or the predicted risk. Let us assume for a moment that g is independent from C (and
hence, from E). Then, using the convexity with respect to E of g∗E−1g we find from Jensen inequality that

E[g∗E−1g] > g∗E

E
−1g = g∗C−1g (7.8)

25 One can check that the so-called Karush–Kuhn–Tucker conditions are satisfied.
26 An equivalent risk measure is the volatility which is simply the square root of the variance of the portfolio strategy.
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Fig. 23. Efficient frontier associated to the mean–variance optimal portfolio (7.4) for g = (1, . . . , 1)∗ and C a shifted GOE around the identity matrix, with
σ = 0.2 and for q = 0.5. The blue line depicts the expected gain as a function of the true optimal risk (7.5) in percentage. The green line gives the predicted
(in-sample) risk while the red line gives the realized (out-of-sample) risk, which is well above the true risk. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

because E is an unbiased estimator of C. Hence,we conclude that the in-sample risk is lower than the ‘true’ risk and therefore,
our optimal portfolio suffers from an in-sample bias: its predicted risk underestimates the true optimal risk, and even more
so the future out-of-sample or realized risk, that is the risk realized in the period subsequent to the estimation period. Let us
denote by E′ the empirical matrix of this out-of-sample period; the out-of-sample risk is then naturally defined by:

R2
out = ⟨wE, E′wE⟩ =

G2gĎE−1E′E−1g
(gĎE−1g)2

. (7.9)

For large matrices, we expect the result to be self-averaging and given by its expectation. Since the noise in wE can be
assumed to be independent from that in E′, we get for large N [136]:

w∗EE
′wE ≈ w

∗

ECwE (7.10)

and one readily obtains, from the fact that Eq. (7.5) is the minimum possible risk, the following inequality: R2
true 6 R2

out.
We plot in Fig. 23 an illustration of these inequalities using the so-called efficient frontier where we assumed that g =
(1, . . . , 1)∗. For a given C (here a shifted GOE around the identity matrix, with σ = 0.2), we build wC and wE and compare
Eqs. (7.5), (7.7) and (7.9) for q = 0.5. We see that using wE is clearly overoptimistic and can potentially lead to disastrous
results in practice. We refer to [137] for a rigorous study of this problem. We emphasize that this conclusion holds for
different risk measures as well [6,7].

7.1.2. The case of high-dimensional random predictors
In the limit of largematrices andwith some assumptions on the structure g, we canmake these inequalitiesmore precise

using tools from RMT. In particular, we will show that we can link the true and the realized risk using the Marčenko–Pastur
equation and free probability theory. Let us suppose for simplicity that

g ∼ NN(0, IN), (7.11)

but the result holds for any vector gwhose direction is independent of C or E, such that g is normalized as g∗g = N , i.e. each
component of g is of order unity.We emphasize that these assumptions are not necessarily realistic (predictors can be biased
along the principal components of C) but allow us to quantify more precisely the relation between the in/true/out of sample
risk. The suboptimal returns that follow the use ‘‘bad’’ predictors g is outside of the scope of this review. LetM be a positive
definite matrix which is independent from the vector g, then we have in the large N limit,

g∗Mg
N
=

1
N

Tr[gg∗M] =
freeness

g∗g
N
ϕ(M) (7.12)

where we recall that ϕ is the normalized trace operator. Thus, from our assumption (7.11) we easily deduce,

g∗Mg
N
− ϕ(M) →

N→∞
0. (7.13)
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Now settingM = {E−1, C−1}, we apply Eq. (7.13) to Eqs. (7.7), (7.5) and (7.9) respectively, to find

R2
in →

G2

Nϕ(E−1)
,

R2
true →

G2

Nϕ(C−1)
,

R2
out →

G2ϕ(E−1CE−1)
Nϕ2(E−1)

, (7.14)

where we recall that ϕ is the normalized trace operator defined in Eq. (2.61). Let us focus on the first two terms above. For
q < 1, we have shown above that in the high-dimensional regime one has ϕ(C−1) = (1 − q)ϕ(E−1) – see Eq. (3.24). As a
result, we have, for N →∞

R2
in = (1− q)R2

true. (7.15)

Hence, for any q ∈ (0, 1), we see that the in-sample risk associated to wE always provides an over-optimistic estimator.
Even better, we are able to quantify exactly the risk underestimation thanks to (7.15).

Next we would like to find the same type of relation for the ‘‘out-of-sample’’ risk. We recall that under the framework of
Section 3, we may always rewrite E = C1/2WC1/2 where W is a white Wishart matrix of parameter q independent from C.
Hence, we have for the out-of-sample risk

R2
out =

G2ϕ(C−1W−2)

Nϕ2(E−1)

when N →∞. Then, the trick is to notice that in the limit of large matrices, W and C are asymptotically free. This allows us
to conclude from the freeness relation (2.64) that

ϕ(C−1W−2) = ϕ(C−1) ϕ(W−2), (7.16)

Hence, using the asymptotic relation (3.24), we find:

R2
out = G2(1− q)2

ϕ(W−2)

Nϕ(C−1)
. (7.17)

Finally, one can readily compute ϕ(W−2) by performing the large z → 0 expansion of the Stieltjes transform of the
Marčenko–Pastur density given Eq. in (3.24) by replacing C with IN , that is to say ϕ(W−2) = (1 − q)−3 for q < 1. We
finally get:

R2
out =

R2
true

1− q
. (7.18)

All in all, we obtained the following asymptotic relations:

R2
in

1− q
= R2

true = (1− q)R2
out, (7.19)

which holds for a completely general C. Note that similar results have been obtained in a slightly different context in [136]
for C = IN and later in [138,139]. Hence, if one invests with the ‘‘naive’’ weights wE, it turns out that the predicted risk
underestimate the realized risk by a factor (1− q)2 and in the extreme case N = T or q = 1, the in-sample risk is equal to
zero while the out-of-sample risk diverges. We thus conclude that, as announced, the use of the sample covariance matrix
E for the Markowitz optimization problem can lead to disastrous results. This suggests that we should have a more reliable
estimator of C in order to control the out-of-sample risk.

7.1.3. Out-of-sample risk minimization
We insisted throughout the last section that the relevant quantity to control in portfoliomanagement is the realized, out-

of-sample risk. It is also clear fromEq. (7.19) that using the sample estimate E is a very bad idea and hence, it is natural to ask:
which estimator of C should one use tominimize the out-of-sample risk? TheMarkowitz formula (7.4) naively suggests that
one should look for a faithful estimator of the so-called precision matrix C−1. But in fact, since the expected out-of-sample
risk involves the matrix C linearly, it is that matrix that should be estimated. There are two different approaches to argue
that the oracle estimator indeed yields the optimal out-of-sample risk.
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The first approach consists in rephrasing the Markowitz problem in terms of conditional expectation. Indeed, the
Markowitz problem can be thought as the minimization of the expected future risk given the observations available at
the investment date. More formally, it can be written as27min

w
E


1
Tout

 t+Tout
t ′=t+1

⟨w, rt ′⟩
2F (t),

s.t. w∗g ≥ G,

(7.20)

where F (t) is all the information available at time t (the investment data), Tout is the out-of-sample period, and r is the
vector of returns of the N stocks in our portfolio. Assuming i.i.d returns means that the optimal weights are independent
from the future realizations of r. Moreover, we assume that P (rt ′) ∝ P (rt ′ |C)P0(C) for t ′ > t , where P0(C) is an (arbitrary)
prior distribution on the population covariance matrix C. One then has:

E


1
Tout

 t+Tout
t ′=t+1

⟨w, rt ′⟩
2F (t) = 

w ,
1

Tout


t ′

E

rtr∗t

F (t) w

,

=


w , E


C
F (t) w


. (7.21)

Recalling the results from Section 5, we see that E[C|F (t)] = ⟨C⟩P (C|E) under a multivariate Gaussian assumption on the
returns28 (see Eq. (5.11)). Therefore, using the result Eq. (5.12), we can conclude that the oracle estimator is the one that
minimizes the out-of-sample risk in that specific framework.

There exists another, perhaps more direct derivation of the same result that we shall now present. It is based on the
relation (7.9). Let us show this explicitly in the context of rotationally invariant estimators, that we considered in Sections 5
and 6. Let us define our RIE as

Ξ =

N
i=1

ξ(λi)uiu∗i ,

where we recall that [ui]i∈[[1,N]] are the sample eigenvectors and ξ(·) is a function that has to be determined. Suppose that
we construct our portfoliowΞ using this RIE, that we assume to be independent of the prediction vector g. Again, we assume
for simplicity that g is a Gaussian vector with zero mean and unit variance. Consequently, the estimate (7.13) is still valid,
such that the realized risk associated to the portfoliowΞ reads for N →∞:

R2
out(Ξ) = G2

Tr

Ξ−1CΞ−1



TrΞ−1

2 (7.22)

using the spectral decomposition ofΞ , we can rewrite the numerator as

Tr

Ξ−1CΞ−1


=

N
i=1

⟨ui, Cui⟩

ξ 2(λi)
. (7.23)

On the other hand, one can rewrite the denominator of Eq. (7.22) as


TrΞ−1

2
=

 N
i=1

1
ξ(λi)

2

. (7.24)

Regrouping these last two equations allows us to rewrite Eq. (7.22) as

R2
out(Ξ) = G2

N
i=1

⟨ui, Cui⟩

ξ 2(λi)

 N
i=1

1
ξ(λi)

−2
. (7.25)

Our aim is to find the optimal shrinkage function ξ(λj) associated to the sample eigenvalues [λj]j∈[[1,N]], such that the out-
of-sample risk is minimized. This can be done by solving, for a given j, the following first order condition:

∂R2
out(Ξ)

∂ξ(λj)
= 0. (7.26)

27 Recall that we neglect the expected return g in the calculation of the variance, since the latter is usually small compared to the volatility.
28 We expect this result to hold also for the multivariate Student, see Section 3.1.3.
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By performing the derivative with respect to ξ(λj) in (7.25), one obtains

−2
⟨uj, Cuj⟩ξ

′(λj)

ξ 3(λj)

 N
i=1

1
ξ(λi)

−2
+ 2

ξ ′(λj)

ξ 2(λj)

 N
i=1

⟨ui, Cui⟩

ξ 2(λi)

 N
i=1

1
ξ(λi)

−3
= 0, (7.27)

and one can check that the solution is precisely given by

ξ(λj) = ⟨uj, Cuj⟩ := ξ
ora.
j , (7.28)

which is the oracle estimator that we have studied in Sections 5 and 6. Note that this result has been obtained in [140]where
the authors also showed that this estimator maximizes the Sharpe ratio, i.e., the expected return of the strategy divided by
its volatility.

As a conclusion, the optimal RIE (6.5) actually minimizes the out-of-sample risk under the class of rotationally invariant
estimators under some distribution assumptions. Moreover, the corresponding ‘‘optimal’’ realized risk is given by

R2
out(Ξ

ora.) =
G2

Tr

(Ξ ora.)−1

 , (7.29)

where we used the notable property that for any n ∈ Z:

Tr[(Ξ ora.)nC] = Tr[(Ξ ora.)n+1], (7.30)

which directly follows from the general formula (6.2).

7.1.4. Optimal in and out-of-sample risk for an inverse Wishart prior
In this section, we specialize the result (7.29) to the case when C is an Inverse-Wishart matrix with parameter κ > 0,

corresponding to the simple linear shrinkage optimal estimator. Notice that we shall assume throughout this section that
there are no outliers (r = 0). Firstly, we infer from Eq. (2.55) by z → 0 that

ϕ(C−1) = −gC(0) = 1+
1
2κ
, (7.31)

so that we get from Eq. (7.14) that in the large N limit:

R2
true =

G2

N
2κ

1+ 2κ
. (7.32)

Next, we see from Eq. (7.29) that the optimal out-of-sample risk requires the computation of ϕ((Ξ ora.)−1). In general,
the computation of this normalized is highly non-trivial but we shall show that some genuine simplifications appear when
C is an inverse Wishart. In the LDL, the final result, whose derivation is postponed at the end of this section, reads:

ϕ((Ξ ora.)−1) = −(1+ 2qκ)gE(−2qκ) = 1+
1

2κ(1+ q(1+ 2κ))
, (7.33)

and therefore we have from Eq. (7.29)

R2
out(Ξ

ora.) =
G2

N
2κ(1+ q(1+ 2κ))

1+ 2κ(1+ q(1+ 2κ))
, (7.34)

from which it is clear from Eqs. (7.34) and (7.32) that for any κ > 0:

R2
out(Ξ

ora.)

R2
true

= 1+ q
2κ

1+ 2κ(1+ q(1+ 2κ))
> 1, (7.35)

where the last inequality becomes an equality only when q = 0, as it should.
It is also interesting to evaluate the in-sample risk associated to the oracle estimator. It is defined by

R2
in(Ξ

ora.) = G2 Tr

(Ξ ora.)−1E(Ξ ora.)−1


Nϕ2((Ξ ora.)−1)

, (7.36)

where themost challenging term is the numerator. As above, the computation of this term is, to our knowledge, not trivial in
the general case but using the fact that the eigenvalues ofΞ ora. are given by (6.24), we can once again find a closed formula.
As above, we relegate the derivation at the end of this section and the result reads:

ϕ

(Ξ ora.)−1E(Ξ ora.)−1


= −(1− z)2


gE(z)+ zg′E(z)


z=−2qκ

=
(1+ 2κ)(1+ 2qκ)3

2κ(1+ q(1+ 2κ))3
. (7.37)
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Hence by plugging Eqs. (7.37) and (7.33) into Eq. (7.36), we obtain

R2
in(Ξ

ora.) =
G2

N
2κ(1+ 2qκ)

(1+ 2κ)(1+ q(1+ 2κ))
, (7.38)

and we therefore deduce with Eq. (7.32) that for any κ > 0:

R2
in(Ξ

ora.)

R2
true

= 1−
q

1+ q(1+ 2κ)
6 1, (7.39)

where the inequality becomes an equality for q = 0 as above.
Finally, one may easily check from Eqs. (7.19), (7.35) and (7.39), that

R2
in(Ξ

ora.)−R2
in(E) > 0, R2

out(Ξ
ora.)−R2

out(E) 6 0, (7.40)

showing explicitly that we indeed reduce the over-fitting by using the oracle estimator instead of the sample covariance
matrix in the high dimensional framework.

The aim of this technical section is to derive the results (7.33) and (7.37). We begin with Eq. (7.33) and we use that the eigenvalues of
the oracle estimator converge to Eq. (6.24) when N →∞. C is assumed to be an inverse Wishart of parameter κ > 0. Hence, one has

ϕ((Ξ ora.)−1) =
1
N

N
i=1

1
1+ αs(λi − 1)

=
1
αs

1
N

N
i=1

1
1−αs
αs
+ λi

, (7.41)

and using Eq. (5.19), we also have

1
αs
= 1+ 2qκ, and

1− αs

αs
= 2qκ.

Wemay conclude that

ϕ((Ξ ora.)−1) ∼ (1+ 2qκ)gE(−2qκ), (7.42)

where we emphasize that the Stieltjes transform is analytic since its argument is non-positive for any κ > 0. This is the first equality
of Eq. (7.33) that relates the computation of the normalized trace with the Stieltjes transform of E. When C is an Inverse Wishart, we
know that gE is explicit and given by (3.41). Nonetheless, it seems that Eq. (3.41) is diverging for z = −2qκ so that one has to be careful
in the evaluation of gE(−2qκ). To that end, we fix z = −2qκ + ε with ε > 0 and expand the numerator of Eq. (3.41) as a power of ε
to find:

gE(z) =
q− z

z(1+ q− z)
+ O(ε),

meaning that for ε = 0, we obtain

gE(−2qκ) = −
1+ 2κ

2κ(1+ q(1+ 2κ))
. (7.43)

It is then easy to deduce Eq. (7.33) from this last equation and Eq. (7.42).
The computation of Eq. (7.37) is a bit more tedious but very similar to the derivation of the previous section. Indeed, using that

(Ξ ora.)−1E(Ξ ora.)−1 share the same eigenbasis, we have thanks to Eq. (6.24):

ϕ((Ξ ora.)−1E(Ξ ora.)−1) =
1
N

N
i=1

λi

(1+ αs(λi − 1))2
, (7.44)

which gives after some simple manipulations:

ϕ((Ξ ora.)−1E(Ξ ora.)−1) =
1
αs

1
N

N
i=1


1

1+ αs(λi − 1)
−

1− αs

(1+ αs(λi − 1))2


. (7.45)

Defining z = −2qκ < 0, one can deduce the first equality of Eq. (7.37) using the same identification with the Stieltjes transform (and
its derivative with respect to z) as above. The derivative of Eq. (3.41) reads:

g′E(z) =
1

z2(z + 2qκ)2


z(2κq+ z)


1+ κ −

κ(κ(q− z + 1)+ 1)
κ2(z + q− 1)2 − 2κz(1+ 2κ)


− 2(qκ + z)β(z)


, (7.46)

where β(z) is defined by

β(z) := z(1+ κ)− κ(1− q)+

κ2(z + q− 1)2 − 2κz(1+ 2κ), (7.47)
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which is the denominator of Eq. (3.41). We omit further details as the proof of the second equality of Eq. (7.37) relies on a Taylor
expansion around−2qκ in the same spirit than in the previous section. This regularizes the Stieltjes transform and its derivative and
one eventually obtains:

−2qκg′E(−2qκ) =
q(1+ 2κ)


q+ 2(1+ κ + 2qκ(1+ κ))


2κ(1+ q(1+ 2κ))3

(7.48)

and we find the desired result by plugging this last equation into Eq. (7.37).

7.2. A short review on previous cleaning schemes

In this section, we give a short survey of the many attempts in the literature to circumvent the above ‘‘in-sample’’ curse
by cleaning the covariancematrix before using it for e.g. portfolio construction. Even if most of the recipes considered below
are not optimal (in a statistical sense), a lot of interesting ideas have been proposed to infer the statistical properties of
the unknown population matrix. As we shall see, most of the methods appeared after the seminal work of Marčenko &
Pastur [18]. We nonetheless stress that the literature on estimating large covariance matrices is so large that it is impossible
to make justice to all the available results here. We will only consider methods for which RMT results offer interesting
insights and refer to, e.g. [29,141,93] for complementary sources of information.

We shall present four different classes of estimators. The first one is the linear shrinkage method. This estimator has
been studied in details in Sections 5 and 6 but here, we focus on the estimation of the shrinkage intensity. As we will see,
RMT will provide very simple methods to estimate parameters from the data.

Thenwewill present the eigenvalues clippingmethod of [28,24]where the aim is to separate ‘‘trustworthy’’ eigenvalues
from ‘‘noisy’’ ones. The basic idea of thismethod is the spiked covariancematrixmodel that we presented in Section 3where
the true eigenvalues consist in a finite number r of spikes and one degenerate eigenvalue ≈1 − O(r/N), with multiplicity
N − r .

The thirdmethod, thatwe name eigenvalues substitution, consists in solving the inverseMarčenko–Pastur problem (see
Section 3). Roughly speaking, in the presence of a very large number of eigenvectors, one can discretize theMarčenko–Pastur
equation and solve the inverse problem using either a parametric [29] or non-parametric approach [33].

The lastmethod concerns factorsmodels, or structured covariance estimators, where one tries to explain the correlation
matrix through a simplified model of the underlying structure of the data. This is a very popular approach in finance and
economics, and we will see how RMT has allowed some recent progress.

All these methods will be tested using real financial data in the next section.

7.2.1. Linear shrinkage
We recall that the linear shrinkage is given by

Ξ lin
= αsE+ (1− αs)IN , α ∈ [0, 1]. (7.49)

As discussed in Section 5, this estimator has a long history in high-dimensional statistics [16,17] as it provides a simple proof
that the sample estimatorE is inconsistentwheneverN and T are both large. A very exhaustive presentation of the properties
of this estimator in the high-dimensional regime can be found in [17] or in [133] in a more RMT oriented standpoint. It is
easy to see that Ξ lin shares the same eigenbasis as the sample estimator E, and is thus a rotationally invariant estimator
with

Ξ lin
=

N
i=1

ξ linuiu∗i , ξ lin = 1+ αs(λi − 1). (7.50)

We already emphasized that this estimator exhibits all the expected features: the small eigenvalues are shifted upwards
(compared to the sample eigenvalues) while the top eigenvalues are pulled downwards (see Fig. 24). As alluded to above,
this estimator has been fully investigated in [17]. Most notably, the authors were able to determine an asymptotic optimal
formula to estimate αs directly from the data. Keeping the notations of Section 3, our dataset is Y = (y1, . . . , yT ) ∈ RN×T

and we assume that E[Yit ] = 0 and E[Y 2
it ] = T−1 for all i ∈ [[1,N]]. Defining:

β :=
1
N

Tr

(E− IN)(E− IN)∗


γ := max


β,

1
T 2

T
k=1

1
N

Tr

(yky∗k − E)(yky∗k − E)∗


, (7.51)

then

αs = 1−
β

γ
, (7.52)

is a consistent estimator of αs in the high-dimensional regime [17].
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Fig. 24. Impact on sample eigenvalues of the eigenvalues clipping (7.55) (red plain line) with a threshold given by (1+
√
q)2 with q = 0.5 and the linear

shrinkage (7.50) (blue dashed line) with intensity αs = 0.5. We see that the lowest eigenvalues are shifted upward.

Using tools from RMT, and more precisely the result of Sections 3 and 4, we can find another consistent estimators of
αs which uses the fact that linear shrinkage implicitly assumes the underlying correlation matrix to be an Inverse-Wishart
matrix with parameter κ , from which αs is deduced as αs = (1 + 2qκ)−1. The value of κ can be extracted from the data
using the relation (valid for q < 1):

gC(0) = (1− q)gE(0) = 1+ 2κ (7.53)

where the last equality can be deduced from (2.55) and (3.24). Therefore, we obtain a simple estimate for κ from the trace
of E−1 as:

κ =
1
2


(1− q)

Tr E−1

N
− 1


. (7.54)

However, this estimate is only reliable when κ is not too large, i.e. when C is significantly different from the identity matrix
(in the opposite case, (1−q) Tr E−1 ≈ N so that one can obtain negative values for κ). A more robust alternative to estimate
κ is the ‘‘two-sample’’ test introduced in Section 4.2, see Eqs (4.40) and [127].

7.2.2. Eigenvalues clipping
This method is perhaps the first RMT-based estimator for large covariance matrices. It has been investigated in several

papers [23,28,24] where theMarčenko–Pastur distribution is used in a very intuitive way to correct the sample eigenvalues.
The idea of the method is as follows: all the eigenvalues that are beyond the largest expected eigenvalue of the empirical
matrix λ+ = (1+

√
q)2 (within a null hypothesis) are interpreted as signal while the others are pure noise (see Fig. 10). An

alternative interpretation would be that outliers are true factors while the others are meaningless.
In a recent paper [99], this idea has beenmade rigorous in the sense that if we suppose that C is a finite rank perturbation

of IN as defined in (3.56), then the referencematrix of the bulk eigenvalues of E simply corresponds to the (isotropic)Wishart
matrix W . Differently said, for this specific model, these bulk eigenvalues should be seen as pure noise, and the right edge
(1+
√
q)2 can be interpreted as the threshold between noise and signal.

Endowed with a simple rule to isolate the signal eigenvalues, how should one clean the noisy ones? Laloux et al. [28]
proposed the following rule: first diagonalize the matrix E and keep the eigenvectors unchanged. Then apply the following
scheme in order to denoise the sample eigenvalues:

Ξ clip.
:=

N
i=1

ξ ci uiu∗i , ξ
clip.
i =


λi if λi > (1+

√
q)2

λ̄ otherwise,
(7.55)

where λ̄ is chosen such that TrΞ clip.
= TrE. Roughly speaking, this method simply states that the noisy eigenvalues are

shrunk toward a (single) constant such that the trace is preserved. This procedure is known as clipping and Fig. 24 shows
how it shifts upwards the lowest eigenvalues in order to avoid a priori abnormal low variance modes.

Nonetheless, the method suffers from several separate problems. First, one often observes empirically, especially with
financial data, that the value of q = N/T that is fixed by the dimensionality of the matrix and the length of the time series
is significantly different from the ‘‘effective’’ value qeff that allows one to fit best the empirical spectral density [28]. This
effect can be induced either by small temporal autocorrelation in the time series [86,142,143] and/or by the inadequacy of
the null hypothesis C = IN for the bulk of the distribution. In any case, a simple recipe would be to use a corrected upper
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edge λ+ = (1+
√
qeff)2 for the threshold separating wheat from chaff. Another possibility, proposed in [29], is to introduce

a fine-tuning parameter αc ∈ [0, 1] such that the ⌈Nαc⌉ largest eigenvalues are kept unaltered while the others are still
replaced by a common λ̄. It is easy to see that for αc = 1, we get the empirical covariance matrix while for αc = 0, we get
the identitymatrix. Soαc plays the role of the upper boundλ+ of theMarčenko–Pastur density, and allows one to interpolate
between E and the null hypothesis IN , much like linear shrinkage. Nevertheless, the calibration of the parameter αc is not
based on any theoretical rule.

Another concern about this method is that we know from Section 6.3 that the optimal estimator of the large outliers is
not their bare empirical value λi. Rather, one should shift them downwards evenwhen far from the bulk, by a quantity equal
to−2q (in the limit λi ≫ 1). Hence, at the very least, such a shift should be included in the eigenvalue clipping scheme from
Eq. (7.55) (see [144] for a related discussion).

7.2.3. Eigenvalue substitution
The main idea behind the eigenvalue substitution method is also quite intuitive and amounts to replacing the sample

eigenvalues by their corresponding ‘‘true’’ values obtained by inverting theMarčenko–Pastur equation (3.9). More formally,
we seek the set of true eigenvalues [µj]j∈[[1,N]] that solve Eq. (3.9) for a given set of sample eigenvalues [λj]j∈[[1,N]]. As for the
eigenvalues clipping procedure, this technique can be seen a nonlinear shrinkage function and has the advantage to lean
upon amore robust theoretical framework than the clipping ‘‘recipe’’. However, aswe emphasized in Section 3.2.1, inverting
theMarčenko–Pastur equation is quite challenging in practice. In this section, we present several possibilities to achieve this
goal in the limit of large dimensions.

Parametrization of Marčenko–Pastur equation. One way to think about the inverse Marčenko–Pastur problem is to adopt
a Bayesian viewpoint (like in Section 5).More specifically, we assume that C belongs to a rotationally invariant ensemble – so
that there is no a priori knowledge about the eigenvectors – and assume a certain structure on the LSD ρC(µ), parameterized
by one or several numbers. The optimal values of these parameters (and the corresponding optimalρC) are then fixed by
e.g. a maximum likelihood procedure on the associated ρE, obtained from the direct Marčenko–Pastur equation. Once the
fit is done, the substitution cleaning scheme reads

λi → µi such that
i
N
=


∞

µi

ρC(x)dx. (7.56)

Note that under the transformation (7.56), we assume that the eigenvalues of C are allocated smoothly according to the
quantile of the limiting densityρC.

As an illustration of this parametric substitutionmethod, let us consider a power law density (3.49) as the prior for ρC(µ).
Such a probabilistic model for the population eigenvalues density is thought to be plausible for financial markets, and reflect
the power-law distribution of sector sizes in the economy [29,145]. In that case, the parametric substitution turns out to
be explicit in the limit of large dimension. Moreover, the estimation of the unique parameter λ0 in this model can be done
using e.g. maximum likelihood, as we can compute exactly ρE on R+ using (3.50) and (3.35). This then yields a parameterλ0 and henceρC as well. As a result, the substitution procedure (7.56) becomes for N →∞ [29]:

µi = −λ0 + (1+λ0)2


N
i

i ∈ [[1,N]]. (7.57)

We present such a procedure in Fig. 25 using US stocks data. We conclude from this figure that the fit is indeed fairly
convincing, i.e. that a power-law density for the eigenvalues of C is a reasonable assumption.

Discretization of Marčenko–Pastur equation. Interestingly, a ‘‘quasi’’ non-parametric procedure is possible under some
smoothness assumption on the density ρC. This algorithm is due to N. El Karoui [33] who proposed to solve an approximate
form of the Marčenko–Pastur inverse problem. The starting point is to notice that each eigenvalue of E satisfies:

zj =
1

gS(zj)


1− q+ q


ρC(µ)dµ

1− µ gS(zj)


, with zj = λj − iη

N

j=1

that follows from Eq. (3.35) and where we recall that S is the T × T dual matrix of E defined in (3.32). The main assumption
of this method is to decompose the density of states ρC as a weighted sum of Dirac masses:

ρC(µ) =

N
k=1

wkδ(µ− µk), such that
N

k=1

wk = 1 and wk ≥ 0, ∀ k ∈ [[1,N]]. (7.58)

Note that this decomposition simply uses the discreteness of the eigenvalues that follows from the very definition of an
ESD where each eigenvalues are associated with a weight equals to N−1. One notices that there are two different sources
of uncertainty: the ‘‘true’’ eigenvaluesµj and their corresponding weightswj so that the parametrization looks inextricably
complex. In [33], the author suggested to fix the positions [µj]j∈[[1,N]] a priori such thatwe are left with theweights [wj]j∈[[1,N]]
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Fig. 25. Fit of the power law distribution (3.49) on the sample eigenvalues of the 450 most liquid assets of the S&P index from 2006 to 2010 using the
Marčenko–Pastur equation (3.9). The fit has been performed using a maximum likelihood procedure and yields α ≈ 0.3. The black dashed histogram
represents the empirical spectral density.

as the only unknown variables in the problem. Within this framework, the author then proposed to obtain the optimal
weights through the following optimization program:

[wj]j∈[[1,N]] =


argmin
{wi}

N
i=1

L

 1
gS(zj)


1− q+ q

N
k=1

wk

1− µk gS(zj)


− zj

N

j=1


subject to

N
k=1

wk = 1, andwk ≥ 0 ∀ k ∈ [[1,N]],

(7.59)

where L is a certain loss function and zj = λj − iη. In addition to the error we make by approximating the true density by
a sum of weighted Dirac masses, there are at least two others sources of errors:

1. The approximation gE(zj) ≈ N−1Tr(zjIN − E)−1;
2. The position of the eigenvalues [µj]j∈[[1,N]] that have to be chosen.

In the large N limit, the first approximation is fairly accurate (see Section 7). However, the second is much more difficult to
handle especially in the case of a very diluted spectrum. Note that if we define ej as the error wemake term in (7.59) for each
λj, then the consistency of the algorithm has been showed in [33] under the norm L∞ = maxj=1,...,N max(| Re(ej)|, | Im(ej)|).
Once we get the optimal weight [wj]j∈[[1,N]], the cleaning procedure is immediate

λi → µi where µi = min


x ∈ R+ :

N
k=1

wkΘ(µk − x) ≥
i
N


(7.60)

where we have used the approximation
∞

x
ρC(u)du ≈

N
k=1

wkΘ(µk − x),

withΘ(x) that denotes the Heaviside step function.
While themethod is backed by a theoretical framework, it turns out that the error source # 2. above is a strong limitation

in practice. A recent proposal to invert the Marčenko–Pastur equation by optimizing directly the eigenvalues [µj]j∈[[1,N]] has
therefore been proposed in [111]. This alternative method, called QuEST, turns out to be much more robust numerically
(see [146] and Section 8 for an extended discussion and some applications).

As a conclusion, we see that it is possible to solve (approximately) the inverse Marčenko–Pastur equation in a quite
general fashion, meaning that we might indeed be able to find an estimator of the true eigenvaluesµi for all i = 1, . . . ,N .
As a result, the eigenvalue substitution estimator is then obtained as

Ξ sub
=

N
k=1

µkuku∗k . (7.61)

However, even when a perfect estimation of the true density ρC is feasible, we see that this estimator does not take into
account the fact that the sample eigenvectors are not consistent estimators of the true ones, as shown in Section 4. Therefore,
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for covariance matrices estimation, it is not advised to use the substitution (7.61) since this is not the optimal solution.
However, it can be used to compute the optimal RIE (6.5) and we refer to Section 8.1.3 for more details.

7.3. Factor models

Themain idea behind linear factormodels is quite simple: the (normalized) data Yit is represented as a linear combination
ofM common factors F

Yit =

M
k=1

βikfkt + εit (7.62)

where the βik are the linear exposures of the variable i to the factors k = 1, . . . ,M at time t and the N × T matrix εit is the
idiosyncratic part of Yit (or the residual in Statistics), assumed to be of zero mean. The model (7.62) in matrix form reads

Y = βF+ E, (7.63)

which is known as Generalized Linear Model [147]. It is often assumed that the residuals are i.i.d. across i with t fixed (see
e.g. [148] for an application in Finance). It is not hard to see that the covariance matrix under the model (7.62), is given
by

C = βΣFβ
∗
+Σε (7.64)

where ΣF is the covariance matrix of size M × M of the factors F – which can be chosen, without loss of generality, to be
proportional to the identitymatrix – andΣε is theN×N covariancematrix of the residuals ε, which is simply the identity in
the simplest framework. Within the linear decomposition (7.62), we see that we have generically a number of parameters
to estimate of order O(NM) out of datasets of size O(NT ). Hence, we see that the curse of dimensionality disappears as soon
as M ≪ N, T which implies that the empirical estimate

E =
1
T
(βF+ E)(βF+ E)∗, (7.65)

becomes less accurate. This is a simple way of cleaning high-dimensional covariance matrices within factor models.
However, this cleaning scheme leaves open at least one question of practical use. How should the number of factorM be

chosen? In the case where one has a priori information on the factors F , we are just left with the estimation of β and E . But
in the general case, this question is still an open problem. Let us treat the general case, in which several authors considered
tools from RMT to choose the number of factorM .

In [149], the author assumes that the empirical estimator of Σε is given by an isotropic Wishart matrix for which the
upper bounds of the spectrum is exactly known. Hence, if there were no tangible factor in the data, one should observe that
largest eigenvalues of the matrix E defined in (7.65) cannot exceed

λeff
+
(q) := (1+

√
q)2 + δ(q,N) (7.66)

where the last term δ is a suitably defined constant as to reflect thewidth of the Tracy–Widom tail, i.e. δ(q,N) ∼ N−2/3 [149].
If however one observes that the largest sample eigenvalue λ1 exceeds λeff

+
, then a true factor probably exists. In that case,

the procedure suggested in [149] is to extract the corresponding largest component from the data:

Y (1)it = Yit − β1t f1t ,

which is the residual from a regression of the data on the first principal component. Next, we compare the largest eigenvalue
ofY(1)Y(1) ∗/T against the new thresholdλeff

+
(q′ = q−1/T ) and iterate the procedure untilY(M)Y(M) ∗/T has all its eigenvalues

within the Marčenko–Pastur sea. This approach has been generalized in [150] to the case where the empirical estimator
of the Σε is an anisotropic Wishart matrix for which one has several results concerning the spectrum (see Section 3). The
procedure is similar to the one above: the author proposed an algorithm to detect outliers for this anisotropicWishartmatrix
using the results of Ref. [151]. We refer to [150] for more details. We can therefore see that RMT allows one to derive some
rigorously based heuristics to determine the number of true factors M , which are quite similar in spirit to the eigenvalue
clipping method described above.

It is also possible that one has some a priori insight on the structure of the relevant factors. This for instance is a standard
state of affairs in theoretical finance, where the so-called Capital Asset Pricing Model (CAPM) [152] assumes a unique factor
corresponds to the market portfolio, or its extension to three factors model by Fama–French [153] (see [154] for further
more recent extensions). In that case, one can simplify the problem to the estimation of the β by assuming that the factors
fk and the residuals εi are linearly uncorrelated:

⟨fkfl⟩ = δkl, ⟨εiεj⟩ = δij


1−


l

β2
li


and ⟨fkεl⟩ = 0, (7.67)
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such that the true correlation becomes:

Cij =

M
k=1

βkiβkj + δij


1−

M
l=1

β2
li


that is to say

Cij =


1 if i = j
ββ∗


ij otherwise. (7.68)

Again, we emphasize that we are reduced to the estimation of only N ×M parameters out of N × T points. We now give an
insight on how one can estimate the coefficients of β using the sample data, which is due to the recent paper [155]. Note
that the eigenvalue clipping (7.68) can recovered by setting β ≡ βPCA where

βPCA := U|MΛ
1/2
|M , (7.69)

withU the sample eigenvectors,Λ the N×N diagonal matrix with the sample eigenvalues and the subscript |M denotes that
only theM largest components are kept, whereM is such that λi > (1+

√
q)2 for any i ≤ M . The method of [155] suggests

finding the βs such that:

β := argmin
β

L

 1T YY∗ − ββ∗

off-diag


, (7.70)

with L a given loss function and ‘‘off-diag’’ to denote the off-diagonal elements. (The diagonal elements are all equal to
unity by construction). Numerically, the authors solve the latter equation in the vicinity of the PCA beta’s (7.69) and with
a quadratic norm L. We refer the reader to [155] for more details on the procedure and its implementation, as well as an
extension of the model to non-linear (volatility) dependencies.

8. Numerical implementation and empirical results

This Section aims at putting all the above ideas into practice in a financial context, the final goal being to achieveminimum
out-of-sample, or forward looking risk. As we have seen above, the Rotationally Invariant Estimator framework is promising
in that respect. Still, as one tries to implement this method numerically, some problems arise. For example, we saw in
Section 6.5 that the discrete version (6.26) of the optimal RIE (6.5) deviates systematically from its limiting value for small
eigenvalues. But as we discussed in Section 7, the estimation of these small eigenvalues is particularly important since
Markowitz optimal portfolios tend to overweight them and hence, inadequate estimators of these small eigenvalues may
lead to disastrous results. We will therefore first discuss two different regularization schemes that appeared in the recent
literature (see [146] and [156]) that attempt to correct this systematic underestimation of the small eigenvalues. We will
then turn to numerical experiments on synthetic and real financial data and test the quality of the regularized RIE for real
world applications.

8.1. Finite N regularization of the optimal RIE (6.26)

8.1.1. Why is there a problem for small-eigenvalues?
The small eigenvalue bias can be best illustrated using the null hypothesis on the sample covariance matrix. Indeed, we

know that for C = IN , the optimal RIE (6.5) should yieldξ(λi) = 1 exactly asN →∞ (see Eq. (6.21)). We therefore compare
the observable shrinkage functionξN (6.26) for finite N with its limiting valueξ = 1. The results are reported in Fig. 26
where the observable estimator Eq. (6.26) appears as green points while the limiting value is given by the red dotted line.
We see that the bulk and the right edge are relatively well estimated, but this is clearly not the case for the left edge, below
which the estimated eigenvalues dive towards zero instead of remaining close to unity. This highlights, as stated in [39]
or [113], that the behavior for small eigenvalues is more difficult to handle compared to the rest of the spectrum.

This underestimation can be investigated analytically. With z = λ− iη, we actually see from Fig. 26 that the discrete RIEξN is a very good approximation of the limiting quantityξ(z), i.e., with η = N−1/2 (blue plain line). Hence, the deviation
at the left edge is systematic for any finite N and only disappears as N → ∞ (η → 0+). This finite size effect is due to the
hard left edge as eigenvalues are confined to stay on R+. Let us illustrate this: under the one-cut assumption, we can always
decompose the Stieltjes transform as (see Eq. (2.31))

gE(z) = h(z)+ Q (z)

d+(z)


d−(z), d±(z) := z − λ± (8.1)

where h(z) is the Hilbert transform of ρE and Q (z) is a given function that we assumed be smoothed on C+. We place
ourselves in the situation where d−(λ) = ε ≪ η, i.e. the eigenvalue λ is very close to zero. Then, we have

gE(z) = h(z)+ Q (z)

−iη


d+(λ)− iη + O(ε)

= h(z)− (1+ i)Q (z)


η|d+(λ)|

2
+ O(ε). (8.2)
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Fig. 26. Evaluation of the empirical RIE (6.26) (green points) for C = IN with N = 500. The matrix E is generated using Wishart matrix with parameter
q = 0.5. We compare the result with its limiting value for η = N−1/2 (blue line) and η→ 0+ (red dotted line).

Specializing this last equation to the null hypothesis C = IN , one infers from Eq. (2.41) that 1/Q (z) = 2qz and h(z) =
Q (z)(z + q− 1). Then plugging (8.2) into (6.5) yields, at the left edge:

ξ(λ− − iη) = 1−


2η
√
q

(1−
√
q)2
+ O(η), (8.3)

that is to say, there is a finite size ‘‘correction’’ to the asymptotic resultξ(z) = 1 of order N−1/4 when η = N−1/2. This
correction is therefore quite significant if N is not large enough. One tempting solution would be to decrease the value of η
to be arbitrarily small. However, we know that the empirical Stieltjes transform is only a good approximation of the limiting
value up to an error of order (Tη)−1, so that η cannot be too small either [113]. We conclude that the underestimation effect
we observe in Figs. 26 and 21 is purely due to a finite size effect and would furthermore occur for any model of ρC (see
Fig. 21). We emphasize that this effect is different from the phase transition affecting left outliers, as displayed in Fig. 20.

8.1.2. Regularizing the empirical RIE (6.26)
There are two ways to address this problem. The first one is to use a simple ad-hoc de-noising procedure that we shall

now explain; the second is a more sophisticated scheme recently proposed by Ledoit and Wolf (see below).
Firstly, using the fact that the finite size corrections are rather harmless for large eigenvalues (see Fig. 26), we can focus

on small sample eigenvalues only. The idea is to use a regularization that would be exact if the true correlation matrix
was of the Inverse-Wishart type, with ρC to be given by Eq. (2.53), for which we know that the associated optimal RIE is
the linear shrinkage (6.24).29 Within this specification, the parameter κ allows one to interpolate ρC between the infinitely
wide measure on R+ (κ → 0+) and the null hypothesis (κ →∞).

Our procedure, for the only purpose of regularization, is to calibrate κ such that the lower edge λiw
−

of the corresponding
empirical spectrum (and given in Eq. (3.41)), coincides with the observed smallest eigenvalue λN . We then rescale the
smallest eigenvalue using the exact factor that would be needed if Cwas indeed an Inverse-Wishart matrix, i.e.:

ξ reg
i =ξNi ×max(1,Γ iw

i ), Γ iw
i =

|1− q+ qzigiwE (zi)|
2

λi/(1+ αs(λi − 1))
, zi = λi − iN−1/2, (8.4)

where αs = 1/(1+2qκ) and giwE is given in Eq. (3.41). We give amore precise implementation of this ‘‘IW-regularization’’ in
the Algorithm 1, and a numerical illustration for an Inverse Wishart matrix (2.58) with parameter κ = 10 and q = 0.5, for
which αs ≈ 0.09. The results are plotted in Fig. 27 where the empirical points come from a single simulation with N = 500.

We now reconsider the numerical examples given in Section 6.5, for which we apply the IW-regularization Algorithm
1. The results are plotted in Fig. 28 and we observe that this IW-regularization works perfectly for all four population
eigenvalues we consider in our simulations. Indeed, if we look at the left edge region, the regularized eigenvalues have
been shifted upwards to coincide with the Oracle estimator (blue points) while one observes a significant discrepancy for
the empirical, bare estimator (green dots). Hence, the IW-regularization (Algorithm 1) provides a very simple way to correct

29 A yet simpler solution, proposed in [156] is to consider a rescaled Marčenko–Pastur’s spectrum in such a way to fit the smallest eigenvalue λN . This is
indistinguishable from the IW procedure when κ is large enough, and provides very accurate predictions for US stocks return [156]. Nevertheless, in the
presence of very small ‘‘true’’ eigenvalues, corresponding to e.g. very strongly pairs of correlated financial contracts, this simple recipe fails.
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Algorithm 1 IW-regularization of the empirical RIE (6.26)
function g_iw(z, q, κ):
λ± ←


(1+ q)κ + 1±

√
(2κ + 1)(2qκ + 1)


/κ;

return

z(1+ κ)− κ(1− q)−

√
z − λ+

√
z − λ−


/(z(z + 2qκ));

end function

function rie(z, q, g):
return Re[z]/|1− q+ qzg|2;

end function

function denoising_rie(N, q, {λi}Ni=1): //λ1 ≥ λ2 ≥ . . . ≥ λN
κ ← 2λN/


(1− q− λN)2 − 4qλN


;

α← 1/(1+ 2qκ);
for i = 1 to N do

z ← λi − iN−1/2;
g ←

N
j≠i 1/(z − λj)


/(N − 1);

ξ̂i ← rie(z, q, g);
g ← g_iw(z, q, κ)
Γi ← (1+ α(λi − 1))/rie(z, q, g);
if Γi > 1 and λi < 1 then
ξ̂i ← Γiξ̂i;

end if
end for
s←


i λi/


i ξ̂i; //preserving the trace

return {s× ξ̂i}Ni=1
end function

Fig. 27. We apply the IW-regularizationξ regi with z = λ− iN−1/2 in the casewhere C is an Inverse-Wishart matrix with κ = 10 and q = 0.5. The finite size
effect of the empirical RIE (6.26) (green points) is efficiently corrected. The red points correspond to the Oracle estimator which is, in this case, the linear
shrinkage procedure. We also compare the result of a ‘‘rescaled’’ Marčenko–Pastur spectrum, as proposed in [156]. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

this systematic downside bias which is of crucial importance whenever we need to invert the covariance matrix. Note that
we can further improve the result by sorting the regularized eigenvalues. This is justified by the fact that we expect the RIE
to be monotone with respect to the sample eigenvalues in the limit N →∞. We will investigate this point numerically in
the next section (see Table 1).

8.1.3. Quantized Eigenvalues Sampling Transform (QuEST)
An alternative method, recently proposed by Ledoit and Wolf [146] to approximate numerically the optimal RIE (6.5), is

to work with the Marčenko–Pastur equation (3.9). It is somewhat similar to the numerical scheme proposed by N. El Karoui
(see Section 7.2.3) to solve the indirect problem of the Marčenko–Pastur equation.
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(a) Multiple sources (case (i)). (b) Deformed GOE (case (ii)).

(c) Toeplitz (case (iii)). (d) Power law (case (iv)).

Fig. 28. Comparison of the IW-regularization (6.26) (red line)with the empirical RIE (6.26) (yellow dots) and the Oracle estimator (6.2) (blue points) for the
four cases presented at the beginning of Section 6.5 with N = 500 and T = 1000. We also plot the estimation we get using QuEST estimator (8.10) (green
line). The results generated with a single realization of E using a multivariate Gaussian measurement process, and the four specifications of Section 6.5.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

The method, named as QuEST (Quantized Eigenvalues Sampling Transform), is based on a quantile representation of the eigenvalues.
More formally, the key assumption is that the empirical eigenvalues are allocated smoothly according to the quantile of the spectral
distribution, i.e.

i
N
=

 λi

−∞

ρE(x)dx, (8.5)

and the aim is to find the quantile, as a function of the population eigenvalues [µi]i∈[[1,N]], such that (8.5) holds. Note that the
representation (8.5) is the definition of the classical location of the bulk eigenvalues, encountered in Eq. (3.40). Hence, for N → ∞,
this method does not seem to be appropriate for outliers as we know that the spectral density ρE puts no weights on these outliers.
Nevertheless, for constructing RIEs, this might not be that important since, roughly speaking, all we need to know is the Stieltjes
transform of the spikeless covariance matrix E (see Section 6.2.2). That being said, the ‘‘quantized’’ eigenvalues, expected to be close
to the empirical eigenvalues, are defined as

γ̃i(µ) := N
 i/N

(i−1)/N
F−1E (p)dp, i ∈ [[1,N]], p ∈ [0, 1], (8.6)

where µ = (µ1, . . . , µN ), and

F−1E (p) := sup

x ∈ R : FE(x) 6 p


,
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FE(x) :=


max


1− 1/q,N−1

N
i=1

δ0(µi)


if x = 0, x

0
ρE(u)du, otherwise,

(8.7)

with ρE(u) = limη↓0 Im gNE (u− iη) and gNE is the unique solution in C+ of the discretized Marčenko–Pastur equation (3.11)

gNE (z) =
1
N

N
i=1

1
z − µi(1− q+ qzgNE (z))

. (8.8)

Even if the numerical scheme seems quite intricate, all these quantities are simply a discretized version of the Marčenko–Pastur
equation. Indeed, Eq. (8.5) is equivalent to Eq. (3.11) for large N and (8.6) is nothing but a discrete estimator of Eq. (3.40).

Finally, the optimization program reads

µ̃ :=

argmin
µ∈RN

+

N
i=1


γ̃i(µ)− λi

2
,

s.t. γ̃i(µ) satisfies Eqs. (8.6)–(8.8).

(8.9)

From there, the regularization scheme of the empirical RIE (6.26) reads

ξ
QuEST
i =

λi

|1− q+ qλi lim
η↓0

g̃NE (λi − iη)|2
, (8.10)

where g̃NE (z) ∈ C+ is the unique solution of

g̃NE (z) =
1
N

N
i=1

1
z − µ̃i(1− q+ qzg̃NE (z))

. (8.11)

We see that the above regularization scheme allows one to estimate – in principle – the limiting RIE (6.5) since we can
now set η to be arbitrarily small. This means that, contrary to the empirical estimate (6.26), the QuEST procedure should
not suffer from a systematic underestimation at the left edge. The main advantage of this method is that it also allows us to
estimate the population eigenvalues, which can be useful in some particular cases. However, from a numerical standpoint,
this algorithm is farmore complicated to implement than the above IW-regularization (Algorithm1). Indeed, we see that the
starting point of the optimization (8.9) is the vector of population eigenvalues, which can be problematic for very ‘‘diluted’’
spectrum. Moreover, the algorithm might suffer from instabilities in the presence of very large and isolated eigenvalues.
Note that a detailed presentation of the implementation of QuEST is given in [146], where the authors advise to sort the
cleaned eigenvalues [ξQuESTi ]i∈[[1,N]] since, as said above, we expect the optimal cleaned eigenvalues to be monotonic with
respect to the sample eigenvalues.

8.1.4. Empirical studies
We compare in Fig. 28 the above QuEST numerical scheme with the simple IW-regularization of Section 8.1.2. The

eigenvalues coming from the QuEST regularization are shown as green lines andwe see that the results are very satisfactory.
In particular, it indeed does not suffer from the systematic bias in the left edge and seems to handle efficiently outliers even if
the formula (8.5) is a priori not valid for isolated eigenvalues in the large N limit. We nonetheless notice that the algorithm
suffers sometimes from instabilities in the presence of ‘‘clustered’’ outliers as in the power law example (see Fig. 28(d)).
On the other hand, and perhaps surprisingly, the much simpler, somewhat ad-hoc IW-regularization given in Algorithm
1 provides very similar results. However, the QuEST method requires solving a nonlinear and non-convex optimization
problem (see Eq. (8.9)) which implies heavy numerical computations that may not even converge to the global minimum
(when it exists).

We want to further investigate the efficiency of these two regularizations. One direction is to change the number of
variables N with q = 0.5 fixed. This allows us to assess the finite size performance of the two algorithms. The second
direction is to fixN = 500 and vary the observation ratio q.We shall consider three different regularizations in the following:
(i) IW-regularization (Algorithm 1), (ii) IW-regularization + sorting (name ‘‘IWs regularization’’ in the following) and
(iii) QuEST procedure. Note that we will focus our study on the power law example of Fig. 28(d) since this simple prior
allows use to generate very complex spectrum with possibly ‘‘clustered’’ outliers, similar to financial data. We emphasize
again the regularization scheme (ii) is justified by the fact that we expect the estimator to preserve the monotonicity of the
sample eigenvalues.

To measure the accuracy and the stability of each algorithm, we characterize the deviation between a given estimator
and the Oracle (6.2). Using the mean squared error (MSE), we may also analyze the relative performance (RP) in percentage
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Table 1
We reconsider the setting of Fig. 28(d) and check the consistency over 100 samples. The population density ρC is drawn from (6.28) with λ0 = −0.6 and
N = 500 and the sample covariance matrix is obtained from the Wishart distribution. MSE stands for the mean squared error with respect to the Oracle
estimator (6.2), stdev stands for the standard deviation of the squared error and the RP defined in Eq. (8.12). Running time shows the average time elapsed
for the cleaning of one sample set of eigenvalues of size N .

Method MSE stdev RP Running time (s)

IW-regularization 0.64 0.13 99.69 0.02
IWs-regularization 0.45 0.12 99.78 0.03
QuEST 0.44 0.15 99.79 33.5

Table 2
Check of the consistency of the three regularizations with respect to the dimension N . The population density ρC is drawn from (6.28) with λ0 = −0.6 and
the sample covariance matrix is obtained from the Wishart distribution with T = 2N . We report in the table the mean squared error with respect to the
Oracle estimator (6.2) and the standard deviation in parenthesis as a function of N .

Method N = 100 N = 200 N = 300 N = 400 N = 500 N = 1000

IW-regularization 0.53 (0.17) 0.56 (0.15) 0.64 (0.16) 0.65 (0.14) 0.64 (0.14) 0.74 (0.14)
IWs-regularization 0.35 (0.14) 0.39 (0.14) 0.45 (0.14) 0.45 (0.13) 0.46 (0.12) 0.53 (0.12)
QuEST 0.26 (0.16) 0.33 (0.15) 0.39 (0.15) 0.4 (0.15) 0.44 (0.15) 0.5 (0.13)

Table 3
Check of the consistency of the three regularizations with respect to the dimension ratio q. The population density ρC is drawn from (6.28) with λ0 = −0.6
and N = 500 and the sample covariance matrix is obtained from the Wishart distribution with parameter T = N/q. We report in the table the mean
squared error with respect to the Oracle estimator (6.2) and the standard deviation in parenthesis as a function of q.

Method q = 0.25 q = 0.5 q = 0.75 q = 0.95

IW-regularization 0.31 (0.06) 0.65 (0.14) 1.2 (0.18) 1.78 (0.44)
IWs-regularization 0.28 (0.05) 0.46 (0.12) 0.71 (0.17) 0.94 (0.39)
QuEST 0.25 (0.05) 0.45 (0.15) 0.72 (0.17) 0.98 (0.35)

compared to the sample covariance. This is given by

RP(Ξ) := 100×

1−

E∥Ξ − Ξ ora.
∥2

E∥E− Ξ ora.∥2


, (8.12)

whereΞ ≡ Ξ(E) is a RIE of C andΞ ora. is the Oracle estimator. We also report in each case the average computational time
needed to perform the estimation.30

First, let us assess the usefulness of sorting the cleaned eigenvalues.We report in Table 1 the performancewe obtained for
N = 500 and q = 0.5 fixed over 100 realizations of E (which is a Wishart matrix with population covariance matrix C). We
conclude from Table 1 that it is indeed better to sort the eigenvalueswhen using the IW-regularization (8.4) as the difference
is statistically significant, while being nearly equally efficient in terms of computational time. For large N , the QuEST
procedure yields the best accuracy score but the difference with the IWs eigenvalues is not statistically significant and the
QuEST requires much more numerical operations than the ad-hoc IWs algorithm. Note that the performance improvement
over to the sample covariance matrix is very substantial.

We now investigate how these conclusions change when N varies with q = 0.5 fixed. The results are given in Table 2.
First, we stress that the RP with respect to the sample covariance matrix is already greater than 98% for N = 100 which is
why we did not report these values in the table. As above, for N > 100, sorting the eigenvalues improves significantly the
mean squared error with respect to the Oracle estimator. We also emphasize that for N = 1000, it takes 0.06 s to get the
regularized RIE while the QuEST algorithm requires 80 seconds on average. We see that as the size N grows to infinity, the
high degree of complexity needed to solve the nonlinear and non-convex optimization (8.9) becomes very restrictive, while
improvement over the simple IWs method is no longer significant.

We now look at the second test in which N = 500 is fixed and we vary q = 0.25, 0.5, 0.75, 0.95. For each q, we
perform the same procedure as in Table 2 and the results are reported in Table 3. It is easy to see that the conclusions
of the first consistency test are still valid for the three regularization schemes as a function of q with N = 500. Note that
we do not consider here the case q > 1 which is less immediate since E generically possess (N − T ) zero eigenvalues. Both
regularization schemes, IWs-regularization and QuEST algorithm, fail to handle this case and we shall come back to this
problem in Section 9.

To conclude, we observed using synthetic data that we are able to estimate accurately the Oracle estimator for finite N
both for small eigenvalues and outliers. The QuEST procedure is found to behave efficiently for any N and any q < 1, and
allows one to estimate both the population eigenvalues and the limiting Stieltjes transformwith high precision. However, as
far as the estimation of large sample covariance matrices is concerned, the improvement obtained by solving the nonlinear

30 Simulations were implemented in Python and based on an Intel R⃝ CoreTM i7-4700HQ and CPU of 8× 2.40 GHz processor.
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and non-convex optimization problem (8.9) becomes insignificant as N increases (see Tables 2 and 3). Furthermore, the
computational time of the QuEST algorithm increases considerably as N grows. We shall henceforth use the IWs RIE as our
estimator of C for the applications below. Nonetheless, whenever N is not very large, the QuEST procedure is clearly advised
as it yields a significant improvement with an acceptable computational time.

8.2. Optimal RIE and out-of-sample risk for optimized portfolios

As alluded above (see Section 7.1), the concept of correlations between different assets is the cornerstone of Markowitz’
optimal portfolio theory, and more generally for risk management purposes [157]. It is therefore of crucial importance to
use a correlation matrix that faithfully represents future risks, and not past risks—otherwise the over-allocation on spurious
low risk combination of assets might prove disastrous. In that respect, we saw in Section 7.1.3 that the best estimator inside
the space of estimators restricted to possess the sample eigenvectors is precisely the Oracle estimator (6.2) which is not
observable a priori. However, if the number of variables is sufficiently large, we know – thanks to the numerical study of the
previous section – that it is possible to estimate very accurately the Oracle estimator using only observable variables. The
main objective in the present section is to investigate the IWs RIE procedure for financial stock market data.

Let us now explain the construction of our test. We consider a universe made of N different financial assets – say stocks –
that we observe at – say – the daily frequency, defining a vector of returns rt = (r1t , r2t , . . . , rNt) for each day t = 1, . . . , T .
It is well known that volatilities of financial assets are heteroskedastic [25] andwe therefore focus specifically on correlations
and not on volatilities in order to study the systemic risk. To that end, we standardize these returns as follows: (i) we remove
the sample mean of each asset; (ii) we normalize each return by an estimateσit of its daily volatility:rit = rit/σit . There are
many possible choices forσit , based e.g. on GARCH or FIGARCH models of historical returns, or simply implied volatilities
fromoptionmarkets, and the reader can choose his/her favorite estimatorwhich can easily be combinedwith the correlation
matrix cleaning schemes discussed below. For simplicity, we have chosen here the cross-sectional daily volatility, that is

σit := 
j

r2jt , (8.13)

to remove a substantial amount of non-stationarity in the volatilities. The final standardized returnmatrix Y = (Yit) ∈ RN×T

is then given by Yit :=rit/σi where σi is the sample estimator of theri which is now, to a first approximation, stationary.
Wemay now compute the sample covariancematrix E as in Eq. (3.3).We stress that theMarčenko and Pastur result does

not require multivariate normality of the returns, which can have fat-tailed distributions. In fact, the above normalization
by the cross-sectional volatility can be seen as a proxy for a robust estimator of the covariance matrix (3.8) with U(x) = x−1
which can be studied using the tools of Sections 3 and 4 (see Section 3.1.3 for a discussion on this point). All in all, we are
able to construct the optimal RIE either using IWs-regularization (Algorithm 1 + sorting) or the QuEST regularization, the
latter allowing us to estimate the population eigenvalue spectrum as well.

For our simulations, we consider international pools of stocks with daily data:

(i) US: 500 most liquid stocks during the training period of the S&P 500 from 1966 until 2012;
(ii) Japan: 500 most liquid stocks during the training period of the all-shares TOPIX index from 1993 until 2016;
(iii) Europe: 500 most liquid stocks during the training period of the Bloomberg European 500 index from 1996 until 2016.

We chose T = 1000 (4 years) for the training period, i.e. q = 0.5, and Tout = 60 (three months) for the out-of-sample test
period. Let us first analyze the optimal RIE for US stocks. We plot in Fig. 29 the average nonlinear shrinkage curve for the
IWs-regularization (blue line) and for the QuEST regularization (red dashed line) – where we sorted the eigenvalues in both
cases – and compare it with the estimated population eigenvalues obtained from (8.9). We see that IWs-regularization and
QuEST still yield very similar results. Furthermore, we notice that the spectrum of the cleaned eigenvalues is, as expected,
narrower than the spectrum of the (estimated) population matrix.

Interestingly, the Oracle estimator (6.2) can be estimated empirically and used to directly test the accuracy of the IWs-
regularized RIE (8.4). The trick is to remark that the Oracle eigenvalues (6.2) can be interpreted as the ‘‘true’’ (out-of-sample)
risk associated to a portfolio whose weights are given by the ith eigenvector. Hence, assuming that the data generating
process is stationary, we estimate the Oracle estimator through the realized risk associated to such eigen-portfolios [136].
More precisely, we split the total length of our time series Ttot into n consecutive, non-overlapping samples of length Tout.
The ‘‘training’’ period has length T , so n is given by:

n :=

Ttot − T − 1

Tout


. (8.14)

The Oracle estimator (6.2) is then computed as:

ξ̂ ora.i ≈
1
n

n−1
j=0

R2
out(tj,ui) i = 1, . . . ,N, (8.15)
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Fig. 29. Comparison of the IWs-regularization (8.4) (blue) with the QuEST procedure (8.10) (red dashed line) using 500 US stocks from 1970 to 2012.
The agreement between those two regularizations is quite remarkable. We also provide the estimation of the population eigenvalues obtained from (8.9)
(green dashed–dotted line).

Fig. 30. Comparison of the IWs-regularized RIE (8.4) with the proxy (8.15) using 500 US stocks from 1970 to 2012. The points represent the density map
of each realization of (8.15) and the color code indicates the density of data points. The average IWs-regularized RIE is plotted with the red dashed line and
the average realized risk in blue. We also provide the prediction of the IWs-regularized RIE with an effective observation ratio qeff which is slightly bigger
than q (green plain line). The agreement between the green line and the average Oracle estimator (blue triangle) is quite remarkable. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

for tj = T + j× Tout + 1 and R(t,w) denotes the out-of-sample variance of the returns of portfoliow built at time t , that is
to say

R2
out(t,w) :=

1
Tout

t+Tout
τ=t+1


N
i=1

wiYiτ

2

, (8.16)

where Yiτ denotes the rescaled realized returns. Again, as we are primarily interested in estimating correlations and not
volatilities, both our in-sample and out-of-sample returns are made approximately stationary and normalized. This implies
that

N
i=1 R2

out(t,ui) = N for any time t . We plot our results for the estimated Oracle estimator (8.15) using US data in
Fig. 30, which we compare with the IWs-regularized RIE. The results are, we believe, quite remarkable: the RIE formula (8.4)
(red dashed line) tracks very closely the average realized risk (blue triangles), especially in the region where there is a lot of
eigenvalues.

We may now repeat the analysis for the other pools of stocks as well. We begin with the TOPIX where we plot in
Fig. 31(a) the estimation of the population eigenvalues (using Eq. (8.9)) and the regularized RIE (using Algorithm 1 or
Eq. (8.10)). Again, the results we get from the simple IWs-regularization and QuEST procedure are nearly indistinguishable.
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(a) Population and optimal RIE bulk eigenvalues. (b) Comparison with Oracle estimator (8.15).

Fig. 31. Left figure: analysis of the population (green dashed line) and optimal RIE bulk eigenvalues (red dashed line for Eq. (8.10) and blue plain line for the
IWs-regularization) using the 500most liquid stocks during the training period of the all-shares TOPIX index from1993until 2016. Right figure: Comparison
between the IWs-regularized RIE (red dashed line) with the Oracle estimator (8.15) (green triangle). We also provide the plot of the IWs-regularized RIE
with an effective observation ratio (blue line).

(a) Population and optimal RIE bulk eigenvalues. (b) Comparison with Oracle estimator (8.15).

Fig. 32. Left figure: analysis of the population (green dashed line) and optimal RIE bulk eigenvalues (red dashed line for Eq. (8.10) and blue plain line
for the IWs-regularization) using the 500 most liquid stocks during the training period of the Bloomberg European 500 index from 1996 until 2016. Right
figure: Comparison between the IWs-regularized RIE (red dashed line) with the Oracle estimator (8.15) (green triangle). We also provide the plot of the
IWs-regularized RIE with an effective observation ratio (blue line). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

This is another manifestation of the robustness of both algorithms at a finite N . We then plot in Fig. 31(b) the comparison
between the IWs-regularized RIE (red dashed line) and the Oracle estimator, approximated by (8.15) (green triangles). We
observe that the overall estimation is not as convincing as for US stocks (Fig. 30) but as above, the deviation can be explained
by the presence of weak autocorrelations in the return time series (more on this below). Indeed, there exists an effective
ratio qeff = 1.2q such that the estimation is extremely good (see blue line in Fig. 31(b)).

Finally we look at European stocks where the conclusions are similar than for the US stocks. In particular, we notice in
Fig. 32(b) that the estimation we obtained for the IWs-regularized RIE with the observed q = 0.5 (red dashed line) yields
a very good approximation of the Oracle estimator (green triangle). We can nonetheless improve the estimation with an
effective ratio qeff = 1.1q (blue plain line).

All in all, we see that both the simple IWs-regularization and the QuEST regularization allow one to estimate accurately
the (approximated) Oracle estimator using only observables quantities. This study highlights that the optimal RIE is robust
with respect to the data generating process, as financial stock markets are certainly not Gaussian. The cross sectional
volatility estimator (8.13) does not remove entirely heteroskedastic effects, nor the temporal dependence of the variables
since it appears that one can choose an effective observation ratio qeff > q for which the IWs-regularized RIE and the Oracle
estimate nearly coincide. This effect may be understood by the presence of autocorrelations in the stock returns that are
not taken into account in the model of E. The presence of autocorrelations has been shown to widen the spectrum of the
sample matrix E [86]. We shall come back to the open problem of calibrating qeff on empirical data in Section 9. It would be
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Fig. 33. Comparison of the de-biased RIE (8.4) (blue line) with clipping at the edge of theMarčenko–Pastur (red dashed line) and the linear shrinkage with
α = 0.5 (green dotted line). We use here the same dataset as in Fig. 30. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

interesting to quantify the information kept by the optimal RIE compared to other estimators using e.g. the Kullback–Leibler
distance as in [158,102].

8.3. Out-of-sample risk minimization

It is interesting to compare the different shrinkage functions that map the empirical eigenvalues λi onto their ‘‘cleaned’’
counterparts ξ̂i. We show these functions in Fig. 33 for the three schemeswe retained here, i.e. linear shrinkage, clipping and
RIE, using the same dataset as in Fig. 30. This figure clearly reveals the difference between the three schemes. For clipping
(red dashed line), the intermediate eigenvalues are quite well estimated but the convex shape of the optimal shrinkage
function for larger λi’s is not captured. Furthermore, the larger eigenvalues are systematically overestimated. For the linear
shrinkage (green dotted line), it is immediate from Fig. 33 why this method is not optimal for any shrinkage parameters
αs ∈ [0, 1] (that fixes the slope of the line).

We now turn to optimal portfolio construction using the above three cleaning schemes, with the aim of comparing the
(average) realized risk of optimal Markowitz portfolios constructed as:

w :=
Σ−1g

g∗Σ−1g , (8.17)

where g is a vector of predictions and Σ is the cleaned covariance matrix Σij := σiσjΞij for i, j ∈ [[1,N]]. Note again that
we consider here returns normalized by an estimator of their volatility:rit = rit/σit . This means that our tests are immune
against an overall increase or decrease of the volatility in the out-of-sample period, and are only sensitive to the quality of
the estimator of the correlation matrix itself.

In order to ascertain the robustness of our results in different market situations, we consider the following four families
of predictors g:

(i) The minimum variance portfolio, corresponding to gi = 1, ∀i ∈ [[1,N]].
(ii) The omniscient case, i.e. when we know exactly the realized returns on the next out-of-sample period for each stock.

This is given by gi = N r̃i,t(Tout) where ri,t(τ ) = (Pi,t+τ − Pi,t)/Pi,t with Pi,t the price of the ith asset at time t andrit = rit/σit .
(iii) Mean-reversion on the return of the last day: gi = −Nrit ∀i ∈ [[1,N]].
(iv) Random long-short predictors where g = N v where v is a random vector uniformly distributed on the unit sphere.

The normalization factor N :=
√
N is chosen to ensure wi ∼ O(N−1) for all i. The out-of-sample risk R2 is obtained from

Eq. (8.16) by replacing the matrix X by the normalized return matrixR defined byR := (rit) ∈ RN×T . We report the average
out-of-sample risk for these various portfolios in Table 4, for the three above cleaning schemes and the three geographical
zones, keeping the same value of T (the learning period) and Tout (the out-of-sample period) as above. The linear shrinkage
estimator uses a shrinkage intensity α estimated from the data following [159] (LW). The eigenvalues clipping procedure
uses the position of the Marčenko–Pastur edge, (1+

√
q)2, to discriminate between meaningful and noisy eigenvalues. The

second to last line gives the result obtained by taking the identitymatrix (total shrinkage,αs = 0) and the last one is obtained
by taking the uncleaned, in-sample correlation matrix (αs = 1).
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Table 4
Annualized average volatility (in %) of the different strategies. Standard deviations
are given in bracket.

⟨R⟩e US Japan Europe

Minimum variance portfolio

RIE (IWs) 10.4 (0.12) 30.0 (2.9) 13.2 (0.12)
Clipping MP 10.6 (0.12) 30.4 (2.9) 13.6 (0.12)
Linear LW 10.5 (0.12) 29.5 (2.9) 13.2 (0.13)
Identity αs = 0 15.0 (0.25) 31.6 (2.92) 20.1 (0.25)
In sample αs = 1 11.6 (0.13) 32.3 (2.95) 14.6 (0.2)

Omniscient predictor

RIE (IWs) 10.9 (0.15) 12.1 (0.18) 9.38 (0.18)
Clipping MP 11.1 (0.15) 12.5 (0.2) 11.1 (0.21)
Linear LW 11.1 (0.16) 12.2 (0.18) 11.1 (0.22)
Identity αs = 0 17.3 (0.24) 19.4 (0.31) 17.7 (0.34)
In sample αs = 1 13.4 (0.25) 14.9 (0.28) 12.1 (0.28)

Mean reversion predictor

RIE (IWs) 7.97 (0.14) 11.2 (0.20) 7.85 (0.06)
Clipping MP 8.11 (0.14) 11.3 (0.21) 9.35 (0.09)
Linear LW 8.13 (0.14) 11.3 (0.20) 9.26 (0.09)
Identity αs = 0 17.7 (0.23) 24.0 (0.4) 23.5 (0.2)
In sample αs = 1 9.75 (0.28) 15.4 (0.3) 9.65 (0.11)

Uniform predictor

RIE 1.30 (8e−4) 1.50 (1e−3) 1.23 (1e−3)
Clipping MP 1.31 (8e−4) 1.55 (1e−3) 1.32 (1e−3)
Linear LW 1.32 (8e−4) 1.61 (1e−3) 1.27 (1e−3)
Identity αs = 0 1.56 (2e−3) 1.86 (2e−3) 1.69 (2e−3)
In sample αs = 1 1.69 (1e−3) 2.00 (2e−3) 2.7 (0.01)

These tables reveal that: (i) it is always better to use a cleaned correlationmatrix: the out-of-sample riskwithout cleaning
is, as expected, always higher than with any of the cleaning schemes, even with four years of data. This is in agreement with
previouswork of Pantaleo et al. [160]; (ii) in all cases but one (Minimumrisk portfolio in Japan,where the LW linear shrinkage
outperforms), the regularized RIE is providing the lowest out-of-sample risk, independently of the type of predictor used.
Note that these results are statistically significant everywhere, except perhaps for the minimum variance strategy with
Japanese stocks: see the standard errors that are given between parenthesis in Table 4. Finally, we test the robustness in the
dimensionN by repeating the same test forN = {100, 200, 300}. We focus on relatively small values ofN as the conclusions
are valid in all cases as soon as N > 300. We see that apart from some fluctuations for N = 100, the result for out-of-sample
test with the RIE is robust to the dimension N as indicated in Table 5.

8.4. Testing for stationarity assumption

In this section, we investigate in more details the stationarity assumption underlying the Marčenko–Pastur framework,
i.e. that the future (out-of-sample) is statistically identical to the past (in-sample), in the sense that the empirical correlation
matrices Ein and Eout are generated by the same underlying statistical process characterized by a unique correlation matrix
C. We will use the two-sample eigenvector test introduced in Section 4.2.

Let us reconsider the two-sample self-overlap formula (4.41) for which the key object is the limiting Stieltjes transform
(4.36). Aswe saw in Section 8.1.2, using the ‘‘raw’’ empirical Stieltjes transform yields a systematic bias for small eigenvalues
which can be problematic when applying Eq. (4.41). Hence, we shall split the numerical computation of the overlap formula
(4.40) or (4.41) into two steps. The first step is to estimate the population eigenvalues using the QuEST method of Ledoit
and Wolf (see Section 8.1.3). Since these eigenvalues are designed to solve the Marčenko–Pastur equation, the second step
consists in extracting from Eq. (8.8) an estimation of the Stieltjes transform of E for an arbitrarily small imaginary part η,
that we denote bygE(z) for any z ∈ C−. UsinggE(z) in Eq. (4.36) allows us to obtain the overlaps.

8.4.1. Synthetic data
We test this procedure on synthetic data first. Our numerical procedure is as follows. As in Section 4.2, we consider 100

independent realizations of the Wishart noise W with parameter T and covariance C. Then, for each pair of samples, we
compute the smoothed overlaps as:

⟨ui, ũi⟩
2
=

1
Zi

N
j=1

⟨ui, ũj⟩
2

(λi − λ̃j)2 + η2
, (8.18)
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(a) Inverse Wishart (κ = 10). (b) IN+ GOE (σ = 0.35).

Fig. 34. Evaluation of the self-overlap Φ(λ, λ) as a function of the sample eigenvalues λ when C is an inverse Wishart of parameter κ = 10 (left) and C
is a GOE centered around the identity with σ = 0.35 (right). In both cases, we compute the self-overlap (4.41) using analytical solution (red line) and the
estimated from the sample eigenvalues using QuEST algorithm (blue points).

Fig. 35. Main figure: Evaluation of the self-overlapΦ(λ, λ) as a function of the sample eigenvalues λwhen ρC is obtained from the power law proxy (6.28)
with λ0 = 0.8. We compare the analytical true solution using Eq. (3.50) (red dashed line) with the QuEST estimation (blue plain line) and also an empirical
estimate over 100 realizations of E using Eq. (2.38) (green points). Inset: zoom in the bulk region of the main figure.

with Zi =
N

k=1((λi − λ̃k)
2
+ η2)−1 the normalization constant and η the width of the Cauchy kernel, that we choose to be

N−1/2 in such a way that N−1 ≪ η ≪ 1. We then average this quantity over all sample pairs for a given label i to obtain
[⟨ui, ũi⟩

2
]e, which should be a good approximation of Eq. (4.4) provided that we have enough data.

We consider two simple synthetic cases. Let us assume that C is an inverseWishart with parameter κ = 10.We generate
one sample of E ∼ Wishart(N, T , C−1/T ) with N = 500, T = 2N and we can compute the self-overlap (4.41) using the
sample eigenvalues.We compare in Fig. 34 the estimation that we get using QuEST algorithm (blue points) with the limiting
‘‘true’’ analytical solution (4.46) (red line) and we see that the fit is indeed excellent. The same conclusion is reached when
C is a GOE centered around the identity matrix.

Next, we proceed to the same test using the power law distribution proxy (6.28) for ρC with λ0 = −0.6 (see Eq. (3.49)
for the precise definition of λ0). We emphasize again that this model is quite complex since it naturally generates a finite
number of outliers. The result is reported in Fig. 35where we plotted the self-overlap obtained by the limiting exact spectral
density using Eq. (3.50) (red dashed line), the QuEST algorithm (blue plain line) and the empirical estimate (8.18) over 100
realizations of E (green points). Quite surprisingly, we see that the estimation obtained from the QuEST algorithm remains
accurate for the outliers while the analytical solution becomes inaccurate for λ & 3.5. This can be understood by the fact
that the discrete approximation of the density (8.5) in QuEST yields a Dirac mass of weight of order O(N−1) (with N finite
numerically) while the limiting continuous density ρE(λ) becomes arbitrarily small for large eigenvalues.

8.4.2. Financial data
We now investigate an application to real data, in the case of stock markets and using a bootstrap technique to generate

different samples. Indeed, the difficulty here is to measure the empirical mean squared overlaps between the two sample
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Fig. 36. Evaluation of the self-overlap Φ(λ, λ) as a function of the sample eigenvalues λ using the N = 300 most liquid US equities from 2004 to 2013.
We split the data into two non-overlapping periods with same sample size 1200 business days. For each period, we randomly select T = 600 days and
we repeat B = 100 bootstraps of the original data. The empirical self-overlap is computed using Eq. (8.18) over these 100 bootstraps (green points) and
the limiting formula (4.41) is estimated using QuEST algorithm with q = 0.5 (blue dashed line). We also provide the estimation we get using the same
effective observation ratio qeff than in Fig. 30. Inset: focus in the bulk of eigenvalues.

correlation matrices E and E′, as in Eq. (8.18), because we do not have enough data points to evaluate accurately an average
over the noise as required in Eq. (4.4). To bypass this problem,we use a Bootstrap procedure to increase the size of the data.31
Specifically, we take a total period of 2400 business days from 2004 to 2013 for the same three pools of assets that we split
into two non-overlapping subsets of same size of 1200 days, corresponding to 2004 to 2008 and 2008 to 2013. Then, for each
subset and of each Bootstrap sample b ∈ {1, . . . , B}, we select randomly T = 600 distinct days for N = 300 stocks returns
such that we construct two independent sample correlation matrices Eb and E′b, with q = N/T = 0.5. Note that we restrict
to N = 300 stocks such that all of them are present throughout the whole period from 2004 to 2013. We then compute the
empirical mean squared overlap (4.4) and also the theoretical limit (4.40) – using QuEST algorithm – from these B bootstrap
data-sets.

For our simulations, we set B = 100 and plot in Fig. 36 the resulting estimation of Eq. (4.4) we get from the QuEST
algorithm (blue dashed line) and the empirical bootstrap estimate (8.18) (green points) using US stocks. We also perform
the estimation with an effective observation ratio qeff (red plain line) where we use for each market the values of qeff
obtained above (see Figs. 30-31(b)-32(b)). Note that the behavior in bulk is quitewell estimated by the asymptotic prediction
Eq. (4.41) for both periods. This is consistent with the conclusion of Fig. 30.

It is however clear from Fig. 36 that the eigenvectors associated to large eigenvalues are not well described by the theory:
we notice a discrepancy between the (estimated) theoretical curve and the empirical data even with an effective ratio
qeff. The difference is even worse for the market mode (data not shown). This is presumably related to the fact that the
largest eigenvectors are expected to genuinely evolve with time, as argued in [161]. Note also the discrepancy at the left
edge between the theoretical and empirical data in Fig. 36, which can be partly corrected using the effective ratio qeff. This
suggests that one can still improve the Marčenko–Pastur framework by adding e.g. autocorrelation or heavy tailed entries
which allows one to widen the LSD of E (see e.g. [86,143] for autocorrelation and [102,142,103] for heavy tailed entries).

All the above results can be extended and confirmed in the case of Japanese and European stocks, for which the results
are plotted respectively in Figs. 37(a) and 37(b).

To conclude, these observations suggest further improvements upon the time independent framework of Marčenko and
Pastur, that would allow one to account for some ‘‘true’’ dynamics of the underlying correlation matrix. Such dynamics
exist for eigenvectors corresponding to the largest eigenvalues is intuitively reasonable, and empirically confirmed by the
analysis of Ref. [161]. The full correlation matrix might in fact evolve and jump between different ‘‘market states’’, as
suggested in various recent papers of the Guhr group (see e.g. [162,163] and references therein). Extending the present
framework to these cases is quite interesting and would shed light on the optimal value of the observation ratio qeff
which was systematically found to be larger than q = N/T . This could be an indication of non-stationarity effects. This
is particularly apparent for the Japanese stocks (see e.g. Fig. 37(a)) where the theoretical prediction deviates significantly
from the empirical one even if we calibrate the effective quality ratio qeff. The case of eigenvectors associated to the small
eigenvalues is particularly striking and probably need further scrutiny, in particular in the case of future markets where the
presence of very strongly correlated contracts (i.e. two different maturities for the same underlying) leads to very small true
eigenvalues of the correlation matrix, for which the above IW-regularizing scheme is probably inadequate. We leave these
issues, as well as several others alluded to in the following concluding Section, for further investigations.

31 This technique is especially useful in machine learning and we refer the reader to e.g. [4, Section 7.11] for a more detailed explanation.
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(a) TOPIX (Japan). (b) Bloomberg 500 (Europe).

Fig. 37. Evaluation of the self-overlapΦ(λ, λ) as a function of the sample eigenvalues λ using the N = 300 most liquid equities from the Japanese TOPIX
(left) and the European Bloomberg 500 index (right) from 2004 to 2013. For each case, we split the data into two non-overlapping periodwith same sample
size T = 1200 business days. For each period, we randomly select 600 realizations of the returns and we repeat B = 100 bootstraps of the original data.
The empirical self-overlap is computed using Eq. (8.18) over these 100 bootstraps (green points) and the limiting formula (4.41) is estimated using QuEST
algorithm with q = 0.5 (blue dashed line). We also provide the estimation we get using the same effective observation ratio q than in Fig. 30. Inset: focus
in the bulk of eigenvalues.

9. Conclusion and perspectives

In this review, we have discussed some of themost advanced techniques in RMT and their usefulness for estimating large
correlation matrices, in particular within a rotational invariant framework. Moreover, we showed through an extended
empirical analysis that these estimators can be of great interest in real world situations. Instead of repeating the main
messages emphasized in the previous sections,wewant to end this reviewwith an (incomplete) list of potentially interesting
open problems that represent natural extensions of the results obtained above.

9.1. Extension to more general models of covariance matrices

One important assumption of the sample covariance matrix model (3.3) is the absence of temporal correlations and/or
temporal structure in the data. However, this assumption does not hold in most real life applications (see e.g. Section 8.4).
It is thus natural to extend the present work to estimators that account for some temporal dependence. The simplest case
is when some autocorrelations are present. A standard assumption is that of an exponential autocorrelation of the form
[86,142,143]:

E[YitYjt ′ ] = Cij exp

−|t − t ′|/τ


, (9.1)

where τ controls the range of the time correlations.
Another frequent situation is when covariances are measured through an Exponential Weighted Moving Average

(EWMA)[142,164]32:

Mij(τ , T ) = (1− α)
T

t=0

αtYi,τ−tYj,τ−t , (9.2)

where τ is the last estimation date available, α ∈ (0, 1) is a constant and T is the total size of the time series. Roughly,
the idea of this estimator is that old data become gradually obsolete so that they should contribute less than more recent
information. We see that the estimator (9.2) can be rewritten as

Mij(τ ) =

T
t=0

HitHjt , with E

HitHit ′


= δtt ′(1− α)αt , (9.3)

i.e. the variance of the random variables have an explicit time dependence.
Another interesting way to generalize the Marčenko–Pastur framework concerns the distribution of the entries. An

important assumption for the Marčenko–Pastur equation to be valid is that each entry Yit possesses a finite fourth moment.

32 We denote in the following the different estimators of C byM to avoid confusion with Pearson’s sample estimator E = XX∗/T .



J. Bun et al. / Physics Reports 666 (2017) 1–109 89

Again, this assumption may not be satisfied in real dataset, especially in finance [104]. As alluded in Section 3.1.3, a more
robust estimate of the covariance matrix in then needed [101]. Let us assume that we can rewrite the observations as
Yit = σtC1/2Xit for any i ∈ [[1,N]] and t ∈ [[1, T ]], where σt is a fluctuating global volatility that sets the overall scale
of the returns, and X are IID Gaussian variables. In that particular context, the sample covariance matrix is obtained as the
solution of the fixed-point equation [101]:

M :=
1
T

T
t=1

U
 1
N
y∗t M

−1yt

yty∗t ,

where U is a non-increasing function. As mentioned in Section 3.1.3, it is possible to show that for the U(x) = x−1, one has
M→ E in the large N limit [102,103,107,108], where E = C1/2WC1/2 and W is a Wishart matrix. However, the asymptotic
limit is more complex for general U ’s and reads:

M→ C1/2XBX∗C1/2, (9.4)

whereB is a deterministic diagonal T×T matrixwhere each entry is a functional of the {σt}t and the functionU (see e.g. [108]
for the exact expression of the matrix B).

Interestingly, all the above models, (9.1), (9.3) and (9.4), can be wrapped into a general multiplicative framework that
reads:

M := C1/2XBX∗C1/2, (9.5)

where X := (Xit) ∈ RN×T is a random matrix with zero mean and variance T−1 IID entries and B = (Btt ′) ∈ RT×T is fixed
matrix, independent from C. Indeed, for (9.1), we have Btt ′ = exp[−|t − t ′|/τ ]while we set Btt ′ = δtt ′(1− α)αt for (9.3).

The optimal RIE for this model has been briefly mentioned in Section 6.6 and can be found in exquisite details in [38].
We saw that the oracle estimator associated to the model (9.5) converges – at least for bulk eigenvalues – to a limiting
function that does not depend explicitly on the spectral density of C (see Eq. (6.31)). It is thus interesting to see whether one
of the aforementioned models can be solved in full generality using e.g. the results of [86] for the model (9.1) and whether
one can explain the appearance of an effective ratio qeff > q, as encountered in Section 8. Furthermore, another important
result would be to see whether the estimator (6.31) is also valid for outliers, as is the case for the time-independent sample
covariance matrices.

9.2. Singular value decomposition

A natural extension of the work presented in this review is to consider rectangular correlation matrices. This is
particularly useful when one wishes to measure the correlation between N inputs variables x := (x1, . . . , xN) andM outputs
variables y := (y1, . . . , yM). The vector x and the y may be completely different from one another (for example, x could be
production indicators and y inflation indexes) or it also could be the same set of observables but observed at different times
(lagged correlation matrix [29]). The cross-correlations is thus characterized by a rectangular N ×M matrix C defined as:

Cia := E[xiya], (9.6)

where we assumed that both quantities have zero mean and unit variance.
What can be said about the structure of this rectangular and non symmetric correlation matrix (9.6)? The answer is

obtained from the singular value decomposition (SVD) in the following sense: what is the (normalized) linear combination
of x’s on the one hand, and of y’s on the other hand, that have the strongest mutual correlation? In other words, what
is the best pair of predictor and predicted variables, given the data? The largest singular value—say c1 ∈ (0, 1) and its
corresponding left and right eigenvectors answer precisely this question: the eigenvectors tell us how to construct these
optimal linear combinations, and the associated singular value gives us the strength of the cross-correlation. We may then
repeat this operation on the N−1 andM−1 dimensional sub-spaces orthogonal to the two eigenvectors for both input and
output variables. This yields a list of singular values {ci}i that represent the prediction power of the corresponding linear
combinations (in decreasing order). This is called Canonical Correlation Analysis (CCA) in the literature and has (see [58]
or [165,166] for more recent works).

In order to study the singular values and the associated left and right eigenvectors, we consider the N × N matrix CC∗,
which is now symmetric and has N non negative eigenvalues. Indeed, the trick behind this change of variable is that the
eigenvalues of CC∗ are equal to the square of a singular value of C itself. Then, the eigenvectors give us the weights of the
linear combination of the x’s that construct the best predictors in the above sense. In order to obtain the right eigenvectors of
C, one forms theM×M matrixC∗C that has exactly the same non zero eigenvalues asCC∗; the corresponding eigenvectors
now give us the weights of the linear combination of the y’s that construct the best predictees. If M > N , the matrix C∗C
has M − N additional zero eigenvalues; whereas in the other case, it is CC∗ that has an excess of N −M zero eigenvalues.

However, as for standard correlationmatrices, the knowledge of the true populationmatrix Eq. (9.6) is unavailable. Hence,
one resorts to an empirical determination of C that is strewn with measurement noise, as above. We expect to be able to
use tools from RMT to understand how the true singular values are dressed by themeasurement noise. To that end, suppose
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that we have a total of T observations of both quantities that we denote by [Xit ]t and [Yat ]t . Then, the empirical estimate of
C is given by

Eia :=
1
T

T
t=1

XitYat , (9.7)

and the aim is to study the singular values of this matrix. Indeed, as in Section 3, we expect the measurement noise to affect
the accuracy of the estimation in the limit N,M, T → ∞ with n = N/T and m = M/T finite, which we will assume to be
both smaller than unity in the following. As explained in the previous section, a convenient way to perform this analysis is
to consider the eigenvalues of EE∗ (or E∗E ). Using tools from Appendix B, especially Eq. (B.10), we see that

det(EE∗ − zIN) = det

SXSY − zIT


, SX :=

X∗X
T
, SY :=

Y∗Y
T

so that EE∗ shares the same non-zero eigenvalues than the product of the dual T × T samples covariance matrix SX and SY.
It is easy to see that when X and Y are uncorrelated, i.e. C = 0, one can compute the spectral density of SXSY using the

freemultiplication formula (2.81). However, the result depends in general on the correlation structure of the input variables,
CX , and of the output variables CY . A way to obtain a universal result is to consider the exact normalized PCA’s of the X and
of the Y, that we call X̂ and Ŷ, such that SX̂ has N eigenvalues equal to 1 and T − N eigenvalues equal to zero, while SŶ has
M eigenvalues equal to 1 and T −M eigenvalues equal to zero. In this case, the limiting spectrum of singular values can be
found explicitly (see [60] and [59] for an early derivation without using free probability methods), and is given by:

ρ(c) = max(m+ n− 1, 0)δ(c − 1)+ Re


(c2 − γ−)(γ+ − c2)
πc(1− c2)

, (9.8)

where γ± are given by:

γ± = n+m− 2mn± 2

mn(1− n)(1−m), 0 6 γ± 6 1 (9.9)

The allowed c ’s are all between 0 and 1, as they should since these singular values can be interpreted as correlation
coefficients. In the limit T → ∞ at fixed N , M , all singular values collapse to zero, as they should since there is no true
correlations between X and Y . The allowed band in the limit n,m→ 0 becomes:

c ∈

|
√
m−
√
n|,
√
m+
√
n

,

showing that for fixed N,M , the order of magnitude of allowed singular values decays as T−1/2. The above result allows one
devise precise statistical tests, see [165,60,166].

The general case where when X and Y are correlated, i.e. C ≠ 0, is, to our knowledge, unknown. This is particularly
relevant for practical cases since one might expect some true correlations between the input and output variables. It would
be interesting to characterize how the noise distorts the ‘‘true’’ cross-correlations between X and Y, as the analogue of the
Marčenko–Pastur equation (3.9). Moreover, an analysis of the left and right eigenvectors like in Section 4 would certainly be
of interest in many real life problems (see e.g. [4,167–169] for standard applications). Note that the case of outlier singular
values and vectors of rectangular randommatrices subject to a low rank perturbation has been considered [170].

9.3. Estimating the eigenvectors

As indicated by its name, the optimal RIE is optimal under the assumption that we have no prior insights on the
true components, i.e. the eigenvectors of the population covariance matrix C. However, in some problems we expect
these eigenvectors to have some specific, non isotropic structure. One possible solution to this problem is to formulate
prior structures for these eigenvectors through factor models [153,155], ultra-metric tree models (eigenvector clustering)
[171,172], or constraints on the participation ratios [41].

Very recently, an attempt to ‘‘clean’’ empirical outlier eigenvectors was formulated in [41]. Let us focus for example on
the top eigenvector; the prior is then defined as a weighted sum of the sample eigenvectors:

v1 = Φ(µ1, λ1)u1 +

N
j=2

εj

Φ(µ1, λj)uj, (9.10)

where the bivariate mean squared overlapΦ is defined in Eq. (4.3) and the {εj}j>2 is a set of i.i.d. Gaussian random variables
with zero mean and unit variance, that must be determined in such a way thatv1 is, for example, as ‘‘localized’’ as possible.
One notices that the first term in the RHS of Eq. (9.10) can be computed using Eq. (4.14) and the second one can be inferred
from Eq. (4.16). On average, we see that ⟨v1⟩ε · u1 =

√
Φ(µ1, λ1), as it should. While this prior requires some knowledge

about the number of outliers – which is still an open question – it is shown in [41] that this method improves the accuracy
of the estimation on synthetic data. It would be interesting to make use of some of these ideas in the context financial data.
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Fig. 38. We apply the IWs (red dash-dotted line) and QuEST (green dashed line) regularization of Section 8 as a function of the oracle estimator (6.2) with
ρC given by Eq. (6.28) with λ0 = 0.8 and N = 1000. The sample covariance matrix E is a Wishart matrix with q = 2. We see that both regularizations
provide results that are far from the optimal solution (blue plain line).

9.4. Cleaning recipe for q > 1

As observed in Section 8, the optimal RIE (8.4) returns very satisfactory results in terms of estimating the oracle estimator
either with synthetic or real data when the sample size is greater than the number of variables. However, it may happen in
practice that one is confronted to the case where N > T in which the sample covariance matrix E has generically N− T zero
eigenvalues. The main difficulty is to interpret these null eigenvalues since they could either be due to the fact we do not
have enough data points, or else that C has some exact zero modes. It is therefore not surprising that both regularizations
schemes of Section 8 fail to estimate correctly the small eigenvalues in this case (see Fig. 38). However, they fail in different
ways: the IWs-regularization leaves zero eigenvalues unaltered while the QuEST algorithm shrinks the small eigenvalues
upwards too much.

A naive and ad-hoc approach to this problem when C has no zero mode is to rescale the N − T zero eigenvalues of the
IWs-regularization by a constant so that the trace of the estimator is equal to N , as it should be. This is similar to the clipping
procedure of Section 7.2. We see that the main problem with this simple recipe is that when C has some exact zero modes,
then we will always overestimate the volatility of these zero risk modes. Hence, at this stage, it seems that there are no
satisfactory systematic cleaning recipe when q > 1, in the absence of some information about the possibility of true zero
modes.

9.5. A Brownian motion model for correlated Wishart matrices

We present in Appendix D that Dyson’s Brownian Motion that offers a nice physical interpretation of dynamics of the
sample eigenvalues and eigenvectors in the case of an additive noise. It also provides a straightforward tool to compute the
dynamics of the resolvent of the sample matrix; Eq. (D.20) is quite remarkable in that eigenvectors’ overlaps may be easily
inferred.

We are not aware of a similar result in the multiplicative case, with sample covariance matrices in mind, although
Eq. (3.12) suggest that such a process should exist. In the casewhere C = IN , Bru’sWishart process [173] allows one to obtain
many interesting properties about both the eigenvalues and eigenvectors—see [72,174], but time in this case is not related
to the quality parameter q, as one would like it to be. This question is quite fundamental and also has practical applications,
as it would for example allow to understand the overlap of the eigenvectors of E at different ‘‘times’’ (see e.g. [126,161] for a
related question in the additive model). As this review was being completed, we managed to characterize this process, and
the reader is referred to [112] for details.
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Appendix A. Harish-Chandra–Itzykson–Zuber integrals

A.1. Definitions and results

The (generalized) Harish-Chandra–Itzykson–Zuber (HCIZ) integral [88,89] Iβ(A, B) is defined as:

Iβ(A, B) =

G(N)

DΩ e
βN
2 TrAΩBΩĎ

, (A.1)

where the integral is over the (flat) Haar measure of the compact group Ω ∈ G(N) = O(N),U(N) or Sp(N) in N dimensions
and A, B are arbitrary N × N symmetric (hermitian or symplectic) matrices. The parameter β is the usual Dyson ‘‘inverse
temperature’’, with β = 1, 2, or 4, respectively for the three groups. This integral has found several applications in many
different fields, including Random Matrix Theory, disordered systems or quantum gravity (for a particularly insightful
introduction, see [175]). In RMT, this integral naturally appears in many problems, e.g. the derivation of the free addition
and multiplication or the evaluation of eigenvalues density of states of a partition function whose potential is subject to a
multiplicative external field.

In the unitary case G(N) = U(N) and β = 2, it turns out that the HCIZ integral can be expressed exactly, for all N , as the
ratio of determinants that depend on A, B, and additional N-dependent prefactors:

Iβ=2(A, B) =
cN

N (N2−N)/2

det

(eNaibj)1≤i,j≤N


∆(A)∆(B)

(A.2)

with {ai}, {bi} the eigenvalues ofA and B,∆(A) =


i<j |ai−aj| the Vandermonde determinant ofA [and, similarly, for∆(B)],
and cN =

N
i i!. Finding the expression of β = 1 or β = 4 is still an open problem.

Also, as is well known, determinants contain N! terms of alternating signs, which makes their order of magnitude
very hard to estimate a priori. This difficulty appears clearly when one is interested in the large N asymptotic of HCIZ
integrals, for which one would naively expect to have a simplified, explicit expression as a functional F2(ρA, ρB) =
limN→∞ N−2 ln Iβ=2(A, B) of the eigenvalue densities ρA,B of A, B [176]. Using Dyson’s Brownian motion, one can find
[177,178]: Fβ=2(A, B) = limN→∞ N−2 ln I2(A, B):

F2(A, B) = −
3
4
− S2(A, B)+

1
2


dx x2(ρA(x)+ ρB(x))−

1
2


dxdy [ρA(x)ρA(y)+ ρB(x)ρB(y)] ln |x− y|,

where

S2(A, B) =
1
2


dt


dλ ρ(λ, t)

v2(λ, t)+

π2

3
ρ2(λ, t)


(A.3)

with ρ(λ, t) and v(λ, t) solution of the following Euler equation
∂tρ(λ, t)+ ∂λ[ρ(λ, t)v(λ, t)] = 0,

∂tv(λ, t)+ v(λ, t)∂λv(λ, t) =
π2

2
∂λρ

2(λ, t),
with ρ(λ, 0) = ρA(λ), and ρ(λ, 1) = ρB(λ).

(A.4)

In fact, this result can be extended to arbitrary value ofβwith the final (simple) result Fβ(A, B) = βF2(A, B)/2. This coincides
with the result obtained by Zuber in the orthogonal case β = 1 [179] (see also [180–182] for arbitrary β).

Nonetheless, explicit results concerning the asymptotic of this integral are scarce. When A and B are both Wigner
matrices, the Euler–Matytsin system of equation can be solved explicitly [177]. Another soluble case is when one of the
two matrix has a Flat distribution [180]. Last but not least, a beautiful explicit result is available when one of the matrices
has lower rank n≪ N . Precisely, let us assume that A has n eigenvalues a1, a2, . . . , an and N − n zero eigenvalues. Then we
have [183,178,182]:

Iβ(A, B) = exp


Nβ
2

n
i=1

WB(ai)


, (A.5)

where WB is the primitive of the R-transform of B. This result is of particular importance when we do Replica analysis since
we introduce a finite number n of ‘‘replicas’’ (see Section 2.4). We provide hereafter a complete derivation with elementary
calculus in the rank-one case in the following section and explain how to generalize it to the rank-n case.
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A.2. Derivation of (A.5) in the Rank-1 case

This section is devoted to the derivation of the result (A.5) in the sample case where A = diag(a1, 0, . . . , 0) and
B = diag(b1, . . . , bN). Firstly, we rewrite (A.1) (we set β = 1 for simplicity):

I1(A, B) =
1
Z

  N
k=1

dΩ1k


exp


N
2
a1

N
k=1

Ω2
1kbk


δ

 N
k=1

Ω2
1k − 1


, (A.6)

where the Dirac delta function enforces the orthogonality and Z is normalization constant defined as:

Z :=

  N
k=1

dΩ1k


δ

 N
k=1

Ω2
1k − 1


, (A.7)

which allows us to omit constant variables in the following. We then use the following integral representation of the delta
function:

δ

 N
k=1

Ω2
1k − 1


=

1
2π


exp


iζ
 N

k=1

Ω2
1k − 1


dζ , (A.8)

so that we have (after renaming ζ →−2iζ/N)

I1(A, B) ∝
N
4π

 i∞

−i∞
dζ
  N

k=1

dΩ1k


exp


N
2


a1

N
k=1

Ω2
1kbk + ζ

 N
k=1

Ω2
1k − 1



=
N
4π

 i∞

−i∞
dζ exp


Nζ
2

   N
k=1

dΩ1k


exp


−

N
2

N
k=1

Ω2
1k


ζ − a1bk



=
N
4π

 i∞

−i∞
exp


−

N
2


1
N

N
k=1

log(ζ − a1bk)− ζ


dζ . (A.9)

Since we consider N →∞, the integral over ζ is performed by a saddle-point method, leading to the following equation:

1
N

N
k=1

1
ζ − a1bk

= 1, (A.10)

which is equivalent to

gB(ζ/a1) = a1. (A.11)

We therefore find that

ζ = a1BB(a1) = a1RB(a1)+ 1. (A.12)

By plugging this solution into (A.9), we obtain

2
N

log I1(A, B) ∼ a1RB(a1)−
1
N

N
k=1

log

1+ a1(RB(a1 − bk))


. (A.13)

One can then check, by taking the derivative of both sides, that

a1RB(a1)−
1
N

N
k=1

log

1+ a1(RB(a1 − bk))


= WB(a1), (A.14)

where WB is the primitive integral of the R-transform of B satisfying W ′

B(ω) = RB(ω). We therefore conclude that

2
N

log I1(A, B) ∼ WB(a1), (A.15)

which is the claim.
Let us now explain briefly how to extend this derivation to the rank-n case. Formally, the integral reads

I1(A, B) =
1
Z

  n
i=1

N
k=1

dΩik


exp


N
2

n
i=1

ai
N

k=1

Ω2
ikbk

 n
i,j=1

δ
 N

k=1

ΩikΩjk − δij


, (A.16)
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where the normalization Z is easily deduced from (A.7), and A = diag(a1, a2, . . . , an, . . . , 0). When n = O(N), i.e. when A
has close to full rank, the orthogonality constraint

N
k=1ΩikΩjk = 0 for i ≠ j becomes dominant and makes the calculation

difficult. However, when n ≪ N , this constraint is nearly automatically satisfied since two random unit vectors in N
dimensions have naturally a scalar product of order 1/

√
N . In this limit, only the normalization constraint is operative,

i.e.
N

k=1Ω
2
ik = 1, ∀i = 1, . . . , n. But one then easily sees that the above integral factorizes into n independent integrals

of the type we considered above, hence leading to result (A.5). For a more rigorous proof that this result holds as long as
n≪
√
N , see [178].

Appendix B. Reminders on linear algebra

B.1. Schur complement

The derivation of recursion relationmostly relies on linear algebra. More specifically, let us define the (N+M)×(N+M)
matrixM by

M :=

A B
C D


, (B.1)

where thematricesA, B, C andD are respectively of dimensionN×N,N×M,M×N andM×M . Suppose thatD is invertible,
then the Schur complement of the block D of the matrixM is given by the N × N matrix

M/D = A− BD−1C. (B.2)

Using it, one obtains after using block Gaussian elimination (or LU decomposition) that the determinant of M can be
expressed as

det(M) = det(D) det(M/D). (B.3)

Moreover, one can write the inverse matrixM−1 in terms of D−1 and the inverse of the Schur complement (B.2)

M−1 =


(M/D)−1 −(M/D)−1BD−1

−D−1C(M/D)−1 D−1 + D−1C(M/D)−1BD−1


. (B.4)

Similarly, if A is invertible, the Schur complement of the block A of the matrixM is given by theM ×M matrix

M/A = D− CA−1B. (B.5)

One easily obtains det(M) in terms of A and M/A from (B.3) by replacing D by A

det(M) = det(A) det(M/A). (B.6)

The inverse matrixM−1 can also be written in terms of A−1 and the inverse of the Schur complement (B.5)

M−1 =

A−1 + A−1B(M/A)−1CA−1 −A−1B(M/A)−1

−(M/A)−1CA−1 (M/A)−1


. (B.7)

B.2. Matrix identities

There are several useful identities that can be inferred from Schur complement formula. Firstly, using (B.4) and (B.7), we
may immediately deduce the so-calledWoodburymatrix identity

(A+ BD−1C)−1 = A−1 − A−1B(D+ CA−1B)−1CA−1. (B.8)

Moreover, if D = IM , we get thematrix determinant lemma from (B.3) and (B.6)

det(A− BC) = det(A) det(IM − CA−1B), (B.9)

and if A = IN in addition, one gets Sylvester’s determinant identity

det(IN − BC) = det(IM − CB). (B.10)

Now, assuming that both B and C are column vectors, one readily find from (B.8) the Sherman–Morrison formula.
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B.3. Resolvent identities

Another useful application of Schur complement formula concerns the resolvent. We keep the notations of Section 2.1.2
and thus

G(z) = H−1(z), H(z) := zIN −M, (B.11)

with G a N × N symmetric matrix. We now rewrite H(z) as a block matrix:

H(z) =


A B
B∗ C


, (B.12)

where the matrices A, B and C are respectively of dimension K × K , K ×M and M ×M with N = K +M . Next, we define
from (B.2) the Schur complement D := A − BC−1B∗. In the following, we consider K = 2 for simplicity. We have for any
i, j ∈ {1, 2}, we have from (B.4):

Gij = (D−1)ij. (B.13)

As a warm-up exercise, let us first consider the simplest case i = j (K = 1) and we set without loss of generality that i = 1.
Then A becomes a scalar and so is D. Using Eq. (B.11), one obtains A = z −M11, B = [M12, . . . ,M1N ] and C = H(1)(z)where
H(i) denotes the ‘‘minor’’ of H, i.e. H(i) :=


Hst : s, t ∈ [[1,N]]\{i}


. Hence, it is easy to see from the very definition of D that

D ≡ D11 = z −M11 −

(1)
α,β

M1αG
(1)
α,βMβ1, (B.14)

where and we used the abbreviation
(i)
α,β

≡


α,β∈[[1,N]]\{i}

. (B.15)

Therefore, we deduce from (B.13) that

G11(z) =
1

z −M11 −
(1)
αβ

M1αG
(1)
α,βMβ1

. (B.16)

This last result holds for any other diagonal term of the resolvent G.
Next, we consider the general case K = 2 so that D is a 2 × 2 matrix. Again, using the block representation (B.12) and

Eq. (B.11), one deduces that:

Dkl = zδkl −Mkl −

(kl)
α,β

MkαG
(kl)
α,βMβl, k, l ∈ [[i, j]]. (B.17)

It is not hard to see that Dkk yields Eq. (B.14) as it should. Using that (B.17) is a 2×2matrix, one can readily invert thematrix
D to obtain the relation

Gij − G(m)ij =
GimGmj

Gmm
, (B.18)

for any i, j ∈ [[1, K ]] andm ∈ [[1,N]]with i, j ≠ m. This last equation allows one to write a recursion relation on the entries
of the resolvent (see the following appendix).

Appendix C. Self-consistent relation for Green’s function and Central Limit Theorem

We focus in this section on another frequently used analytical tool in RMT based on recursion relation for the resolvent
of a given matrix M. This technique has many advantages compared to the method compared to the Replica analysis: (i)
the entries of the matrix need not to be identically distributed, (ii) no ansatz is required to perform the calculations. In the
limit of N →∞, an interesting application of the Central Limit Theorem (CLT) concerns the spectral properties of random
matrices. Precisely, we shall see that relations like that of Eq. (4.5) are actually a consequence of the CLT.

C.1. Wigner matrices

As a warm-up exercise, we consider the simplest ensemble of random matrices where all elements of the matrix M are
i.i.d random variables, with the only constraint that the matrix be symmetrical. This is the well-known Wigner ensemble
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where we assume that

E[Mij] = 0, E[M2
ij ] =

σ 2

N
, (C.1)

for any i, j ∈ [[1,N]]. Note that the scaling with N−1 for the variance comes from the fact that we want the eigenvalues ofM
to stay bounded when N →∞. This allows to conclude thatMij ∼ 1/

√
N for any i, j ∈ [[N]].

In order to derive a self-consistent equation for the resolvent ofM, we use (C.1) and Wick’s theorem into (B.17) and one
can check that

E
 (kl)
α,β

MkαG
(kl)
αβ Mβl


= δkl

σ 2

N

(k)
α

G(k)αα

V
 (kl)
α,β

MkαG
(kl)
αβ Mβl


∼
σ 4

N
. (C.2)

Consequently, using the Central Limit Theorem, we conclude that forWigner matrices, (B.17) converges for large N towards

Dkl = δkl


z −

σ 2

N

(k)
α

G(k)αα


+ O(N−1/2) k, l ∈ {i, j}, (C.3)

from which one deduces that Gij ∼ N−1/2 using (B.13). Moreover, we may consistently check that G(k)ℓℓ ∼ Gℓℓ + O(N−1) for
any ℓ ∈ [[1,N]] thanks to (B.18) and we therefore obtain for any i ∈ [[1,N]]:

Gii ∼
1

z − σ 2g(z)
+ O(N−1/2). (C.4)

By taking the normalized trace in this last equation, we obtain at leading order the equation of the semi-circle law’s Stieltjes
transform

g(z) =
1

z − σ 2g(z)
, (C.5)

so that we conclude

Gij(z) ∼ δijg(z)+ O(N−1/2). (C.6)

This result has been extended in a much more general framework—see e.g. the recent reviews [91,184]. In particular, it is
possible to show that the error term we obtain in Eq. (C.6) is quite similar to (4.7) and reads for η =ηN withη ≫ 1:

ΨGOE(z) :=


Im gS(z)η +

1η , (C.7)

provided that N is large enough. We illustrate this ergodic behavior for the GOE in Fig. 11, and we see the agreement is
excellent and each diagonal entry indeed converges to the semicircle law (see Fig. C.1).

C.2. Sample covariance matrices

We nowwant to derive (4.5) using the same type of arguments than in the previous section. Suppose that E is defined as
in (3.3) andwe denote by G(z) its resolvent. Let us assume for simplicity that C = diag(µ1, µ2, . . . , µN). Since E is a product
of two rectangular matrices, it is convenient to introduce the (N + T ) × (N + T ) block matrix R := (Rij) ∈ R(N+T )×(N+T )
defined as:

R(z) := H−1(z), H(z) :=

C−1 X
X∗ z IT


. (C.8)

To simplify the notations, we introduce the set of indexes IN := [[1,N]] and IT := [[1, T ]]. Then using (B.4) and (B.7), we see
that

Rij(z) = z(C1/2GE(z)C1/2)ij, i, j ∈ IN , (C.9)

where E is the sample covariance matrix defined in Eqs. (3.3) and (3.4), but also

Rαβ(z) = (GS(z))αβ , α, β ∈ IT , (C.10)

where the T × T matrix S is defined in Eq. (3.32).
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(a) Diagonal entry of Im[GE(z)]with i = 1. (b) Off diagonal entry of Im[GE(z)]with i = 1 and j = 2.

Fig. C.1. Illustration of the imaginary part of Eq. (C.6) with N = 1000. The empirical estimate of GE(z) (blue line) is computed for any z = λi − iN−1/2
with i ∈ [[1,N]] and comes from one sample. The theoretical one (red line) is given by the RHS of Eq. (C.6). The green dotted corresponds to the confidence
interval whose formula is given by Eq. (C.7). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

We are interested in the computations of Rij for i, j ∈ IN and this can be done using (B.13) and (B.17). Note that one can
find Rαβ by proceeding in the same way. We obtain from (B.13) and (B.17) that

Rij(z) = (D−1)ij, Dkl :=
δkl

µk
−


α,β∈IT

XkαR
(kl)
αβ Xlα (C.11)

for any k, l ∈ {i, j}. Using that E[Xit ] = 0 and E[X2
it ] = T−1 from (3.5), we remark thanks to Wick’s theorem that the sum in

the term Dkl obeys

E
 
α,β∈IT

XkαR
(kl)
αβ Xlα


=
δkl

T

(k)
α

R(k)αα

V
 
α,β∈IT

XkαR
(kl)
αβ Xlα


∼

1
T
, (C.12)

where we used the notation (B.15) for the sum. Invoking once again the CLT, we find that the entry Dkl converges for large
N towards

Dkl ∼ δkl


1
µk
−

1
T


α∈IT

R(k)αα


+ O(T−1/2), (C.13)

so that we may conclude from (C.11) that Rij ∼ O(T−1/2) for i ≠ j. Note that one may repeat the same arguments for Rαβ
with α, β ∈ IT to obtain

Dαβ ∼ δαβ


z −

1
T


k∈IN

R(α)kk


+ O(T−1/2). (C.14)

Let us now investigate R(k)αα which can be rewritten thanks to (B.18) as:

R(k)αα = Rαα −
RkαRαk
Rkk

. (C.15)

We deduce from (C.13) that Rkk ∼ O(1). We will now show that Rkα (and Rαk) are vanishing as T−1/2. To that end, we apply
(B.7) to (C.8) to find

Rkα = −

CXGS


kα = −µk


β∈IT

Xkβ(GS)βα. (C.16)

Using Eqs. (C.10), (C.14) and that Xkβ ∼ T−1/2, one can self-consistently check that Rkα ∼ T−1/2. This is also true for Rαk.
Hence, if we plug this into Eq. (C.15), we see that for N →∞:

1
T

(k)
α

R(k)αα =
1
T

(k)
α

Rαα + O(T−1) = gS(z)+ O(T−1), (C.17)
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and we therefore have from Eqs. (C.13) and (C.11):

Rij(z) = δij


µk

1− µkgS(z)


+ O(T−1/2). (C.18)

Finally, recalling that gS(z) = qgE(z)+ (1− q)/z from Eq. (3.33) and Rii = zµiGii from Eq. (C.9), we conclude that

(GE(z))ij = δij


1

z − µk(1− q+ qzgE(z))


+ O(T−1/2), i, j ∈ [[1,N]], (C.19)

which is the prediction obtained in (4.6) with the Replica method. Similarly, we obtain for the T × T block that:

(GS(z))αβ =
δαβ

z − 1
T


k∈IN

(GE(z))ij
+ O(T−1/2). (C.20)

Moreover, by using (C.18) and (3.34), we see that for N →∞

z −
1
T


k∈IN

(GE(z))kk =
1

gS(z)
, (C.21)

so that we may conclude

(GS(z))αβ = δαβgS(z)+ O(T−1/2). (C.22)

This last result highlights that it is often easier to work with the T × T sample covariance matrix S rather than with the
N × N matrix E since the resolvent can be approximated simply by its normalized trace. All these results can be found in a
much more general and rigorous context in [113].

Appendix D. Additive noise model

In this review, we mainly focus on sample covariance matrices which is a particular case of models of random matrices
withmultiplicative noise. In this appendix, we consider the case of an additive external noise which can also be important in
many situations, in particular in quantum chaos and quantum transport [185], with renewed interest coming fromproblems
of quantum ergodicity (‘‘eigenstate thermalization’’) [130,186], entanglement and dissipation (for recent reviews see
[187,188]). We will show briefly here howwe can extend the results of Section 4 to this specific case with a special focus to
the overlaps (4.3).

As above, we shall denote the N × N real symmetric population matrix, i.e. the one we wish to infer, by C and to avoid
confusion, we denote byM the sample matrix that is the matrix wemeasure with the data. Throughout this section, we deal
with models of the form

M = C+ΩBΩ∗, (D.1)

where B is a fixed matrix with eigenvalues b1 > b2 > · · · > bN , spectral ρB, and Ω is a random matrix chosen in the
Orthogonal group O(N) according to the Haar measure. Clearly, the noise term is invariant under rotation so that we expect
the resolvent ofM to be (for large N) in the same basis as C. We therefore posit without loss of generality that C is diagonal.
The most common example of such models in the literature [83] is the case where B belongs to the GOE but for now, we
do not specify any distribution or structure assumption on the fixed matrix B. We first present this simple model and then
show that we can generalize it to the general case (D.1). We shall also provide an elementary derivation of the free addition
in the limit N →∞.

D.1. Gaussian external noise

In order to give some insights about the generalmodel (D.1), we focus first on the casewhere the external noise B belongs
to the GOE with a variance of σ 2. More formally, we consider B to be a N × N real symmetric matrix with Gaussian entries
that satisfies

E[Bij] = 0 E[B2
ij] =


2σ 2/N if i = j,
σ 2/N otherwise.

(D.2)

In the casewhereB satisfies (D.2), we say thatM defined as (D.1) is a deformed GOE matrix. As usual, all the information about
the eigenvalues and eigenvectors of M can be analyzed through the resolvent. In fact, as for sample covariance matrices, it
is possible to show that each entry of the resolvent GM converges to a deterministic limit for N → ∞. There are a lot of
different mathematical methods to prove this last assertion andwe shall cover only two of them: the first method is to use a
straightforward generalization of the arguments of Appendix C.1 above. The second method is based on the representation
of a GOE matrix as a (dynamical) stochastic process, known as Dyson’s Brownian motion. As we shall see below, this second
approach provides insightful physical interpretation about the behavior ofM.
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D.1.1. Schur complement arguments
Let us startwith the firstmethod.We expect the resolvent ofM to be in the same basis than C, at least in the limitN →∞,

meaning that we can work in the basis where C is diagonal. Moreover, since matrix C is deterministic, one may easily repeat
the arguments of Appendix C.1 to generalize Eq. (C.3) to:

Dkl = δkl


z − µk −

σ 2

N

(k)
α

G(k)αα


+ O(N−1/2), k, l ∈ {i, j}. (D.3)

As above, we can consistently check that Gij ∼ N−1/2 using (B.13). Moreover, we also obtain that G(k)ℓℓ ∼ Gℓℓ + O(N−1) for
any ℓ ∈ [[1,N]] thanks to (B.18). Therefore, we obtain for any i ∈ [[1,N]]:

Gii ∼
1

z − σ 2g(z)− µi
+ O(N−1/2), (D.4)

which is the result obtained in e.g. [125,113] using more rigorous arguments.

D.1.2. Dyson Brownian motion
Since the seminal paper of Dyson in 1962 [189], it is well known that the spectrum induced by the addition of free

random matrices in the Gaussian orthogonal ensemble33 can be investigated through the evolution of a time-dependent
real symmetric N × N Brownian motion. More precisely, let us introduce a fictitious time t and rewrite the model (D.1) as :

M(t) = C+ B(t) (D.5)

with

Bii(t) =


2σ 2

N
Wii(t), Bij(t) =


σ 2

N
Wij(t) (i ≠ j), (D.6)

where the Wij(t), i 6 j are independent and identically distributed real Brownian motions. We see that B(t) is an external
noise whose variance increases as the time t grows. We suppose that the eigenvalues of C are all distinct and satisfy
µ1 > µ2 > . . . µN . Then, the dynamics of the eigenvalues of M(t) may also be characterized by a stochastic differential
equation (SDE), known as Dyson’s Brownian motion:

dλi(t) =


2σ 2

N
dbi(t)+

1
N

N
j≠i

dt
λi(t)− λj(t)

,

λi(0) = µi, (D.7)

for any i = 1, . . . ,N , and where the bi(t) are independent real Brownian motions. We observe that the eigenvalues of
M(t) defines Dyson’s Coulomb gas model that describes positively charged particles on a line interacting via a logarithmic
potential and subject to a thermal noise dbi(t).

Conditionally to the eigenvalues paths, the trajectories of the associated eigenvectors ui(t) can also be characterized by
a SDE:

dui(t) =
1
√
N


k≠i

dwik(t)
λi(t)− λk(t)

uk(t)−
1
2N


k≠i

dt
(λi(t)− λk(t))2

ui(t),

ui(0) = vi, (D.8)

where the family of independent (up to symmetry) Brownian motions {wij} is independent from the Brownian motions {bi}
that drive the eigenvalues trajectories. As a result, in order to study the dynamics of the eigenvectors, wemay always freeze
the eigenvalues paths andwork conditionally to the realized trajectories. This is the approach used in [125,126,174] in order
to study the mean squared overlap (4.3) in this additive model.

In this appendix,we present an alternative approach that considers directly the time evolution of the full resolvent,which
we have not seen in the literature before. To that end, we define

G(z, t) := H−1(z, t), H(z, t) := zIN −M(t). (D.9)

Using Itô formula and the fact that dMkl = dBkl, one has

dGij(z, t) =
N

k,l=1

∂Gij

∂Mkl
dBkl +

1
2

N
k,l,m,n=1

N
m,n=1

∂2Gij

∂Mkl∂Mmn
d

BklBmn


. (D.10)

33 All these results may be easily extended to the Hermitian case.
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Next, we compute the derivatives:

∂Gij

∂Mkl
=

1
2


GikGjl + GjkGil


, (D.11)

from which we deduce the second derivatives

∂2Gij

∂Mkl∂Mmn
=

1
4


(GimGkn + GimGkn)Gjl + · · ·


, (D.12)

where we have not written the other 6 GGG products. Now, using (D.6), the quadratic co-variation reads

d

BklBmn


=
σ 2dt
N


2δk=l=m=n + δk=mδl=n + δk=nδl=m


(D.13)

so that we get from (D.10) and taking into account symmetries:

dGij(z, t) =
N

k,l=1

GikGjldBkl +
σ 2

N

N
k,l=1


GikGlkGlj + GikGkjGll


dt. (D.14)

As above, we expect the entries of G to be self-averaging. Hence, we consider the average with respect to the Brownian
motionWkl defined in Eq. (D.6), we find the following evolution for the average resolvent:

∂tE[G(z, t)] = σ 2g(z, t)E[G2(z, t)] +
1
N

E[G3(z, t)]. (D.15)

Now, one can notice that:

G2(z, t) = −∂zG(z, t); G3(z, t) = ∂2zzG(z, t), (D.16)

which hold even before averaging. By sending N →∞, we obtain the following matrix PDE for the resolvent:

∂tE[G(z, t)] = −σ 2g(z, t) ∂zE[G(z, t)], with E[G(z, 0)] = GC(z). (D.17)

Taking the trace of this equation immediately leads to a Burgers equation for the Stieltjes transform [125,126]:

∂tg(z, t) = −σ 2g(z, t) ∂zg(z, t), with g(z, 0) = gC(z). (D.18)

Its solution can be found using the method of characteristics and reads:

g(z, t) = gC(Z(z, t)), Z(z, t) := z − σ 2tg(z, t). (D.19)

The solution of Eq. (D.17) then reads [125,190]:

E[G(z, t)] = GC(Z(z, t)), (D.20)

and is exactly equivalent to (D.4) except that the variance here is given by σ 2t .
Note that we can then easily study from (D.20) the mean squared overlap between the perturbed eigenvectors ui(t) and

the pure ones uj(0) = vj for any i, j ∈ [[1,N]]. Indeed, it suffices to consider in the basis where C is diagonal the following
projection ⟨vj,Gii(z, t)vj⟩with z = λi − iη as in Section 4 and we finally obtain

NE

⟨ui(t), vj⟩2


=

σ 2tλi(t)− σ 2tgM(z, t)− µj
2 . (D.21)

D.2. Extension to an arbitrary rotational invariant noise

D.2.1. An elementary derivation of the free addition formula
Wenow turn on the general casewhere the noise termB is a (asymptotically) rotational invariant randommatrix.We saw

in Section 2.3 that the limiting spectrum of such models can be investigated using the free probability formalism. The first
part of this section is dedicated to a formal but elementary derivation of Voiculescu’s free addition (2.66) [45] by following
the arguments of [38]. From this result, we will be able to derive the asymptotic behavior of the resolvent of the model (D.1)
using the Replica formalism of Section 2.4.

As in Section 2.3.3, the starting point is to notice that since the noise is rotationally invariant, we can always work in the
basis where the matrix C is diagonal. Thus, we may specialize the Replica formalism (2.92) for the resolvent of (D.1) which
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yields34

GM(z)i,j =
 

n
α=1

N
k=1

dηαk


η1i η

1
j

n
α=1

e
−

1
2

N
k=1

(ηαk )
2(z−ck)


e
−

1
2

N
k,l=1

ηαk (ΩBΩ∗)k,lη
α
l


Ω

. (D.22)

One recognizes that the average value in the RHS of the latter equation is again the finite rank version of HCIZ integrals
studied in details in Appendix A.2. Hence, one deduces from (A.5) that

I1

 n
α=1

ηα

ηα
∗
, B

= exp


N
2

n
α=1

WB


1
N
(ηα)Ďηα


, (D.23)

with W ′

B(.) = RB(.) the primitive of the R-transform of B. As a result, the computation of the resolvent (D.22) becomes

GM(z)i,j =
 

N
k=1

dηk


η1i η

1
j exp


N
2

n
α=1


WB


1
N
(ηα)Ďηα


−

1
2

N
k=1

(ηαk )
2(z − µk)


, (D.24)

and by introducing a Lagrange multiplier pα := 1
N (η

α)Ďηα , we obtain using Fourier transform (and renaming ζ α →
−2iζ α/N)

GM(z)i,j ∝
  

n
α=1

dpαdζ α

exp


N
2

n
α=1

[WB(pα)− pαζ α]



×

 
n
α=1

N
k=1

dηαk


η1i η

1
j exp


−

1
2

n
α=1

N
k=1

(ηαk )
2(z − ζ α − µk)


.

One can readily find

GM(z)i,j ∝
  

n
α=1

dpαdζ α


δij

z + ζ 1 − µi
exp


−

Nn
2

F0(pα, ζ α)

, (D.25)

where the ‘free energy’ F0 is given by

F0(pα, ζ α) =
1
Nn

n
α=1


N

k=1

log(z − ζ α − µk)−WB(pα)+ pαζ α

. (D.26)

As in Section 2.3.3, the integral (D.25) can be evaluated by considering the saddle-point of the free energy F0 as the other
term is obviously sub-leading. Moreover, we use the replica symmetric ansatz that tells us if the free energy is invariant
under the action of the symmetry group O(N), then we expect a saddle-point which is also invariant. This implies that we
have at the saddle-point

pα = p and ζ α = ζ , ∀α ∈ {1, . . . , n}, (D.27)

from which, we obtain the following set of equations:

ζ ∗ = RB(p∗) and p∗ = gC(z − ζ ∗). (D.28)

If we apply the Blue transform of C on the second equation of (D.28), we obtain

z = BC(p∗)+RB(p∗) ≡ RC(p∗)+RB(p∗)−
1
p∗
. (D.29)

On the other hand, we see that the resolvent (D.25) is given in the large N limit and the limit n→ 0 by

Gij(z) ∼
δij

z −RB(p∗)− µi
. (D.30)

The trick is to see that we can get rid of one variable by taking the normalized trace in this later equation as it yields

gM(z) = gC(z −RB(p∗)) = p∗ (D.31)

where the last equation follows from (D.28). Therefore, we conclude by plugging this last equation into (D.29) that

z −
1

gM(z)
= RC(gM(z))+RB(gM(z)),

34 One may also use the Replica formalism for the Stieltjes transform as well.
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from which one can check by renaming z = BM(ω) that

RM(ω) = RC(ω)+RB(ω), (D.32)

which is exactly the free addition formula (2.66).

D.2.2. Asymptotic resolvent of (D.1)
A trivial application of the result above is the evaluation of the resolvent entry-wise for the general model (D.1). Indeed,

we see by plugging Eq. (D.31) into Eq. (D.30) that

GM(z)ij ∼
δij

z −RB(gM(z))− µi
, (D.33)

which is equivalent to

GM(z)ij = GC(Z(z))ij, Z(z) := z −RB(gM(z)). (D.34)

One notices that this formula is indeed the generalization of the formula (2.67) as amatrix.Moreover, we see that in the large
N limit, each entry of the random resolvent ofM converges to a deterministic quantity that lies in the basis of C.Wemoreover
see that the additive case is even simpler than the multiplicative one as expected. It also means that all the computations
we considered in Section 4 can be performed nearly verbatim for the additivemodel (D.1) and the exact results can be found
in [38].

D.3. Overlap and optimal RIE formulas in the additive case

D.3.1. Mean squared overlaps
We were able to show that each entries of the resolvent of M in the general additive model (D.1) converges to a

deterministic limit that is given in Eq. (D.34). We see that this matrix relation can be simplified when written in the basis
where C is diagonal, since in this case GC(Z) is also diagonal. Therefore, the evaluation of themean squared overlap between
a given sample and true eigenvectors, denoted asΦ(λ, µ), is straightforward using the same techniques as in Section 4.1.1.
We omit details that may be found in [38] and one finds that the overlap for the free additive noise is given by:

Φ(λ, µ) =
β1(λ)

(λ− c − αa(λ))2 + π2βa(λ)2ρM(λ)2
, (D.35)

where µ is the corresponding eigenvalue of the true matrix C, and where we defined:αa(λ) := Re[RB (hM(λ)+ iπρM(λ))],

βa(λ) :=
Im[RB (hM(λ)+ iπρM(λ))]

πρM(λ)
.

(D.36)

As a simple consistency check, we specialize our result to the casewhereΩBΩ∗ is a GOEmatrix such that the entries have
a variance equal to σ 2/N . Then, one has RB(z) = σ 2z meaning that Z(z) of Eq. (D.34) simply becomes Z(z) = z − σ 2gM(z).
This allows us to get a simpler expression for the overlap:

Φ(λ, µ) =
σ 2

(c − λ+ σ 2hM(λ))2 + σ 4π2ρM(λ)2
, (D.37)

which is exactly the result obtained in Eq. (D.21). In Fig. D.1, we illustrate this formula in the case where C = W with
parameter q. We set N = 500, T = 1000, and take ΩBΩ∗ as a GOE matrix with variance 1/N . For a fixed C, we generate
200 samples of M given by Eq. (D.1) for which we can measure numerically the overlap (4.3). We see that the theoretical
prediction (D.37) agrees remarkably with the numerical simulations.

D.3.2. Optimal RIE
Since the overlaps are explicit in this general model, it is easy to compute the asymptotic limit of the oracle estimator

(6.2) for the bulk eigenvalues in the model (D.1). Indeed, it is easy to see from Eqs. (2.6) and (6.2) that:

ξ ora.i ∼
1

πρM(λi)
lim

z→λi−i0+
Im


µρC(µ)

Z(z)− µ
dµ

=

1
NπρM(λi)

lim
z→λi−i0+

Im Tr [GM(z)C] , (D.38)

where Z(z) is given by Eq. (D.34). From Eq. (D.34) one also has Tr[GM(z)C] = N(Z(z)gM(z) − 1), and using Eqs. (D.34) and
(D.36), we end up with:

lim
z→λ−i0+

Im Tr [GM(z)C] = NπρM(λ) [λ− α(λ)− β(λ)hM(λ)] .
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Fig. D.1. Computations of the rescaled overlap Φ(λ, µ) as a function of µ in the free addition perturbation. We chose i = 250, C a Wishart matrix with
parameter q = 0.5 and B a Wigner matrix with σ 2

= 1. The black circle points are computed using numerical simulations and the plain red curve is the
theoretical predictions Eq. (D.35). The agreement is excellent. For i = 250, we have µi ≈ 0.83 and we see that the peak of the curve is in that region. The
same observation holds for i = 400 where µi ≈ 1.66. The numerical curves display the empirical mean values of the overlaps over 1000 samples of M
given by Eq. (D.1) with C fixed.

We therefore find the following optimal RIE nonlinear ‘‘shrinkage’’ function Fa:

ξ ora.i ∼ Fa(λi); Fa(λ) = λ− αa(λ)− βa(λ)hM(λ), (D.39)

where αa, βa are defined in Eq. (D.36). This result states that if we consider a model where the signal C is perturbed by an
additive noise (that is free with respect to C), the optimal way to ’clean’ the eigenvalues ofM in order to get Ξ(M) is to keep
the eigenvectors of M and apply the nonlinear shrinkage formula (D.39). We see that the non-observable oracle estimator
converges in the limit N →∞ towards a deterministic function of the observable eigenvalues.

As usual, let us consider the casewhereB is aGOEmatrix in order to givemore intuitions about (D.39). Using the definition
of αa and βa given in Eq. (D.36), the nonlinear shrinkage function is given by

Fa(λ) = λ− 2σ 2hM(λ). (D.40)

Moreover, suppose that C is also a GOEmatrix so thatM is a also a GOEmatrixwith varianceσ 2
M = σ

2
C+σ

2. As a consequence,
the Hilbert transform ofM can be computed straightforwardly from the Wigner semicircle law and we find

hM(λ) =
λ

2σ 2
M
.

The optimal cleaning scheme to apply in this case is then given by:

Fa(λ) = λ


σ 2
C

σ 2
C + σ

2


, (D.41)

where one can see that the optimal cleaning is given by rescaling the empirical eigenvalues by the signal-to-noise ratio. This
result is expected in the sense that we perturb a Gaussian signal by adding a Gaussian noise. We know in this case that the
optimal estimator of the signal is given, element by element, by theWiener filter [135], and this is exactly the result that we
have obtained with (D.41). We can also notice that the ESD of the cleaned matrix is narrower than the true one. Indeed, let
us define the signal-to-noise ratio SNR = σ 2

C /σ
2
M ∈ [0, 1], and it is obvious from (D.41) that Ξ(M) is a Wigner matrix with

variance σ 2
Ξ × SNR which leads to

σ 2
M ≥ σ

2
C ≥ σ

2
C × SNR, (D.42)

as it should be.
As a second example, we now consider a less trivial case and suppose that C is a white Wishart matrix with parameter

q0. For any q0 > 0, it is well known that the Wishart matrix has non-negative eigenvalues. However, we expect that the
noisy effect coming from the GOEmatrix pushes some true eigenvalues towards the negative side of the real axis. In Fig. D.2,
we clearly observe this effect and a good cleaning scheme should bring these negative eigenvalues back to positive values.
In order to use Eq. (D.40), we invoke once again the free addition formula to find the following equation for the Stieltjes
transform ofM:

−q0σ 2gM(z)3 + (σ 2
+ q0 z)gM(z)2 + (1− q0 − z)gM(z)+ 1 = 0,
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Fig. D.2. Eigenvalues of the noisy measurementM (black dotted line) compared to the true signal C drawn from a 500× 500Wishart matrix of parameter
q0 = 0.5 (red line). We have corrupted the signal by adding a GOE matrix with radius 1. The eigenvalues density of M allows negative values while the
true one has only positive values. The blue line is the LSD of the optimally cleaned matrix. We clearly notice that the cleaned eigenvalues are all positive
and its spectrum is narrower than the true one, while preserving the trace. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. D.3. Eigenvalues according to the optimal cleaning formula (D.41) (red line) as a function of the observed noisy eigenvalues λ. The parameter are
the same as in Fig. D.2. We also provide a comparison against the naive eigenvalues substitution method (black line) and we see that the optimal cleaning
scheme indeed narrows the spacing between eigenvalues. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

for any z = λ−iηwith η→ 0. It then suffices to take the real part of the Stieltjes transform gM(z) that solves this equation35

to get the Hilbert transform. In order to check formula Eq. (D.39) using numerical simulations, we have generated a matrix
ofM given by Eq. (D.1) with C a fixed whiteWishart matrix with parameter q0 and ΩBΩ∗ a GOEmatrix with radius 1. As we
know exactly C, we can compute numerically the oracle estimator as given in (6.2) for each sample. In Fig. D.3, we see that
our theoretical prediction in the large N limit compares very nicely with the mean values of the empirical oracle estimator
computed from the sample. We can also notice in Fig. D.2 that the spectrum of the cleaned matrix (represented by the ESD
in green) is narrower than the standard Marčenko–Pastur density. This confirms the observation made in Section 6.

Appendix E. Conventions, notations and abbreviations

Conventions
We use bold capital letters for matrices and bold lowercase letters for vectors, which we regard as N × 1 matrices. The

superscript ∗ denotes the transpose operator. We use the abbreviations [[a, b]] := [a, b] ∩ N and [[a]] ≡ [[1, a]] for a, b ∈ N.

35 We take the solution which has a strictly non-negative imaginary part.
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Mathematical symbols
We list here some of the most important notations of the review.

Symbol Description

BM Blue transform ofM (2.15)
C Population/True covariance matrix (3.1)
C Spikeless version of C (3.56)
C± Complex upper/lower half plane
E Sample/Empirical covariance matrix (3.3)
E Expectation value over the noise
GM Resolvent ofM, (2.5)
gNM Empirical Stieltjes transform of ρM (2.7)
gM Stieltjes transform of ρM (2.8)
i

√
−1

i integer index
N Number of variables
O(N) Orthogonal group on RN×N

O Big O notation
P (·) Probability density function
P (·|·) Conditional probability measure
q Observation ratio (N/T )
r Number of outliers
RM R-transform ofM (2.16)
R2

in In-sample/predicted risk (7.7)

R2
out Out-of-sample/realized risk (7.9)

R2
true True risk (7.5)

S ‘‘Dual’’ sample covariance matrix (3.32)
SM S-transform ofM (2.23)
T Sample size
TM T-transform ofM (2.21)
ui Sample eigenvector associated to λi
vi Population eigenvector associated to µi
V Variance of a random variable
WM Primitive of the R-Transform of M (2.96)
Y N × T normalized data matrix
αs Linear shrinkage intensity (5.19)
λi ith sample eigenvalue
µi ith population (true) eigenvalue
Ξ lin. Linear Shrinkage estimator (5.19)
Ξ̂(E) Optimal RIE of C depending on E
Ξ ora. Oracle estimator (6.2)
Ξ(E) RIE of C depending on E
ρN
M Empirical spectral density ofM (2.3)
ρM Limiting spectral density ofM (2.4)
Φ Rescaled mean squared overlap (4.3) and (4.4)
ϕ(M) Normalized trace ofM (2.61)
Ω Rotation matrix
⟨·⟩M Expectation value with respect to P (M)
⟨ , ⟩ inner product

Abbreviations
Symbol Description

CCA Canonical Correlation Analysis
ESD Empirical Spectral Density
GOE Gaussian Orthogonal Ensemble
HCIZ Harish-Chandra–Itzykson–Zuber

(continued on next page)
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Symbol Description

IW Inverse Wishart
IWs Inverse Wishart+ sorting
LDL Large dimension limit
LHS Left Hand Side
LSD Limiting Spectral Density
MMSE MinimumMean Squared Error
MSE Mean Squared Error
MP Marčenko–Pastur
PCA Principal Component Analysis
PDE Partial Differential Equation
PDF Probability Density Function
RHS Right Hand Side
QuEST Quantized Eigenvalues Sampling Transform
RI Rotational Invariance
RIE Rotational Invariant Estimator
RP Relative Performance
RMT RandomMatrix Theory
SVD Singular Value Decomposition
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