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Multi-scaling in finance
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The most suitable paradigms and tools for investigating the scaling structure of financial
time series are reviewed and discussed in the light of some recent empirical results.
Different types of scaling are distinguished and several definitions of scaling exponents, scaling
and multi-scaling processes are given. Methods to estimate such exponents from empirical
financial data are reviewed. A detailed description of the Generalized Hurst exponent
approach is presented and substantiated with an empirical analysis across different markets
and assets.
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1. Introduction

The scaling concept has its origin in physics but is
increasingly applied to other disciplines (Müller et al.
1990, Mantegna and Stanley 2000, Dacorogna et al.
2001a, Bouchaud and Potters 2004, Loffredo 2004).
In the past, economists have looked across many different
socio-economic data to find the existence of scaling laws
(Brock 1999). Analogously, financial analysts have
searched for patterns in financial prices that are repeated
at different time scales. The best documented beginning
was probably the work of Elliot in the 1930s where he
emphasized the appearance of patterns at different time
horizons (Frost and Prechter 1978). Until the 1960s,
the only stochastic and scaling model in finance was the
Brownian motion, originally proposed by Bachelier
(1900), and developed several decades later (Osborne
1959). This theory predicts that the returns of market
prices should follow a normal distribution with stable
mean and finite variance. However, there is ample
empirical evidence that the returns are not normally
distributed, but have a higher peak around the mean
and fatter tails (Mantegna and Stanley 2000, Dacorogna
et al. 2001a, Bouchaud and Potters 2004). Generalizations
of the classical Brownian motion were made by
Mandelbrot and followers involving either fractional
Brownian motion (Mandelbrot 1965, 1997, Mandelbrot
and Van Ness 1968, Clark 1973), or Lévy motion
(Mandelbrot 1962, 1963, 1967, Fama 1963, 1965,

Mirowski 1995). The above approaches generally involve
additive monofractal processes and analyses; but,
in contrast, several scaling systems appear to be more
complex.

In recent years, the application of the scaling concept
to financial markets has largely increased also as
a consequence of the abundance of available data
(Müller et al. 1990). There has been renewed interest in
cross-disciplinary research and a new field, Econophysics,
has developed around some of these themes. In this
framework, the earliest results on scaling laws using
high-frequency foreign exchange data can be found in
Müller et al. (1990). Along with this work, these authors
produced several other interesting and important studies
(Dacorogna et al. 2001a). Several others followed, such
as Mantegna and Stanley (1995), Evertsz (1995),
Ghashghaie et al. (1996) and Mantegna and Stanley
(2000), and now the field has many examples of scaling
and power laws detected in many other financial data.

In our opinion, even if the existing literature has shown
that the use of tools from physical sciences is very useful
to obtain a better description of financial markets,
much more has to be done. Indeed, several models have
been developed but they do not work too well, being
over-simplifications of reality. They explain some of the
empirical evidence, but leave many questions
unanswered. Empirical analysis may be used to improve
existing models and even make new models that conform
more closely to observed market behaviour. Recently,
a controversy has erupted between LeBaron (2001)
on one side and Mandelbrot (2001) and Stanley and*Email: tiziana.dimatteo@anu.edu.au
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Plerou (2001) on the other, with Lux (2001) somewhere
in the middle, to determine if the processes that describe
financial data are truly scaling or if the similarity
observed at different scales is simply an artifact of the
data. Moreover, these papers propose new scaling models
or empirical analyses that better describe the empirical
evidence (and one could add to these Bouchaud et al.
(2000)). It should be noted, however, that as underlined
by Stanley et al. (1996), in statistical physics, when a
large number of microscopic elements interact without
a characteristic scale, universal macroscopic scaling laws
may be obtained independently of the microscopic details.
Multi-scaling processes have also been used in many
contexts to account for the time-scale dependence of the
statistical properties of a time series. Recent empirical
findings suggest that, in finance, this framework is likely
to be pertinent (Ghashghaie et al. 1996, Calvet and Fisher
2002) and there are several multi-scaling models proposed
in the literature (Ding et al. 1993, Muzy et al. 1994,
2000, Ghashghaie et al. 1996, Mandelbrot et al.
1997, Arneodo et al. 1998, Mandelbrot 1999,
Bacry et al. 2001, Calvet and Fisher 2001, Muzy and
Bacry 2002, Lux 2003, 2004, 2006, Eisler and Kertesz
2004, Borland and Bouchaud 2005, Borland et al. 2005).
Di Matteo et al. (2003, 2005) address the question of the
scaling properties of financial time series from another
angle and the multi-scaling properties of several financial
markets are analysed and compared. In particular,
different markets, very developed as well as emerging
markets, have been studied in order to see if the scaling
properties differ between the two and if they can serve to
characterize and measure the development of the market.
By means of relatively simple statistics (very much along
the lines of the review paper by Brock (1999)), indications
on the market characteristics have been obtained without
fitting any new model, but only by gathering empirical
evidence. The studies of Di Matteo et al. (2005) were
motivated and inspired by the following motivations.

1.1. Motivation

Scaling-type regularities in data give useful information
on the underlying data generating process. The challenge
for empirical and theoretical researchers lies in
uncovering what these scaling law regularities tell us
about the underling mechanisms that generate the
data and in using the empirical scaling evidence as a
‘stylized fact’ that any theoretical model should also
reproduce.

In a recent book (Dacorogna et al. 2001a), the
hypothesis of heterogeneous market agents was developed
and backed by empirical evidence. According to this view,
agents are essentially distinguished by the frequency
at which they operate in the market. Scaling analysis,
which looks at the volatility of returns measured at
different time intervals, is a parsimonious way of assessing
the relative impact of these heterogeneous agents on price
movements. Viewing market efficiency as a result of the
interaction of these agents (Dacorogna et al. 2001b)

brings us naturally to believe that it is the presence
of many different agents that would characterize a mature
market, while the absence of some type of agents
should be a feature of less-developed markets. Such
a fact should then be reflected in the measured scaling
exponents. Study of scaling behaviour must therefore be
an ideal candidate to characterize markets.

For institutional investors, a correct assessment
of markets is very important to determine the optimal
investment strategy. It is common practice to replicate
an index when investing in well-developed and liquid
markets. Such a strategy minimizes the costs and allows
the investor to fully profit from the positive developments
of the economy while controlling the risk through the
long experience and the high liquidity of these markets.
When it comes to emerging markets, it is also clear that
stock indices do not fully represent the underlying econo-
mies. Despite its higher costs, an active management
strategy is required to control the risks and fully benefit
from the opportunities offered by these markets. The dif-
ferentiation between markets is clear for the extreme
cases: the New York stock exchange and the Brazilian
or Russian stock exchange. The problem lies for all
those in between: Hungary, Mexico, Singapore and
others. For these markets a way of clarifying the issue
will help to decide on the best way to invest assets.
Until now, most work has concentrated on studies of
particular markets: Foreign Exchange (Müller et al.
1990, Corsi et al. 2001, Dacorogna et al. 2001a), the US
Stock Market (Dow Jones) (Mantegna and Stanley 1995)
or Fixed Income (Ballocchi et al. 1999). These studies
showed that empirical scaling laws hold in all these mar-
kets and for a large range of frequencies: from a few
minutes to a few months. Di Matteo et al. (2005) report
a study that, to our knowledge, represents the widest
empirical investigation across 32 different markets that
deal with different instruments: equities, foreign exchange
rates and fixed-income futures.

This short review is structured in the following way. In
section 3 we report some fundamental concepts used in
this paper and in other papers dealing with scaling
analysis. In sections 4, 5, 6 and 7 we review several techni-
ques and estimators proposed and used for investigating
scaling properties and the Hurst exponent. In particular,
section 5 describes the generalized Hurst exponent in
the multi-scaling framework. An application of this
multi-scaling method to financial market data is given in
section 8. Finally, conclusions are given in section 9.

Before starting with the core topic of this work, let us
clarify an important aspect reported in the following
section.

2. Two different types of scaling in finance

There are two types of scaling behaviour studied in the
finance literature.

1. The behaviour of some forms of volatility measure
(variance of returns, absolute value of returns) as a
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function of the time interval on which the returns are
measured. (This study will lead to the estimation of a
scaling exponent related to the fractal dimension and
to the Hurst exponent.)

2. The behaviour of the tails of the distribution of
returns as a function of the size of the movement,
but keeping the time interval of the returns constant.
(This will lead to the estimation of the tail index of
the (Dacorogna et al. 2001a).)

Although related, these two analyses lead to different
quantities and should not be confused as is often the
case in the literature (LeBaron 2001, Lux 2001,
Mandelbrot 2001). For a further explanation of this and
the relation between the two quantities, the reader is
referred to the excellent paper by Groenendijk et al.
(1998). The empirical results reported in section 8.1
refer to the first type of analysis (Di Matteo et al. 2003,
2005).

3. Several definitions

This section recalls some basic concepts such as
a self-affine process, the fractal dimension D, the
Hurst exponent H and its relation to D, the definition
of a multi-scaling process, the Hölder exponent and the
multi-fractal spectrum.

3.1. Self-affine process

A transformation is called affine when it scales time and
size by different factors, while behaviour that reproduces
itself under an affine transformation is called self-affine
(Mandelbrot 1997). A time-dependent self-affine process
X(t) has fluctuations on different time scales that can be
re-scaled so that the original signal X(t) is statistically
equivalent to its re-scaled version c�HXðctÞ for any
positive c, i.e. XðtÞ � c�HXðctÞ. More formally,

Definition 3.1 A random process fXðtÞg that satisfies

Xðct1Þ, . . . ,XðctkÞ
� �

¼
d

cHXðt1Þ, . . . , c
HXðtkÞ

� �
, ð1Þ

for some H > 0 and all c, k, t1, . . . , tk � 0 is called
self-affine.y H is the self-affinity index, or scaling expo-
nent of the process fXðtÞg. Brownian motion, the L-stable
process, and the fractional Brownian motion (Feller 1971)
are the main examples of self-affine processes in finance.
As suggested by Mandelbrot (1963) the shape of the dis-
tribution of returns should be the same when the time
scale is changed. On the contrary, empirical evidence
shows that many financial series are not self-affine, but
instead have thinner tails and become less peaked in the
bells when the sampling interval increases (Calvet and
Fisher 2002). Therefore, there is a need to consider a
more complex type of process.

3.2. Fractal dimension and Hurst coefficient

Let us start from the definition of the fractal dimension,
D, and Hurst coefficient, H, for the simplest case
concerning a stationary standard Gaussian random
function X(t) with EðXðtÞÞ ¼ 0 and EðX2

ðtÞÞ ¼ 1, E(. . .)
being the expectation value. The function X(t) defines
a profile in the Euclidean plane and its autocorrelation
function (Taqqu 1981, Mainardi et al. 2000, Scalas et al.
2000, Embrechts and Maejima 2002, Bassler et al. 2006),

Cð�tÞ ¼ E½XðtÞXðtþ�tÞ�, ð2Þ

is a measure of the profile roughness. A fractal dimension
can be defined if the correlation function behaves as

Cð�tÞ � 1� j�tj�, as �t ! 0, ð3Þ

for � 2 ð0, 2�. In this case, one can associate with such
a function the fractal dimension

D ¼ 2�
�

2
: ð4Þ

On the other hand, the asymptotic behaviour at infinity
(�t ! 1) quantifies the presence or absence of
long-range dependence, and if Cð�tÞ behaves as

Cð�tÞ � j�tj��, as �t ! 1, ð5Þ

for � 2 ð0, 1Þ, then the process has a long memory with
Hurst coefficient

H ¼ 1�
�

2
: ð6Þ

The notions of D and H are closely linked and often
confused in much of the scientific literature (Gneiting
and Schlather 2004). Generally speaking, the fractal
dimension (Stanley 1971, Feder 1988, Barabasi and
Stanley 1995, Mandelbrot 1997) of a profile or surface
is a roughness measure, with D 2 ½n, nþ 1Þ for a
surface in Rn, with higher values indicating rougher
surfaces. Long-memory dependence or persistence in
time series or spatial data are instead associated with
power-law correlations and often referred to as Hurst
effects. Long-memory dependence is characterized by
the Hurst coefficient H. The two quantities D and H are
independent of each other: the fractal dimension is a local
property, and long-memory dependence is a global
characteristic. However, for self-similar processes,
the local properties are reflected in the global properties.
The relationship

D ¼ nþ 1�H ð7Þ

between D and H holds for a self-similar process in
n-dimensional space. Long-memory dependence, or
persistence, is associated with the interval H 2 ð0:5, 1Þ
and is therefore linked to low fractal dimensions.
Rougher processes with higher fractal dimensions occur

yIn the literature, self-affine processes are also called self-similar.
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for antipersistent processes and result in coefficients
H 2 ð0, 0:5Þ. But, in this case, H is the self-affine index
defined in equation (1). The self-affine index is often
identified with the Hurst coefficient, but this identification
is appropriate only if H 2 ð0:5, 1Þ (Gneiting and Schlather
2004). The above definitions and the associated linear
relationship between D and H (equation (7)) formally
hold only for a Gaussian process; however, they are
believed to be valid for a large number of real-world
data sets. Let us stress that much care should be taken
in verifying the validity of the self-similarity assumption.

3.3. Multi-scaling process

A stochastic process fXðtÞg is called multi-scaling if it
has stationary increments and satisfies (Calvet and
Fisher 2002)

EðjXðtÞjqÞ ¼ cðqÞt�ðqÞþ1, ð8Þ

for all t 2 F , q 2 L, with F and L intervals on the real line
(F and L have positive lengths, and 0 2 F , ½0, 1� �L), �(q)
and c(q) functions with domain L, and E(. . .) the expecta-
tion value. The function �(q) is called the scaling function
of the multi-scaling process and it is concave. From equa-
tion (8) we see that all scaling functions must have the
same intercept at q¼ 0: �ð0Þ ¼ �1. Linear scaling func-
tions �(q) are determined by a unique parameter (their
slope) and the corresponding processes are called uniscal-
ing or unifractal. Let us prove here that a self-affine pro-
cess fXðtÞg is multi-scaling and has a linear function �(q).
Denoting by H the self-affinity index introduced before,
we observe that the invariance condition XðtÞ ¼ tHXð1Þ
implies that EðjXðtÞjqÞ ¼ tqHEðjXð1ÞjqÞ. Equation (8)
therefore holds with cðqÞ ¼ EðjXð1ÞjqÞ and
�ðqÞ ¼ qH� 1. In this special case, the scaling function
�(q) is linear and fully determined by its index H.
Uniscaling processes, which may seem appealing for
their simplicity, are not, however, satisfactory models
for asset returns. This is because most financial data
sets have thinner tails and become less peaked in the
bell when the sampling interval, �t, increases. In section
8.1 we will show empirical evidence for financial data that
have nonlinear �(q).

3.4. The Hölder exponent and the multi-scaling spectrum

The local Hölder exponent, �(t), quantifies the scaling
properties of the process at a given point in time, and
is also called the local scale of the process at t. If we
consider a stochastic process X(t), its infinitesimal
variation around time t is

jXðtþ dtÞ � XðtÞj � CtðdtÞ
�ðtÞ, ð9Þ

where �(t) and Ct are, respectively, the local Hölder
exponent and the prefactor at t. The Hölder exponent
thus describes the local scaling of a path at a point
in time, and smaller values correspond to more-abrupt

variations. A unique scale �ðtÞ ¼ 1=2 is observed on
the jagged sample paths of a Brownian motion.
Similarly, a fractional Brownian process is characterized
by a unique exponent �ðtÞ ¼ H. The uniscaling process
is characterized by one single Hölder exponent, whereas
multi-scaling processes contain a continuum of local
scales and the Hölder exponent is not unique. In this
case, a multi-fractal spectrum f(�) can be defined and
it can be interpreted as the limit of the normalized
histogram of Hölder exponents (Mandelbrot 1997).
Therefore, the multi-scaling of a certain process
or data set is reflected in the existence of a continuum
of Hölder exponents, while uniscaling processes would
be characterized by a degenerate spectrum: a unique
Hölder exponent H.

4. Re-scaled range statistical analysis

The scaling properties in time series have been studied
by means of several techniques. There are many proposed
and used estimators for the investigation of scaling
properties in the financial and economic literature.
In this section we start with the seminal work (Hurst
1951) on re-scaled range statistical analysis R/S with its
complement (Hurst et al. 1965) which gives an estimator
for the Hurst exponent. Indeed, the re-scaled range
statistical analysis (R/S analysis) was first introduced by
Hurst himself to describe the long-term dependence of
water levels in rivers and reservoirs. It provides a sensitive
method for revealing long-run correlations in random
processes. This analysis can distinguish time series that
are not correlated from correlated time series. What
mainly makes the Hurst analysis appealing is that all
this information about a complex signal is contained in
one parameter only: the Hurst exponent.

Let us consider a time series X(t) defined at discrete
time intervals t ¼ �, 2�, 3�, . . . , k�. Let us define the
average over a period T (which must be an entire multiple
of �) as

hXiT ¼
�

T

XT=�
k¼1

Xðk�Þ: ð10Þ

The difference between the maximum and the minimum
values of X(t) in the interval ½�,T� is called the range R,
which is given by

RðTÞ ¼ max½XðtÞ���t�T �min½XðtÞ���t�T: ð11Þ

The Hurst exponent H is defined from the scaling
property of the ratio

RðTÞ

SðTÞ
/

T

�

� �H

, ð12Þ

where S(T) is the standard deviation:

SðTÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

T

XT=�
k¼1

½Xðk�Þ � hXiT�
2

vuut : ð13Þ
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The Hurst exponent is sensitive to the long-range
statistical dependence in the signal. It was proved by
Hurst et al. (1965) and Feller (1971) that the asymptotic
behaviour for any independent random process (Poisson
process) with finite variance is given by

RðTÞ

SðTÞ
¼

p
2�

T
� �1=2

, ð14Þ

which implies H ¼ 1=2. However, many processes
in nature are not independent random processes, but,
on the contrary, show significant long-term correlations.
In this case the asymptotic scaling law is modified and
R/S is asymptotically given by the power law behaviour
in equation 12 with H 6¼ 0:5.

It should be noted that the original Hurst R/S
approach is very sensitive to the presence of short
memory, heteroskedasticity, and multiple scale
behaviour. Such a lack of robustness has been discussed
in the literature (see, for instance, Lo (1991), Teverovsky
et al. (1999), Weron and Przybylowsciz (2000) and Weron
(2002)) and several alternative approaches have been
proposed. Also, the fact that the range relies on maxima
and minima makes the method error-prone because any
outlier present in the data would have a strong influence
on the range.

Lo (1991) suggested a modified version of the R/S
analysis that can detect long-term memory in the presence
of short-term dependence (Moody and Wu 1996).
The modified R/S statistic differs from the classical R/S
statistic only in its denominator, adding some weights and
covariance estimators to the standard deviation (Newey
and West 1987). In this modified R/S, a problem is
choosing the truncation lag q. Andrews (1991) showed
that when q becomes large relative to the sample size N,
the finite-sample distribution of the estimator can be
radically different from its asymptotic limit. However,
the value chosen for q must not be too small, since the
autocorrelation beyond lag q may be substantial and
should be included in the weighted sum. The truncation
lag must thus be chosen with some consideration. Despite
these difficulties, several authors are still using this
estimator, trying to avoid Lo’s critique and proposing
filtering procedures (Cajueiro and Tabak 2004, 2005).

5. Generalized Hurst exponent

The generalized Hurst exponent method is essentially
a tool to study directly the scaling properties of the data
via the qth-order moments of the distribution of the
increments. The qth-order moments are much less
sensitive to outliers than the maxima/minima and
different exponents q are associated with different
characterizations of the multi-scaling complexity of the
signal. This type of analysis combines the sensitivity to

any type of dependence in the data and a computationally
straightforward and simple algorithm.

As shown in section 4, the Hurst analysis examines
if some statistical properties of time series X(t)
(with t ¼ �, 2�, . . . , k�, . . . ,T) scale with the time-
resolution (�) and the observation period (T). Such a scal-
ing is characterized by an exponent H which is commonly
associated with the long-term statistical dependence of the
signal. A generalization of the approach proposed by
Hurst should therefore be associated with the scaling
behaviour of statistically significant variables constructed
from the time series. In this case, the qth-order moments
of the distribution of the increments are used (Barabasi
and Vicsek 1991, Mandelbrot 1997). This is a good
quantity to characterize the statistical evolution of a
stochastic variable X(t). It is defined as

Kqð�Þ ¼
hjXðtþ �Þ � XðtÞjqi

hjXðtÞjqi
, ð15Þ

where the time interval � can vary between � and �max.
(Note that, for q¼ 2, Kq(�) is proportional to the
autocorrelation function: að�Þ ¼ hXðtþ �ÞXðtÞi.)

The generalized Hurst exponent H(q)y can be defined
from the scaling behaviour of Kq(�) if it follows the
relation (Groenendijk et al. 1998)

Kqð�Þ �
�

�

� �qHðqÞ

: ð16Þ

Within this framework, two kinds of process can be
distinguished: (i) a process where HðqÞ ¼ H is constant
and independent of q; and (ii) a process with H(q) not
constant. The first case is characteristic of uniscaling
or unifractal processes and its scaling behaviour
is determined from a unique constant H that coincides
with the Hurst coefficient or the self-affine index,
as already stated in section 3. This is indeed the case
for self-affine processes where qH(q) is linear (HðqÞ ¼ H)
and fully determined by its index H. In the second case,
when H(q) depends on q, the process is commonly called
multi-scaling (or multi-fractal) (West 1985, Feder 1988)
and different exponents characterize the scaling
of different q-moments of the distribution. Therefore,
the nonlinearity of the empirical function qH(q) is a
solid argument against the Brownian, fractional
Brownian, Lévy, and fractional Lévy models, which are
all additive models, therefore giving for qH(q) straight
lines or portions of straight lines.

For some values of q, the exponents are associated with
special features. For instance, when q¼ 1, H(1) describes
the scaling behaviour of the absolute values of the
increments. The value of this exponent is expected to be
closely related to the original Hurst exponent, H, which is
indeed associated with the scaling of the absolute spread
in the increments. The exponent at q¼ 2 is associated with
the scaling of the autocorrelation function and is related
to the power spectrum (Flandrin 1989). A special case is

yWe use H without parentheses as the original Hurst exponent, and H(q) as the generalized Hurst exponent.
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associated with the value of q ¼ q�, at which q�Hðq�Þ ¼ 1.
At this value of q, the moment Kq� ð�Þ scales linearly
in � (Mandelbrot 1997). Since qH(q) is, in general,
a monotonic growing function of q, all the moments
Hq(�) with q < q� will scale slower than �, whereas all
the moments with q > q� will scale faster than �.
The point q* is therefore a threshold value. Clearly,
in the unifractal case, Hð1Þ ¼ Hð2Þ ¼ Hðq�Þ. All these
quantities will be equal to 1/2 for Brownian motion and
they would be equal to H 6¼ 0:5 for fractional Brownian
motion. However, for more complex processes, these
coefficients do not, in general, coincide. In section 8.1
I will report empirical results for H(q) when q¼ 1 and 2.

6. Scaling exponents in the frequency domain

For financial time series, as well as for many other
stochastic processes, the spectral density S( f )
is empirically found to scale with the frequency f as
a power law: Sð f Þ / f��. It is easy to show using a simple
argument that this scaling in the frequency domain
should be related to the scaling in the time domain.
Indeed, it is known that the spectrum S( f ) of
the signal X(t) can be conveniently calculated from the
Fourier transform of the autocorrelation function
(Wiener–Khinchin theorem). On the other hand, the
autocorrelation function of X(t) is proportional to
the second moment of the distribution of the increments,
which, from equation (16), is assumed to scale
as K2 � �2Hð2Þ. But, the components of the Fourier
transform of a function that behaves in the time domain
as �� are proportional to f���1 in the frequency domain.
Therefore, the power spectrum of a signal that scales as
equation (16) must behave as

Sð f Þ / f�2Hð2Þ�1: ð17Þ

Consequently, the slope � of the power spectrum is
related to the generalized Hurst exponent for q¼ 2 via
� ¼ 1þ 2Hð2Þ. Note that equation (17) is obtained
only by assuming that the signal X(t) has scaling
behaviour in accordance with equation (16) without
making any hypothesis with respect to the kind of
underlying mechanism that might lead to such scaling
behaviour.

7. Other methods

There has been a proliferation of papers proposing
different techniques and providing comparison studies
between them (Taqqu et al. 1995). Let us start by
mentioning the most popular: the detrended fluctuation
analysis (DFA) (Peng et al. 1994, Vandewalle and
Ausloos 1997, Viswanathan et al. 1997, Ausloos et al.
1999, Janosi et al. 1999, Liu et al. 1999, Raberto et al.
1999, Stanley et al. 1999, Ausloos 2000, Hu et al. 2001,
Chen et al. 2002, Ivanova and Ausloos 2002, Costa and
Vasconcelos 2003) and its generalization (Kantelhardt
et al. 2002, Matia et al. 2003, Oswiecimka et al. 2005);

the moving-average analysis technique (Ellinger 1971)
and its comparison with the DFA (Alessio et al. 2002,
Carbone et al. 2004); the periodogram regression
(GPH method) (Geweke and Porter-Hudak 1983);
the (m, k)-Zipf method (Zipf 1949); the Average Wavelet
Coefficient Method (Mehrabi et al. 1997, Simonsen et al.
1998, Percival and Walden 2000, Gençay et al. 2001); and
the ARFIMA estimation by exact maximum likelihood
(ML) (Sowell 1992, Ellis 1999, Grau-Carles 2000).
Let us stress that no method exists whose
performance has no deficiencies. The use of each of the
above estimators can be accompanied by both advantages
and disadvantages. For instance, simple traditional
estimators can be seriously biased. On the other hand,
asymptotically unbiased estimators derived from
Gaussian ML estimation are available, but these are
parametric methods which require a parameterized family
of model processes to be chosen a priori, and which
cannot be implemented exactly in practice for large
data sets due to the high computational complexity
and memory requirements (Phillips 1999a,b, Phillips
and Shimotsu 2001). Analytic approximations have been
suggested (Whittle estimator) but, in most cases (Beran
1994), computational difficulties remain, motivating
a further approximation: the discretization of the
frequency-domain integration. Even with all these
approximations the Whittle estimator still has a
significantly high overall computational cost, and
problems of convergence to local minima rather than
to the absolute minimum may also be encountered. In
this framework, connections to multi-scaling/multi-affine
analysis (the q-order height–height correlation) have been
made in various papers (Vandewalle and Ausloos
1998a,b, Ivanova and Ausloos 1999, Selçuk 2004).
Di Matteo et al. (2003, 2005) studied the scaling
properties of different financial data using a different
and alternative method: the generalized Hurst exponent
method H(q) described in section 5.

8. Empirical investigation

8.1. Generalized Hurst exponent H(q) for qV 1
and qV 2

In this section we report some empirical results from
the most comprehensive and extended empirical analysis
of the scaling properties of several financial markets ever
performed. The analysis includes: 32 Stock market
indices, 29 Foreign exchange rates and 28 fixed income
instruments at different stages of development (mature
and liquid markets, emerging and less liquid markets)
(Di Matteo et al. 2003, 2005). As an example,
the behaviour of JPY/USD and the Nikkei 225 (Japan)
and THB/USD and the Bangkok SET (Thailand) as a
function of time t are shown in figure 1 for the period
1997–2001. Another example is given in figure 2, which
shows the Treasury rates time series as a function of t
at different maturity dates in the period 1997–2001 and
the Eurodollar time series as a function of t at different
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maturity dates in the period 1990–1996 (Di Matteo and
Aste 2002, Di Matteo et al. 2004). This empirical analysis
is performed on the daily time series, which typically span
periods between 1000 and 3000 days. In particular,
the analysis is performed on the time series themselves
for the Treasury rates and Eurodollar, whereas the
returns from the logarithmic price XðtÞ ¼ lnðPðtÞÞ are
used for Foreign exchange and Stock market indices.
The q-order moments Kq(�) (defined in equation (15)),
with � in the range between �¼ 1 day and �max days,
are computed and the scaling behaviour, given by
equation (16), is verified to be followed. For instance,
in figures 3 and 4 the scaling behaviour of Kq(�),
in agreement with equation (16), is shown in the period
from 1990 to 2001 for the Nikkei 225 (figure 3) and
the Bangkok Set (figure 4). Each curve corresponds to
different fixed values of q ranging from q¼ 1 to q¼ 3,
whereas � varies from 1 to 19 days. Moreover, this
scaling behaviour has been carefully checked to hold for
all the financial time series studied in Di Matteo et al.
(2005). All these time series exhibit evidence of multi-
scaling behaviour, showing curves of qH(q) as a function
of q not linear in q, but slightly bending below the linear
trend (see figure 5). This is a sign of deviation from the
Brownian, fractional Brownian, Lévy and fractional Lévy
models, as already seen in Foreign exchange rates (Müller
et al. 1990). (Other cases showing marked deviations
from Brownian motion have been discussed elsewhere
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Figure 1. The Foreign Exchange rates and the Stock Market indices as a function of time t in the period 1997–2001: (a) Nikkei 225;
(b) JPY/USD; (c) THB/USD; (d) Bangkok SET.
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(Vandewalle and Ausloos 1998a,c, Ivanova and Ausloos
1999, Ausloos and Ivanova 2001a,b).)

The results for the scaling exponents H(q) computed
for q¼ 1 and q¼ 2, for all assets (Di Matteo et al. 2003,
2005) and different markets, are reported in figures 6
and 7, respectively. It emerges that, for fixed income
instruments (figures 6(a) and 7(a)), H(2) is close to 0.5,
while H(1) is rather systematically above 0.5 (with the
3month Eurodollar rate showing a more pronounced
deviation because it is directly influenced by the actions
of central banks). On the other hand, as far as Stock
markets are concerned, the generalized Hurst exponents
H(1) and H(2) show remarkable differences between
developed and emerging markets. In particular, the values
of H(1), plotted in figure 6(b), present a differentiation
across 0.5 with high values of H(1) associated with
emerging markets and low values of H(1) associated
with developed markets. Figure 6(b) shows the ordering
of the stock markets from left to right in ascending
order of H(1). One can see that such an ordering corre-
sponds to the order one would intuitively give in terms

of maturity of the markets. Moreover, the different
assets can be classified into three different categories
(see figure 7(b)).

1. First, those that have an exponent Hð2Þ > 0:5,
which includes all indices of emerging markets and

the BCI 30 (Italy), IBEX 35 (Spain) and the Hang

Seng (Hong Kong).

2. The second category includes the data exhibiting

Hð2Þ � 0:5 (within error bars). This category

includes: the FTSE 100 (UK), AEX (Netherlands),

DAX (Germany), Swiss Market (Switzerland),

Top 30 Capital (New Zealand), Tel Aviv 25

(Israel), Seoul Composite (South Korea) and

Toronto SE 100 (Canada).

3. The third category is associated with Hð2Þ < 0:5
and includes the following data: the Nasdaq 100

(US), S&P 500 (US), Nikkei 225 (Japan), Dow

Jones Industrial Average (US), CAC 40 (France)

and All Ordinaries (Australia).
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Figure 6. The Hurst exponent H(1) for the Treasury and Eurodollar rate time series (a) and for the Stock Market indices
and Foreign Exchange rates (b). On the x axis we report the corresponding maturity dates (a) and the corresponding data sets (b).
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Therefore, all emerging markets exhibit Hð2Þ � 0:5,
whereas all well-developed markets show Hð2Þ � 0:5.
This simple classification cannot be achieved by
other means. For instance, the use of the
Sharpe Ratio (Sharpe 1994) does not achieve such a
clear-cut categorization. This ratio requires a benchmark
risk-free return that is not always available for emerging
markets.

The Foreign Exchange rates exhibit Hð1Þ > 0:5
quite systematically. This is consistent with previous
results computed with high-frequency data (Müller
et al. 1990), although the values here are slightly
lower. An exception with pronounced Hð1Þ < 0:5
is HKD/USD (Hong Kong) (figure 6(b)). This FX
rate is, or has been, at one point pegged to the USD,
which is why its exponent differs from the others.
In the class Hð1Þ � 0:5 we have: ITL/USD (Italy),
PHP/USD (Philippines), AUD/USD (Australia),

NZD/USD (New Zealand), ILS/USD (Israel),
CAD/USD (Canada), SGD/USD (Singapore), NLG/
USD (Netherlands) and JPY/USD (Japan). On the
other hand, the values of H(2) (figure 7(b)) show a
much greater tendency to be <0.5 with some strong devia-
tions, such as: HKD/USD (Hong Kong), PHP/USD
(Philippines), KRW/USD (South Korea), PEN/USD
(Peru) and TRL/USD (Turkey). Values Hð2Þ > 0:5 are
found for: GBP/USD (United Kingdom), PESO/USD
(Mexico), INR/USD (India), IDR/USD (Indonesia),
TWD/USD (Taiwan) and BRA/USD (Brazil).

These analyses were also performed over different time
periods (Di Matteo et al. 2003, 2005). In particular,
the results for sub-periods of 250 days indicate that
there are significant changes in market behaviour over
different time periods. This phenomenon was also
detected by Dacorogna et al. (2001a) when studying
Exchange rates that were part of the European
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Figure 7. The Hurst exponent H(2) for the Treasury and Eurodollar rate time series (a) and for the Stock Market
indices and Foreign Exchange rates (b). On the x axis we report the corresponding maturity dates (a) and the corresponding
data sets (b).
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Monetary System. It seems that H(1) is particularly
sensitive to institutional changes in the market. The
scaling exponents cannot be assumed to be constant
over time if a market is experiencing major institutional
changes. Nevertheless, well-developed markets have
values of H(2) that are, on average, smaller than the
emerging values and the weakest markets have oscillation
bands that stay above 0.5, whereas the strongest markets
have oscillation bands that contain 0.5. Temporal
variability is a sign that the exponents are sensitive to
institutional changes in the market, reinforcing the idea
of using them as indicators of the maturity of the market.

Furthermore, the robustness and reliability of the
generalized Hurst exponent method has also been tested
extensively in several ways: first, by comparing theoretical
exponents with the results of Monte Carlo simulations

using three distinct random generators (Marsaglia and
Zaman 1994); second, by varying the maximum time
step (�max) in the analysis; third, by applying the
Jackknife method (Kunsch 1989) to produce several
samples; fourth, by varying the time-window size to
analyse the temporal stability; and fifth, by computing
results for detrended and non-detrended time series.

8.2. Spectral analysis

In order to investigate empirically the statistical
properties of the time series in the frequency domain
a spectral analysis has been performed (Di Matteo et al.
2005). The power spectral density (PSD) (Kay and
Marple 1981) was computed using the periodogram
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Figure 8. (a) The averaged � values computed from the power spectra (mean square regression) of the Treasury and Eurodollar
rate time series (the corresponding maturity dates are reported on the x axis). (b) The averaged � values computed from the power
spectra of the Stock Market indices and Foreign Exchange rates. The horizontal line corresponds to the value of � obtained from
the simulated random walks (the corresponding data sets are reported on the x axis).
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approach (which is currently one of the most popular and
computationally efficient PSD estimators). This is
a sensitive way of estimating the limits of the scaling
regime of data increments.

The results for some Stock market indices, Foreign
exchange rates, Treasury rates and Eurodollar data
in the periods 1997–2001 and 1990–1996 are shown
in figures 9, 10 and 11. As can be seen the power spectra
show clear power law behaviour: Sð f Þ � f��.
This behaviour holds for all other data (Di Matteo
et al. 2005).

The power spectra coefficients � have been calculated
via a mean square regression on a log–log scale for the
Treasury rates and Eurodollar rates (figure 8(a)) and

for the Stock Market indices and Foreign Exchange
rates (figure 8(b)). The values reported in figure 8 are
the average of � evaluated over different windows and
the error bars are their standard deviations. These values
differ from the spectral density exponent expected for
pure Brownian motion (� ¼ 2) (Feller 1971).
However, Di Matteo et al. (2005) showed that this
method is biased: power spectra exponents around 1.8
were found for random walks from three different
random number generators. It should also be noted that
the power spectrum is only a second-order statistic and
its slope is not sufficient to validate a particular scaling
model: it gives only partial information concerning the
statistics of the process.
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Figure 9. The power spectra of the Stock Market indices compared with the behaviour of f�2Hð2Þ�1 (straight lines on a log–log scale)
computed using the Hurst exponent values in the period 1997–2001. (a) Thailand (Bangkok SET) and (b) Japan (Nikkei 225).
The line is the prediction from the generalized Hurst exponent H(2) (equation (17)).
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8.3. Scaling spectral density and Hurst exponent

In this section the behaviour of the power spectra S( f )
is compared with the function f�2Hð2Þ�1, which, according
to equation (17), is the scaling behaviour expected in the
frequency domain for a time series that scales in time with
a generalized Hurst exponent H(2). The results of the
comparison for Foreign Exchange rates and Stock
Market indices for Thailand and Japan (in the period
1997–2001) are reported in figures 9 and 10 and those
for the Treasury and the Eurodollar rates having
maturity dates � ¼ 10 years and � ¼ 1 year (in the period
1990–1996) are reported in figure 11. As can be seen
the agreement between the power spectra behaviour and
the prediction from the generalized Hurst analysis is very
satisfactory. This result also holds for all the other data.
Note that the values of 2Hð2Þ þ 1 do not, in general,
coincide with the values of the power spectral exponents
evaluated by means of the mean square regression. The
method using the generalized Hurst exponent appears to
be more powerful in catching the scaling behaviour, even
in the frequency domain.

9. Conclusion

In the literature, scaling analysis has been widely applied
and used in different contexts. In this review, we have
discussed the different tools used for estimating the
scaling exponents, stressing their advantages and
disadvantages.

Particular emphasis has been given to the generalized
Hurst exponent approach, a suitable tool for describing
the multi-scaling properties in financial time series.
We have shown that this approach provides a natural,
unbiased, statistically and computationally efficient
estimator able to capture very well the scaling features

of financial fluctuations. This method is powerful and
robust and is not biased, as other methods are. On the
other hand, estimations of the scaling exponents in the
frequency domain show that this method is affected by
a certain bias. Finally, the method using the generalized
Hurst exponent describes well the scaling behaviour,
even in the frequency domain.
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