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Abstract. In a closed economic system, money is conserved. Thus, by analogy with energy, the equilibrium
probability distribution of money must follow the exponential Boltzmann-Gibbs law characterized by an
effective temperature equal to the average amount of money per economic agent. We demonstrate how the
Boltzmann-Gibbs distribution emerges in computer simulations of economic models. Then we consider a
thermal machine, in which the difference of temperatures allows one to extract a monetary profit. We also
discuss the role of debt, and models with broken time-reversal symmetry for which the Boltzmann-Gibbs
law does not hold. The instantaneous distribution of money among the agents of a system should not be
confused with the distribution of wealth. The latter also includes material wealth, which is not conserved,
and thus may have a different (e.g. power-law) distribution.

PACS. 87.23.Ge Dynamics of social systems – 05.90.+m Other topics in statistical physics,
thermodynamics, and nonlinear dynamical systems – 89.90.+n Other topics of general interest to physicists
– 02.50.-r Probability theory, stochastic processes, and statistics

1 Introduction

The application of statistical physics methods to eco-
nomics promises fresh insights into problems tradition-
ally not associated with physics (see, for example, the
recent review and book [1]). Both statistical mechanics
and economics study big ensembles: collections of atoms
or economic agents, respectively. The fundamental law of
equilibrium statistical mechanics is the Boltzmann-Gibbs
law, which states that the probability distribution of en-
ergy ε is P (ε) = Ce−ε/T , where T is the temperature, and
C is a normalizing constant [2]. The main ingredient that
is essential for the textbook derivation of the Boltzmann-
Gibbs law [2] is the conservation of energy [3]. Thus, one
may generalize that any conserved quantity in a big sta-
tistical system should have an exponential probability dis-
tribution in equilibrium.

An example of such an unconventional Boltzmann-
Gibbs law is the probability distribution of forces ex-
perienced by the beads in a cylinder pressed with an
external force [4]. Because the system is at rest, the
total force along the cylinder axis experienced by each
layer of granules is constant and is randomly distributed
among the individual beads. Thus the conditions are sat-
isfied for the applicability of the Boltzmann-Gibbs law to
the force, rather than energy, and it was indeed found
experimentally [4].

We claim that, in a closed economic system, the to-
tal amount of money is conserved. Thus the equilibrium
probability distribution of money P (m) should follow the
Boltzmann-Gibbs law P (m) = Ce−m/T . Here m is money,
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and T is an effective temperature equal to the average
amount of money per economic agent. The conservation
law of money [5] reflects their fundamental property that,
unlike material wealth, money (more precisely the fiat,
“paper” money) is not allowed to be manufactured by
regular economic agents, but can only be transferred be-
tween agents. Our approach here is very similar to that
of Ispolatov et al. [6]. However, they considered only
models with broken time-reversal symmetry, for which
the Boltzmann-Gibbs law typically does not hold. The
role of time-reversal symmetry and deviations from the
Boltzmann-Gibbs law are discussed in detail in Section 7.

It is tempting to identify the money distribution P (m)
with the distribution of wealth [6]. However, money is
only one part of wealth, the other part being material
wealth. Material products have no conservation law: They
can be manufactured, destroyed, consumed, etc. More-
over, the monetary value of a material product (the price)
is not constant. The same applies to stocks, which eco-
nomics textbooks explicitly exclude from the definition of
money [7]. So, in general, we do not expect the Boltzmann-
Gibbs law for the distribution of wealth. Some authors be-
lieve that wealth is distributed according to a power law
(Pareto-Zipf), which originates from a multiplicative ran-
dom process [8]. Such a process may reflect, among other
things, the fluctuations of prices needed to evaluate the
monetary value of material wealth.

2 Boltzmann-Gibbs distribution

Let us consider a system of many economic agents N � 1,
which may be individuals or corporations. In this paper,
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we only consider the case where their number is constant.
Each agent i has some money mi and may exchange it
with other agents. It is implied that money is used for
some economic activity, such as buying or selling material
products; however, we are not interested in that aspect.
As in reference [6], for us the only result of interaction
between agents i and j is that some money ∆m changes
hands: [mi,mj] → [m′i,m

′
j ] = [mi −∆m,mj + ∆m]. No-

tice that the total amount of money is conserved in each
transaction: mi + mj = m′i + m′j . This local conserva-
tion law of money [5] is analogous to the conservation of
energy in collisions between atoms. We assume that the
economic system is closed, i.e. there is no external flux
of money, thus the total amount of money M in the sys-
tem is conserved. Also, in the first part of the paper, we
do not permit any debt, so each agent’s money must be
non-negative: mi ≥ 0. A similar condition applies to the
kinetic energy of atoms: εi ≥ 0.

Let us introduce the probability distribution function
of money P (m), which is defined so that the number of
agents with money between m and m + dm is equal to
NP (m) dm. We are interested in the stationary distribu-
tion P (m) corresponding to the state of thermodynamic
equilibrium. In this state, an individual agent’s money mi

strongly fluctuates, but the overall probability distribu-
tion P (m) does not change.

The equilibrium distribution function P (m) can be
derived in the same manner as the equilibrium distri-
bution function of energy P (ε) in physics [2]. Let us
divide the system into two subsystems 1 and 2. Tak-
ing into account that money is conserved and additive:
m = m1 + m2, whereas the probability is multiplicative:
P = P1P2, we conclude that P (m1 +m2) = P (m1)P (m2).
The solution of this equation is P (m) = Ce−m/T ; thus
the equilibrium probability distribution of money has the
Boltzmann-Gibbs form. From the normalization condi-
tions

∫∞
0
P (m) dm = 1 and

∫∞
0
mP (m) dm = M/N , we

find that C = 1/T and T = M/N . Thus, the effective
temperature T is the average amount of money per agent.

The Boltzmann-Gibbs distribution can be also ob-
tained by maximizing the entropy of money distribu-
tion S = −

∫∞
0 dmP (m) lnP (m) under the constraint of

money conservation [2]. Following original Boltzmann’s
argument, let us divide the money axis 0 ≤ m ≤ ∞
into small bins of size dm and number the bins consec-
utively with the index b = 1, 2, . . . Let us denote the
number of agents in a bin b as Nb, the total number being
N =

∑∞
b=1Nb. The agents in the bin b have money mb,

and the total money is M =
∑∞
b=1mbNb. The probability

of realization of a certain set of occupation numbers {Nb}
is proportional to the number of ways N agents can be
distributed among the bins preserving the set {Nb}. This
number is N !/N1!N2! . . . The logarithm of probability is
entropy lnN ! −

∑∞
b=1 lnNb!. When the numbers Nb are

big and Stirling’s formula lnN ! ≈ N lnN applies, the en-
tropy per agent is S = (N lnN −

∑∞
b=1Nb lnNb)/N =

−
∑∞
b=1 Pb lnPb, where Pb = Nb/N is the probability that

an agent has money mb. Using the method of Lagrange
multipliers to maximize the entropy S with respect to the

0 1000 2000 3000 4000 5000 6000
0

2

4

6

8

10

12

14

16

18

Money, m

P
ro

ba
bi

lit
y,

 P
(m

)

N=500, M=5*105, time=4*105.

〈m〉, T

0 1000 2000 3000
0

1

2

3

Money, m

lo
g 

P
(m

)

Fig. 1. Histogram and points: stationary probability distribu-
tion of money P (m). Solid curves: fits to the Boltzmann-Gibbs
law P (m) ∝ exp(−m/T ). Vertical lines: the initial distribution
of money.

occupation numbers {Nb} with the constraints on the to-
tal money M and the total number of agents N generates
the Boltzmann-Gibbs distribution for P (m) [2].

3 Computer simulations

To check that these general arguments indeed work,
we performed several computer simulations. Initially, all
agents are given the same amount of money: P (m) =
δ(m − M/N), which is shown in Figure 1 as the dou-
ble vertical line. One pair of agents at a time is chosen
randomly, then one of the agents is randomly picked to
be the “winner” (the other agent becomes the “loser”),
and the amount ∆m ≥ 0 is transferred from the loser
to the winner. If the loser does not have enough money
to pay (mi < ∆m), then the transaction does not take
place, and we proceed to another pair of agents. Thus,
the agents are not permitted to have negative money. This
boundary condition is crucial in establishing the station-
ary distribution. As the agents exchange money, the ini-
tial delta-function distribution first spread symmetrically.
Then, the probability density starts to pile up at the im-
penetrable boundary m = 0. The distribution becomes
asymmetric (skewed) and ultimately reaches the station-
ary exponential shape shown in Figure 1. We used sev-
eral trading rules in the simulations: the exchange of a
small constant amount ∆m = 1, the exchange of a ran-
dom fraction 0 ≤ ν ≤ 1 of the average money of the pair:
∆m = ν(mi +mj)/2, and the exchange of a random frac-
tion ν of the average money in the system: ∆m = ν M/N .
Figures in the paper mostly show simulations for the third
rule; however, the final stationary distribution was found
to be the same for all rules.

In the process of evolution, the entropy S in-
creases in time and saturates at the maximal value
for the Boltzmann-Gibbs distribution. This is illustrated
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Fig. 2. Time evolution of entropy. Top curve: for the exchange
of a random fraction ν of the average money in the system:
∆m = ν M/N . Bottom curve: for the exchange of a small con-
stant amount ∆m = 1. The time scale for the bottom curve
is 500 times greater than indicated, so it actually ends at the
time 106.

by the top curve in Figure 2 computed for the third rule
of exchange. The bottom curve in Figure 2 shows the time
evolution of entropy for the first rule of exchange. The time
scale for this curve is 500 times greater than for the top
curve, so the bottom curve actually ends at the time 106.
The plot shows that, for the first rule of exchange, mixing
is much slower than for the third one. Nevertheless, even
for the first rule, the system also eventually reaches the
Boltzmann-Gibbs state of maximal entropy, albeit over a
time much longer than shown in Figure 2.

One might argue that the pairwise exchange of money
may correspond to a medieval market, but not to a mod-
ern economy. In order to make the model somewhat more
realistic, we introduce firms. One agent at a time becomes
a “firm”. The firm borrows capital K from another agent
and returns it with an interest rK, hires L agents and
pays them wages W , manufactures Q items of a prod-
uct and sell it to Q agents at a price R. All of these
agents are randomly selected. The firm receives the profit
F = RQ− LW − rK. The net result is a many-body ex-
change of money that still satisfies the conservation law.

Parameters of the model are selected following the
procedure described in economics textbooks. The aggre-
gate demand-supply curve for the product is taken to be
R(Q) = V/Qη, where Q is the quantity people would buy
at a price R, and η = 0.5 and V = 100 are constants.
The production function of the firm has the conventional
Cobb-Douglas form: Q(L,K) = LβK1−β, where β = 0.8
is a constant. In our simulation, we set W = 10. By maxi-
mizing firm’s profit F with respect to K and L, we find the
values of the other parameters: L = 20, Q = 10, R = 32,
and F = 68.

However, the actual values of the parameters do not
matter. Our computer simulations show that the station-
ary probability distribution of money in this model always

has the universal Boltzmann-Gibbs form independent of
the model parameters.

4 Thermal machine

As explained in Introduction, the money distribution
P (m) should not be confused with the distribution of
wealth. We believe that P (m) should be interpreted as
the instantaneous distribution of purchasing power in the
system. Indeed, to make a purchase, one needs money. Ma-
terial wealth normally is not used directly for a purchase.
It needs to be sold first to be converted into money.

Let us consider an outside monopolistic vendor selling
a product (say, cars) to the system of agents at a price
p. Suppose that a certain small fraction f of the agents
needs to buy the product at a given time, and each agent
who has enough money to afford the price will buy one
item. The fraction f is assumed to be sufficiently small,
so that the purchase does not perturb the whole system
significantly. At the same time, the absolute number of
agents in this group is assumed to be big enough to make
the group statistically representative and characterized by
the Boltzmann-Gibbs distribution of money. The agents
in this group continue to exchange money with the rest of
the system, which acts as a thermal bath. The demand for
the product is constantly renewed, because products pur-
chased in the past expire after a certain time. In this sit-
uation, the vendor can sell the product persistently, thus
creating a small steady leakage of money from the system
to the vendor.

What price p would maximize the vendor’s income?
To answer this question, it is convenient to introduce
the cumulative distribution of purchasing power N (m) =
N
∫∞
m P (m′) dm′ = Ne−m/T , which gives the number of

agents whose money is greater than m. The vendor’s in-
come is fpN (p). It is maximal when p = T , i.e. the opti-
mal price is equal to the temperature of the system. This
conclusion also follows from the simple dimensional ar-
gument that temperature is the only money scale in the
problem. At the price p = T that maximizes the vendor’s
income, only the fraction N (T )/N = e−1 = 0.37 of the
agents can afford to buy the product.

Now let us consider two disconnected economic sys-
tems, one with the temperature T1 and another with T2:
T1 > T2. A vendor can buy a product in the latter sys-
tem at its equilibrium price T2 and sell it in the former
system at the price T1, thus extracting the speculative
profit T1 − T2, as in a thermal machine. This example
suggests that speculative profit is possible only when the
system as a whole is out of equilibrium. As money is
transferred from the high- to the low-temperature sys-
tem, their temperatures become closer and eventually
equal. After that, no speculative profit is possible, which
would correspond to the “thermal death” of the economy.
This example brings to mind economic relations between
developed and developing countries, with manufacturing
in the poor (low-temperature) countries for export to the
rich (high-temperature) ones.
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Fig. 3. Histograms: stationary distributions of money with
and without debt. Solid curves: fits to the Boltzmann-Gibbs
laws with temperatures T = 1800 and T = 1000.

5 Models with debt

Now let us discuss what happens if the agents are per-
mitted to go into debt. Debt can be viewed as negative
money. Now when a loser does not have enough money to
pay, he can borrow the required amount from a reservoir,
and his balance becomes negative. The conservation law
is not violated: The sum of the winner’s positive money
and loser’s negative money remains constant. When an
agent with a negative balance receives money as a winner,
she uses this money to repay the debt until her balance
becomes positive. We assume for simplicity that the reser-
voir charges no interest for the lent money. However, be-
cause it is not sensible to permit unlimited debt, we put
a limit md on the maximal debt of an agent: mi > −md.
This new boundary condition P (m < −md) = 0 replaces
the old boundary condition P (m < 0) = 0. The result
of a computer simulation with md = 800 is shown in
Figure 3 together with the curve for md = 0. P (m) is
again given by the Boltzmann-Gibbs law, but now with
the higher temperature T = M/N +md, because the nor-
malization conditions need to be maintained including the
population with negative money:

∫∞
−md

P (m) dm = 1 and∫∞
−md

mP (m) dm = M/N . The higher temperature makes
the money distribution broader, which means that debt
increases inequality between agents [9].

Imposing a sharp cutoff at md may be not quite realis-
tic. In practice, the cutoff may be extended over some
range depending on the exact bankruptcy rules. Over
this range, the Boltzmann-Gibbs distribution would be
smeared out. So we expect to see the Boltzmann-Gibbs
law only sufficiently far from the cutoff region. Similarly,
in experiment [4], some deviations from the exponential
law were observed near the lower boundary of the dis-
tribution. Also, at the high end of the distributions, the
number of events becomes small and statistics poor, so the
Boltzmann-Gibbs law loses applicability. Thus, we expect

the Boltzmann-Gibbs law to hold only for the interme-
diate range of money not too close either to the lower
boundary or to the very high end. However, this range is
the most relevant, because it covers the great majority of
population.

Lending creates equal amounts of positive (asset)
and negative (liability) money [5,7]. When economics
textbooks describe how “banks create money” or “debt
creates money” [7], they do not count the negative li-
abilities as money, and thus their money is not con-
served. In our operational definition of money, we include
all financial instruments with fixed denomination, such
as currency, IOUs, and bonds, but not material wealth
or stocks, and we count both assets and liabilities. With
this definition, money is conserved, and we expect to see
the Boltzmann-Gibbs distribution in equilibrium. Unfor-
tunately, because this definition differs from economists’
definitions of money (M1, M2, M3, etc. [7]), it is not
easy to find the appropriate statistics. Of course, money
can be also emitted by a central bank or government.
This is analogous to an external influx of energy into a
physical system. However, if this process is sufficiently
slow, the economic system may be able to maintain
quasi-equilibrium, characterized by a slowly changing
temperature.

We performed a simulation of a model with one bank
and many agents. The agents keep their money in accounts
on which the bank pays interest. The agents may borrow
money from the bank, for which they must pay interest
in monthly installments. If they cannot make the required
payments, they may be declared bankrupt, which relieves
them from the debt, but the liability is transferred to the
bank. In this way, the conservation of money is main-
tained. The model is too elaborate to describe it in full
detail here. We found that, depending on the parameters
of the model, either the agents constantly lose money to
the bank, which steadily reduces the agents’ temperature,
or the bank constantly loses money, which drives down its
own negative balance and steadily increases the agents’
temperature.

6 Boltzmann equation

The Boltzmann-Gibbs distribution can be also derived
from the Boltzmann equation [10], which describes the
time evolution of the distribution function P (m) due to
pairwise interactions:

dP (m)
dt

=
∫ ∫
{−w[m,m′]→[m−∆,m′+∆]P (m)P (m′)

+ w[m−∆,m′+∆]→[m,m′]P (m−∆)P (m′ +∆)} dm′ d∆.
(1)

Here w[m,m′]→[m−∆,m′+∆] is the rate of transferring
money ∆ from an agent with money m to an agent with
money m′. If a model has time-reversal symmetry, then
the transition rate of a direct process is the same as the
transition rate of the reversed process, thus the w-factors
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Fig. 4. Histogram: stationary probability distribution of
money in the multiplicative random exchange model studied
in reference [6]. Solid curve: the Boltzmann-Gibbs law.

in the first and second lines of equation (1) are equal.
In this case, the Boltzmann-Gibbs distribution P (m) =
C exp(−m/T ) nullifies the right-hand side of equation (1);
thus this distribution is stationary: dP (m)/dt = 0 [10].

7 Non-Boltzmann-Gibbs distributions

However, if time-reversal symmetry is broken, the two
transition rates w in equation (1) may be different, and
the system may have a non-Boltzmann-Gibbs station-
ary distribution or no stationary distribution at all. Ex-
amples of such kind were studied in reference [6]. One
model was called the multiplicative random exchange.
In this model, a randomly selected loser i loses a fixed
fraction α of his money mi to a randomly selected win-
ner j: [mi,mj ] → [(1 − α)mi , mj + αmi]. If we try
to reverse this process and appoint the winner j to be-
come a loser, the system does not return to the orig-
inal configuration [mi,mj ]: [(1 − α)mi , mj + αmi] →
[(1 − α)mi + α(mj + αmi) , (1 − α)(mj + αmi)]. Except
for α = 1/2, the exponential distribution function is not a
stationary solution of the Boltzmann equation derived for
this model in reference [6]. Instead, the stationary distri-
bution has the shape shown in Figure 4 for α = 1/3, which
we reproduced in our numerical simulations. It still has an
exponential tail end at the high end, but drops to zero at
the low end for α < 1/2. Another example of similar kind
was studied in reference [11], which appeared after the first
version of our paper was posted as cond-mat/0001432 on
January 30, 2000. In that model, the agents save a frac-
tion λ of their money and exchange a random fraction ε
of their total remaining money: [mi,mj] → [λmi + ε(1−
λ)(mi + mj) , λmj + (1 − ε)(1 − λ)(mi + mj)]. This ex-
change also does not return to the original configuration
after being reversed. The stationary probability distribu-
tion was found in reference [11] to be nonexponential for
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λ 6= 0 with a shape qualitatively similar to the one shown
in Figure 4.

Another interesting example of a non-Boltzmann-
Gibbs distribution occurs in a model with taxes and sub-
sidies. Suppose a special agent (“government”) collects a
fraction (“tax”) of every transaction in the system. The
collected money is then equally divided between all agents
of the system, so that each agent receives the subsidy δm
with the frequency 1/τs. Assuming that δm is small and
approximating the collision integral with a relaxation time
τr [10], we obtain the following Boltzmann equation

∂P (m)
∂t

+
δm

τs

∂P (m)
∂m

= −P (m)− P̃ (m)
τr

, (2)

where P̃ (m) is the equilibrium Boltzmann-Gibbs function.
The second term in the left-hand side of equation (2) is
analogous to the force applied to electrons in a metal by
an external electric field [10]. The approximate stationary
solution of equation (2) is the displaced Boltzmann-Gibbs
one: P (m) = P̃ (m− (τr/τs) δm). The displacement of the
equilibrium distribution P̃ (m) by (τr/τs) δm would leave
an empty gap near m = 0. This gap is filled by interpolat-
ing between zero population at m = 0 and the displaced
distribution. The curve obtained in a computer simula-
tion of this model (Fig. 5) qualitatively agrees with this
expectation. The low-money population is suppressed, be-
cause the government, acting as an external force, “pumps
out” that population and pushes the system out of ther-
modynamic equilibrium. We found that the entropy of the
stationary state in the model with taxes and subsidies is
few percents lower than without.

These examples show that the Boltzmann-Gibbs dis-
tribution is not fully universal, meaning that it does not
hold for just any model of exchange that conserves money.
Nevertheless, it is universal in a limited sense: For a
broad class of models that have time-reversal symmetry,
the stationary distribution is exponential and does not
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depend on the details of a model. Conversely, when time-
reversal symmetry is broken, the distribution may depend
on model details. The difference between these two classes
of models may be rather subtle. For example, let us change
the multiplicative random exchange from a fixed fraction
of loser’s money to a fixed fraction of the total money
of winner and loser. This modification retains the multi-
plicative idea that the amount exchanged is proportional
to the amount involved, but restores time-reversal symme-
try and the Boltzmann-Gibbs distribution. In the model
with ∆m = 1 discussed in the next Section, the difference
between time-reversible and time-irreversible formulations
amounts to the difference between impenetrable and ab-
sorbing boundary conditions at m = 0. Unlike in physics,
in economy there is no fundamental requirement that in-
teractions have time-reversal symmetry. However, in the
absence of detailed knowledge of real microscopic dynam-
ics of economic exchange, the semiuniversal Boltzmann-
Gibbs distribution appears to be a natural starting point.

Moreover, deviations from the Boltzmann-Gibbs law
may occur only if the transition rates w in equation (1)
explicitly depend on the agents money m or m′ in an
asymmetric manner. In another simulation, we randomly
preselected winners and losers for every pair of agents
(i, j). In this case, money flows along directed links be-
tween the agents: i→ j→ k, and time-reversal symmetry
is strongly broken. This model is closer to the real econ-
omy, in which, for example, one typically receives money
from an employer and pays it to a grocer, but rarely the
reverse. Nevertheless, we still found the Boltzmann-Gibbs
distribution of money in this model, because the transition
rates w do not explicitly depend on m and m′.

8 Nonlinear Boltzmann equation vs. linear
master equation

For the model where agents randomly exchange the con-
stant amount ∆m = 1, the Boltzmann equation is:

dPm
dt

= Pm+1

∞∑
n=0

Pn + Pm−1

∞∑
n=1

Pn

− Pm
∞∑
n=0

Pn − Pm
∞∑
n=1

Pn (3)

= (Pm+1 + Pm−1 − 2Pm) + P0(Pm − Pm−1), (4)

where Pm ≡ P (m) and we have used
∑∞
m=0 Pm = 1.

The first, diffusion term in equation (4) is responsible
for broadening of the initial delta-function distribution.
The second term, proportional to P0, is essential for the
Boltzmann-Gibbs distribution Pm = e−m/T (1− e−1/T ) to
be a stationary solution of equation (4). In a similar model
studied in reference [6], the second term was omitted on
the assumption that agents who lost all money are elim-
inated: P0 = 0. In that case, the total number of agents
is not conserved, and the system never reaches any sta-
tionary distribution. Time-reversal symmetry is violated,

since transitions into the state m = 0 are permitted, but
not out of this state.

If we treat P0 as a constant, equation (4) looks like a
linear Fokker-Planck equation [10] for Pm, with the first
term describing diffusion and the second term an external
force proportional to P0. Similar equations were studied
in reference [8]. Equation (4) can be also rewritten as

dPm
dt

= Pm+1 − (2− P0)Pm + (1− P0)Pm−1. (5)

The coefficient (1−P0) in front of Pm−1 represents the rate
of increasing money by ∆m = 1, and the coefficient 1 in
front of Pm+1 represents the rate of decreasing money by
∆m = −1. Since P0 > 0, the former is smaller than the
latter, which results in the stationary Boltzmann-Gibbs
distributions Pm = (1 − P0)m. An equation similar to
equation (5) describes a Markov chain studied for strategic
market games in reference [12]. Naturally, the stationary
probability distribution of wealth in that model was found
to be exponential [12].

Even though equations (4, 5) look like linear equa-
tions, nevertheless the Boltzmann equation (1) and (3) is
a profoundly nonlinear equation. It contains the product
of two probability distribution functions P in the right-
hand side, because two agents are involved in money ex-
change. Most studies of wealth distribution [8] have the
fundamental flaw that they use a single-particle approach.
They assume that the wealth of an agent may change just
by itself and write a linear master equation for the prob-
ability distribution. Because only one particle is consid-
ered, this approach cannot adequately incorporate con-
servation of money. In reality, an agent can change money
only by interacting with another agent, thus the prob-
lem requires a two-particle probability distribution func-
tion. Using Boltzmann’s molecular chaos hypothesis, the
two-particle function is factorized into a product of two
single-particle distributions functions, which results in the
nonlinear Boltzmann equation. Conservation of money is
adequately incorporated in this two-particle approach,
and the universality of the exponential Boltzmann-Gibbs
distribution is transparent.

9 Conclusions

Everywhere in the paper we assumed some randomness
in the exchange of money. The results of our paper
would apply the best to the probability distribution of
money in a closed community of gamblers. In more tradi-
tional economic studies, the agents exchange money not
randomly, but following deterministic strategies, such as
maximization of utility functions [5,13]. The concept of
equilibrium in these studies is similar to mechanical equi-
librium in physics, which is achieved by minimizing en-
ergy or maximizing utility. However, for big ensembles,
statistical equilibrium is a more relevant concept. When
many heterogeneous agents deterministically interact and
spend various amounts of money from very little to very
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big, the money exchange is effectively random. In the fu-
ture, we would like to uncover the Boltzmann-Gibbs dis-
tribution of money in a simulation of a big ensemble of
economic agents following realistic deterministic strategies
with money conservation taken into account. That would
be the economics analog of molecular dynamics simula-
tions in physics. While atoms collide following fully de-
terministic equations of motion, their energy exchange is
effectively random due to complexity of the system and
results in the Boltzmann-Gibbs law.

We do not claim that the real economy is in equilib-
rium. (Most of the physical world around us is not in true
equilibrium either.) Nevertheless, the concept of statisti-
cal equilibrium is a very useful reference point for studying
nonequilibrium phenomena.

The authors are grateful to M. Gubrud for helpful discussion
and proofreading of an earlier version of the manuscript.

Note added in proof

After the paper had been submitted for publication, we
have learned about the book by Aoki [14], who applied
many ideas of statistical physics to economics, albeit not
specifically to the distribution of money.
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