
Physics Reports 564 (2015) 1–55

Contents lists available at ScienceDirect

Physics Reports

journal homepage: www.elsevier.com/locate/physrep

Experimental econophysics: Complexity, self-organization,
and emergent properties
J.P. Huang ∗

Department of Physics and State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China

a r t i c l e i n f o

Article history:
Accepted 27 November 2014
Available online 15 December 2014
editor: D.K. Campbell

Keywords:
Experimental econophysics
Statistical physics of humans in the
laboratory

Controlled human experiment
Agent-based simulation
Theoretical analysis
Complexity
Self-organization
Emergent property

a b s t r a c t

Experimental econophysics is concerned with statistical physics of humans in the labora-
tory, and it is based on controlled human experiments developed by physicists to study
some problems related to economics or finance. It relies on controlled human experiments
in the laboratory together with agent-based modeling (for computer simulations and/or
analytical theory), with an attempt to reveal the general cause–effect relationship between
specific conditions and emergent properties of real economic/financial markets (a kind of
complex adaptive systems). Here I review the latest progress in the field, namely, stylized
facts, herd behavior, contrarian behavior, spontaneous cooperation, partial information,
and risk management. Also, I highlight the connections between such progress and other
topics of traditional statistical physics. The main theme of the review is to show diverse
emergent properties of the laboratory markets, originating from self-organization due to
the nonlinear interactions among heterogeneous humans or agents (complexity).
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1. Introduction

It might be a type of human inability that a single scientist cannot research on all the aspects of the nature and society.
Owing to the human inability, science has been divided intomany disciplines, e.g., mathematics, physics, chemistry, biology,
economics/finance, and so on. As a result, specific researchers always work in the field of a specific discipline. For example,
the researchers, under the name of physicists, work in the specific field of physics. After a longtime separation between
physics and economics/finance, now the time is ripe for their integration, so that they could help each other to develop, at
least to some extent.

1.1. Physics needs economics/finance

If one counts from G. Galilei (Feb. 15, 1564–Jan. 8, 1642), physics, the study of nature, has developed for 400 years or
so. This duration is not long, compared with millions of years for which humans have lived on earth. But, everyone has
witnessed the significant changes of human life brought by physics, say, electricity, computers, mobile phones, artificial
satellites, utilization of nuclear energy, and so one. All of these changes are an outcome of physical knowledge of the natural
world. According to this fact, it is no doubt that the ideas andmethods of physics are useful to handle the natural world. Here
the natural world means it contains non-intelligent units, which have no adaptability due to the lack of learning ability. For
example, such non-intelligent units are electrons, atoms, molecules, colloidal particles, and so on. In sharp contrast to the
natural world, the social world is full of intelligent units, which have adaptability due to the existence of learning ability.
For instance, such intelligent units involve humans, companies (containing many humans), countries, and so on.
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Science is always driven by curiosity, and physics is no exception. Inspired by the success of physics in handling the
natural world, one might curiously ask whether the ideas and methods originally developed from physics for treating the
natural world are also useful for the social world. The answer is definitely positive. But, the reader might continue to ask:
‘‘what do you mean by saying the ideas and methods originally developed from physics for treating the natural world?’’ or
‘‘what are physical ideas and methods?’’

(1) Two physical ideas
a. Reasons extracted should be coarse-grained
Let me take the freely falling object as an example. The number of reasons determining falling height could be up to

N: time, air resistance, atmospheric pressure, humidity, etc. However, G. Galilei (Feb. 15, 1564–Jan. 8, 1642) neglected the
N − 1 reasons, and considered only the relation between falling height (h) and time (t), yielding h = (1/2)gt2. Here g is
acceleration (a constant). As a result, he established the law of free fall, which helped I. Newton (Dec. 25, 1642–March 20,
1726) to successfully establish classical mechanics in the discipline of physics. According to this law, the first idea of physics
comes to appear: one should extract crucial reasons, or equivalently reasons extracted should be coarse-grained.

b. Results obtained should be universal
After Galilei’s h = (1/2)gt2, I. Newton (Dec. 25, 1642–March 20, 1726) revealed his second law, F = ma, where F is force,

m is mass, and a is acceleration. This second law helps to explain not only the freely falling object on the earth (by setting
a = g and seeing F as gravity), but also the planetarymotion in the sky (that had been empirically summarized in the laws of
planetarymotion by J. Kepler (Dec. 27, 1571–Nov. 15, 1630)). Besides, Newton’s second law can even be used to predict new
phenomena. Say, on Aug. 31, 1846, U. Le Verrier (March 11, 1811–Sep. 23, 1877) first predicted the existence and position of
Neptune by using Newton’s second law plus Newton’s law of gravity; Neptune was subsequently observed on Sep. 23, 1846
by J. G. Galle (June 9, 1812–July 10, 1910) and H. L. d’Arrest (Aug. 13, 1822–June 14, 1875). The success of Newton’s second
law indicates the second idea of physics is that ‘‘results obtained should be universal’’. Here, the ‘‘universal’’ means that the
results should not only help to explain the existing phenomena, but also help to predict the future or unknowns.

(2) Three physical methods
a. Empirical analysis
From Aristotle (384–322 B.C.) to J. Kepler (Dec. 27, 1571–Nov. 15, 1630), physicists first observed the natural world, and

then analyzed the observations, yieldingmany empirical results, say, Kepler’s laws of planetarymotion. Such analysis is just
empirical analysis, which is based on existing data in nature.

Advantages of empirical analysis: reliability and huge data. Here, the ‘‘reliability’’ means that according to the data
collected from the nature itself, any results obtained from the data should be reliable; the ‘‘huge data’’ means that the
number of data in nature is huge, which is definitely helpful for understanding the natural world.

Disadvantages of empirical analysis: uncontrollability (correlation) and non-formatting. Since the data are collected from
the nature, they are always uncontrollable. Then, what empirical analysis can produce is mainly correlations, instead of
causations. Clearly, the causations represent a deeper understanding than the correlations. Regarding ‘‘non-formatting’’, it
is easy to understand: the format of data existing in nature is not fixed, but dependent on how people to collect them. The
non-formatting of data causes trouble for people to investigate.

b. The combination of empirical analysis and controlled experiments
In general, empirical analysis helps to reveal correlations, rather than causations. Inspired by empirical analysis, G. Galilei

(Feb. 15, 1564–Jan. 8, 1642) started to perform experiments in the laboratory by purposefully tuning one or a few
parameters/conditions (but all the other parameters/conditions are fixed), in order to reveal cause–effect relationships
(causation). His method is based on controlled experiments.

Advantages of controlled experiments: controllability (causation) and formatting. These are just the inverse of the above-
mentioned disadvantages of empirical analysis. Such experiments are controllable because one can tune one variable and
see its effect (causation). Regarding ‘‘formatting’’, it means the format of data could be conveniently organized during the
experiment.

Disadvantages of controlled experiments: deviations and few data. Since such experiments are conducted in the
laboratory, the experimental data may be different from their counterparts in nature. The difference is just what we mean
‘‘deviations’’. On the other hand, the experimental data produced in the laboratory cannot be huge, as one can easily imagine.
Thus, I indicate ‘‘few data’’ herein.

c. The combination of empirical analysis, controlled experiments and theoretical analysis
Due to the above-mentioned advantages and disadvantages of either empirical analysis or controlled experiments,

I. Newton (Dec. 25, 1642–March 20, 1726) combined both empirical analysis and controlled experiments. For instance,
when he explained Kepler’s laws of planetary motion (outcome of empirical analysis), he also explained Galilei’s law of free
fall (outcome of controlled experiments). The combination of both empirical analysis and controlled experiments reserves
their advantages, but removes their disadvantages. More importantly, Newton also realized that the combination of both
empirical analysis and controlled experiments can produce results only for specific areas: empirical analysis corresponds to
the specific objects producing empirical data (e.g., Kepler’s laws of planetary motion are only valid for planets); controlled
experiments are related to specific laboratory samples/devices producing experimental data (say, Galilei’s law of free fall
specifically holds for the freely falling object in the laboratory). As a result, Newton utilized theoretical analysis (based on
mathematics like calculus) to generalize the results (obtained from the combination of both empirical analysis and controlled
experiments) from specific areas to broad areas. For example, his second law (F = ma) can help to explain not only the
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motion of either planets (described by Kepler’s laws of planetary motion) or freely falling objects (described by Galilei’s
law of free fall), but also the motion of many other objects including a single molecule. Owing to the unprecedent success
of this generalization (which is proved by the fact that physics has significantly improved our human life), the method of
combining empirical analysis, controlled experiments and theoretical analysis has become the fundamental method for
developing physics. Certainly, in reality, it is already enough for achieving some excellent results by using only one or two
of empirical analysis, controlled experiments and theoretical analysis. This fact depends on specific topics, for example,
in modern condensed matter physics, where empirical analysis is hardly used. But, in modern astrophysics, controlled
experiments are rare. It is not necessary for me to go into details here. In principle, the above mentioned combination is
an ideal, complete method.

So far, I have completed answering the question ‘‘what are physical ideas and methods?’’.
Last but not least, even though physics has helped to significantly improve human life due to the deep understanding

of the natural world by using the above-mentioned physical ideas and methods, it might be not suitable for people to
immediately expect too much when physical ideas and methods are used to understand the social world. Why? Please
note many of the above-listed applications brought by physics are not a direct purpose of original research. For example,
when M. Faraday (Sep. 22, 1791–Aug. 25, 1867) discovered the law that magnetism is able to produce electricity, he did not
know whether it is genuinely useful for human life. The reason why he did the research was only due to curiosity. Actually,
in history, the large-scale application of electricity only started at the end of the 19th century when Faraday had passed
away for many years. This means people must be patient to wait for the application of a physical discovery since physicists
must take time to study.

In a word, the reason why physics needs economics/finance lies in curiosity of physicists, which may broaden the realm
of physics, especially statistical physics.

1.2. Economics/finance needs physics

Briefly speaking, economics is a discipline onhow to allocate scarce resources efficiently. SinceA. Smith (June 5, 1723–July
17, 1790), economics has developed for more than 200 years. In the duration, mathematics has been introduced into
economics, thus causing economics to be a quantitative discipline already. Because the object discussed in the field of
economics is human-activities-related phenomena in the social world, which are too complex, economics is still far from
perfect. For example, existing economic theories failed to envisage even the possibility of a financial crisis like the latest
one [1]. Thus, economics needs different ideas or methods in an attempt to perfect itself. Physics may be a candidate
discipline for economics to absorb such ideas and methods. In this sense, economics needs physics, so that people might
scrutinize some economic problems from a different perspective, thus yielding different insights. Certainly, economics can
also resort to ideas or methods being beyond physics, e.g., evolutionary biology.

The above conclusion holds for finance, too. Regarding finance, its relation with economics is similar to the relation
between applied physics and basic physics. That is, finance focuses on application research, but economics focuses on basic
research. Say, if a seller sellme a pen at a price of 1 Chinese Yuan, the exchange behavior betweenme and the seller belongs to
finance, but the reasonwhy the pen costs 1 Chinese Yuan rather than 100 Chinese Yuan belongs to economics. Nevertheless,
throughout this review article, I shall not separate economics and finance distinctly because both of them are closely related
to trading behaviors of human beings.

1.3. Combining physics and economics/finance gives birth to econophysics

Physics meets economics or finance, giving birth to econophysics; the word ‘‘econophysics’’ first appeared in the
published article by H. E. Stanley et al. as early as 1996 [2]. According to the above introduction, econophysics is a new
branch of physics (at least in the eyes of physicists like me), which uses physical ideas and methods (listed in Section 1.1)
to analyze some problems related to economics or finance. Loosely speaking, econophysics is what physicists do in the
field of economics or finance since these physicists are naturally weaponed with physical ideas and methods. Incidentally,
researches within the scope of econophysics actually appeared much earlier than the mid-1990s (e.g., Ref. [3]), but at that
time, the word ‘‘econophysics’’ was not yet coined.

To briefly summarize what I have mentioned above, the aim of econophysicists could be at least two-folded: one is to
broaden the realm of traditional physics (throughout this review article, the phase ‘‘traditional physics’’ means the physics
that is used to study the nature with non-intelligent units like atoms, rather than the society with intelligent units like
humans), especially statistical physics, the other is to scrutinize some economic or financial problems from a physical
perspective.

1.4. Empirical econophysics versus experimental econophysics

In general, econophysics contains three methods: empirical analysis (starting from the articles by H. E. Stanley and his
coworkers in the mid-1990s, see for example Refs. [4,5]), controlled experiments (starting as early as 2003 by T. Platkowski
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andM. Ramsza [6]), and theoretical analysis (pioneered by Y. C. Zhang and his coworkers in themid-1990s, e.g., see Ref. [7]).
Here, empirical analysis in the field of econophysics is based on existing data in real markets, and controlled experiments
mean experiments conducted in the laboratory, which produce data by tuning one (or few) variable(s)/condition(s). The
theoretical analysis in the field of econophysics is based on agent-based modeling (or system modeling), which has two
approaches: agent-based simulations (also called computer simulations) and analytical theory. Agent-based simulations
have helped to develop econophysics significantly [8,9], which are an analogue of molecular dynamics simulations [10],
Monte Carlo simulations [11], or finite element simulations [12,13] in traditional physics. According to traditional physics,
for analytical theory, one needs to start from some common laws or principles (e.g., see Ref. [14,15]), which often lack in
social human systems (the research object of econophysics). Thus, comparedwith agent-based simulations, analytical theory
has not played the same important role in econophysics.

Since the birth of econophysics in the mid-1990s [2], empirical analysis has dominated the research community
of econophysics till now, which forms a branch of econophysics, namely, empirical econophysics. But, as a discipline,
econophysics is still too young, which has vast development space. As one knows, the maturity of traditional physics is
mainly due to the role of controlled experiments in the laboratory. Accordingly, it seems unbelievable that in the future,
econophysics without controlled experiments could be as mature as traditional physics. Thus, I believe that for developing
econophysics more healthily, econophysicists must resort to controlled experiments. In this sense, for the time being, in
order to emphasize the importance of controlled experiments, I suggest a different branch in econophysics, i.e., experimental
econophysics, which mainly focuses on controlled experiments in the laboratory. Accordingly, in this review article,
econophysics is divided into two branches: one is empirical econophysics, the other is experimental econophysics.

Clearly, the above two branches are divided according to the two different methods. It is worth noting that in the above
paragraph, I did not mention theoretical analysis. But, in the eye of physicists like me, these simulations must be used to
understand either empirical data (in real markets) or experimental data (in laboratories). So, for understanding empirical
data, theoretical analysis is a supplementary tool in empirical econophysics. On the other hand, for mainly understanding
experimental data, theoretical analysis serves as an additional tool in experimental econophysics.

The focus of this review is on experimental econophysics. Regarding empirical econophysics, several leading experts
have published a couple of excellent monographs [5,8,9,16] and reviews [17,18]. If the reader can read Chinese, I would also
like to recommend him/her to read two relevant monographs in Chinese [19,20].

1.5. What is the methodology of experimental econophysics

Section 1.1 describes the combination of empirical analysis, controlled experiments and theoretical analysis, which are
fundamental in traditional physics. Owing to the great success of this combination method in traditional physics, I believe
experimental econophysics should also follow this combination method (which started from the article by Wang et al. in
2009 [21]). For this purpose, one should do according to the following three steps:

• Step 1: He/she should either do empirical analysis or survey the literature on empirical data in real markets. Obtain or
find empirical results.

• Step 2: Then, he/she considers how to design a controlled experiment in the laboratory. In the mean time, he/she
should keep the above-mentioned physical idea (‘‘Reasons extracted should be coarse-grained’’) in mind, and extract the
key factor(s) which affects the empirical results. Perform controlled experiments, revealing cause–effect relationships
between the factor(s) and the above empirical results.

• Step 3: Perform theoretical analysis (agent-based simulations and/or analytical theory), in order to extend the
cause–effect relationships obtained in Step 2 beyond the specific experimental limitations (namely, specific subjects,
specific avenue, and specific time). Use the relationships to explain existing phenomena (empirical results) and predict
the future or unknowns. In other words, until the end of Step 3, the final results (relationships) should be universal
enough, which echoes with the above-mentioned second physical idea (‘‘Results obtained should be universal’’).

The above three steps serve as the complete, ideal methodology of experimental econophysics. But, here I should remark
that some projects in econophysics cannot strictly follow the three steps (at least for the time being) due to the complexity
of real human systems like stock markets; see for example Section 3.

1.6. Complexity, self-organization, and emergent properties

As indicated in the title of this review, I shall survey complexity, self-organization, and emergent properties in the
field of experimental econophysics. For clarity, here I had better explain more about the three key words: complexity, self-
organization, and emergent properties. It is worth noting that the below explanations are specifically given for this review
only.

Firstly, the complexity is used to characterize a systemwith heterogeneous humans or agents, where they have nonlinear
interactions. As a result, the property of the whole system cannot be inferred from the individual humans or agents without
nonlinear interactions. In other words, the complexity is strictly related to the nonlinear interactions among heterogeneous
humans or agents.
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Secondly, regarding the self-organization, I prefer to ask for help from Wikipedia (http://en.wikipedia.org/wiki/Self-
organization); details are as follows (withminor revisions). Self-organization is a processwhere some formof global order or
coordination arises out of the local interactions among the humans or agents of an initially disordered system. This process
is spontaneous: it is not directed or controlled by any human or agent inside or outside the system; however, the laws
followed by the process and its initial conditions may have been chosen or caused by a human or an agent (this fact is
similar to traditional physics, where an external electric field may be exerted to produce new phenomena; for example, see
Ref. [22]). It is often triggered by random fluctuations that are amplified by positive feedback. The resulting organization is
wholly decentralized or distributed over all the humans or agents of the system. As such it is typically very robust and able
to survive and self-repair substantial damages or perturbations.

Thirdly, emergence is a process where larger regularities or patterns arise through nonlinear interactions among the
humans or agents that themselves do not exhibit such properties. Here ‘‘larger regularities or patterns’’ are just emergent
properties to be surveyed in this review.

In summary, the main theme of the review is to show diverse emergent properties of the laboratory markets (belonging
to a kind of complex adaptive systems), originating from self-organization due to the nonlinear interactions among
heterogeneous humans or agents (complexity).

2. Basic knowledge

This section presents some fundamental knowledge or background, which may help to understand the forthcoming
sections.

2.1. Hayek hypothesis: A pragmatic hypothesis

Even nowadays, the typicalmethod to study economic problems is the hypothetical-deductivemethod. Economists often
derive an optimal situation of a system from certain assumptions, such as the complete knowledge of a preference system
or information. F. A. Hayek (May 8, 1899–March 23, 1992; 1974 Nobel prize winner in economic sciences) pointed out
in his famous thesis ‘‘The Use of Knowledge in Society’’ published in 1945 [23] that this was totally a misunderstanding
of social problems because no one could simply acquire the entire data of such assumptions. So despite the allocation
problem under certain assumptions, a more important problemwas how to obtain and use the decentralized resources and
information.

Another thing economists always neglect is the specific knowledge of individual. Other than scientific knowledge, this
specific knowledge only gives its owner a unique benefit due to his/her own understanding of people, environment and
other special circumstances. That is the exact part of knowledge economists are used to put into the assumptions which
is equally important as scientific knowledge. As the comparative stability of the aggregates cannot be accounted for by
the ‘‘law of large numbers’’ or the mutual compensation of random changes and the fact that the knowledge of this kind
which by its nature cannot enter into statistics, all plans should be made by the ‘‘man on the spot’’ rather than any central
authorities.

Since the central authorities are limited, will the plans made by individuals reach a so-called equilibrium state? Hayek’s
answer was ‘‘yes’’. If all individuals follow the simple regulation of ‘‘equivalence of marginal rates of substitution’’, which
is the basic of microeconomics, the market will indeed be in an equilibrium state finally, without the necessity of the
knowledge of the entire market. Under the ‘‘magical’’ market mechanism of price, once someone finds an arbitrage
opportunity of a commodity, the price of this commodity will change. Thus the marginal rates of substitution of this
commodity to other commodities change, causing another round of price change. This effect spreads to more and more
kinds of commodities and gradually covers the whole market, though maybe no one knows why such changes happen. The
whole acts as one market, not because any of its members survey the whole field, but because their limited individual fields
of vision sufficiently overlap so that through many intermediaries the relevant information is communicated to all.

Actually, the price system is just what A. Smith (June 5, 1723–July 17, 1790) called ‘‘the invisible hand’’ [24], amechanism
for communicating information, and the most significant fact about this system is the economy of knowledge with which
it operates, or how little the individual participants need to know in order to be able to take the right action. Even if people
know about all the factors of a commodity, the actual price is not available unless obtained from amarket with price system.

The above content has been known as the Hayek hypothesis [23], which asserted that markets can work correctly even
though the participants have very limited knowledge of their environment or other participants. Certainly, traders have
different talents, interests and abilities, and they may interpret data differently or be swayed by fads. However, there is still
room for markets to operate efficiently.

In 1982, ‘‘the father of experimental economics’’ V. L. Smith (2002 Nobel prize winner in economic sciences) [25] tried
proving theHayekhypothesis using 150–200 experiments under different circumstanceswhich he thought a correctmethod
to select a reliable theory. The trading behavior of themarket participants led themarket to a competitive equilibrium under
a double auction regulation without any extra information (the participants, i.e., subjects, only knew their own value of the
commodity and the market price), the result of which was contrary to the classical theory of price taking hypothesis and
complete knowledge hypothesis.

http://en.wikipedia.org/wiki/Self-organization
http://en.wikipedia.org/wiki/Self-organization
http://en.wikipedia.org/wiki/Self-organization
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A key characteristic of controlled experiments was its specific convertible supply and demand condition and the reward
system to stimulate the subjects. Once the supply and demand are determined, the equilibrium market price is also
determined and whether the market was operated well could be easily observed. Although all the experiments [25] had
different subjects and supply and demand conditions, they all end with the equilibrium state no matter whether in a
stationary or dynamic environment. Even though the experiments [25] were still not perfect, a reliable result related to
the Hayek hypothesis was that the attainment of competitive equilibrium outcomes is possible under much less stringent
conditions.

To sumup, theHayek hypothesis helps to account for the reliability of controlled experiments that contain finite subjects.
Thus, this Hayek hypothesis may serve as a theoretical foundation of experimental economics [26] and experimental
econophysics (introduced in this reviewarticle), both ofwhich are based on controlled human experiments in the laboratory.
Besides, in the field of experimental econophysics, theoretical analysis also helps to validate and generalize results obtained
from controlled experiments; more details can be found in Sections 1.1 and 1.5.

2.2. How to design controlled human experiments

In this review article, I shall introduce the latest research progress on controlled experiments in the field of experimental
econophysics. As a source of econophysics research ideas, the method of controlled experiments has become increasingly
important in relative studies. Controlled experiments have various ways to conduct. For example, in a simple experiment
based on the minority game [7], the organizer may require subjects to close their eyes and raise hands to signal their
choices between the two rooms in the game. Here, closing eyes prevents communications among the subjects so that it
can be guaranteed that they make decisions independently. However, when regulations of an experiment become more
complicated, or when the number of subjects becomes larger, computer-aided controlled experiments begin to show their
efficiency as they can implement any experimental design easily and can also collect experimental data and reveal real-time
statistical results quickly.

A computer-aided controlled experiment needs the programming of both the server and the client (Fig. 1). Two primary
missions of the client are to distribute related information to the users and also to provide users a channel to upload their
own personalized choices. And the server’s main tasks are to store users’ information, to process users’ uploaded data
and to generate new information based on feedbacks from the behaviors of users. Generally, the client may be designed
in the form of web pages in order to reduce costs and increase scalability. Any computer with a network connection
can be easily set as a client. The servers of all the experiments in Sections 3–8 were constructed on the architecture of
Linux+Apache+MySQL+PHP/Python. (Readers can download a source code example from the link: http://t.cn/zOlkLEk.)

Fig. 1 shows a general schematic flow chart abstracted from the various experimental systemswhichwill be introduced in
Sections 3–8. Actually, the detailed designs of various systems are different inmany aspects. For example, in the experiment
of controlled laboratory stock market (Section 3), the server has to process every new order immediately since the time in
the experiment is continuous. The herd experiment in Section 4 needs to add some robot agents (produced by a computer
program) when computing the final outcome. The experiment of risk and return in Section 8 requires every subject to set
their initial investment ratio, and the final outcome is not simply the ‘‘win’’ or ‘‘lose’’ but the final returns. Hence, we need
to make minor revisions of the server and the web page accordingly for each specific system.

Fig. 2 depicts some screenshots of web pages in a certain controlled experiment. And Fig. 3 shows a site photo in a
controlled experiment.

2.3. El Farol bar problem versus minority game

Here we first present the real El Farol bar problem [27], which gave birth to the minority game [7] discussed in Sec-
tions 4–6. An early summary of minority games can be found in the book by Challet et al. [9].

2.3.1. El Farol bar problem
The essence of formation of human social activities lies in the acquisitiveness for resources. In many social and biological

systems, the agents always spontaneously adaptively compete for limited resources, and thus change their environments.
In order to effectively describe the system with the complexity, scientists have made a series of attempts. Such a resource
competition system is just a kind of complex adaptive system.

For economic systems, the basic issue appears as well. Generally, in an economic market, if the resources are rationally
allocated, the market is full of vitality. Otherwise, the development will be impeded, at least to some extent. Thus, the
allocation of resources is the most fundamental economic problem. As one knows, most of popular economics theories are
related to deductive reasoning. According to those economic theories, as long as all individuals are almost smart, everyone
will choose the best action, and then each individual can reason his/her best action.

However, people gradually find that in the real life, individuals often have no complete rationality and superb deductive
reasoning ability when making decisions. Instead, it is very common for them to simply use the feasible method of trial
and error. Therefore, it looks like inductive generalization and continuous learning when real individuals make decisions
(namely, inductive reasoning).

http://t.cn/zOlkLEk
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Fig. 1. A schematic flow chart showing how to compile the computer program for conducting controlled experiments.
Source: Adapted from Ref. [20].

In the game theory, researchers often use evolutionary games to study the similar dynamic process. However, when using
evolutionary game models, economists usually do not take into account the character of limited rationality. Therefore, they
cannot convincingly yield interesting phenomena and critical phase transition behaviors. A social human system contains a
large number of agents who have the limited ability of inductive reasoning. Even so, themicroscopic simplicity can still lead
to the complexity of themacroscopic system. Obviously, from a physical point of view, this system has a variety of statistical
physical phenomena.

In the past, there were some studies about the allocation of resources. For example, in 1994, economist W. B. Arthur
put forward a very representative resource allocation problem, the El Farol Bar problem, when he studied the inductive
reasoning and bounded rationality [27]. It can be described as follows.

There is an El Farol bar in Santa Fe (a city in New Mexico of United States) which offers Irish music on every Thursday
night. Each Thursday, 100 persons (here the 100 is only set for concreteness) need to decide independently whether to go
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Fig. 2. Web pages of a controlled experiment: (a) background management interface, (b) login, (c) login successful, (d) choose a room, (e) waiting for the
result, and (f) result.
Source: Adapted from Ref. [20].

to this bar for fun or stay at home because there are only 60 seats in the bar. If more than 60 persons are present, the bar is
so crowded that the customers get a worse experience than staying at home. If most people choose to stay at home at that
day, then the people who go to the bar enjoy the elegant environment and make a wise choice.

In this problem, Arthur assumed no communication in advance among the 100 persons. They only know the historical
numbers in the past weeks and have to make decisions independently. In order to make a wise choice, each person needs
to possess his own strategies which are used to predict the attendance in the bar this week. People cannot obtain the
perfect equilibrium solutions at initial timewhenmaking decisions. Theymust consider others’ decisions, and keep learning
according to the limited historical experience in their mind. The elements of inductive reasoning and limited rationality in
the El Farol bar problem lay a foundation for the further development ofmodeling in econophysics, as shown in Section 2.3.2.
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Fig. 3. A site photo in a controlled experiment organized by my group on September 27, 2013.

2.3.2. Minority game
Inspired by the above El Farol bar problem, physicists D. Challet and Y. C. Zhang in 1997 proposed a minority game to

quantitatively describe this problem and statistically analyzed the emerging collective phenomena in complex adaptive
systems [7]. In the following years, scientists have done extensive researches about the minority game and its applications
in different fields, which have significantly promoted the development of econophysics [8,9]. We introduce the minority
game model as follows.

There are two rooms (indicated as Room A and Room B) and N agents, where N is an odd number. Each agent chooses
independently to enter one of the two rooms. If one room contains fewer agents than the other, then the agents in this
roomwin. That is to say, theminority wins. The two rooms in theminority game actually correspond to the case of unbiased
distribution of two resources. This game is repeated. Each agent canonlymake adecisionnext time according to thehistorical
information. As a matter of fact, in the daily life, people often face similar choices. Examples include choosing which road to
avoid traffic jam during rushing hours and choosing a less crowded emergency exit to escape. Although each of us can keep
learning from limited historical experiences, it cannot guarantee that we make a correct choice every time.

In the minority game, the decision-making process which is based on the historical information is modeled to form
strategy tables. For the minority game, one assumes that agents’ memory length of the historical information is limited.
Each agent can only remember the latest m rounds. If m = 2, it can form a strategy as shown in Table 1. The historical
information in the left column records the attendance in the past two rounds, which is filled with a string of bits of 0 and 1.
For example, a string of ‘‘10’’ represents the past twowinning rooms, Room A and Room B. The right column is the prediction
which is filled with bits of 0 or 1. Bit 1 is linked to the choice of Room A for entrance, while bit 0 to that of Room B. So one
can obtain a strategy pool with a size of 22m . As m increases, the total number of strategy tables increases rapidly. In the
original minority gamemodel, the designers let each agent randomly select strategy tables. That is, the right column of each
strategy table is randomly filled with 0 or 1. These agents are likely to repeat the same selected strategy (namely, the right
columns of the strategy tables are the same). However, appropriately increasing thememory length can significantly reduce
the repetition probability. Here it is worth noting a special case: if the right column of a strategy table is all 1 (or 0), this
strategy means that the agents are always locked into Room A (or B) no matter what happens.

According to these results, it is not hard to find that the minority game model with such a strategy structure is closely
related to memory lengthm. And the historical information can only increase with 2m.

In econophysics, minority game models have been widely used to simulate a special kind of complex adaptive systems,
the stock markets [28,29,8]. Researchers always hope to generate similar stock market data through the minority game
model. The stand or fall of this similarity often need to be tested to see whether model data have the same stylized facts
as the real market data. Besides, the minority game can also be used to study competition problems about an unbiased
distribution of resources [30–33].
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Table 1
A model strategy table in the minority
game with memory lengthm = 2.

Information Choices

11 0
10 1
01 0
00 1

2.4. How to model agent-based systems

Agent-based modeling [34] plays an important role in the progress of complex systems researches. Differing from
stochastic equations, agent-based models try to regenerate the evolution of a complex system via a bottom-up approach
by means of simulating the behaviors of plentiful homogeneous or heterogeneous agents at the micro scale. There are two
general ideas which can guide the design of a particular agent-based model. I shall discuss the two ideas in the following
two subsections.

2.4.1. Abstracting real-world systems
The minority game is a famous agent-based model in the field of econophysics. As one can see from Section 2.3, it

originates from the El Farol bar problem. There have been many kinds of modifications on the minority game. A particular
one is to model on the stock market [8]. It can be seen that the minority game on stock market has many simplifications
compared to the realmarket, such as the adoption of linear relation between excess demand and price change, the neglect of
transaction costs, etc. Even under such simplifications, theminority game can still reproducemany statistical characteristics
of the stock market successfully [8], which gives a clear illustration of the capabilities of agent-based models to reveal the
endogenous mechanisms under financial markets. Hence, one important idea when trying to build an agent-based model is
to abstract real-world systems. First, regulations in the associated real-world system should be written down one by one.
Second, the importance of each regulation should be evaluated; key regulations should be introduced into the model, while
trivial ones can be eliminated, in order to make the model simple and clear. Third, decision-making process for the virtual
agents should be carefully designed to mimic the behaviors of the real-world human beings. Finally, one can complete the
designs of an agent-based model by combining the simplified structure and a large number of interacting virtual agents. It
can be seen that this idea guides our designs of all the models appearing in Sections 4–8.

Onemore thingwhich I want to discuss is the simplificationsmade in the agent-basedmodelingmethod. In real financial
markets, it can be seen that the price of an asset is the reflection of every market participant’s information-collecting and
decision-making abilities. Moreover, there also exist communications among participants which may lead to the herding
phenomenon. Clearly, if we want to include all these factors into our agent-basedmodel, the model can becomemuchmore
complicated. So we have to compromise by simplifying the model accordingly. But does our model lose its generality and
reasonability instead? Onemay refer to the famous Isingmodel in statistical physics. In the Isingmodel, the time is discrete,
which is clearly anunreal assumption in our realworld. However, themodel can regeneratemany ferromagnetic phenomena
very successfully. Hence, we can conclude that a proper simplification can wipe off trivial factors in the real-world system
and make the model more powerful in the explanations of the real-world phenomena. But as we know, making a good
simplification is not always a simple task.

Next, we are going to discuss the second approach for building agent-based models, that is, building models through
physical models.

2.4.2. Borrowing physical models
Since many physical models have already been proven proper to explain related natural phenomena, it is worth of

academic exploration to extend them to economic or social systems. Here, the Ising model is taken as an example for
illustrating this idea.

The Isingmodel aims at studying the temperature dependence ofmagnetic susceptibility during the ferromagnetic phase
transition. The model contains a large number of interacting spins which form a certain topological structure. It is usually
assumed that (1) each spin only has two states, i.e., σj = +

1
2 for the up direction and σj = −

1
2 for the down direction;

(2) The range of spin interactions is limited to the first neighborhood [35].
The fundamental physical picture of the ferromagnetic phase transition is that when increasing temperature, the

dominant state (up or down) shown in the overall lattice changes through spin interactions. On one hand, the principle
of least action requests that all spins are aligned in the same direction so that the spin interactions are at the lowest level.
On the other hand, thermal motions tend to drive the directions of the spins to a random arrangement at which the system’s
entropy is the largest. The probabilities of spin states obey the Boltzmann distribution. As long as the system’s temperature
gets higher than the Curie temperature, the thermal motions among the spins become dominant so that a phase transition
occurs from ferromagnetic to paramagnetic. For a spin, suppose its energy is E+ for the up state (i.e., σj =

+ 1
2


), and E− for

the down state (σj =
− 1

2


). When E− > E+, the probability for the spin to be in the up state

+ 1
2


in the next time step is
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Fig. 4. Two-dimensional ferromagnetic phase transition in the Ising Model.
Source: Adapted from Ref. [20].

denoted as p+, and in the opposite state
− 1

2


with a probability of p−. Then we can write,

p+ =
e−

E+
kT

e−
E+
kT + e−

E−
kT

, p− =
e−

E−
kT

e−
E+
kT + e−

E−
kT

.

It can be seen that when the temperature T gets closer to 0, p+ →
E+

E++E−
, p− →

E−

E++E−
, now all the spins tend to be

arranged in the same direction. If T becomes much large, p+ → p− →
1
2 , which means that the directions of spins become

totally random. That is, the system transfer from ferromagnetic to paramagnetic as T increases.
To have a further discussion of the Ising model, here we take the two-dimensional orthogonal cubic lattice for example.

The Hamiltonian can be composed of two parts:

H(σj) = −


i

Ji,jσiσj − hjσj.

Here, the first part Ji,jσiσj represents interactions between spins (near-field or local effect), where spin i belongs to the
first neighborhood of spin j. The second part hjσj is the Hamiltonian of σj in the external magnetic field hj (global effect).
According to the principle of least action, every spin tends to choose states that obey the Boltzmann distribution. Under this
distribution, the probability of being the least energy state for H(σj) is largest. The state probability is

P(σj) =
e−βH

σj

e−βH
,

where β = kBT .
In the simulations, a spin in the lattice is selected randomly and the state of the spin is adjusted on the basis of

thermodynamical laws. By repeating this procedure, the system can finally reach the equilibrium. At the equilibrium, one
macroscopic property of the system simply equals the ensemble average of the associated microscopic property among all
the spins. Note that P(σj) is not independent of T , thus we can obtain the relation between one observation of the value of
E and the temperature T or other parameters:

E(f ) =


j

f (σj)P(σj).

A logical framework of the Ising model is shown in Fig. 4.
By comparing the similarities between ferromagnetic lattice and financial markets, one can establish an agent-based

model for financialmarkets based on the logical framework of the Isingmodel (Fig. 5). The analogy between financialmarkets
and ferromagnetic lattice is obvious.

Firstly, from the point of interactions, in the Ising model the spin states depend on the combined result of both global
effect from the macro external magnetic field and local effect from the micro neighboring spins’ states. And in the financial
markets, investing strategies made by market participants also depend on the combined result of global information such
as the price and trading volume of an asset, fundamental market information (like GDP or CPI), and local information
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Fig. 5. Agent-based financial market model borrowing from the framework of the Ising Model in Fig. 4.
Source: Adapted from Ref. [20].

from the ‘‘neighboring’’ traders (here ‘‘neighboring’’ means the first neighborhood in the social network appearing in
financial markets for a trader). Hence, we may write the associated ‘‘Hamiltonian’’ at one lattice grid for traders as H(σj) =

−


i Ji,jσiσj − hjσj.
Secondly, from the point of ‘‘strategies’’, in the Ising model, spins always tend to change their states to find the best one

which confirms to the least action and the maximum entropy principles; similarly, in the financial market model, agents
should also be able tomodify their investing strategies to find the best onewhich brings inmaximum returnswithminimum
risks. Thirdly, from the point of feedback process, in the Ising model, the macro magnetic susceptibility can be obtained by
summing up all the micro spin states; accordingly, in the financial market model, through the match of orders executed by
market makers, price at each time is generated.

Thus, we can see that there exists a deep analogy between physical and economic models.
The financial market models based on the Ising model’s framework have received a preliminary success [36,37]. But

what strategies should be adopted by agents so that the real-world phenomena in financial markets can be regenerated?
What kind of payoff function is able to reflect the investment demands properly? Do the time scales at which agents make
decisions impact upon global information? All these questions are still waiting to be answered in the future.

3. Stylized facts

Inspired by H. E. Stanley and his coauthors’ pioneering work [5,4], physicists began studying the statistical properties
of financial markets with methods widely used in statistical physics. As a result, many universal rules, say, scaling laws
(namely, power-law distributions in the eye of econophysicists) and clustering behaviors were empirically observed in the
stock markets of different countries [5,4,38–48], or even in other fields including music [49] and linguistics [50]. Clearly,
because it is illegal or immoral to control real markets, these researches lack controllability that, however, is very important
to know the impact of a specific condition upon such universal rules. In this direction, S. P. Li and his coworkers [51] have
conducted an experiment of political exchange for election outcome prediction, with a focus on the Taiwan general election
in 2004. Future contracts for election outcome and corresponding options were created and traded among participants in
a web-based market. The liquidation value was determined by the percentage of votes a candidate received on the day
of election. It is a good prediction because participants do predict the vote percentage rather than just simply buy future
contracts of the candidate they support. Finally the resultwas compared to that of the polls. Interestingly,when investigating
the network topology of such an experimental futures exchange, researchers [52] showed that the network topology is
hierarchical, disassortative and small-world with a power law exponent, 1.02 ± 0.09, in the degree distribution. They also
showed power-law distributions of the net incomes and inter-transaction time intervals [52]. After identifying communities
in the network as groups of the like-minded, they showed that the distribution of the community sizes is also distributed in
the power law with an exponent, 1.19 ± 0.16 [52].

Inspired by their work [51,52], we believe that it is also possible to design stockmarkets in the laboratory, so that we can
reveal the underlying mechanism of the universal rules.

In fact, economists have already done a lot of great work in laboratory human stock markets [53,26]. In 1990s, Friedman
wrote an article to show his series of experiments; these experiments gave laboratory evidence of the efficiency of two
different trading institutions [54]. Later, Porter and Smith designed a laboratorymarketwith dividends, and alsowith several
other extensions including short sells, limited price changing rules, associated future markets, etc.; they confirmed the
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Fig. 6. An example of how our order book updates.
Source: Adapted from Ref. [57].

existence of price bubbles in this market and examined the extensions’ roles in the bubbles [55]. Hirota et al. published
an article based on a similar market structure; by studying the trading horizons, they suggested that the investors’
short horizons and consequent difficulties of backward inductions are important contributors to the emergence of price
bubbles [56]. These experiments offered good insights into the associated research problems. However, to our knowledge,
all the experiments mentioned above have not convincingly reproduced the stylized facts (say, scaling laws) that have been
revealed for real economic/financial markets by econophysicists. An important reason may be that in these experiments,
time is divided into trading cycles, say 5min. Hence the participators have to make decisions on the cycles [53,26,54–56]. In
other words, discrete time steps make these laboratory markets deviated from real markets where trading time is naturally
continuous. So, we attempt to overcome this problem by designing a continuous double-auction stock-trading market and
carry out several human experiments in the laboratory [57]. As an initial work, the present artificial financial market can
produce some stylized facts (clustering effects and scaling behaviors) that are in qualitative agreement with those of real
markets. Also, it predicts some other scaling laws in human behavior dynamics that are difficult to achieve in real markets
due to the difficulty in getting the data.

3.1. Market structure

3.1.1. Basic framework
Consider a market with N traders, indexed by i. Trading time is indicated by t . To simplify the problem, traders only

decide how to manage their portfolios consisting of one stock and risk-free asset. The risk-free asset in our market is simply
bank savings (cash). There are Q shares of stocks issued in the market. The price of the stock is determined by the traders’
trading activities and it will be updated every time when a deal is made.

3.1.2. Double-auction order book
The double auction has been themost widely used system in equity markets for more than 140 years [58]. In our market,

a computer-aided double-auction order book is introduced to help dealing with the traders’ orders. Traders could have limit
orders. Compared to a market order that only contains a desired amount of the stock to buy or to sell and will be executed
on the current price, a limit order in addition has a request of specific limit of price. For example, a limit sell order with a bid
price p and amount q means this trader is willing to sell q shares of the stock in any price no less than p. A limit buy order
with an ask price p and amount q means this trader is willing to buy q shares of stock in any price no more than p. Traders
could have unlimited numbers of orders, but neither borrowing nor short selling is allowed. Our order book works in the
following ways:
1. At first the order book is empty;
2. When an order, for example, a buy order, is posted, the maximum amount of cash that may be needed is frozen;
3. The systemwill check if there are sell orders with lower prices. If there is no such order, store the order in the order book

and the process is done; if there exist such orders, the systemwill pick out the ones with lowest prices, sort them by time
to find the oldest one;

4. The system will exchange cash and stock between the owners of this order and the chosen orders in step 3; these cash
and stock will be unfrozen and delivered to the account of the traders. If the order is fully digested, the process is done;
if not, the rest part will be treated as a new order and repeat step 2 and 3.

5. When the order is aborted, the frozen cash or stock will be released to the traders’ account. An example of our double-
auction order system can be found in Fig. 6.
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Fig. 7. A screenshot of the trading platform: the left part shows the trader’s nickname, usable cash and stock (the number of shares); the middle chart
demonstrates the stock price and trading volume as a function of time; the right table gives the five highest bid prices and five lowest ask prices. Themiddle
chart refreshes per minute; when the mouse pointer (denoted by the white arrow) hovers above the stock price, it shows detailed information about time
and the price of that time, say, ‘‘10:35, Price: 18.70’’ as shown in the chart.
Source: Adapted from Ref. [57].

3.1.3. Exogenous rewards
It is known that real stock markets are always full of various kinds of information, but such information has only two

roles: tending to increase or decrease the stock price. Because the stock in our laboratory market has no underlying value,
our solution is to add exogenous rewards to the system. For this purpose, we resort to dividends (that are used to potentially
increase the stock price) and interests (that are utilized to potentially decrease the stock price) to give traders information
about the macro environment and the stock. In detail, there will be stochastic rewards for holding stock or cash every a few
minutes. The rewards for stock are a random amount of cash d directly added to traders’ account; they are like the dividends
in real markets. As a result, this may increase the stock price. The rewards for cash mean increasing the traders’ cash by a
random percent f , which represents the interest. So, this may decrease the stock price. The rewards also cover the stock and
cash frozen in the order book. To let the traders have time to evaluate their strategies, all the rewards are forecasted with
partial information by the coordinator 2 min before they are distributed. For example, if the coordinator is going to pay a
dividend of ‘‘2 cash per share’’ at 10:00 am, he broadcasts to the traders that there will be a dividend of ‘‘1–3 cash per share’’
at 9:58 am.

3.2. Controlled experiments

3.2.1. Platform and subjects
We designed and conducted a series of computer-aided human experiments. The experiments were held in a big

computer laboratory of Fudan University; each subject had a computer to work with. All the computers were linked to
an internal local area network and we deployed a web server to handle all the requests. We recruited 63 subjects to act
as traders, all of whom were students of Fudan University. Our trading platform provided the following information to
the traders: 1-min close prices, 1-min trading volumes, five highest buy orders’ prices and amounts, five lowest sell orders’
prices and amounts, the trader’s own cash and stock available, the trader’s trading/ordering history and the trader’s rewards-
getting history. Details are shown in Fig. 7. According to our server’s performance, the close price and volumewere shown in
a chart which was automatically updated every 1 min, the order book information was updated every 15 s, and the traders
could look at their histories at any time during the experiments.

3.2.2. Experimental settings
Before the experiments, 10 min for trade training is arranged to help the subjects to get used to the trading interface and

market rules. Then we had two rounds of experiments. Every round of experiment lasted for 30–40 min, but the traders
did not know when the experiment would end, thus there would be less ending boundary effect. At the beginning of a new
round, the stock price is set to 10. In the first round of experiment, all the traders started with 10000 cash and 1000 shares
of stock, while in the second round of experiment, the traders startedwith a random amount of cash and stock. In the second
round, the traders’ initial stock were randomly distributed between 200 and 1800, and to make the total amount of stock
and cash comparable with the first round, every trader’s initial cash is 10 times of his/her stock in number. In the first round
of experiment, we initiated 63000 shares of stock and 630000 cash; in the second round of experiment, we initiated 63478
shares of stock and 634780 cash.

3.2.3. Payoffs
Our experimentswere carried out during the Econophysics course taught in FudanUniversity. The subjectswere students

enrolled in this course. 47 of the 63 subjects selected the course and 16 students were auditors. The performance of the
students who selected the course took 10% of their final score of this course. They were required to trade at least 20 times
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Fig. 8. Time series of (a–b) 1-min closing prices, (c–d) volumes and (e–f) returns for the (a, c, e) first and (b, d, f) second round of the laboratory human
experiment. In (a) and (b), up arrows demonstrate the timewhen there is an interest (reward for cash), and down arrows demonstrate the timewhen there
is an dividend (reward for stock). In (a), from left to right, the four arrows denote rewarding ‘‘2 cash per share’’, ‘‘2.4 cash per share’’, ‘‘10% of the cash’’, and
‘‘6% of the cash’’, respectively. In (b), from left to right, the arrows means rewarding ‘‘3%, 5%, 7%, and 9% of the cash’’ for the four up arrows, and ‘‘3.2 cash
per share’’ for the down arrow. (c) and (d) show the trading activities lasting through the experiments. In (e) and (f), clustering behavior occurs.
Source: Adapted from Ref. [57].

to get a base score of 3.3%. And based on their final wealth ranking, they could get another 3.3%–6.7% score: based on their
scores, top 10% students would get all of the 6.7% score, top 10%–30% would get 6.0% of the final score, . . ., and the last 10%
would only get 3.3% score. Their final total scores were the calculated score rounded to the nearest whole number.

It is worth noting that the crucial role of markets is to let participants have chances to pursue profits. In different
situations, ‘‘profits’’ could have different forms. For example, in real stock markets, investors pursue money (‘‘profits’’) by
exchanging stocks and money. In our laboratory market, 47 students who select the course pursue scores (‘‘profits’’), and
the other 16 auditors voluntarily participated the experiments with an aim at learning how laboratory experiments are
conducted for econophysics (‘‘profits’’). In this sense, our laboratory market can be equivalent to real stock markets, at least
to some extent.

3.3. Results and discussion

3.3.1. Price, volume and return series
Here we show the data obtained from the human experiments (Fig. 8). The first is the 1-min close price series, p(t). Here

a 1-min close price is the last transaction price that occurs at the end of a certain minute: if there is no order execution in
this minute, the close price will stay the same with the price of last minute. The (log) return r(t) is defined as follows

r(t) = ln p(t) − ln p(t − 1), (1)

where trading time t is denoted by the count seconds from the start of the experiment. Fig. 8(a)–(b) give the price series
of our experiments: during the first round of experiment, there are 2 interests (rewards for cash) and 2 dividends (rewards
for stock), and during the second round of experiment, there are 5 dividends (rewards for stock) and 1 interest (rewards for
cash). Because our rewards are forecasted 2min in advance, there are notable price changes before the rewards’ distribution.
Specifically, before a reward for stock, the price goes up; before a reward for cash, the price goes down. This could be
explained: when a signal of holding stock is sent to the traders, they tend to hold more units of stock. As a result, more
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Fig. 9. Cumulative distribution functions (CDFs) of the normalized return: (a) the negative tails of the experiments and (b) the positive tails of the
experiments. Symbols of squares and circles denote the results obtained from the first and second round of experiments, respectively. Here the negative
tails in (a) denote the CDF (<0.064) of the absolute value of negative normalized returns, and the positive tails in (b) denote the CDF (<0.071) of the value
of positive normalized returns. In (a) or (b), ‘‘Slope’’ denotes the slope of the corresponding green dashed line.
Source: Adapted from Ref. [57].

buy orders will come to the order book and pull up the price, and vice visa. However, if one buy the stock in a price much
higher than the present price, he will gain less profit in this turn of reward. Thus the price will not go up infinitely. The same
theory works for the case of rewards for cash. Because traders have different strategies and prediction of the future event,
plus our forecast is not accurate, different traders have different responses to the news. This mechanism provides liquidity
to our markets. Fig. 8(c)–(d) show the trading volume series. It is observed that there are trading constantly all the time.

Fig. 8(e)–(f) show the return series of the two rounds of experiments. It is easy to recognize that there are clusters in the
return series; this is distinctly different from Gaussian random series. So we analyze the return series’ statistical properties.
In order to compare the data from the two rounds clearly, the normalized return, g(t), is used,

g(t) =
r(t) − ⟨r⟩

σ(r)
. (2)

Here ⟨· · ·⟩denotes the average of time series · · ·, andσ(· · ·)means the standard deviation of · · ·.We calculate the cumulative
distribution function (CDF) of the first and second round, respectively. Since the returns distribute symmetrically around
zero, we respectively calculate the positive returns and negative returns and put them in Fig. 9 for comparison. For the two
rounds (Fig. 9), the negative and positive tails share almost the same CDF. Further, in the log–log plot all the four tails have
a particular region that is approximated by a straight line. Clearly this behavior is the evidence of scaling, and meets the
statistical analysis of many real stock markets [39].

The autocorrelation function is another important feature of the return series [40]. If x(t) is a time series, the autocorre-
lation function, C(∆T ), is defined as

C(∆T ) =
⟨(X−∆T − ⟨X−∆T ⟩)(X∆T − ⟨X∆T ⟩)⟩

√
σ(X−∆T )σ (X∆T )

, (3)

where X−∆T is the series with the last elements removed and X∆T with the first elements removed. ⟨X⟩ denotes the average
of X and σ(X) the standard deviation. Our calculations of g(t) confirm the existence of short negative correlation (less than
20 s or so) on both rounds of experiments [as indicated by the green dashed line in Fig. 10(a)], which shows our laboratory
market is similar to the real developed stock markets [59]. The short time correlation also fits the refreshing time of our
order book information (15 s). We also calculate the autocorrelation of absolute normalized return, |g(t)|, and find that the
correlation lasts much longer than 20 s [see Fig. 10(b)]. This result confirms the volatility clustering behavior in our market,
and echoes with many other articles, for example, see Refs. [43,59]. In addition, if we compare the two rounds, we can
conclude that in the present market, the initial wealth distribution has little influence on the statistical properties of return.

3.3.2. Human behavior dynamics
Our market experiments also give us an opportunity to study human behavior dynamics. In 2005, Barabási et al.

analyzed the letters of Darwin and Einstein; they found that bothDarwin’s/Einstein’s patterns of correspondence and today’s
electronic exchanges follow the same scaling laws [60]. And they use an agent-based model to explain the origin of this
scaling [61]. Here we turn our eyes to the waiting time of traders’ actions. We define two kinds of waiting time, the stock
waiting time and the trader waiting time. The stock waiting time describes the gaps between which two different orders
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Fig. 10. Autocorrelation function of (a) normalized return series, g(t), and (b) absolute normalized return series, |g(t)|, for Round 1 and Round 2. In (a),
the green dashed line indicates the transition point. Details can be found in the text.
Source: Adapted from Ref. [57].

Fig. 11. Demonstration of the definition of waiting time. The axis represents the time. Assume our market has only two traders, the first trader’s orders
are marked with down arrows, and the second trader’s orders are marked with up arrows. The stock waiting time is shown by the gaps between each pair
of nearby slash lines, and the trader waiting time is indicated by the gaps between each pair of nearby down arrows and the gaps between each pair of
nearby up arrows.
Source: Adapted from Ref. [57].

are posted, see Fig. 11. We put all the orders from all the traders together, sort them by time, and calculate the time gaps
between two successive orders. While the stock waiting time is to focus on the collective behavior of a group, by defining
the trader waiting timewe try focusing on the decision-making processes of individuals. For the trader waiting time, we put
orders from different traders in different piles, sort them respectively, and then calculates the gaps. This is because for any
particular trader she/he only has tens of orders, this is insufficient for statistical analysis. Instead, if we are looking into the
rules that work across the crowds, we could put all the gaps together, thus we get thousands of data. This method has been
used in the literature on human behavior dynamics [62,63].

The probability density function (PDF) is calculated; see Fig. 12. Fig. 12(a) demonstrates the PDF of stock waiting time in
a log plot graph. The data points obviously locate in a straight line, whichmeans the stock waiting time obey an exponential
distribution [61]. This is because the traders have little interactions when submitting orders, their actions can be seen as
independently decisions and overall exhibit a random-like behavior. However, in Fig. 12(b), we could find the trader waiting
time is quite different. The PDF in a log–log plot forms a straight line for the gaps that are shorter than 100 s, and the tail of
the PDF drops blow the line when the gap is longer than 100 s. In the previous literature, Barabási showed that the power-
law distribution of waiting timemay come from a priority queuing system [61]. In ourmarket, when traders make decisions
on whether he/she should submit an order, there is no obvious use of a task queue. So the origin of power law in trader
waiting time may contain some other mechanism. The turning point from which the PDF’s tail drops from the straight line
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Fig. 12. Probability density functions (PDFs) of waiting times: (a) the stock waiting time and (b) the trader waiting time. Symbols of squares and circles
denote the first and second round of experiments, respectively. In (a) or (b), ‘‘Slope’’ denotes the slope of the corresponding green dashed line.
Source: Adapted from Ref. [57].

fits our rewarding time gaps in magnitude. We suspect that the tail of PDFmay present the effect of our exogenous rewards.
Those news breaks the traders original decision making process. For example, if there is no news in the market, a trader
might trade every 20 min; however, if there are periodic news every few minutes, he/she is likely to respond according to
the news. Therefore, the gap of 20 min will no longer exist. In a word, we believe the lack of long waiting time causes the
fall of the tail in Fig. 12(b).

3.4. Concluding remarks

In contrast to the existing laboratory markets where trading time was set to be discrete [21,64,65,53–56,58], we have
designed a double-auction stock-trading market where trading time is continuous. We have run two experiments in
laboratory with human subjects and found that the initial outputs of the market fit some existing stylized facts (clustering
effects and scaling behaviors). Besides, we have analyzed the orders and discovered some scaling laws in human behavior
dynamics. Our laboratory market still has some weak points. For example, the traders of our experiments are all university
students, and there might be differences if we choose different groups of traders beyond university students. However, as a
model market, it is easy for us to change different control parameters or add more extensions. Thus this market is expected
to produce more results in future researches, such as, on either the effect of leverage [66,67] or the birth of bubbles. The
market and its output might also help modelers to mimic human behaviors in a more precise and realistic way. Section 3
shows a way to study real stock markets by conducting controlled experiments on laboratory stock markets producing high
frequency data.

4. Herd behavior

Section 3 has discussed some fluctuation phenomena in laboratory stock markets, namely, overall fluctuations and
extremely big fluctuations. In reality, the latter may lead to crises. It seems to be a common knowledge that crises always
originate from herd behavior of human beings (see for example Ref. [68]). Clearly this common knowledge displays the
ruinous role of herd behavior. The aim of Section 4 is to show the different roles of herd behavior.

Most of the social, ecological, and biological systems that involve a large number of interacting agents can be seen as
complex adaptive systems (CASs), since they are characterized by a high degree of adaptive capacities to the changing
environment. Their dynamics and collective behaviors have attracted much attention among physical scientists [69–72,50].
In order to survive, self-serving agents in these CASs must compete against others for limited resources with biased
or unbiased distribution by conducting strategic behaviors. This can globally result in balanced or unbalanced resource
allocation. Examples of such phenomena evolves many species like human beings. For instance, drivers select different
traffic routes, people bet on horse racing with odds, and so on. In general, the allocation of the resources in a CAS could
reach a balanced state due to the preferences and decision making ability of agents, as revealed by investigating a biasedly
distributed resource allocation problem [21]. In practice, however, it will sometimes fail to reach the balanced state. For this,
one important reason is due to the formation of a herd. In fact, herding extensively exists in collective behaviors of many
species in CASs, including human beings. Though human decisions are basically made according to individual thinking,
people tend to pay heed to what others are doing, emulate successful persons, or those of higher status, and thus follow
the current trend. For example, young girls often copy the clothing style of some famous stars named as trendsetters in
the fashion world. Similarly, researchers would rather choose to work on a topic that is currently hot in the scientific
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society. As a result, large numbers of people may act in concert, and this unplanned formation of crowds is called herd
behavior [73]. Locally, for an individual agent, herd behavior may suggest either irrationality [74,75] or rationality [76–78],
with an implication that herding can ruin the balance of the whole resource-allocation system by causing excess volatility.
Accordingly, herd behavior is commonly seen as a tailor-made cause for explaining bubbles and crashes in a CAS with the
existence of extremely high volatility. But is this ‘‘common sense’’ always right? Based on results of this study, we argue
that herd behavior should not be labeled like the killer all the time. Here we focus on the effect of herding on the whole CAS
for resource allocation, because it is most important for as many agents (involving human beings) as possible to survive in
various kinds of CASs like social, ecological or biological systems. As a result, we shall not study or consider the details on
how to reach a herd through contagion and/or imitating because our results are not dependent on the process of herding
formation.

4.1. Controlled experiments

To model the realistic huge systems of resource allocation including the effects of herding, we design and conduct a
series of computer-aided human experiments, on the basis of the resource-allocation system [21,7,79], in order to study the
necessary conditions for a CAS to reach the ideal balanced state. Using this kind of experimental settings will allow us to
investigate the herd behavior in a well regulated abstract system for resource allocation, which reflects the fundamental
characteristics of many CASs [31,80,81]. Human subjects of the resource-allocation experiment were students recruited
from several departments of Fudan University. Before the start of experiments, a leaflet (as shown in Part I of the Appendix
of Ref. [64]) was provided which explains configurations of the experiment and actions of the subjects. There are two rooms
(Room1 andRoom2) and the amounts of resource in these two rooms areM1 andM2 (6 M1), respectively. As the experiment
evolves, M1 and M2 are kept fixed and unknown to all the subjects. For each experiment round, each subject has to choose
one of the two rooms to enter. Those who go into the same room should share alike the virtual resource (M1 or M2) in it.
Apart from human subjects, there are also imitating agents joining the experiment. All the imitating agents are generated
by a computer program, since their decisions are simply made by mimicking human subjects’ behaviors. In particular, each
imitating agent will randomly select a new group (of size 5) of human subjects at every experiment round, and then follow
the choice of the best subject (who has the highest score) in the group for the next round. In each round of the experiment,
the number of human subjects and imitating agents in Room 1 is denoted as N1 and the number in Room 2 as N2. Therefore
the total number of human subjects and imitating agents can be counted as N = N1 + N2. The human subjects or imitating
agentswho earnedmore than the global average (M1+M2)/N are regarded aswinners of the round, and the roomwhich the
winners had entered as the winning room. The total number of human subjects or imitating agents can also be expressed as
N = Nn + Nm. Here Nn is the total number of human subjects who make decisions by their own, and Nm is the total number
of imitating agents who do not have their own ideas. The ratio between imitating agents and human subjects is defined as
β = Nm/Nn. More details about the experiment can be found in Part II of the Appendix of Ref. [64].

The resource-allocation experiments are conducted repeatedly with different values of M1/M2 and β . The modeled
system is designed as an open system in which the number of human subjects Nn is fixed while the number of imitating
agents Nm is increased in an implicit manner. As shown in the previous study [21], the heterogeneity of preferences is an
indispensable factor for the whole system to reach the balanced state. Hence the preferences of human subjects need to be
checked under the influence of imitating agents. For a human subject in the experiment, his/her preference is evaluated as
the average rate that he/she chooses to enter Room 1. Preferences of the 44 subjects are plotted in Fig. 13 with different
M1/M2 s and/or β s. Fig. 13(a) shows the preferences of human subjects when M1/M2 = 1 and the imitating agents
are absent. Distinctions among the preferences of human subjects can be easily identified. For example, the 4th subject is
strongly partial to entering Room 2while the 6th subject prefers Room 1muchmore. It can be found in Fig. 13(b,c), that the
human subjects still have diverse preferences even when M1 becomes much larger than M2. In addition, the heterogeneity
of preferences remains even for the cases in which Nm(= Nn/2) imitating agents are involved; see Fig. 13(g–i). Despite of
this heterogeneity, the average of subjects’ preferences changes along with M1/M2. In other words, human subjects have
the ability to adapt themselves to fit the environment.

Comparisons of the distributions of human subjects’ preferences, as the resource distribution M1/M2 is varied and/or
the imitating agents are involved, are shown in Fig. 13(d–f,j–l). From Fig. 13(d,e), one can find that when M1/M2 is not so
biased, human subjects alone can do the analysis of the system so well that they can make the whole system reach the
balanced state. Note that the preference distribution has a peak at 0.5 in Fig. 13(d) and the subjects’ preferences are mainly
distributed around0.75 in Fig. 13(e). Both of the twoobservations can be deduced from the resource distribution,M1/M2 = 1
and M1/M2 = 3. When the imitating agents are involved, however, the two preference distributions have some changes in
Fig. 13(j,k). In particular, the peak almost disappears in Fig. 13(j) and the mean value of subjects’ preference deviates from
the resource distribution bias in Fig. 13(k). A possible reason for these changes can be inferred as that human subjects may
get confused by the behavior of imitating agents. Hence in this case the herd (which is formed by imitating agents) indeed
disturbs the system and weakens the analyzing ability of human subjects. Things are different ifM1/M2 gets even larger, as
shown in Fig. 13(f,l). Here the involvement of imitating agents does not bring much change to the preference distribution of
human subjects. One may say that, in this case, herd behavior has no harmful effect on the analyzing ability of the human
subjects. Finally, it is interesting to note from the same figure, that a minority of human subjects with preference to Room
2 can stay alive even in a highly biased system (M1/M2 ≫ 1) when the imitating agents exist.
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Fig. 13. Data obtained from the human experiment. (a–c,g–i) Preferences of the 44 subjects in sequence to Room 1 for the cases (a–c) without and (g–i)
with imitating agents, β = rm(a − −c)0 and (g–i) 0.5, for the resource distributions M1/M2 = (a, g) 1, (b,h) 3, and (c,i) 20. Here, ‘‘Mean’’ denotes the
average value of the preferences of the 44 subjects. (d–f,j–l) Distribution of the 44 subjects’ preferences.
Source: Adapted from Ref. [64].

To evaluate the performance of thewhole system,we have calculated efficiency (which, herein, only describes the degree
of balance of resource allocation), stability, and predictability of the resource-allocation system. The efficiency of the whole
system can be defined as e = |⟨N1⟩/⟨N2⟩ − M1/M2|/(M1/M2). A smaller e means a higher efficiency in the allocation of
resources. The stability of the resource-allocation system can be described as σ 2/N ≡

1
2N

2
i=1⟨(Ni − Ñi)

2
⟩, where ⟨A⟩

denotes the average of time series A. This definition describes the fluctuation (volatility) in the room population away from
the balanced state, where the optimal room populations Ñi = MiN/


Mi can be realized. The predictability of the system

is measured by the ‘‘uniformity’’ of the winning rates in different rooms. The winning rate in Room 1 is denoted as w1. It is
obvious that if w1 is close to 0.5, choices of the two rooms are symmetrical and the system is unpredictable. If the winning
rate were too biased, smart subjects should be able to predict the next winning room in the experiment. As shown in Fig. 14,
whenM1/M2 is small (M1/M2 = 1 or 3), adding some imitating agents will lower the efficiency and cause large fluctuations.
On the other hand, when M1/M2 gets even larger (M1/M2 = 20), the formation of herd can improve the efficiency, the
stability, and the unpredictability of the resource-allocation system.

4.2. Agent-based modeling

An agent-basedmodel is developed in order to fully understand the preceding experimental results. Consider a situation
where N agents repeatedly join a resource-allocation system. Among these agents, there are Nn normal agents (which
correspond to human subjects in the preceding experiments) andNm imitating agents, so that the total number of agents can
be calculated as N = Nn + Nm. To play in the resource-allocation system, each normal agent will take S strategies from the
full strategy space and compose a strategy book. A strategy for the resource-allocation experiment is typically a choice table
which consists of two columns. The left column is for the P possible situations, and the right column is filled with bits of 0 or
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Fig. 14. Experimental results for (a) efficiency e, (b) stability σ 2/N , and (c) predictability w1 of the modeled resource-allocation system, with human
subjects Nn = 50. β = 0 and 0.5 correspond to imitating agents Nm = 0 and 25, respectively. Each experiment lasts for 30 rounds.
Source: Adapted from Ref. [64].

1. Bit 1 is linked to the choice for the entrance of Room1, while bit 0 to that of Room2. In the strategy book of a normal agent,
strategies differ from each other in the preference, which is defined as an integer L (0 ≤ L ≤ P). To model the heterogeneity
of preference, let the normal agent pick up a preference number L first. Then each element of the strategy’s right column is
filled in by 1 with the probability L/P , and by 0 with the probability (P − L)/P (more detailed explanations can be found
in Part III of the Appendix of Ref. [64]). The process will be repeated S times, each time with a randomly chosen L for each
normal agent to complete the construction of its strategy book. From the start of the resource-allocation experiment, each
normal agent will score all the strategies in its strategy book so as to evaluate how successful they are to predict thewinning
room. Following the hitherto best performing strategy in their strategy books, normal agents are enabled tomake decision to
enter one of the two rooms, once the current situation is randomly given.1 Imitating agents in themodel behave in a different
way during the process of decision making. Before each round of the play starts, each imitating agent will randomly select
a group of k (1 ≤ k ≤ Nn) normal agents.2 Within this group, the imitating agent will find the normal agent who has the
best performance so far and imitate its behavior in the following experiment round. It is assumed that the imitating agents
know neither the historical record of the winning room nor the details of strategy books of other group members. The only
information for them to access is the performance of the normal agents, that is, the virtual money that these normal agents
have earned from the beginning of the experiment. If the number of imitating agents Nm kept increasing, there would be
more and more positive correlations among agents’ decisions, which would trigger the formation of a herd in the system.

4.3. Simulation results

Agent-based simulations are carried out in an open system condition, in reference to the experiments. (Please refer to Part
IV of the Appendix of Ref. [64] to see the results for a closed system.) Following the analysis of experimental results, we first
investigate the simulation results for the preferences of normal agents. Clearly, Fig. 15 shows distributions of the preferences
similar to those shown in Fig. 13. The qualitative agreement indicates that our agent-basedmodeling has taken into account
the heterogeneity of preferenceswith a reasonablemodeling of the decisionmaking process for the human subjects. (Wehad
also investigated the preferences of normal agents in an alternative way by analyzing the Shannon information entropy; see
Part V of the Appendix of Ref. [64].) Next, efficiency, stability, and predictability of the whole modeled system are calculated
according to the definitions made in the experimental study. The change of system behavior along with the variation of
the resource ratio M1/M2 is shown in Fig. 16. Differently colored symbols in the figure represent results obtained under
different values of β . As shown in Fig. 16(a), when the resource distribution is comparable (M1/M2 ≈ 1), the averaged
population ratio ⟨N1⟩/⟨N2⟩ can always be in concert with M1/M2 no matter imitating agents are involved or not. On the
other hand, as the resource distribution gets more andmore biased (M1/M2 increases), surprisingly the whole system tends
to reach the balanced state only if more imitating agents (larger β) join the system. Fig. 16(b) shows the change of efficiency
of the resource-allocation system. The tendency is that when the resource ratio gets more biased, a larger size of herd is
needed to realize a higher efficiency of the resource distribution. From both the sub-figures, the so-called ‘‘M1/M2 phase
transition’’ [21], whereM1/M2 plays the role of control parameter, can also be identified. As shown in Fig. 16(c), the increase
of the number of imitating agents will cause larger fluctuations in the low M1/M2 region. However, as M1/M2 increases,
more imitating agents can yield higher stability of the resource-allocation systems. Comparing system behaviors for the
cases of β = 0 and β ≠ 0, the M1/M2 phase transition also indicates the change of role for the herd behavior, namely,
from a ruinous herd into a helpful herd. It is clear that the critical point of theM1/M2 phase transitions get larger when the
number of imitating agents increases. Denoted as (M1/M2)c hereafter, the critical point refers to theM1/M2 valuewhere the

1 Here the situation is not the history of winning rooms. Broadly speaking, it can be explained as a mixture of endogenous and exogenous system
information. Results obtained with the real history bit-strings have no essential difference with the current study, though the use of random information
makes the theoretical analysis easier.
2 This corresponds to the case of primary imitators. In fact, in the real system, there might exist multi-level imitations where some imitators can copy

other imitators’ behavior. Similar conclusions could be achieved.
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Fig. 15. Simulation results obtained from the agent-based simulations. (a–c,g–i) Preferences of the 50 normal agents to Room 1 for the cases (a–c) without
(β = 0) and (g–i) with (β = 0.5) imitating agents, and for the resource distributions M1/M2 = (a, g) 1, (b,h) 3, and (c,i) 20. We have run the simulations
for 200 times, each over 400 time steps (first half for equilibration, the remaining half for statistics). (a–c,g–i) are typical results of one of the 200 runs. In
(a–c,g–i), ‘‘Mean’’ denotes the mean value of the preferences of the 50 normal agents. (d–f,j–l) Distribution of the 50 normal agents’ preferences. Note that
(d–f,j–l) are obtained from the average over the 200 runs, and also the ‘‘Mean’’ in (d–f,j–l) denotes this average. Simulation parameters: S = 4, P = 16,
and Nn = 50.
Source: Adapted from Ref. [64].

minimum is achieved. This definition together with the mechanism for the increase of (M1/M2)c will be further discussed
in the theoretical analysis of the model. Finally, the effect of herd behavior on the predictability of the resource-allocation
system is shown in Fig. 16(d). When more imitating agents are introduced to the system for large M1/M2, the prediction
of the next winning room becomes more difficult as winning rates for the two rooms are more symmetric. Notice that the
system behavior under various conditions found herein by the agent-based simulations echoes with the observations in the
experiment.

We summarize the simulation results here and make some more comments to emphasize the significance of findings in
our study. The performance of the resource-allocation system consisting of normal agents or human subjects with the full
decision-making ability is, in some cases, inferior to those including imitating agents (who form the herd). This might seem
questionable at first sight. In particular, it may be argued that the failure to reach the balanced resource allocation for large
M1/M2 when β = 0 is only due to the relatively small population of the normal agents. However, it has been proved in the
theoretical analysis (see the equation for the population in the next section) and the agent-based simulation of resource-
allocation systems [21] that the total number of agents is indeed not a key factor. When the resource distribution is not
biased so much, the normal agents can play pretty well so that the resource-allocation system behaves in a healthy manner
(efficient or balanced, stable and unpredictable). In such kind of situations, adding imitating agents will only bring about a
‘‘crowded system’’ in which larger fluctuations (volatility) turn up. In this respect, our study shares some common features
with the Binary-Agent-Resource model [82,83]. In particular, the ‘‘crowd effect’’ has been observed in these models and the
inclusion of imitating agents in our model can be explained as a special kind of networking effects. Only if the resource
distribution becomes so biased that most of the normal agents cannot completely solve the decision-making problem by
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Fig. 16. (a) ⟨N1⟩/⟨N2⟩, (b) e, (c) σ 2/N , and (d) w1 as a function ofM1/M2 , for an open system in the agent-based simulations. Parameters: Nn = 50, S = 4,
P = 16, k = 5, and β = 0, 0.5, 1.0, and 2.0. For each parameter set, simulations are run for 200 times, each over 400 time steps (first half for equilibration,
the remaining half for statistics). In (a), ‘‘slope = 1’’ denotes the straight line with slope being 1.
Source: Adapted from Ref. [64].

referencing their strategy books, adding the imitating agents could become a helpful factor in consuming the remained
arbitrage opportunities in the system. This explains the reason why the herd behavior in the resource-allocation system can
effectively help the system to realize the balanced state and reduce instability and predictability in the mean time.

4.4. Theoretical analysis

To further understand the underlying mechanism for these phenomena, we also conduct theoretical analysis by deriving
the critical points (M1/M2)c for the M1/M2 phase transition identified in the agent-based simulations. (For the details of
derivation, please refer to Part III of the Appendix of Ref. [64].) As a result of the theoretical analysis, the maximum of
population ratio in Room 1 ⟨R1(=N1/N)⟩max can be obtained under the condition M1 ≥ M2. It reads as the following (the
meaning of the symbols can also be found in Part III of the Appendix of Ref. [64]),

⟨R1⟩max = 1 −
1

(β + 1)P

P
L̃=1

 L̃
P + 1

s

+ β


L̃

P + 1

ks
 ,

where L̃ stands for the preference of a normal agent’s strategy. If ⟨R1⟩max = M1/(M1 +M2), the system can fluctuate around
the balanced state. Otherwise, the system can never reach the balanced state. Then some insightful comments can be added:
• The state of the resource-allocation system depends only onM1/M2, β , k, P and S. It has no concern with Nn or Nm.
• An optimized value of β may be calculated by setting ⟨R1⟩max = M1/(M1 +M2), which couldmake the systemmost stable.
After substituting this expression into the equation for ⟨R1⟩max, we can obtain numerical solutions for the critical points
(M1/M2)c of the phase transitions. Fig. 17 shows a good agreement between the simulation results and those of theoretical
derivation for the critical points.
• It is easy to prove that ∂⟨R1⟩max/∂β > 0, which means that β and ⟨R1⟩max are positively related. When β → ∞, the
population ratio will converge to ⟨R1⟩max → 1 −

1
P

P
L̃=1(

L̃
P+1 )

ks. At this limit, the model suggested here will be equivalent
to the original resource-allocationmodelwithout the imitating agents [83], except that in this case, each agentwould occupy
kS (instead of S) strategies.

4.5. Concluding remarks

We have revealed that, if the bias between the two resourcesM1/M2 were large and is unknown to the subjects/agents, a
herd of a typical size could help the overall system to reach the optimal state, namely, the state with a minimal fluctuation,
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Fig. 17. Critical points of theM1/M2 phase transition, (M1/M2)c , varyingwith different population ratiosβ: simulation results (symbols) versus theoretical
results (line). The simulation results are obtained from the data in Fig. 16(a,c).
Source: Adapted from Ref. [64].

a high efficiency, and a relatively low predictability. The corresponding ratio between the two resources also works as the
critical point of a class of M1/M2 phase transition. The phase transition can be used to discover the role change of herd
behavior, namely from a ruinous herd to a helpful herd as the resources distribution gets more and more biased. The main
reason for this generalization could be understood as follows. When a large bias exists in the distribution of resource, the
richer room will offer more arbitrage opportunities so that it deserves to be chosen without too much deliberation. Since
imitating agents learn from the local best human subject or normal agent, the herd formed by these agents will certainly be
more oriented to the richer room. To balance a highly biased resource distribution, in fact, it correspondingly needs a suitable
number of participants who have a highly biased orientation in their choices. But every coin has two sides. Normal agents
will be confused if toomany imitating agents are involved. Because in that case, they have to estimate not only the unknown
system but also the behavior of the herd. The effect of herd behavior would become negative again under these situations.
We emphasize that these arguments are quite general. In particular they are independent of the process of herding. In Part
VI of the Appendix of Ref. [64], results of a different agent-basedmodel, in which imitating agents follow themajority of the
linked group, rather than the best normal agent, are shown. Similar results are achieved indeed.

Section 4 is also expected to be important to some fields, ranging from management and social science, to ecology and
evolution, and to physics. Inmanagement and social science, administrators should not only conduct riskmanagement after
the formation of herd, but also need to consider system environment and timing to see whether the herd is globally helpful
or not. In ecology and evolution, it is not only necessary to study the mechanism of herd formation as usual, but also to pay
more attention to the effect of herding on the whole ecological system and/or evolution groups. For physics, Section 4 not
only presents the existence of phase transition in such a complex adaptive system, but also proposes a new equilibrium
theory. Namely, in the presence of symmetry breaking, a complex adaptive system is likely to reach the equilibrium state
only through cluster performance after the elements that construct the system form typically sized clusters.

5. Contrarian behavior

In Section 4, I have introduced the role of herd behavior. Here ‘‘herd behavior’’ means following majority. In Section 5,
I want to raise and answer a connected question: what if one follows minority, instead of majority? Following minority
actually corresponds to contrarian behavior, the inverse behavior of herd.

For engaging in competitions for sharing resources, agents in complex adaptive systems (CASs) often utilize various
kinds of strategic behaviors, one of which is contrarian behavior. Contrarian behavior means figuring out what the herd is
doing, and doing the opposite [84]. Contrarian behavior can be regarded as a kind of self-organization, which is one of the
characteristicswhich distinguish CASs [85] fromother types of complex systems. To dig out the nature of contrarian behavior
is also of practical importance when one faces the relevant problems of resource allocation, say, risk evaluation and crisis
management. Thus, contrarian behavior has been an active subject of studies in various fields like finance/economics [86],
complexity science [87], and social science [88–91]. In social field, previous contrarian studies using Galam model of two
state opinion dynamics [88–90] aimed at the effect of contrarian choices on the dynamics of opinion forming, which shed
a significant light on hung elections. In Section 5, we designed to study the effect of contrarian behavior on social resource
allocation. It is a common belief that contrarian behavior always stabilizes resource allocation by shrinking the redundancy
or the lack of resources (positive role). However, is this common belief true? Here we specially raise this question because
unbiased or biased distributions of resources are everywhere in Nature where contrarians are often needed. In other words,
to comply with the real world, we need to investigate the role of contrarian behavior as the environment (which here is
defined by the ratio between two resources, namely, resource ratio) varies.

The above-mentioned CASs involving competitions of agents for various kinds of resources can be modeled as a typical
class of artificial well-regulated market-directed resource-allocation systems (simply denoted as ‘‘resource-allocation
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systems’’ in the following) [21,64], as an extension of the original minority game [7]. Such resource-allocation systems
can reflect some fundamental characteristics of the above CASs in the real world [27,7,8,21,64], say, a resource-allocation
balance emerged as a result of system efficiency [21,64]. Thus, without loss of generality, we shall investigate the role of
microscopic agents’ contrarian behavior in the macroscopic properties of the resource-allocation system. In the process, we
shall identify a class of transition points which help to distinguish the positive role (stabilizing, etc.) and the negative role
(unstabilizing, etc.) of contrarian behavior for an unbiased/a weakly biased and a strongly biased distribution of resources,
respectively. Comparing with the contrarian study by Galam [88] which also shows the transition point at a critical value
of the contrarian proportion to identify opinion group forming, here, the transition points (in Section 5) help us to reveal
that the allocation of resources can be optimized at the transition point by adding an appropriate size of contrarians which
is observed in human experiments. To proceed, based on the extensively-adopted approaches of both statistical analysis
[92,5,93,94] and agent-based modeling [7,8,21,64,1,95], we shall resort to three complementary tools: human experiments
(producing data for statistical analysis), heterogeneous-agent-based computer simulations (of agent-based modeling), and
statistical-mechanics-based theoretical analysis (of agent-based modeling).

5.1. Controlled experiments

We designed and conducted a series of computer-aided human experiments on the basis of the resource-allocation
system [27,7,8,21,64]. As revealed in [21,64], the system can reach macroscopic dynamic balance that corresponds to the
most stable state where the resources are allocated most efficiently and the total utilities of the system are maximal due
to the absence of macroscopic arbitrage opportunities. Here we add a proportion of contrarians, in order to observe how
contrarian behavior affects themacroscopic properties of the resource-allocation system. For the experiments, we recruited
171 subjects, all of which are students and teachers from several departments of Fudan University. The experiments were
conducted in a big computer laboratory, and each subject had a computer to work with. All of the subjects were given a
leaflet interpreting how the experiment would be performed before the experiment started. In the computer-aided online
experiment, there are two virtual rooms: Room 1 and Room 2. Each room owns a certain amount of resources marked
as M1 or M2 accordingly. The subjects do not know the exact resource ratio, M1/M2, at every experimental round. In the
experiment, any kind of communication is not allowed, and every subject chooses to enter Room 1 or Room 2 independently
to share the resources in it. Meanwhile, the computer program secretly adds contrarians into the system whose behaviors
are controlled by the following settings. In every round of the experiment, each contrarian randomly chooses 5 subjects as
his/her group. And then the contrarian will choose to enter the less-entered room according to the group. For example, if
most of the subjects in a contrarian’s group choose to enter Room 1, the contrarian will choose to enter Room 2. The total
number of the subjects and the contrarians entering Room 1 and Room 2 are denoted as N1 and N2, respectively. After every
experimental round, if M1/N1 > M2/N2, we say Room 1 (or Room 2) is the winning (or losing) room, because the subjects
and contrarians entering Room 1 obtain more resources per capita, and vice versa. The subjects in the winning roomwill be
granted 10 scores, and those in the losing roomwill be given 0 score. The final rewards are based on the scores each subject
obtains in all the experimental rounds according to the exchange rate: 10 scores = 1 Chinese Renminbi. Besides, we will
pay every subject 30 Chinese Renminbi as the attendance fee, and reward the top 10 subjects (having the highest scores),
each with extra 100 Chinese Renminbi. More details are explained in the Appendix of Ref. [65].

In the experiment, we adjusted two parameters: one is the resource ratio,M1/M2, and the other is the ratio between the
number of contrarians and subjects, βc . 30 experimental rounds were repeated under each parameter set: M1/M2 and βc .
Let us denote the number of subjects as Nn and the number of contrarians as Nc , thus yielding βc = Nc/Nn. In addition, the
total number of all the subjects and contrarians is N = Nn + Nc = N1 + N2.

The experiment was conducted in two successive days: 88 subjects on the first day and 83 on the second day. The
different number or different subjects show no influence on the results of the experiment. The experimental results are
shown in Fig. 18 where ⟨N1⟩/⟨N2⟩ is plotted as a function of M1/M2. When the distribution of resources is weakly biased
up to M1/M2 = 3, the experimental results of ⟨N1⟩/⟨N2⟩ are approximately located on the line with slope = 1 for the
three values of βc . In such cases, the system reaches dynamic balance at which the total utilities of the system are maximal
due to the elimination of the macroscopic arbitrage opportunities. Nevertheless, for the strongly biased resource ratio, say
M1/M2 = 10, the balance is broken as shown by the three experimental values that deviate far from the ‘‘slope = 1’’ line. In
other words, as the resource ratio is unbiased or weakly biased, adding a small proportion of contrarians does not hurt the
system balance. In contrast, as the resource ratio is biased enough, the contrarians of the same proportion break the balance
instead.

Then, we analyze the experimental results from both individual and overall aspects of preference. As we know, different
individuals have different preferences to a resource, which reflects heterogeneity of preferences. The heterogeneity has
a remarkable influence on achieving the balance of the system. Here, the preference of each subject is defined as his/her
average rate of entering Room 1 in the 30 rounds of experiments. The statistical results are shown in Fig. 19. Fig. 19(a)
shows the result forM1/M2 = 1 and βc = 0. The preferences of the subjects are different albeit of the unbiased distribution
of the two resources,M1/M2 = 1. We see that the third subject preferred Room 1 while the second subject preferred Room
2. Such heterogeneity of preferences remains after introducing contrarians in Fig. 19(b–c). As for the larger resource ratios in
Fig. 19(d–f) and Fig. 19(g–i), the subjects still have different preferences. However, the average preference of all the subjects
varies withM1/M2, which illustrates the environmental adaptability of the subjects.
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Fig. 18. Population ratio, ⟨N1⟩/⟨N2⟩, as a function of resource ratio, M1/M2 . The line with ‘‘slope = 1’’ indicates the balance state where ⟨N1⟩/⟨N2⟩ =

M1/M2 . Each experiment lasts for 30 rounds (the first 6 rounds for equilibration and the last 24 rounds for statistics). Simulations are run for 400 time
steps (the last 200 time steps for statistics and the first 200 time steps for equilibration). In (a), the number of normal agents in simulations is 100. In (b),
the numbers of normal agents are respectively 1000, 83, and 88. ⟨· · ·⟩ denotes the average over the last 24 rounds for the experiment or the last 200 time
steps for the simulations. The three experimental data atM1/M2 = 1 are overlapped. Parameters for the simulations: S = 8 and P = 64.
Source: Adapted from Ref. [65].

Fig. 19. Experimental data of the preference of each subject to Room 1 for the nine parameter sets withM1/M2 = 1 (a–c), 3 (d–e), and 10 (g–i) and βc = 0
(a, d, g), 0.1 (b, e, h), and 0.3 (c, f, i). For each parameter set, the experiment lasts for 30 rounds (the first 6 rounds for equilibration and the last 24 rounds
for statistics). In the figure, ‘‘Mean’’ denotes the average preference of all the subjects.
Source: Adapted from Ref. [65].

Next, in order to clearly observe the influence of contrarians on the macroscopic system, we calculated the stability of
the system, f =

1
2N

2
i=1⟨(Ni − Ñi)

2
⟩ [21], where ⟨· · ·⟩ denotes the average of time series · · ·. This definition describes the

fluctuation in the roompopulation away from the balance state atwhich the optimal roompopulation, Ñi = MiN/(M1+M2),
can be realized. Clearly, the smaller value of f is, the closer the system approaches to the dynamic stability. Fig. 20(a)
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Fig. 20. Experimental data for (a) stability f , (b) efficiency e, and (c) predictability w1 at M1/M2 = 1, 3, and 10. Each experiment lasts for 30 rounds (the
first 6 rounds for equilibration and the last 24 rounds for statistics).
Source: Adapted from Ref. [65].

displays that, for small M1/M2, the fluctuations of the system decrease after introducing contrarians. Namely, the system
becomes more stable. However, for large M1/M2, adding contrarians makes the system more unstable. Thus, we generally
conclude that M1/M2 has a threshold, which distinguishes the different role of contrarians in the stability of the system.
This experimental phenomenon will be further interpreted in the following part of computer simulations and theoretical
analysis about transition points.

To further evaluate the performance of the overall system, we have also calculated the efficiency and the predictability
of the resource-allocation system. Here, the efficiency is defined as e =

 ⟨N1⟩
⟨N2⟩

− M1/M2

 /(M1/M2) [21]. Evidently, a larger
value of e means a lower efficiency of resource allocation, and vice versa. Fig. 20(b) shows the change of e when adding
contrarians into the experiment.WhenM1/M2 is 1 or 3, the adding of contrariansmakes the resource-allocation systemmore
efficient. However, for M1/M2 = 10, the presence of contrarians reduces the efficiency. Fig. 20(c) shows the predictability
of the system which is represented by the winning rate of Room 1, w1 [64]. Note w1 = 0.5 means the winning rate is the
same for both Room 1 and Room 2, which is hard for the subjects to predict. If w1 deviates from 0.5, the winning rate of one
room is higher than the other, so the subjects can predict the results easily. According to Fig. 20(c), when M1/M2 = 1, the
winning ratew1 fluctuates around 0.5 whichmeans it is hard to do the prediction. But ifM1/M2 becomes larger, the subjects
are easy to predict the winning room for the next round especially when enough contrarians are added.

5.2. Agent-based modeling

Clearly the above experiment has some unavoidable limitations: specific time, specific experiment avenue (a computer
room in Fudan University), specific subjects (students and teachers of Fudan University), and the limited number of subjects.
Nowwe are obliged to extend the experimental results (Figs. 18–20) beyond such limitations. For this purpose, we establish
an agent-based model on the basis of the resource-allocation system. In this model, we denote Nn as normal agents and
Nc as contrarians. Normal agents correspond to the subjects in the experiment and each of them decides to enter one
of the two rooms using their strategy table which is the same as the one designed in the agent-based model of market-
directed resource-allocation game [21,64]. Particularly, the table of a strategy is constructed by two columns. The left column
represents P potential situations and the right column is filled with 0 and 1 according to the integer, L, which characterizes
the heterogeneity in the decision-making of normal agents. For a certain value of L, (L ∈ [0, P]), there is a probability of L/P
to be 1 in the right column of the table and a probability of (P − L)/P to be 0. Here 0 and 1 represent entering Room 2 and
Room 1, respectively. At each time step, normal agents choose to enter a room according to the right column of the strategy
tables directed by the given situation Pi, (Pi ∈ [1, P]). Before the simulation starts, every normal agent will randomly choose
S strategy tables, each determined by an L. At the end of every time step, each normal agent will score the S strategy tables
by adding 1 (or 0) score if the strategy table predicts correctly (or incorrectly). Then, the strategy table with the highest score
will be used for the next time step. In addition, because contrarians have no strategy tables, their behavior is set to be the
same as that already adopted in the experiment.

5.3. Simulation results

For the computer simulations, we use 100 normal agents and set S = 8 and P = 64. The result of ⟨N1⟩/⟨N2⟩ versusM1/M2
is shown in Fig. 18(a). Clearly, qualitative agreement between experiments and simulations is displayed. In order to confirm
this result, we conduct more simulations with different numbers of normal agents to compare with experimental results,
which are shown in Fig. 18(b). We choose to use 83 and 88 normal agents which are consistent with experiments, and 1000
normal agents which represent the case of a remarkable different size. Comparing the different simulations in Fig. 18(a) and
(b), their results show no qualitative differences though the number of normal agents varies. Therefore, we can say that the
number of agents has no influence on our simulation results. This means that the experimental results reported in Fig. 18
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Fig. 21. Simulation data of the preference of each normal agent to Room 1 for the nine parameter sets with M1/M2 = 1 (a–c), 3 (d–e), and 10 (f–i) and
βc = 0 (a, d, g), 0.1 (b, e, h), and 0.3 (c, f, i). For each parameter set, simulations are run for 400 time steps (the last 200 time steps for statistics and the first
200 time steps for equilibration). In the figure, ‘‘Mean’’ denotes the average preference of the 100 normal agents.
Source: Adapted from Ref. [65].

are general (at least to some extent), being beyond the above-mentioned experimental limitations. Thus, we are confident
to do more simulations in the following. For convenience, we use 100 normal agents in the remainder of Section 5.

In order to compare with the experiment, the preferences of 100 normal agents are also calculated; see Fig. 21. The
simulation results are very similar to the experimental results in Fig. 19. That is, normal agents also show the heterogeneity
of preferences and the environmental adaptability.

Then we are in a position to scrutinize the role of contrarians. To compare with the experimental results in Fig. 20, we
also calculate stability f , efficiency (e) and predictability (w1); see Fig. 22.

From Fig. 22, we find that the resource-allocation system clearly exhibits a transition point when taking M1/M2 and w1
as the tuning parameter and order parameter, respectively. This echoes with what we have reported in [64]. In the mean
time, at the transition point, (M1/M2)t , f reaches the lowest value which means the system becomes the most stable. In
details, for a small βc , increasing M1/M2 will increase the system stability until f has the minimum value at (M1/M2)t ,
which corresponds to themost stable state of the system. Once theminimum value is passed, the stability of the systemwill
worsen for larger M1/M2. The former (or the latter) is positive (or negative) role of contrarians. As for large βc , increasing
M1/M2 will always make the system more unstable (negative role). Besides, as βc increases, (M1/M2)t moves towards the
direction of decreasingM1/M2. We shall discuss the movement of (M1/M2)t in the following theoretical analysis.

Fig. 22(b) shows the simulation results for the change of systemefficiency, e.WhenM1/M2 is small, increasing contrarians
can make the system more efficient at a certain range. In contrast, for large M1/M2, adding contrarians always reduces the
efficiency. Such simulation results echo with those experimental results as shown in Fig. 20(b).

Fig. 22(c) displays the predictability of Room 1. Similarly, we can see from Fig. 22(c) that whenM1/M2 is very small (close
to 1), the winning rate of two rooms remains almost unchanged at 0.5 or so, even though βc varies. That is, in this case, the
system is unpredictable. When M1/M2 is gradually increasing, adding more contrarians will cause w1 to increase from the
value for βc = 0; namely, it becomes more easy for the agents to predict the winning room. Again, these simulation results
agree with those experimental results in Fig. 20(c).

Now,we can understand the role of contrarians in the resource-allocation system. On one hand, contrarians have positive
roles asM1/M2 is small. Namely, adding contrarians can help to not only improve the system stability, but also increase the
system efficiency while keeping the system unpredictable. On the other hand, contrarians have negative roles as M1/M2
becomes large enough. That is, adding contrarians can hurt the system stability and efficiency while making the system
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Fig. 22. βc − M1/M2 contour plots for (a) stability f , (b) efficiency e, and (c) predictability w1 . For each parameter set, simulations are run for 400 time
steps (the last 200 time steps for statistics and the first 200 time steps for equilibration).
Source: Adapted from Ref. [65].

more predictable. Both positive and negative roles have been well distinguished by identifying a transition point, (M1/M2)t .
Further, it is clear that the transition points identified herein also help to reveal that the allocation of resources can be
optimal (i.e., stable, efficient, and unpredictable) at (M1/M2)t by adding an appropriate size of contrarians.

5.4. Theoretical analysis

In order to get a better understanding of the underlying mechanics of the agent-based model, we conduct theoretical
analysis. When S and P are fixed, the system of our interest could reach the most stable state only at the transition point,
i.e., a particular ratio between the two resources,


M1
M2


t
. If we adjust the values ofβc , the transition point,


M1
M2


t
, will change

accordingly.
A. The properties of the transition point,


M1
M2


t

(a) Without contrarians: It can be proven that for the agent-based model, the transition point has two properties:
(1) every normal agent uses the strategy with the largest preference, (Li)max, in his/her hand; (2) the system is in the
balance state, which means the ratio between the numbers of agents in the two rooms is equal to the ratio between the
two resources [21]. We first define

N1 =


xi,

where the choice of agent i is denoted as xi = 1 (Room 1) or 0 (Room 2). Then, at the transition point, the expected ratio of
normal agents who chooses to enter Room 1 is

⟨N1⟩

Nn
=


⟨xi⟩
Nn

=

Nn
i
(Li)max

PNn
=


M1

M1 + M2


t

, (4)

where ⟨· · ·⟩ denotes the averaged value of · · ·. Eq. (4) shows that when M1
M1+M2

>


M1
M1+M2


t
, Room 1 will become unsatu-

rated. This means the system does not stay at the balance state.
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(b) With contrarians: From the properties of the transition point and the behavior of the contrarians, it can be shown
that, all the normal agents still use the largest-preference strategy (Li)max at the transition pointwhen contrarians are added.
Every contrarian follows the minority in his/her group to make a choice denoted as xc . Then the expected ratio of agents
(both normal agents and contrarians) who choose to enter Room 1 at the transition point becomes

⟨N1⟩

N
=

Nn
i
(Li)max + P

Nc
c

⟨xc⟩

(1 + βc)PNn
=


M1

M1 + M2


t ′

, (5)

where βc =
Nc
Nn

and


M1
M1+M2


t ′
stands for the new transition point with contrarians added.

B. Finding the expressions of
Nn

i (Li)max and
Nc

c ⟨xc⟩
(a)Without contrarians: The probability that Li takes a certain integer from the range 0 to P is 1

P+1 . Then, the probability
of (Li)max being a certain value of L is

p(L) =


L + 1
P + 1

S

−


L

P + 1

S

.

If Nn is large enough, there is

Nn
i

(Li)max =

P
L=0

Nnp(L)L = PNn


1 −

1
P

P
L=1


L

P + 1

S


, (6)

In the absence of contrarians, the substitution of Eq. (6) into Eq. (4) leads to

⟨N1⟩

Nn
= 1 −

1
P

P
L=1


L

P + 1

S

=


M1

M1 + M2


t
≡ mn , (7)

where mn represents the transition point for the system with only normal agents.
(b) With contrarians: Since the normal agents still use their strategy with (Li)max at the transition point after adding

contrarians into the resource-allocation system. Therefore, for normal agents, we have

⟨Nn1⟩

Nn
= 1 −

1
P

P
L=1


L

P + 1

S

=


M1

M1 + M2


t
≡ mn.

When contrarian c chooses k normal agents as his/her group, the probability to get a normal agent who chooses Room 1 can
be expressed approximately as ⟨Nn1⟩

Nn
=


M1

M1+M2


t
≡ mn. Then, the probability for xc = 1 (or 0) is

y
q=0

Cq
k


M1

M1 + M2


t

q  M2

M1 + M2


t

k−q

≡ mc (or 1 − mc),

where


M2
M1+M2


t
= 1 − mn, y =

k−1
2 , and k is odd. Thus, we have the average of xc , ⟨xc⟩, as

⟨xc⟩ = mc =

y
q=0

Cq
k (mn)

q(1 − mn)
k−q. (8)

Plugging Eq. (8) into Eq. (5) yields

⟨N1⟩

N
=

PNnmn + PNcmc

(1 + βc)PNn
=


M1

M1 + M2


t ′

,

and then we have

⟨N1⟩

N
=

mn + βcmc

1 + βc
=


M1

M1 + M2


t ′

. (9)

Clearly, by adjusting βc , we can change the transition point of the resource-allocation system. Fig. 23 shows the
monotonically decreasing trend of


M1
M2


t
for increasing βc , which displays an excellent agreement between theoretical

and simulation results.
In both experiments and computer simulations, we have found that when the system is in the balance state [M1/M2 <

(M1/M2)t ], the fluctuations of the system decrease after introducing a small number of contrarians. Because in both
experiments and simulations, the behavior of contrarians is set to follow the same rule, it is necessary to further analyze
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Fig. 23. Transition point (M1/M2)t versus βc , as a result of theoretical analysis (curve obtained according to Eq. (9)) and simulation (data extracted from
Fig. 22(a)). Parameters: S = 8 and P = 64.
Source: Adapted from Ref. [65].

Fig. 24. N1/N versus Nn1/Nn according to Eq. (10). The three horizontal gray dot lines are given by N1/N = 0.5, 0.75, and 0.909, which are respectively
related to the balance state of three resource ratios,M1/M2 = 1, 3, and 10.
Source: Adapted from Ref. [65].

the influence of this behavior on the stability of the whole system. Eq. (8) describes the probability of contrarians choosing
to enter Room 1 when the system reaches balance. It is known that at this balance state, the number of subjects in the
experiments (or normal agents in the simulations) choosing to enter each room still varies at every time step due to
fluctuations. Hence we replace mn in Eq. (8) with Nn1/Nn and get ⟨xc⟩ =

y
q=0 C

q
k (Nn1/Nn)

q(1 − Nn1/Nn)
k−q, where Nn1

is the number of subjects or normal agents who choose to enter Room 1, and the average of xc , ⟨xc⟩, represents the expected
probability of contrarians choosing Room1. Note that ⟨xc⟩ is a randomvariable due to the fluctuations ofNn1. Then, according
to Eq. (9), we obtain

N1

N
=

Nn1/Nn + βc⟨xc⟩
1 + βc

. (10)

By drawing N1/N versus Nn1/Nn, we achieve Fig. 24, which shows the influence of the deviations of Nn1/Nn on N1/N under
different values of βc . ForM1/M2 = 1, it is shown that the balance point of the system lies on A0 (0.5, 0.5) when βc = 0, 0.1,
0.3, and 0.5. And the deviations of Nn1/Nn can cause the system to vibrate around A0 along a certain line in Fig. 24 which is
determined by βc . Then, Fig. 24 shows that, under the same range of deviations of Nn1/Nn, by increasing βc , we can bring
down the vibration of N1/N around N1/N = 0.5. In addition, we can see from Fig. 24 that, when βc becomes too large, such
as βc = 1 or 2, A0 is no longer a stable point. The state of the system tends to move to the right end of the associated line
because nowmore subjects or normal agents choosing to enter Room 1 will make Room 1 easier to win. That is, when βc is
too large, adding more contrarians will lead the system to a more unstable state. For a biased distribution of resources, say,
M1/M2 = 3, Fig. 24 shows that the balance point of the system lies on different points for different values of βc , i.e., B0 (0.75,
0.75), B1 (0.82, 0.75), and B2 (0.97, 0.75) for βc = 0, 0.1, and 0.3. It can be shown that adding a small number of contrarians
makes the system with a biased distribution of resources more stable due to the following two reasons: (1) under the same
deviations of Nn1/Nn, the vibration of N1/N (say, around B0, B1, or B2 for M1/M2 = 3) decreases slightly when adding more
contrarians; (2)when addingmore contrarians, the values ofNn1/Nn at the balance points (e.g., B0, B1, and B2 forM1/M2 = 3)
increase; in this case, subjects or normal agents will be more certain to choose Room 1, which reduces the deviation range
of Nn1/Nn, thus decreasing the vibration of N1/N .
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5.5. Concluding remarks

In summary, using the three tools, we have investigated the role of contrarian behavior in a resource-allocation system.
In contrast to the common belief that contrarian behavior always plays a positive role in resource allocation (say, stabilizes
resource allocation by shrinking the redundancy or the lack of resources), the transition points have helped us to reveal that
the role of contrarian behavior in resource-allocation systems can be either positive (to stabilize the system, to improve
the system efficiency, and to make the system unpredictable) or negative (to unstabilize the system, to reduce the system
efficiency, and to make the system predictable) under different conditions. Further, the transition points identified herein
have also helped us to show that resource allocation can be optimized by including an appropriate size of contrarians.

Section 5 is also expected to be of value to some other fields. In management and social science, administrators should
not only conduct contrarianism when finding the formation of herd, but also need to consider system environment and
timing to see whether contrarianism is globally positive or negative. In ecology and evolution, it is not only necessary to
study the mechanism of contrarian formation, but also to pay more attention to the effect of contrarianism on the whole
ecological system and evolution groups.

6. Spontaneous cooperation

To study the collective phenomena in markets, I have introduced herd behavior and contrarian behavior in Sections 4
and 5, revealing some interesting results. In Ref. [96], the authors investigated a similar human systemwith the co-existence
of both herd behavior and contrarian behavior (called hedge behavior [96,97]), and found that the systems with different
numbers of investors could be statistically equivalent to each other. But, what if the same human system lacks either herd
behavior or contrarian behavior? The answer can be found in Section 6, where the invisible hand, coined by A. Smith (June
5, 1723–July 17, 1790) [24], can come to appear spontaneously.

As mentioned in Sections 4 and 5, most of the social, economic and biological systems involving a large number of
interacting agents can be regarded as complex adaptive systems (CAS) [85], because they are characterized by a high degree
of adaptive capacities to the changing environment. The interesting dynamics and phase behaviors of these systems have
attracted much interest of physical scientists. A number of microscopic CAS models have been proposed [98–100,80,101],
amongwhich theminority game (MG) [27,7,81] becomes a representative model. Along with the progress in the research of
econophysics [5], MG has been mostly applied to simulate one kind of CAS, namely the stock market [29,28]. Alternatively,
MG can also be interpreted as a multi-agent system competing for a limited resource [31,30] which distributes equally in
two rooms. However, agents in the real world often have to face a competition to the limited resource, which distributes
in different places in a biased manner. Examples for such phenomena include companies competing among markets of
different sizes [102], drivers selecting different traffic routes [103], people betting on horse racing with the odds of winning
a prize and making decisions on which night to go to which bar [104].

From a global point of view, the ideal evolution of a resource allocating system would be the following: Although each
agent would compete against others only with a self-serving purpose, the system as a whole could eventually reach a
harmonic balanced state where the allocation of resource is efficient, stable and arbitrage-free (which means that no one
can benefit from the ‘‘misdistribution’’ of the resource). Note that during the process of evolution to this state, agents could
neither have been told about the actual amount of the resources in a specific place, nor could they have any direct and full
communications, just as if there were an ‘‘invisible hand’’ [24] directing them to cooperate with each other. Then does this
invisible hand always work? In practice, there is plenty of evidence that the invisible hand do have very strong directing
power in places such like financial markets, though sometimes it does fail to work. Such temporary ineffectiveness implies
that there must be some basic conditions required for the invisible hand to exert its full power. Through an experimental
study and a numerical study with a market-directed resource allocation game (MDRAG, which is an extended version of the
MG model), we found that agents equipped with heterogeneous preferences, as well as a decision-making capacity which
matches with the environmental complexity, are sufficient for the spontaneous realization of such a harmonic balanced
state.

6.1. Controlled experiments

To illustrate the system behavior, we designed and conducted a series of economic experiments, collaborated with
the university students. In the experiments, 89 students from different (mainly physics, mathematics, and economics)
departments of Fudan University were recruited and randomly divided into 7 groups (Group A–G, see Tables 2–5). The
number of students in each group was just set for convenience and denoted by N in Tables 2–5. In the games played in the
experiments, students were told that they have to make a choice among a number of rooms, in each round of a session, for
sharing the different amounts of virtual money in different rooms. Students who get more than the global average, namely
those belonging to the relative minority, would win the payoff. At the beginning of a session, subjects were told the number
of rooms (2 or 3), and in some cases the different but fixed amount of virtualmoney in each room. In the following,Mi is used
to denote the amount of virtual money in room i. A piece of global information, about the payoff in the preceding round in all
rooms, is announced before a new round starts. In each round, the students must make their own choices without any kinds
of communication. The payoff per round for a student in room i is 2 points ifMi/Ni >


Mi/N , and−1 point otherwise. Here
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Table 2
Results of GAME-I.
Source: Adapted from Ref. [21].

Session Group Round M1 M2 M3 ⟨N1⟩ ⟨N2⟩ ⟨N3⟩

1 A (N = 12) 1–10 3 2 1 5.3 4.6 2.1
2 A (N = 12) 1–10 3 2 1 5.5 3.8 2.7
3 B (N = 12) 1–10 3 2 1 5.5 4 2.5
4 C (N = 24) 1–20 3 2 1 12.2 7.4 4.4
5 D (N = 10) 1–10 5 3 – 6.1 3.9 –
6 D (N = 10) 1–10 3 1 – 7.4 2.6 –

Table 3
Results of GAME-II.
Source: Adapted from Ref. [21].

Session Group Round M1 M2 ⟨N1⟩ ⟨N2⟩

1 D (N = 10) 1–10 2 1 6.2 3.8
2 E (N = 10) 1–10 1 3 3.3 6.7
3 F (N = 11) 1–10 3 1 7.2 3.8
3 F (N = 11) 11–20 3 1 8.3 2.7
4 C (N = 24) 1–15 7 1 17.8 6.2
4 C (N = 24) 16–30 7 1 21.1 2.9

Table 4
Track of 11 subjects in Group F (N = 11) converging to
M1/M2 = 3.
Source: Adapted from Ref. [21].

Round N1 N2

1 5 6
2 9 2
3 4 7
4 6 5
5 6 5
6 7 4
7 7 4
8 8 3
9 10 1

10 10 1
11 8 3
12 10 1
13 9 2
14 7 4
15 9 2
16 7 4
17 7 4
18 9 2
19 8 3
20 9 2

Table 5
Results of GAME-III.
Source: Adapted from Ref. [21].

Session Group Round M1 M2 ⟨N1⟩ ⟨N2⟩

1 G (N = 10) 1–5 3 1 5.4 4.6
1 G (N = 10) 6–10 3 1 8.2 1.8
1 G (N = 10) 11–15 3 1 7. 3.
1 G (N = 10) 16–20 3 1 7. 3.
1 G (N = 10) 21–25 1 3 7.8 2.2
1 G (N = 10) 26–30 1 3 4.2 5.8
1 G (N = 10) 31–35 1 3 2.8 7.2
1 G (N = 10) 36–40 1 3 2.6 7.4
1 G (N = 10) 41–45 1 3 2.4 7.6

Ni is the number of the students choosing room i. The total payoff of a student is the sum of payoffs of all rounds which will
be converted to money payoffs in RMB with a fixed exchange rate. Since the organizational and statistic procedures were
done by humans, one session of 10 rounds took roughly 20 min. More details can be found in the leaflet to the experiment
with nine items:
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1. A group of subjects are taking part in this experiment. The game situation is the same for each subject. In the experiments,
any kinds of communication are not allowed.

2. At the beginning of the game, all of you will be told the kind of game (GAME-I, GAME-II or GAME-III), as well as the total
number of the subjects (N), rooms (2 or 3), and play rounds, respectively.

3. In each round of the game, you have to choose and enter one of the rooms. The amount of virtual money in each room is
different but fixed, represented byMi (i = 1, 2, . . .).

4. You will be told eachMi (only in GAME-I).
5. In each round, you can choose a room to share the virtual money in it and get your quota,Mi/Ni, if you select room i. Here

Ni denotes the total number of subjects in room i.
6. You may make a new room choice in every round.
7. Your payoff per round: After the statistics of each round is done, you will receive a payoff which depends on the relation

between your quota and the global average:

payoff per round =


2 points, ifMi/Ni >


Mi/N

−1 point, otherwise
.

8. Your information per round:
– The current round number;
– Ni of each room in the preceding round (only in GAME-I, announced by the game organizer);
– Payoff (2 or -1) of each room in the preceding round (announced by the game organizer);
– Your rooms chosen and payoffs got in the preceding game rounds (recorded by yourself);
– Your cumulated payoffs (calculated by yourself).

9. The initial capital of each subject is 0 point. The exchange rate is 1 RMB per (positive) point.

Three kinds of games, GAME-I, GAME-II and GAME-III, have been investigated. GAME-II differed from GAME-I in the
global information being announced. In GAME-I, both the resource distribution Mi and the current population Ni in room
i were announced, while only payoffs (2 or −1) in each room of the current round were conveyed to subjects in GAME-II.
Note that the environmental complexity was increased in GAME-II, since in order to win the game, subjects would have to
predict other subjects’ decisions, in the meantime, infer the actual amount of virtual money in different rooms. In GAME-III,
the global information is the same as that of GAME-II, except an abrupt change of amount of virtual money is introduced
during the play of the game without an announcement. (On the contrary, all the subjects have already been told that each
Mi is unchanged.) No further information was given to the subjects.

Results of six sessions of GAME-I, four of GAME-II, and one of GAME-III are given in Tables 2–5. In Table 2, the results
of GAME-I are listed, where the time average of the subject number in room i is represented as ⟨Ni⟩. As the data shown,
a kind of cooperation seems to emerge in the game within 10 rounds. In particular, ratios of ⟨Ni⟩ converge to the ratios
of Mi, implying that the system becomes efficient in delivering the resource even if it was distributed in a biased way. To
the subjects, no room is better or worse in the long run, there is also no evidence that any of them could systematically
beat the resource allocation ‘‘market’’. One might naively think that the system could evolve to this state only because the
subjects knew the resource distribution prior to the play of the games, and the population in each room during the play.
However, results of GAME-II show that this explanation could not be correct. As shown in Table 3, although subjects who
know neither the resource distribution nor the current populations in different rooms, seem not to be able to adapt to the
unknown environment during the first 10 or 15 rounds, eventually the relation ⟨N1⟩/⟨N2⟩ ≈ M1/M2 is achieved again in
groups C and F. For instance, Table 4 shows the track through which group F gradually found the balanced state under the
environmental complexity M1/M2 = 3. Furthermore, the results of GAME-III support the conclusion of GAME-II, in which
the system can reach this state even with an abrupt change of the unknown resource distribution during the play of the
game, see the results of 21 to 45 rounds played by the G group in Table 5. It is surprising that subjects can ‘‘cooperate’’
even without direct communications as well as the information of the resource distribution. We can define the source of
a force which drives the subjects to get their quota evenly as the ‘‘invisible hand’’ of the resource allocation market. In the
sequel, however, we shall show that the effectiveness of this invisible hand relates to the heterogeneous preference and the
adequate decision-making capacity of the subjects of the game.

6.2. Agent-based modeling

To find out the mechanism behind this adaptive system of resource distribution, two multi-agent models are used and
their results are compared with each other. The first model is the traditional MG, while the second one is an extended MG
called as Market-Directed Resource Allocation Game (MDRAG). MG and MDRAG have a common framework: There are N
agents who repeatedly join a resource allocationmarket. The amounts of resource in two rooms areM1 andM2, respectively.
Before the game starts, each agent will choose S strategies to help him/her make decision in each round of play. The strategy
used in MG and MDRAG is typically a choice table which consists of two columns, as shown in Table 6. The left column is
for the P possible economic situations, and the right side is filled with the corresponding room number, namely room 0
or room 1. Thus, if the current situation is known, an agent should immediately choose to enter the corresponding room.
With a given P , there are totally 2P different strategies. At each time step, based on a randomly given exogenous economic
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Table 6
A typical strategy table.
Source: Adapted from Ref. [21].

Economic situations Choices

1 0
2 1
3 1
· · · · · ·

P-1 0
P 1

state [105], each agent chooses between the two rooms with the help of the prediction of his/her best scored strategy. After
everyone has made a decision, agents in the same room will share the resource in it. Agents who earn more than the global
average (M1 +M2)/N become the winners, and the roomwhich they entered is denoted as the winning room. To a strategy
in the game, a unit of score would be added if it had given a prediction of the winning room, no matter it was actually used
or not.

On the other hand, MDRAG differs from MG in the strategy-building procedures. In traditional MG, agents ‘‘randomly’’
choose S strategies from the strategy pool of 2p size. Here ‘‘randomly’’ means that each element of the right column of
a strategy table is filled in with 0 or 1 equiprobably. By using this method, strategies of different preferences will have a
binomial distribution. Here the preference of a strategy is defined as the tendency or probability with which a specific room
will be chosen when the strategy is activated. For a large P , the number of 0 and the number of 1 in the right column are
nearly equal. Hence globally there would be no preference difference among agents who uniformly pick up these strategies.
In MDRAG, however, we use a new method to fill the strategy table in order to introduce heterogeneous preferences to the
agents. First, K (0 ≤ K ≤ P) denoting the number of 0 in the right column is randomly selected from the P + 1 integers.
In other words, strategies with different preferences (different values of K ) are chosen equiprobably from the strategy pool.
Second, each element of the strategy’s right column should be filled in by 0 with the probability K/P , and by 1 with the
probability (P−K)/P . It is clear that a strategywith an all-zero right column canbepickedupwith the probability 1/(P+1) in
MDRAG, while this could happen only with a probability of 1/2p in the traditional MG and practically could never be chosen
by any MG agents if NS ≪ 2p.

To make descriptions easier to understand, explanations of the model parameters are provided. The ratio M1/M2
represents the environmental complexity of the games. Note that if M1/M2 = 1, agents need only to worry about other
people’s decision. Assuming that room 1 always contains more resource, the trivial case will be M1/M2 > N − 1, since
all the agents can easily find out that going to room 1 would be the right choice under this situation. On the other hand,
when the ratio is set 1 < M1/M2 ≤ N − 1, the larger this ratio is, the more difficult it would be for the market to direct
the system to the ideal state. Other parameters concern with the decision-making capacity, which can be generalized into
three elements (http://plato.stanford.edu/entries/decision-capacity/), namely, (i) the possession of a set of values and goals
necessary for evaluating different options; (ii) the ability to communicate and understand information; (iii) the ability to
reason and to deliberate about one’s choices. The first element has already been built in both the models as the evaluation
of the strategies with the minority-favorable payoff function. The second element relates to the model parameter P . Since
the total number of possible situations is dependent on the completeness of the perception of the world, we relate it to the
cognition ability. Finally, more strategies could be helpful if one needs to deliberate his/her choices of decisions, hence the
strategy number S is related to the third element of the decision-making capacity, the ability of choice deliberation.

6.3. Results

Results of the economic experiments are compared with the simulation results of the traditional MG and MDRAG in
Fig. 25. For each parameter set, we performed the simulation for 200 times. In each of these simulations, the code was run
over 400 time steps. First half of the time evolution is for the equilibration of the system,while the remaining half is for doing
the statistics. With a certain set of parameters (S = 8 and P = 16), MDRAG’s results perfectly agree with the experimental
data under a higher environmental complexity. In other words, agents in both experiments and MDRAG can be directed by
the market to cooperate with each other, so that an efficient allocation of the biasedly distributed resource can be realized
even without giving the agents full information or instructions. On the other hand, the traditional MG fails to reproduce the
experimental results unless the distribution of resource is biased very weakly up to M1/M2 = 3. Note that MDRAG differs
from MG solely in the introduction of heterogeneous preferences in the strategies; hence one may infer that the hetero-
geneity of agents’ preferences is a significant factor to have the ‘‘invisible hands’’ to be effective. This argument is further
supported by numerical experiments in the 3-room cases (with parameters P = 24, N = 120 and S = 10). Again, here
MDRAG is superior to MG in bringing out the directing power of the market. Shown in Table 7, the ratio of ⟨N1⟩: ⟨N2⟩: ⟨N3⟩

converges toM1:M2:M3 only in the equilibrium states of MDRAG.
Fig. 25 also shows that the decision-making capacity, in particular the deliberation of choices (the parameter S), would

be another factor having influence on the effectiveness of the invisible hand. Typically, as the environmental complexity
(M1/M2) increases, both MG and MDRAG will deviate from the experimental results. Nevertheless, the problem of MG is

http://plato.stanford.edu/entries/decision-capacity/
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Table 7
Performances of MDRAG and MG in 3-room cases.
Source: Adapted from Ref. [21].

Resource MDRAG MG
M1 M2 M3 ⟨N1⟩ ⟨N2⟩ ⟨N3⟩ ⟨N1⟩ ⟨N2⟩ ⟨N3⟩

1 1 1 39.9 40.3 39.8 39.2 41.5 39.3
1 2 3 19.7 40.1 60.2 25.1 40.7 54.2
1 4 7 9.6 40 70.4 24.8 40.4 54.8
1 2 9 9.8 19.6 90.6 29.3 33.8 56.9

Fig. 25. ⟨N1⟩/⟨N2⟩ as functions of M1/M2 , P = 16 in MG and MDRAG, and N = 24 for all the simulations and the experiment. Simulations are run for
200 times, each over 400 time steps (first half for equilibration, the remaining half for statistics). The line with slope = 1 indicates the efficient states:
⟨N1⟩/⟨N2⟩ = M1/M2 .
Source: Adapted from Ref. [21].

much severe. As shown in the figure, even MG with extremely large S (S = 48, a situation which is inconsistent with the
real system andwill drastically increase the computational cost) can just work at a very low level of the environmental com-
plexity. At the same time, the result of MDRAG provides a perfect fit with the experimental data when S is large enough, but
not too large for a given P value (the reasonwill be explained in the following discussion). In oneword, MG does not provide
a good fit even for large S, while MDRAG can fit the data with less demanding condition in terms of computational cost.

6.4. Concluding remarks

Through a large number of numerical simulations, we have found the dependence of equilibrium states of the system
on the model parameters, together with a number of phase transitions in the models. To explore in more detail, three
parameters are defined which describe system behaviors in three aspects, namely, efficiency, stability and predictability.
First the efficiency of resource allocation can be described as e = |⟨N1⟩/⟨N2⟩ − M1/M2|/(M1/M2). Note that 0 ≤ e < 1 and
a smaller emeans a higher efficiency in the allocation of the resource. The stability of a system can be described by σ 2/N ≡
1
2N

2
i=1⟨(Ni − Ñi)

2
⟩, which denotes the population fluctuation away from the optimal state. 3 Here Ñi = MiN/


Mi, and

⟨A⟩ is the average of time series At . The predictability is related to H ≡
1

2NP

P
µ=1

2
i=1⟨Ni − Ñi|µ⟩

2, in which ⟨A|µ⟩ is the
conditional average of At given that µt = µ, one of the P possible economic situations. If σ 2/N ≠ H , it means that agents
may take different actions at different time for the same economic situation (namely the market behavior is unpredictable).
For clarity, we describe the predictability of system by defining J = 1 − HN/σ 2. It is obvious that 0 ≤ J < 1 and a smaller J
means a higher predictability.

The variation of systembehavior alongwith the change of environmental complexityM1/M2 is shown in Fig. 26. As shown
in Fig. 26(a), the system changes from an efficient state into an inefficient state at some critical value (M1/M2)c ∼ S. For
other values of P , the system behavior keeps the same as long as P is large thanM1/M2. In Fig. 26(b), around the same critical
value of M1/M2, σ 2/N changes from a decreasing function to an increasing function, giving the smallest fluctuation in the
population distribution at the critical point. Meanwhile the order parameter J also falls into zero at (M1/M2)c , suggesting
that a phase transition, named the ‘‘M1/M2 phase transition’’, occurs at this critical point. To be more illustrative, when the
environmental complexity is much smaller than the critical value, the system could reside in an efficient, unpredictable

3 Large fluctuations in populations can cause a higher dissipation in the system. Hence an efficient and stable state means an optimal state with a low
waste in the resource allocation.
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Fig. 26. The ‘‘M1/M2 phase transition’’ in MDRAG, for N = 100, P = 64, and S = 8. Simulations are run for 300 times, each over 400 time steps (first
half for equilibration, the remaining half for statistics). The dashed line denotes M1/M2 = 8. (a) e as a function of M1/M2 . (b) σ 2/N and J versus M1/M2 ,
respectively.
Source: Adapted from Ref. [21].

Fig. 27. S–P contour maps for different parameters on log–log scales with N = 80 and M1/M2 = 4. For each data point, simulations are run for 50 times,
each over 400 time steps (first half for equilibration, the remaining half for statistics). (a), (b), and (c) are e, σ 2/N , and J as functions of S and P in MG,
respectively. (d), (e), and (f) are e, σ 2/N , and J as functions of S and P in MDRAG, respectively. Regions filled with slash shadow denote the predictable
states.
Source: Adapted from Ref. [21].

but relatively unstable state. Getting closer to the phase transition point, the stability of system will be improved until the
most stable state is reached. Then after crossing the critical point, the decision-making capability of the whole system has
been exhausted and it will fall into an inefficient, predictable, and unstable state. At the vicinity of the critical point, as if
participants of the gameworried about being eliminated from the competition, themarket inspires all of its guiding potential
and leads the system to the ideal state for the resource allocation, a state which is both efficient and stable and where no
unfair arbitrage chance can exist.

It is important to know that MDRAG and MG have totally different phase structures, which could be analyzed by
comparing the S − P contours of the descriptive parameters for the two models, see Fig. 27. From the analysis, we could
also know how the decision-making capacity influence the overall performance of the resource allocation system, in case
that the environmental complexity is fixed (M1/M2 = 4). Features of the contour maps (Fig. 27) are summarized as the
following (differentM1/M2’s do not change the conclusions):

(i) Comparing with the traditional MG as a whole, MDRAG has a much wider range of parameters for the availability
of the efficient, stable and unpredictable states. In particular, there is almost no eligible region in Fig. 27(a) if we take the
criterion of efficiency as e < 0.08. Also, the predictable region (J < 0.02) in Fig. 27(f) is much smaller than that of the
MG’s results in Fig. 27(c). These facts indicate that MDRAG has a much better performance than MG as a resource allocating
system.
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(ii) Patterns of the contour maps suggest that MG and MDRAG have totally different dependency on parameters.
Fig. 27(a)–(c) indicate that P and S are not independent in the traditionalMGmodel,which confirms theprevious findings [8].
On the other hand, in MDRAG there is always a region where the system behavior is almost controlled by the parameter
S. In Fig. 27(d), for large enough P , the system can reach the efficient state if S exceeds a critical value Sp, where Sp will
converge to the limit value M1/M2 with increasing P . For S < Sp, the system can never reach the efficient state no matter
how P changes. For a very large P and S < M1/M2, it can be proved that the probability for agents to enter the richer room
is S/(S + 1), so that the system stays in the inefficient states (⟨N1⟩/⟨N2⟩ < M1/M2).

(iii) Observing Fig. 27(d) and Fig. 27(f), one may find both an ‘‘S phase transition’’ and a ‘‘P phase transition’’. As
mentioned above, for large enough P , the increase of S can abruptly bring the system from the inefficient/predictable phase
to the efficient/unpredictable phase, and it is named ‘‘S phase transition’’. On the other hand, in the narrow region where
S < M1/M2, the increase of P can also produce of a drastic change from the unpredictable phase to the predictable phase,
and it is named ‘‘P phase transition’’. The existence of the ‘‘S phase transition’’ can be explained by the fact that the number
of available choices in decision-making is a key factor for agents to find the right choice from strategies with an adequate
heterogeneity of preferences. But for S ≫ P , it will also cause a slight decrease of the efficiency because of the conflicts of
the different predictions from the equally good strategies with the same preference. This explains why ‘‘MDRAG, S = 48’’
performs worse than ‘‘MDRAG, S = 8’’ when P = 16 in Fig. 25. The ‘‘P phase transition’’ reflects that for some incompetent
ability of choice deliberation, a critical value of the cognition ability can enhance the decision-making capacity to match the
environmental complexity.

(iv) It is also noteworthy that the parameter α = 2p/N , which is the main control parameter in the MG model [7,81],
no longer controls on the behavior of the MDRAG system. Varying N while keeping M1/M2 as a constant, the basic feature,
especially the critical position of the contour maps, will remain unchanged.

In aspects of the competition for resources, the feed of global information, and the inductive optimization of strategies,
bothMG andMDRAGmay be regarded as eligiblemodels for the economic experiments. However, MG fails to reproduce the
experimental results in most cases. By simply accommodating a broader preference distribution of the strategies, MDRAG
fits the experimental results without any coordinating capability of the agents. This enables us to comment on the possible
mechanism of the ‘‘invisible hand’’, and conditions under which the complex adaptive systemswill spontaneously converge
to the efficient states. The most important thing for the ‘‘invisible hand’’ to work is that different subjects of the economic
games should have different preferences, just like the agents in the MDRAG model who have heterogeneous preferences in
their strategies. Next the subjects should also ownan adequate capacity of decision-makingwhichmatches the complexity of
the environment. From theM1/M2 phase transition in the MDRAG simulations, we could infer that there would be a failure
in achieving the balanced efficient state if the game of experiment were designed too complicated, e.g. too many rooms
or too biased distribution of the virtual money. Nevertheless, for the MDRAG model itself, since the model parameters
can be tuned freely, we believe that the market directing power can always be brought out completely in this paradigm
as long as the computational power is enough. To put it further, when the experiment happens to be set at the critical
range of subjects’ decision-making capacity, just like a finely tuned MDRAG where parameters are set to be critical values
of the phase transitions mentioned above, an idealized state of the resource allocating system can be realized, namely, the
system is efficient, stable and unpredictable. For example, see the overlapped regions for small e, small σ 2/N and finite J in
Fig. 27(d)–(f).

Finally, although these intriguing conclusions are supported by the results of MDRAG simulations, there are still some
important effects in the realworld not included in themodel, such as the difference in the decision-making capacities among
the agents and the agents’ responses to changes of the environment. One challenging task is to consider a suitable relation
between agents’ behavior and the distribution of resources (M1/M2)whichmay have an influence on the dynamic behavior
of the whole system.

7. Partial information

In Sections 4–6, each subject always knows the overall competition result of all the subjects, which is defined as complete
information herein. But, in reality, one often makes decisions according to the result of a part of a crowd (which is defined
as partial information in Section 7), rather than the complete information. So, it becomes interesting to know what is the
different effect of partial information. This is just the topic of Section 7.

It iswell known in statistical physics that there exist a lot of phase transition phenomena, e.g., themelting of ice (classified
as first-order phase transition) and the superfluid transition (classified as second-order phase transition; both second-order
and higher-order phase transitions are also called continuous phase transitions) [35]. In complex adaptive systems, phase
transition phenomena can be seen as well [21,81,106–108].

In economics and social science, it is a common belief that if more information is distributed to agents, the associated
system will be more efficient (here ‘‘more efficient’’ means that the system is easier to lie in the optimal state and also the
fluctuation level of the system is lower). For example, the famous Efficient Market Hypothesis [109] implies that market
efficiency will be higher if more information is available to investors, i.e., the efficiency upgrading from the weak form to
the strong form [109,110]. In Section 7, we recheck this information effect in a complex adaptive system related to resource-
allocation problems [21,64,65,111,112,7] because these problems are of particular importance. For instance, some believe
governments should get involved to guarantee that resources are distributed to places where they are needed most, while
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others think markets can use the invisible hand [24] to ensure the efficiency of resource allocation [113,24]. Both agent-
based simulations and controlled human experiments have been adopted to discuss the problems. And in the associated
artificial system, the invisible hand phenomenon emerges as well [21]. In the former research [21], all the subjects could
get access to global information to evaluate their strategies. However, in many real problems, global information is either
difficult to collect or confidential. For example,when a company decideswhether or not to step into an emergingmarket, it is
hard to know all the other competitive companies’ reactions and also it would take a long time to learn about the real return
on investment. Therefore, the company can only draw up its own strategies under currently obtained partial information.
This leads to a question: when market participants obtain only partial information, can the invisible hand still work in the
market?

To model this question, agents in our system are connected via a directed random network and everyone evaluates
his/her own performance through partial information gathered from his/her first-order neighborhood. It is obvious that a
higher connection rate can make the system more information-concentrated. Our agent-based model is designed on the
basis of the market-directed resource allocation game [21], which can be used to simulate the biased or unbiased resource
distribution problems. And we also conduct a series of controlled human experiments to show the reliability of the model
design. We find that the system can reach the optimal (balanced) state even under a small information concentration.
Furthermore, when the information concentration increases, the ensemble average of the fluctuation level goes through
a continuous phase transition, which means that in the second phase, agents getting too much information will harm the
system’s stability (a higher fluctuation level means a lower stability of the system) instead. This is contrary to the belief
mentioned above (namely, it will be better for themarket efficiencywhenmore information is shared). And at the transition
point, the ensemble fluctuations of the fluctuation level remain at a low value.We also show that when the system becomes
infinitely large, this fluctuation transition phenomenon remains. Our finding is in contrast to the textbook knowledge about
continuous phase transitions, which states fluctuations will rise abnormally around a transition point since the correlation
length becomes infinite. Thus, we call this continuous phase transition anomalous continuous phase transition.

7.1. Agent-based modeling

To proceed, let us first introduce the abstract resource allocation system of our interest. The system contains a repeated
game. In the game, there are N agents facing two rooms labeled as Room 1 and Room 2. Each room has a certain amount
of resources, denoted as M1 and M2 accordingly, and let M = M1 + M2. Both M1 and M2 are fixed during the repeated
game. It can be seen that our system is more general than the famous minority game [7]; in the minority game [7], values
of M1 and M2 are the same, which is only the case of unbiased resource distribution. Agents decide at each time step on
which room to enter and then divide the resources in it evenly. Here, the number of agents entering Room 1 or Room 2
at a time step is marked as N1 or N2 respectively (N = N1 + N2). Obviously, the goal for every agent is the same, namely,
to choose the room where they can obtain more resources. The values of M1 and M2 are unknown to all the agents. And
they cannot know the global values of M1/N1 and M2/N2 at each time step in the game either, which are the amount of
resources actually distributed to one agent in each room. So an agent can only evaluate his/her performance by viewing
information from his/her acquaintances. In the model, every agent has a probability of k to make another agent into his/her
group (for the convenience of description, the agent himself/herself is also included in the group). Hence, the agents form a
directed random network. And the network is fixed during the game. At each time step, suppose in Agent i’s group, there is
M1/N i

1 ≥ M2/N i
2, whereN i

1 orN
i
2 is the number of agents in his/her group that enter Room 1 or Room 2. As a result, for Agent

i, Room 1 is the winning room. However, in other agents’ eyes, Room 2 may be the winning room according to information
from their own groups. It is obvious that if k = 1, all the agents can obtain global information. As k decreases, the information
an agent can get becomes less and less, comparedwith the global information. And particularly, k = 0means Agent i’s group
has himself/herself inside only. So now Agent i obtains no information from the other agents. Therefore, we may say that
the value of k represents the system’s information concentration, 0 ≤ k ≤ 1. Note that our system’s framework is closer
to reality than that of [114]. In [114], market states are not affected by agents’ production or exchange behaviors so that an
agent can even get the exact information of which state the market will be in before his/her decision is made.

Now for our agent-based model, what is left is the design of agents’ decision-making process. In order to test our system
under a variety ofM1/M values, we adopt the design from themarket-directed resource allocation game [21] whichmodels
biased or unbiased resource distribution problems satisfactorily. In themodel, every agent will create S strategies before the
game start. Every strategyhas two columns and aparticular one is shown in Table 8. The left column is P exogenous situations
(here exogenous situations mean a combination of endogenous situations, i.e., history tracks of the winning room one agent
observes, and the other situations that affect one agent’s decisions. Itwas shown in [105] that statistical properties are almost
the same for models that use either exogenous situation strategies or endogenous situation ones). For every situation, the
right column offers a choice respectively and here the number 1 is for the choice of Room 1 and 0 for the choice of Room 2.
When an agent creates a strategy, he/she will first randomly choose a number L from 0 to P and then fill the number 1 in the
right column of the strategy with a probability of L/P , and so 0 with a (P − L)/P probability (here we can see the difference
in strategy creation process between the market-directed resource allocation game [21] and the minority game [7]. In the
minority game, the right column of a strategy is filled in by 1 or 0 with equal probabilities, i.e., both with a probability of
0.5). The strategies are fixed once they are created before the game start. At each time step, a particular exogenous situation
will be picked randomly from 1 to P . Every agent will use his/her highest-scored strategy to choose rooms under the current
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Table 8
A particular strategy.
Source: Adapted from Ref. [115].

Exogenous situation Choice

1 0
2 1
3 1
. .
. .
. .
P-1 0
P 1

situation. And after each time step, every agent will then assess the performance of his/her strategies based on the partial
information obtained from his/her group. For example, to Agent i, if Room 1 is winning, all his/her strategies that offer
the right choice at the given situation will be added one point. In the simulations, we set S = 8 and P = 16. Based on
the former theoretical analysis [64], it can be calculated that now (⟨N1⟩/N)max = 1 −

1
P

P
L̃=1[(

L̃
P+1 )

S
] = 0.911. And for

M1/M ≤ (⟨N1⟩/N)max, namely, M1/M ≤ 0.911, the system in which agents all get access to global information (i.e., k = 1)
can reach the optimal (balanced) state where ⟨N1⟩/N = M1/M . Here ⟨· · ·⟩ denotes the time average of · · ·. Hence, we vary
the value ofM1/M from 0.667 to 0.9 in the simulations.

At the beginning of a repeated game, every agent randomly creates his/her S strategies and a directed network is also
linked stochastically. Then this micro-structure is fixed during the game. Therefore, in our simulations, the concept of
ensemble is used to analyze the average properties of the systems that have the same parameter settings but with different
micro-structures.

7.2. Controlled experiments

It is well known that for a targeted system, there can be many different designs in the agent-based modeling method.
Thus, how to validate a model is becoming crucial. One way is to compare simulated results with field data [116,117,68,
118–120], and the other is to do controlled experiments in laboratory systems [21,64,65,111,121]. In this research, we pre-
fer the latter, and recruited 25 students from the Department of Physics at Fudan University as the human subjects. The
game settings are the same as our agent-based model except that artificial agents are now replaced by human subjects.
Two kinds of money rewards are provided to give the subjects incentives: (A) Each subject will be given one virtual point if
he/she chooses the right room at each time step, and after the experiments, the accumulative virtual points a subject wins
will be exchanged to cash under the ratio: 1 point = 1 Chinese Yuan; (B) Bonuses of 150, 100, and 50 Chinese Yuan are
also offered to the three best-performed subjects, respectively. The rules and rewards are made clear to the students before
the experiments [26]. A round of repeated pre-game with 15 time steps is also offered to the students to let them be more
familiar with the rules. Each set of parameters (i.e., k and M1/M) is then carried out to the students for one round with 15
time steps. Note that each set of k’s andM1/M ’s values is selected randomly before each round of repeated game so that the
students can hardly figure out whether his/her experience gained in the last game can be used in the next one.

7.3. Results

The blue stars in Fig. 28 show the ensemble average of ⟨N1⟩/N versus M1/M under four different values of k for 50
simulated systems. The error bars represent standard deviation (denoted as SDm) among the 50 systems’ ⟨N1⟩/N values. The
experimental results are given in Tables 9–12. For each set of k and M1/M , ⟨N1⟩/N (represented as red circles in Fig. 28)
is calculated on the last 5 experimental time steps in order to avoid relaxation time. In both simulations and experiments,
N = 25. Deviations between the simulated and experimental results in each sub-figure (denoted as Dev) are defined as the
average of |(⟨N1⟩/N)e − (⟨N1⟩/N)m|/SDm over all the points (here | · · · | denotes the absolute value of · · ·; the subscript m
stands for the simulations and e for the experiments). For the four sub-figures, the values ofDev are (a) 2.33, (b) 1.56, (c) 1.81,
and (d) 2.71, respectively. Suppose in the simulated ensemble, ⟨N1⟩/N follows aGaussian distribution, then the experimental
values of ⟨N1⟩/N fall in (a) 98%, (b) 88.2%, (c) 93%, and (d) 99.4% confidence interval accordingly. In the experiments, there
always exist some uncontrolled factors, such as mood swings of the students during the games. So for Fig. 28, it can be said
that our agent-based model has a good mimic of the human system. Thanks to the flexibility of the agent-based modeling
method, we further extend the number of agents to N = 1001 and the ensemble size to 500. The simulated ⟨N1⟩/N versus
k is shown in Fig. 29. It can be seen that even for a small value of information concentration, e.g., k = 0.2, the system can
still reach the optimal (balanced) state where ⟨N1⟩/N = M1/M . This means that the invisible hand can still influence the
system when only a small part of information is distributed to every agent.

For the system discussed in Fig. 29, the other important property is the fluctuation level which is given by

Var =
1
2N

2
i=1

⟨(Ni − ⟨Ni⟩)
2
⟩ ≡

1
N

⟨(N1 − ⟨N1⟩)
2
⟩. (11)



42 J.P. Huang / Physics Reports 564 (2015) 1–55

Table 9
Experimental data of N1/N ’s under different values of M1/M for k = 0.2 within the 15 time steps. The last 5 time steps are taken to calculate the time
average value of N1/N (denoted as ‘‘Average’’ in the table), i.e., ⟨N1⟩/N shown in Fig. 28.
Source: Adapted from Ref. [115].

Time step M1/M = 0.667 =0.75 =0.8 =0.833 =0.9

1 0.6 0.56 0.56 0.72 0.8
2 0.6 0.68 0.68 0.76 0.8
3 0.64 0.72 0.64 0.68 0.8
4 0.56 0.6 0.76 0.64 0.72
5 0.68 0.76 0.76 0.76 0.84
6 0.64 0.6 0.76 0.76 0.76
7 0.52 0.76 0.72 0.76 0.84
8 0.6 0.68 0.72 0.72 0.76
9 0.6 0.48 0.64 0.76 0.84

10 0.56 0.68 0.72 0.68 0.8
11 0.64 0.64 0.84 0.76 0.76
12 0.68 0.56 0.64 0.68 0.84
13 0.56 0.72 0.64 0.72 0.88
14 0.68 0.72 0.56 0.76 0.84
15 0.68 0.64 0.64 0.68 0.8
Average 0.648 0.656 0.664 0.72 0.824

Table 10
Experimental data of N1/N ’s under different values of M1/M for k = 0.52 within the 15 time steps. The last 5 time steps are taken to calculate the time
average value of N1/N (denoted as ‘‘Average’’ in the table), i.e., ⟨N1⟩/N shown in Fig. 28.
Source: Adapted from Ref. [115].

Time step M1/M = 0.667 =0.75 =0.8 =0.833 =0.857 =0.875 =0.889 =0.9

1 0.64 0.64 0.56 0.8 0.76 0.8 0.76 0.88
2 0.6 0.68 0.72 0.48 0.76 0.64 0.76 0.6
3 0.6 0.6 0.68 0.72 0.88 0.76 0.76 0.72
4 0.68 0.68 0.8 0.76 0.68 0.84 0.84 0.88
5 0.52 0.64 0.72 0.84 0.84 0.8 0.76 0.72
6 0.72 0.84 0.72 0.52 0.72 0.64 0.84 0.84
7 0.64 0.68 0.72 0.68 0.8 0.76 0.76 0.68
8 0.44 0.88 0.72 0.84 0.84 0.84 0.76 0.8
9 0.56 0.6 0.72 0.68 0.6 0.8 0.8 0.84

10 0.68 0.8 0.72 0.76 0.72 0.76 0.76 0.76
11 0.68 0.68 0.68 0.88 0.76 0.68 0.72 0.72
12 0.56 0.68 0.72 0.84 0.8 0.76 0.84 0.84
13 0.64 0.8 0.64 0.8 0.84 0.88 0.8 0.84
14 0.68 0.76 0.76 0.84 0.88 0.84 0.84 0.92
15 0.72 0.64 0.8 0.8 0.84 0.88 0.84 0.88
Average 0.656 0.712 0.72 0.832 0.824 0.808 0.808 0.84

Table 11
Experimental data of N1/N ’s under different values of M1/M for k = 0.76 within the 15 time steps. The last 5 time steps are taken to calculate the time
average value of N1/N (denoted as ‘‘Average’’ in the table), i.e., ⟨N1⟩/N shown in Fig. 28.
Source: Adapted from Ref. [115].

Time step M1/M = 0.667 =0.75 =0.8 =0.833 =0.857 =0.875 =0.889 =0.9

1 0.52 0.8 0.8 0.76 0.84 0.64 0.84 0.68
2 0.88 0.44 0.64 0.84 0.6 0.84 0.64 0.8
3 0.6 0.64 0.8 0.76 0.88 0.76 0.8 0.8
4 0.56 0.76 0.68 0.72 0.68 0.8 0.8 0.88
5 0.76 0.64 0.64 0.88 0.72 0.8 0.8 0.76
6 0.68 0.76 0.76 0.72 0.84 0.88 0.8 0.84
7 0.6 0.68 0.68 0.8 0.8 0.72 0.92 0.88
8 0.56 0.68 0.84 0.76 0.68 0.84 0.8 0.8
9 0.72 0.68 0.68 0.8 0.88 0.76 0.84 0.88

10 0.52 0.6 0.76 0.72 0.8 0.72 0.76 0.84
11 0.6 0.76 0.8 0.76 0.92 0.68 0.8 0.76
12 0.68 0.76 0.76 0.88 0.92 0.84 0.84 0.88
13 0.64 0.76 0.76 0.8 0.64 0.88 0.8 0.96
14 0.68 0.68 0.84 0.84 0.64 0.88 0.92 0.8
15 0.6 0.8 0.84 0.76 0.84 0.84 0.92 0.84
Average 0.64 0.752 0.8 0.808 0.792 0.824 0.856 0.848
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Table 12
Experimental data of N1/N ’s under different values ofM1/M for k = 1 within the 15 time steps. The
last 5 time steps are taken to calculate the time average value of N1/N (denoted as ‘‘Average’’ in the
table), i.e., ⟨N1⟩/N shown in Fig. 28.
Source: Adapted from Ref. [115].

Time step M1/M = 0.667 =0.833 =0.9

1 0.6 0.8 0.8
2 0.88 0.76 0.88
3 0.8 0.76 0.8
4 0.6 0.8 0.84
5 0.68 0.72 0.72
6 0.6 0.76 0.92
7 0.64 0.88 0.84
8 0.68 0.8 0.84
9 0.64 0.64 0.6

10 0.64 0.72 0.76
11 0.68 0.8 0.8
12 0.68 0.84 0.92
13 0.64 0.84 0.92
14 0.68 0.8 0.88
15 0.72 0.84 0.92
Average 0.68 0.824 0.888

Fig. 28. ⟨N1⟩/N versus M1/M for k = (a) 0.2, (b) 0.52, (c) 0.76, and (d) 1. The simulated ensemble contains 50 systems, each of which has the same
parameters: N = 25, S = 8, and P = 16. Each system evolves for 600 time steps (the first half for stabilization which are enough for system relaxation
and the second half for statistics). The blue stars show the ensemble average of ⟨N1⟩/N and error bars are added. The red circles show the experimental
results and for each data point, one systemwith the associated parameters is conducted for 15 time steps and ⟨N1⟩/N is calculated on the last 5 time steps
shown in Tables 9–12 in order to avoid the relaxationtime steps. The number of human subjects recruited in the laboratory system is the same with the
simulations, i.e., N = 25. The diagonal dash line with slope = 1 indicates the optimal (balanced) state: ⟨N1⟩/N = M1/M .
Source: Adapted from Ref. [115].

The ensemble average of the simulated system’s fluctuation level, denoted asMean(Var), is shown in Fig. 30. It can be seen
thatMean(Var) declines slightly when information concentration k increases from zero. This is normal due to the following
reason: as k increases, Agent i’s group becomes larger, and then the information he/she obtains at every time step will be
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Fig. 29. Simulated results of ⟨N1⟩/N versus k for different values of M1/M . The values of ⟨N2⟩/N are not shown here because of ⟨N2⟩/N = 1 − ⟨N1⟩/N .
The ensemble contains 500 systems each of which has the same parameters: N = 1001, S = 8, and P = 16. Each system evolves for 600 time steps (the
first half for stabilization which are enough for system relaxation and the second half for statistics). The horizontal dash line shows the value of ⟨N1⟩/N for
the optimal (balanced) state: ⟨N1⟩/N = M1/M .
Source: Adapted from Ref. [115].

more stable, which makes Agent i more certain about his/her choices. Hence, we interpret it as a normal phase. But after
that, Mean(Var) climbs up abnormally, which means that now agents getting more information will be more harmful to
the system’s stability (a higher fluctuation level means a lower stability of the system); this is in contrast to the belief that
more information is better, so we interpret this as an abnormal phase. This phenomenon can be explained by the following
feedback process. For k = 1, because of the full network connection, uncertainties in Agent i’s choice can be transferred to
all the other agents and increase their own uncertainties, and then the other agents’ uncertainties will be again transferred
back to Agent i and further increase his/her choice fluctuations. However, when k decreases from 1, owing to the presence
of the directed network, for one acquaintance in Agent i’s group, he/she may not have Agent i in his/her own group. This
means the uncertainties of Agent i cannot be fully transferred to his/her groupmembers now, so the overall fluctuation level
will decrease. Hence, here a continuous phase transition between a normal phase and an abnormal phase comes to appear
as k increases from 0 to 1. The lowest Mean(Var) point is labeled as the transition point and the associated critical value of
k is denoted as kc . Detailed information around the transition point is shown in the insets of Fig. 30.

In the traditional continuous phase transition theory [35], it is stated that around a transition point, fluctuations will
increase heavily since the correlation length becomes infinite. On the contrary, in Fig. 30, it can be seen that at the transition
point, the ensemble fluctuations of the fluctuation level, denoted as Var(Var), remain at a low value, which is only of
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e

Fig. 30. Fluctuations of the simulated system. For the eight M1/M values, the ensemble averages of the fluctuation level (denoted as Mean(Var)) under
different k values are represented by red circles, while blue stars are for the ensemble fluctuations of the fluctuation level (denoted as Var(Var)).Mean(Var)
goes through a continuous phase transition from a normal phase to an abnormal phase as k increases. The insets give detailed information around the
transition point (kc stands for the critical value of k) accordingly. The ensemble contains 500 systems, each of which has the same parameters: N = 1001,
S = 8, and P = 16. Each system evolves for 600 time steps (the first half for stabilization which are enough for system relaxation and the second half for
statistics).
Source: Adapted from Ref. [115].

magnitude 10−5 versus Mean(Var) being 10−2. However, at the abnormal phase where k is large, Var(Var) has a great rise
as k increases, and forM1/M ≥ 0.875, Var(Var) even begins to decline obviously when k increases further.

The above phase transition phenomenon comes to appear in our system that contains a limited number of agents. So we
attempt to analyze the relation between kc and N . Because the critical information concentration kc shows no relation with
M1/M in Fig. 30, we average it over different values of M1/M and obtain kc . Fig. 31 displays a power-law relation between
kc and N in the tail (i.e., for N ≥ 401) as kc = 50 ∗ N−0.71. Hence, when the system becomes infinitely large, i.e., N → +∞,
there still exists this anomalous phase transition at kc → 0+.

7.4. Concluding remarks

In Section 7, we have designed an agent-based model with partial information for biased resource-allocation problems.
A series of controlled human experiments have been conducted to show the reliability of the model design. We have found
that even for a small information concentration, the system can still reach the optimal (balanced) state. Furthermore, we
have found that the ensemble average of the simulated system’s fluctuation level has a continuous phase transition. This
means that in the abnormal phase, toomuch information can hurt the system’s stability instead. Hence, back to the question
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Fig. 31. A log–log plot showing kc versus N . Here, kc is the average of kc ’s under different values of M1/M . For each value of N , the ensemble contains
50 systems each of which has the same parameters: S = 8 and P = 16. Each system evolves for 600 time steps (the first half for stabilization which are
enough for system relaxation and the second half for statistics). The blue line fits the tail of the data (i.e., from N = 401 to N = 10, 001) according to
log10(kc) = a + b ∗ log10(N); details are given in the inset where the regression coefficient, R̄2

= 0.98322, indicates well fitting of the tail since R̄2
= 1.0

means a perfect fit [122]. Error bars are added as well.
Source: Adapted from Ref. [115].

raised at the beginning, we can say thatmarkets are able to use the invisible handmost efficiently only at the transition point
where partial information is obtained by agents.

On the other hand, at the transition point, the ensemble fluctuations of the fluctuation level remain at a low value.
When increasing the number of agents, the critical value of information concentration obeys a power-law decay in the tail.
This behavior confirms that when the system becomes infinitely large, there still exists this kind of fluctuation transition
phenomena. This finding is in contrast to the textbook knowledge about continuous phase transitions also addressed at the
beginning, namely, fluctuations will rise abnormally around a transition point since the correlation length becomes infinite.
This may pave the way for investigating the role of human adaptability in further developing traditional physics.

Therefore, Section 7 is expected to be of value to some different fields ranging from physics, to economics, to complexity
science, and to artificial intelligence.

8. Risk management

Subjects in all kinds of laboratory markets, introduced in Sections 3–7, are always facing risks. In Section 8, now I am in
a position to introduce the relationship between risk and return.

For survival and development, agents in various kinds of complex adaptive systems (CASs) involving human societymust
compete against or collaborate with each other for sharing limited resources or wealth, by utilizing different methods. One
of the methods is to invest, in order to obtain payoffs with risk. Accordingly, understanding the risk–return relationship
(RRR) is of both academic value and practical importance. So far this relationship has a two-fold character. On one hand,
investments are considered as high risk high return and vice versa; the RRR is positive (risk–return tradeoff) [123,124].
This is also an outcome of the traditional financial theory under the efficient market hypothesis. On the other hand, some
investments are found high risk low return and vice versa; the RRR is negative (Bowman’s paradox) [125,126]. However,
almost all investment products take ‘‘high risk high return’’ as a bright spot to attract investors, and neglect the possible
existence of ‘‘high risk low return’’. This actually results from a received belief that investments with a positive RRR are
dominant over those with a negative RRR in the human society; the belief directs investors to operate investing activities
including gambling [127]. Here we investigate the RRR by designing and investigating a model CAS which includes the
following two crucial factors:

-Market efficiency. The present system exhibits market efficiency at which it reaches a statistical equilibrium [64,21]. We
shall address more relevant details at the end of the next section.

- Closeness. The system involves two conservations: one is the population of investors (Conservation I), the other iswealth
(Conservation II). Regarding Conservation I/II, we fix the total number/amount of the subjects/wealth in the system.

Clearly the two factors have real traces in human society. Accordingly they have played an important role in helping to
establish traditional finance/economics theories. The present designing system just allows us to investigate the joint effect
of the two factors on the RRR.

8.1. Controlled experiments

On the basis of the CAS, we conducted a series of computer-aided human experiments. Details are as follows. There are
two virtual rooms, Room 1 and Room 2 (represented by two buttons on the computer screen of the subjects), for subjects
to invest in. The two rooms have volumes M1 and M2, which may represent the arbitrage space for a certain investment in
the real world. For the experiments, we recruited 24 students from Fudan University as subjects. These subjects acted as
fund managers, who were responsible for implementing investing strategy of the fund and managing its trading activities.
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Fig. 32. Averaged ratio, ⟨W1/W2⟩, versusM1/M2 for the human experiments with 24 subjects (red squares) and agent-based computer simulations with
1000 agents (blue dots). Here ‘‘⟨· · ·⟩’’ denotes the average over the total 30 experimental rounds (experimental data ofW1/W2 for each round are shown in
Table 13) or over the 800 simulation rounds (the additional 200 rounds were performed at the beginning of the simulation for eachM1/M2; during the 200
rounds, we train all of the strategies by scoring them whereas the wealth of each agent remains unchanged). All the experimental and simulation points
lie on or beside the diagonal line (‘‘slope = 1’’), which is indicative of ⟨W1/W2⟩ ≈ M1/M2 . Parameters for the simulations: S = 4 and P = 16.
Source: Adapted from Ref. [111].

We told the subjects the requirement of total 30 rounds for every singleM1/M2, and offered every subject 1000 points (the
amount of virtualmoney constructs the fundmanaged by the subject) as his/her initial wealth for eachM1/M2. In an attempt
to make the subjects maximize their pursuit of self-interest, we promised to pay the subjects Chinese Yuan according to a
fixed exchange rate, 100:1 (namely, one hundred points equal to one Chinese Yuan), at the end of the experiments, and to
offer every subject 30 Chinese Yuan as a bonus of attendance. Extra 50 Chinese Yuan would be given to the subject who
gets the highest score for a single M1/M2. At the beginning of the 1st round of each M1/M2, we told the 24 subjects the
value of M1/M2, and asked each subject to decide his/her investing weight [signed as x(i) for Subject i]. Note the investing
weight, x(i), is the percentage of his/her investing wealth (investment capital) with respect to his/her total wealth, and it
will keep fixedwithin the 30 rounds for a certainM1/M2. In each round, each subject can only invest in one of the two rooms
independently. After all the subjects made their decisions, with the help of the computer program, we immediately knew
the total investments in each room (signed asW1 andW2 for Room 1 and Room 2, respectively) in this round.While keeping
the total wealth conserved, we redistributed the total investmentW1 + W2 according to the following two rules:

(1)We divided the total investment,W1 +W2, by the ratio ofM1 andM2, yielding (W1 +W2)
M1

M1+M2
and (W1 +W2)

M2
M1+M2

as the payoff for Room 1 and Room 2, respectively.
(2) We redistributed the payoff of Room k (k = 1 or 2) by the investment of the subjects. Namely, for each round, the

payoff for Subject i choosing Room k to invest in, wpayoff (i), is determined by wpayoff (i) = (W1 + W2)
Mk

M1+M2
×

win(i)
Wk

, where
win(i) is the investing wealth of Subject i, win(i) = x(i)w(i). Here w(i) is the total wealth possessed by Subject i at the end
of the previous round.

Before the experiments, we told the subjects the above two rules for wealth re-allocation. After each round, every subject
knowshis/her payoff,wpayoff (i). If there iswpayoff (i) > win(i), that is, Subject i getsmore than the amount he/she has invested,
we consider Subject i as a winner at this round. Equivalently, if W1

M1
<

W2
M2

, the subjects choosing Room 1 to invest in win.

Clearly, when W1
W2

=
M1
M2

, every subject obtains the payoff which equals to his/her investing wealth. Namely, the arbitrage

opportunity has been used up. Accordingly, we define the W1
W2

=
M1
M2

state as an equilibrium (or balanced) state [7]. This state
may have some practical significance because global arbitrage opportunities for investing in the human society always tend
to shrink or even disappear once known and used by more and more investors. As shown in Fig. 32 (as well as Table 13),
our experimental system can indeed achieve ⟨W1/W2⟩ ≈ M1/M2 at which the system automatically produces the balanced
allocation of investingwealth; this system thus reaches a statistical equilibrium. In other words, the ‘‘Invisible Hand’’ plays a
full role [21], or alternatively the system exhibitsmarket efficiency. That is, all subjects are pursuing self-interest andwe run
the present system under three conditions: with sufficient information (namely, the wealth change for each round reflects
the possible information), with free competition (i.e., no subjects dominate the system and there are zero transaction costs),
and without externalities (the wealth change of a subject reflects the influence of his/her behavior on the others).

If a subject chooses a large investing weight, he/she will invest more virtual money in a room. According to the rules of
our experiment, the room he/she chooses will then bemore likely to be the losing one. Besides, the initial wealth is the same
for every subject and he/she knows nothing about the others. From this point of view, the larger investing weight he/she
chooses, the higher risk (or uncertainty) he/she will take for the fund (i.e., the initial 1000 points). Therefore, throughout
Section 8, we simply set the investing weight, x(i), to equal the risk he/she is willing to take. Here we should remark that the
present definition of risk appears to be different from that in financial theory. For the latter, one often defines risk according
to variance. Nevertheless, these two ‘‘risk’’s are essentially the same because they both describe the uncertainty of funds and
have a positive association with each other. On the other hand, we should mention that the risk for each subject does not
change with the evolution of time. This is a simplification which makes it possible to discuss the pure effect of a fixed value
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Table 13
Experimental data ofW1/W2 ’s for sixM1/M2 ’s within 30 rounds.
Source: Adapted from Ref. [111].

Round M1/M2 = 1 =2 =3 =6 =7 =9

1 1.247723 1.143654 5.267782 2.98977 24.41429 2.146853
2 0.582237 0.702725 1.717598 11.02642 6.827457 4.860541
3 0.759914 1.897306 2.43237 10.32266 11.25343 11.30546
4 1.903253 1.240914 2.699907 2.97036 5.688661 9.681926
5 1.940527 1.564242 3.999681 3.977399 6.546176 5.249869
6 1.4852 4.711605 2.815152 6.900399 5.13295 6.16301
7 0.71966 2.087147 8.280381 2.991117 9.27272 7.25918
8 0.675138 1.692307 4.590899 3.35285 7.12301 8.996662
9 1.029128 2.73341 1.833477 4.363129 4.329496 7.133701

10 0.867554 2.095702 3.063358 7.273544 8.198398 14.26918
11 1.50125 1.305197 3.862686 18.23372 5.927536 5.500789
12 0.846259 2.292878 3.826587 8.50234 4.673143 5.141253
13 0.629585 1.992493 5.31337 4.613084 13.47519 34.4646
14 0.784858 2.462247 4.687499 19.73941 4.867279 3.889573
15 1.484235 1.807911 2.991726 3.40541 9.820732 7.442826
16 2.309969 1.544355 3.301258 4.864645 19.63957 15.74645
17 1.01251 2.078769 1.009523 8.219743 4.389477 11.55617
18 0.987891 2.624829 1.531467 2.935522 6.684373 8.712361
19 1.319123 2.25104 2.29988 3.813827 6.655679 6.623739
20 0.872338 2.045779 3.140856 5.690231 9.253236 7.973963
21 1.166773 2.006077 5.282071 5.889009 5.021116 5.825073
22 0.896165 1.419159 3.53215 6.137386 7.409623 8.32772
23 0.872224 2.141954 2.629218 11.09127 7.033376 15.57089
24 1.275063 1.990766 4.722947 5.989491 7.216511 10.87512
25 0.695696 2.151347 3.410795 7.790409 8.787551 4.759215
26 1.149307 2.150258 3.400615 8.213546 6.472158 13.14246
27 1.379602 1.621164 5.898509 5.078065 6.915495 7.992252
28 0.809361 1.62651 2.421057 3.698009 5.514453 11.76899
29 0.772988 1.670855 3.576442 7.848631 7.483899 16.27463
30 0.367173 2.010509 2.90843 11.10609 8.9996 4.854004

Table 14
Linear fitting functions for Fig. 33(a)–(l).
Source: Adapted from Ref. [111].

M1/M2 For the experimental data For the simulation data

1 rT (i) = 0.17 − 0.31x(i) [Fig. 33(a)] rT (i) = 0.40 − 0.82x(i) [Fig. 33(g)]
2 rT (i) = 0.0073 − 0.036x(i) [Fig. 33(b)] rT (i) = 0.53 − 1.08x(i) [Fig. 33(h)]
3 rT (i) = 0.49 − 0.74x(i) [Fig. 33(c)] rT (i) = 0.37 − 0.76x(i) [Fig. 33(i)]
6 rT (i) = 0.31 − 0.41x(i) [Fig. 33(d)] rT (i) = 0.44 − 0.89x(i) [Fig. 33(j)]
7 rT (i) = 0.24 − 0.29x(i) [Fig. 33(e)] rT (i) = 0.35 − 0.68x(i) [Fig. 33(k)]
9 rT (i) = 0.26 − 0.33x(i) [Fig. 33(f)] rT (i) = 0.20 − 0.38x(i) [Fig. 33(l)]

of ‘‘risk’’. Nevertheless, if we choose to let the ‘‘risk’’ change with the time, for the same purpose, we may take an average of
the ‘‘risk’’ over the full range of time. Fig. 33(a)–(f) displays the risk–return relationship for the investments in the designing
CAS. From statistical point of view, we find that investments with a negative RRR are dominant over those with a positive
RRR in the whole system.

8.2. Agent-based modeling

Obviously the human experiments have some unavoidable limitations: specific time, specific avenue (a computer room
of Fudan University), specific subjects (students from Fudan University), and the limited number of subjects. Now we are
obliged to extend the experimental results [Fig. 33(a)–(f)] beyond such limitations. For this purpose, we resort to an agent-
based model [7,79,95].

Similar to the above experiments, we set two virtual rooms, Room 1 and Room 2 (with volumeM1 andM2, respectively),
for N agents (fund managers) to invest in. Then, for each M1/M2, assign every agent 1000 points as his/her initial wealth
and an investing weight, x(i), which is randomly picked up between 0 and 1 with a step size of 0.001. In order to avoid
the crowding or overlapping of strategies of different agents [128,129,81], we design the decision-making process for each
agent with four steps.
–Step 1: set a positive integer, P , to represent the various situations for investing [64,21].
–Step 2: assign each agent S strategies according to S integers between 0 and P , respectively. For example, if one of the S
integers is L, then the corresponding strategy of the agent is given by the ratio L/P(0 ≤ L/P ≤ 1), which represents the
probability for the agent to choose Room 1 to invest in [64].
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Fig. 33. Relationship between the risk, x(i), and the return, rT(i) = [wT(i) − w0(i)]/w0(i), for (a)–(f) 24 subjects and (g)–(l) 1000 agents at various
M1/M2 ’s. (a)–(f) Data of the human experiments (total 30 rounds for eachM1/M2); (g)–(l) Data of the agent-based computer simulations (total 800 rounds
for eachM1/M2 , with additional 200 rounds performed at the beginning of the simulations; during the 200 rounds, we train all of the strategies by scoring
them whereas the wealth of each agent remains unchanged). Here wT (i) is Agent i’s wealth at the end of T rounds (the total number of rounds, T , is
T = 30 and 800 for the experiments and simulations, respectively), and w0(i) is Agent i’s initial wealth. All of the subjects or agents are divided into two
groups with preference < 1 (red squares) and preference =1 (blue dots). Here, the ‘‘preference’’ is given by C1/T , where C1 is the number of times for
subjects or agents to choose Room 1 within the total T rounds. The values or distribution of the preferences of the subjects or agents can be found in Figs.
35–36. Here, ‘‘Linear Fit’’ denotes the straight line fitting of the data in each panel using the least square method, which serves as a guide for the eye. (The
fitting functions are listed in Table 14.) All of the lines are downward, which indicate a statistically negative relationship between risk and return. The
present negative relationship just reflects the dominance of investments with a negative RRR in the whole system, in spite of a relatively small number of
investments with a positive RRR. Other parameters: (g)–(l) S = 4 and P = 16.
Source: Adapted from Ref. [111].

–Step 3: for an agent, each strategy has its own score with an initial score, 0, and is added one score (or zero score) if the
strategy predicts (or does not predict) the winning room correctly after each round.
–Step 4: every agent chooses either Room 1 or Room 2 to invest in according to the prediction made by the strategy with
the highest score.

In addition, both the payoff function and the rules for re-distributing investing wealth in Room 1 and Room 2 are set to
be the same as those already mentioned in Section 8.1.

8.3. Comparison between experimental and simulation results

As shown by Fig. 32, our agent-based computer simulations also give ⟨W1/W2⟩ ≈ M1/M2, that is, the system under
simulation also exhibits market efficiency. Furthermore, according to the simulations, we achieve the same qualitative
conclusion: investments with a negative RRR are statistically dominant over those with a positive RRR in the whole system;
see Fig. 33(g)–(l). Nevertheless, when we scrutinize Fig. 33(j)–(l), we find that some particular data seem to be located on a
smooth upward line.We plot these data in blue, and further find that they just correspond to all the agents with ‘‘preference
= 1’’. Encouraging by this finding, we blue all the data of ‘‘preference = 1’’ in the other 9 panels of Fig. 33, and observe
that a similar upward line also appears in the experimental results [see the blue dots in Fig. 33(a)–(f); note the blue dots in
Fig. 33(c) and (e) are also, on average, in an upward line even though they appear to be not so evident].

For the upward lines themselves, they are clearly indicative of investments with a positive RRR. Hence, to distinctly
understand our main conclusion about the dominance of investments with a negative RRR in the whole system, we have
to overcome the puzzle, namely, the strange appearance of these upward lines (constructed by the blue dots in Fig. 33).
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Fig. 34. Same as Fig. 33(g)–(l), but showing the relationship between the risk, x(i), and the relative wealth, wT(i)/w0(i), on a logarithmic scale. ‘‘Linear
Fit’’ corresponds to the line fitting the data of preference < 1 or preference = 1 using the least square method, which serves as a guide for the eye. (The
fitting functions are listed in Table 15.)
Source: Adapted from Ref. [111].

Table 15
Linear fitting functions for Fig. 34(a)–(l).
Source: Adapted from Ref. [111].

M1
M2

For ‘‘preference < 1’’ For ‘‘preference = 1’’

1 log10
wT (i)
w0(i) = 0.10 − 0.31x(i) [Fig. 34(a)] log10

wT (i)
w0(i) = 0.05 + 0.058x(i) [Fig. 34(a)]

2 log10
wT (i)
w0(i) = 0.07 − 0.23x(i) [Fig. 34(b)] log10

wT (i)
w0(i) = 0.02 + 0.24x(i) [Fig. 34(b)]

3 log10
wT (i)
w0(i) = 0.09 − 0.28x(i) [Fig. 34(c)] log10

wT (i)
w0(i) = 0.01 + 0.05x(i) [Fig. 34(c)]

6 log10
wT (i)
w0(i) = 0.09 − 0.37x(i) [Fig. 34(d)] log10

wT (i)
w0(i) = 0.01 + 0.19x(i) [Fig. 34(d)]

7 log10
wT (i)
w0(i) = 0.10 − 0.42x(i) [Fig. 34(e)] log10

wT (i)
w0(i) = 0.003 + 0.29x(i) [Fig. 34(e)]

9 log10
wT (i)
w0(i) = 0.11 − 0.68x(i) [Fig. 34(f)] log10

wT (i)
w0(i) = 0.004 + 0.48x(i) [Fig. 34(f)]

For convenience, we just need to answer Question 1: why do all the ‘‘preference = 1’’ data dots of Fig. 33(g)–(l) exist in
an upward line? To this end, the answer to Question 1 will also help to reveal the mechanism underlying the above main
conclusion.

8.4. Comparison among experimental, simulation, and theoretical results

To answer Question 1, we attempt to study the relationship between risk and wealth; see Fig. 34. In Fig. 34, the
‘‘preference = 1’’ data dots appear to be arranged in an upward straight line, and the straight line exactly corresponds
to the upward line constructed by the blue dots in Fig. 33(g)–(l) due to the relationship between the wealth and return. So,
Question 1 equivalently becomes Question 2:why do all the ‘‘preference = 1’’ data dots of Fig. 34 exist in an upward straight
line? To answer it, we start by considering Agent iwith investmentweight, x(i). His/her return andwealth after t rounds are,
respectively, r ′

t(i) andwt(i). Here, the subscript tϵ[0, T ]. (Note T stands for the total number of simulation rounds, T = 800.)
Clearly, when t = 0, wt(i) = w0(i), which just denotes the initial wealth of Agent i. Then, we obtain the expression for
r ′
t(i) = [wt(i)−wt−1(i)]/[wt−1(i)x(i)]. Accordingly, we havew1(i) = w0(i)[1+r ′

1(i)x(i)] andw2(i) = w1(i)[1+r ′

2(i)x(i)] =

w0(i)[1+ r ′

1(i)x(i)][1+ r ′

2(i)x(i)], thus yieldingwT (i) = w0(i)[1+ r ′

1(i)x(i)] . . . [1+ r ′

T (i)x(i)] = w0(i)
T

t=1[1+ r ′
t(i)x(i)]. As



J.P. Huang / Physics Reports 564 (2015) 1–55 51

c

k

Fig. 35. Preferences of (a)–(f) the 24 subjects in the human experiments (plotted in the bar graph) or (g)–(l) the 1000 agents in the agent-based computer
simulations, for various M1/M2 ’s. Here, ‘‘Mean’’ denotes the preference value averaged for (a)–(f) the 24 subjects or (g)–(l) 1000 agents. In (a)–(f), the
present 24 subjects are ranked by their risk (namely, their investing weight) from low to high, within the range (a) [0.16, 1], (b) [0.01, 1], (c) [0.02, 1],
(d) [0.16, 1], (e) [0.31, 1], and (f) [0.29, 1]; see Table 16 for details. Similarly, in (g)–(l), the 1000 agents are ranked by their risk from low to high, within
the range (0, 1] assigned according to the code ‘‘(double)rand()%1001/1000’’ in the C programming language. In (a)–(f), the ratio between the numbers
of subjects with ‘‘preference = 1’’ and ‘‘preference < 1’’ are, respectively, (a) 2/22, (b) 4/20, (c) 5/19, (d) 7/17, (e) 11/13, and (f) 8/16. In (g)–(l), the ratio
between the numbers of agents with ‘‘preference = 1’’ and ‘‘preference < 1’’ are, respectively, (g) 2/998, (h) 23/977, (i) 94/906, (j) 233/767, (k) 200/800,
and (l) 220/780.
Source: Adapted from Ref. [111].

a result, we obtain log10
wT (i)
w0(i)

= log10{
T

t=1[1 + r ′
t(i)x(i)]} =

T
t=1 log10[1 + r ′

t(i)x(i)] =

T
t=1 r

′
t(i)

x(i) = T ⟨r ′

t(i)⟩x(i).

Here the third ‘‘=’’ holds due to r ′

T (i)x(i) → 0 for the T simulation rounds of our interest. In this equation, ⟨r ′

T (i)⟩ denotes
the average return, namely, the value obtained by averaging r ′

T (i) over the T rounds, and wT (i)
w0(i)

represents the relative

wealth. Thus, the relationship between log10
wT (i)
w0(i)

and x(i) should be linear; the sign of the slope of the straight lines is only
dependent on the average return, ⟨r ′

T (i)⟩. Because the agents with preference = 1 always enter Room 1 with M1(> M2),
the average return, ⟨r ′

T (i)⟩, for them is not only positive but also the same. This is why all the blue points in Fig. 34 lie on an
upward straight line. However, for the other agents with preference< 1 (Fig. 34), they will change rooms from time to time,
so their average return, ⟨r ′

T (i)⟩, is different from one another. This is the reason why the red points do not form a straight
line as the blue points do. From this point of view, the downward straight line we draw from the red points in Fig. 34 is just
a statistical analysis showing a trend. So, the answer to Question 2 can simply be ‘‘because for the small number of agents
with preference = 1, their average return, ⟨r ′

T (i)⟩, is not only positive but also the same’’.
According to the above theoretical analysis, we can now understand that the statistical dominance of investments

with a negative RRR in the whole system results from the distribution of subjects’/agents’ preferences: the heterogeneous
preferences (< 1) owned by a large number of subjects/agents together with the identical preferences (= 1) possessed by a
small number of subjects/agents. Details about the actual values for the preferences can be found in Figs. 35–36. Figs. 35–36
also show the environmental adaptability of subjects or agents.

8.5. Concluding remarks

On the basis of the designed CAS (complex adaptive system), we have revisited the relationship between risk and return
under the influence of market efficiency and closeness by conducting human experiments, agent-based simulations, and
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Table 16
Values for the risk (namely, investing weight) of the 24 subjects for six M1/M2 ’s in the human experiments. We ranked the 24 subjects by their risk from
low to high, as already used in Fig. 35(a)–(f).
Source: Adapted from Ref. [111].

Subject M1
M2

= 1 [(a)] =2 [(b)] =3 [(c)] =6 [(d)] =7 [(e)] =9
[(f)]

1 0.16 0.01 0.02 0.16 0.31 0.29
2 0.21 0.02 0.2 0.2 0.46 0.31
3 0.29 0.11 0.21 0.41 0.47 0.39
4 0.31 0.2 0.4 0.46 0.49 0.4
5 0.36 0.26 0.41 0.49 0.52 0.47
6 0.42 0.41 0.45 0.5 0.7 0.57
7 0.42 0.48 0.46 0.61 0.75 0.7
8 0.42 0.5 0.46 0.7 0.75 0.7
9 0.46 0.5 0.48 0.7 0.79 0.71

10 0.47 0.52 0.5 0.74 0.86 0.74
11 0.48 0.57 0.63 0.76 1. 0.79
12 0.5 0.6 0.72 0.8 1. 0.9
13 0.5 0.64 0.74 0.8 1. 1.
14 0.55 0.74 0.89 0.82 1. 1.
15 0.56 0.81 0.91 0.86 1. 1.
16 0.61 1. 1. 0.86 1. 1.
17 0.61 1. 1. 1. 1. 1.
18 0.63 1. 1. 1. 1. 1.
19 0.66 1. 1. 1. 1. 1.
20 0.67 1. 1. 1. 1. 1.
21 0.72 1. 1. 1. 1. 1.
22 1. 1. 1. 1. 1. 1.
23 1. 1. 1. 1. 1. 1.
24 1. 1. 1. 1. 1. 1.

Fig. 36. Same as Fig. 35, but showing the distribution of preferences.
Source: Adapted from Ref. [111].

theoretical analysis. We have reported that investments with a negative RRR (risk–return relationship) have dominance
over those with a positive RRR in this CAS. We have also revealed the underlying mechanism related to the distribution of
preferences. Our results obtained for the overall system do not depend on the evolutionary time, T , as long as T is large
enough. On the other hand, the experimental data for each T have been listed in Table 13. Clearly, the results for each T
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can change accordingly. In fact, such changes echo with those fluctuations or volatilities yielding arbitrage opportunities for
investors in the real human society.

Section 8 should be valuable not only to complexity science, but also to finance and economics, tomanagement and social
science, and to physics. In finance and economics, it may remind investors about their investing activities. In management
and social science, our results are valuable to clarify the relationship between risk and return under some conditions. In
physics, Section 8 helps to reveal a new macroscopic equilibrium state in such a CAS.

9. Summary and prospect

In this review, I have surveyed the field of experimental econophysics with a focus on the following topics related to
economics or finance: stylized facts, herd behavior, contrarian behavior, spontaneous cooperation, partial information,
and risk management. This review covers the basic concepts, methods, and latest progress in the field of experimental
econophysics.

The combination of empirical analysis, controlled experiments and theoretical analysis is the fundamental method in
the field of experimental econophysics (Section 1). Clearly, controlled experiments are the most important part within
this combination. Thus, how to develop experimental econophysics mainly relies on how to design and perform controlled
experiments convincingly. The laboratory markets presented in this review article offer an approximation of real markets,
which are made of diverse traders. The results of our controlled experiments lend support to the Hayek hypothesis
[23,25] which asserted that markets can work correctly even though the participants have very limited knowledge of their
environment or other participants (see Section 2.1). In fact, traders have different talents, interests and abilities, and they
may interpret data differently or be swayed by fads. Nevertheless, there is still room for markets to operate efficiently.
These comments on the Hayek hypothesis might also be used to explain why our laboratory markets could be a reasonable
approximation of real markets.

Regarding the further development of controlled experiments in the field of experimental econophysics, below I would
like to point out the following three directions [130].
• It is necessary to develop controlled experiments to study and predict the movement of real financial/economic markets

that are often out-of-equilibrium, [131] which should be helpful for making suggestions for policy makers. For this
purpose, it is necessary to take into account the development of complex networks [132–140] that can be used to describe
the relations among humans, thus yielding emergent features originating from the interplay between the structure and
the corresponding function of markets.

• With the deep development of economic and financial systems in global scope, economic/financial crises have more
catastrophic influences than ever. However, mathematical statistics is unable to dig the essential mechanism underlying
the crises. This points to a truth: people urgently need a more efficient method to model the social human systems. The
controlled experiments, combined with empirical analysis and theoretical analysis, might be a promising candidate. As
a result, statistical physics might play a more important role in the prediction of crises.

• Extending controlled experiments from human beings to other animals like ants [141] or fish [142] could be of value in
studying statistical physics of other kinds of adaptive agents beyond human beings. By doing so, people could understand
those animals more by using concepts or tools originating from the traditional statistical physics.

So far, I have listed only three directions of controlled experiments. The readers are definitely more smart than me,
and they might be able to dig out more instructive directions. Certainly, with the development of controlled experiments,
accompanying empirical analysis and theoretical analysis should also be developed accordingly, in order to make the
experimental results more useful and universal. In the mean time, econophysicists should also try to get a lot of nutrients
from other successful disciplines like experimental (or behavioral) economics [26] and social psychology [143], so that
experimental econophysics could flourish and prosper as soon as possible.
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