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 LONG-TERM MEMORY IN STOCK MARKET PRICES

 BY ANDREW W. Lo'

 A test for long-run memory that is robust to short-range dependence is developed. It is
 an extension of the "range over standard deviation" or R/S statistic, for which the
 relevant asymptotic sampling theory is derived via functional central limit theory. This test
 is applied to daily and monthly stock returns indexes over several time periods and,
 contrary to previous findings, there is no evidence of long-range dependence in any of the
 indexes over any sample period or sub-period once short-range dependence is taken into
 account. Illustrative Monte Carlo experiments indicate that the modified R/S test has
 power against at least two specific models of long-run memory, suggesting that stochastic
 models of short-range dependence may adequately capture the time series behavior of
 stock returns.

 KEYWORDS: Long-range dependence, R/S analysis, fractional differencing, 1/f noise,
 random walk, stock market prices.

 1. INTRODUCTION

 THAT ECONOMIC TIME SERIES can exhibit long-range dependence has been a

 hypothesis of many early theories of the trade and business cycles. Such theories

 were often motivated by the distinct but nonperiodic cyclical patterns that
 typified plots of economic aggregates over time, cycles of many periods, some
 that seem nearly as long as the entire span of the sample. In the frequency
 domain such time series are said to have power at low frequencies. So common

 was this particular feature of the data that Granger (1966) considered it the
 "typical spectral shape of an economic variable." It has also been called the
 "Joseph effect" by Mandelbrot and Wallis (1968), a playful but not inappropri-
 ate biblical reference to the Old Testament prophet who foretold of the seven
 years of plenty followed by the seven years of famine that Egypt was to
 experience. Indeed, Nature's predilection towards long-range dependence has
 been well-documented in hydrology, meteorology, and geophysics, and to the
 extent that the ultimate sources of uncertainty in economics are natural phe-
 nomena like rainfall or earthquakes, we might also expect to find long-term
 memory in economic time series.2

 The presence of long-memory components in asset returns has important
 implications for many of the paradigms used in modern financial economics. For

 I I am grateful to Joseph Haubrich for stimulating my interest in this area and for many
 enlightening discussions, and to Lars Hansen for extensive comments and suggestions. I also thank
 David Aldous, Buzz Brock, John Campbell, Yin-Wong Cheung, John Heaton, Blake LeBaron,
 Bruce Lehmann, Nancy Lo, Craig MacKinlay, Whitney Newey, Pierre Perron, Jim Poterba, Murad
 Taqqu, Jean-Luc Vila, Lian Wang, Jeff Wooldridge, two referees, and participants at various
 seminars for useful comments. Sunghwan Shin provided excellent research assistance. Research
 support from the Batterymarch Fellowship, the International Financial Service Research Center at
 M.I.T., the National Science Foundation (Grant Nos. SES-8520054, SES-8821583), the John M. Olin
 Fellowship at the NBER, the Rodney L. White Fellowship at the Wharton School, and the
 University of Pennsylvania Research Foundation is gratefully acknowledged.

 2 Haubrich (1990) and Haubrich and Lo (1989) provide a less fanciful theory of long-range
 dependence in economic aggregates.
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 example, optimal consumption/savings and portfolio decisions may become
 extremely sensitive to the investment horizon if stock returns were long-range
 dependent. Problems also arise in the pricing of derivative securities (such as
 options and futures) with martingale methods, since the class of continuous time
 stochastic processes most commonly employed is inconsistent with long-term
 memory (see Maheswaran (1990), Maheswaran and Sims (1990), and Sims
 (1984), for example). Traditional tests of the capital asset pricing model and the

 arbitrage pricing theory are no longer valid since the usual forms of statistical
 inference do not apply to time series exhibiting such persistence. And the
 conclusions of more recent tests of "efficient" markets hypotheses or stock
 market rationality also hang precariously on the presence or absence of long-term
 memory.3

 Among the first to have considered the possibility and implications of persis-
 tent statistical dependence in asset returns was Mandelbrot (1971). Since then,
 several empirical studies have lent further support to Mandelbrot's findings. For
 example, Greene and Fielitz (1977) claim to have found long-range dependence
 in the daily returns of many securities listed on the New York Stock Exchange.
 More recent investigations have uncovered anomalous behavior in long-horizon
 stock returns;4 alternately attributed to speculative fads and to time-varying
 conditional expected returns, these long-run swings may be further evidence of
 the Joseph effect.

 In this paper I develop a test for such forms of long-range dependence using
 a simple generalization of a statistic first proposed by the English hydrologist

 Harold Edwin Hurst (1951). This statistic, called the "rescaled range" or "range
 over standard deviation" or "R/S" statistic, has been refined by Mandelbrot
 (1972, 1975) and others in several important ways (see, for example, Mandelbrot
 and Taqqu (1979) and Mandelbrot and Wallis (1968, 1969a-1969c)). However,
 such refinements were not designed to distinguish between short-range and
 long-range dependence (in a sense to be made precise below), a severe short-
 coming in applications of R/S analysis to recent stock returns data since Lo
 and MacKinlay (1988, 1990) show that such data display substantial short-range
 dependence. Therefore, to be of current interest, any empirical investigation of
 long-term memory in stock returns must first account for the presence of higher
 frequency autocorrelation.

 By modifying the rescaled range appropriately, I construct a test statistic that
 is robust to short-range dependence and derive its limiting distribution under
 both short-range and long-range dependence. Contrary to the findings of
 Greene and Fielitz (1977) and others, when this statistic is applied to daily and
 monthly stock return indexes over several different sample periods and sub-peri-

 ods, there is no evidence of long-range dependence once the effects of short-
 range dependence are accounted for. Monte Carlo experiments indicate that
 the modified R/S test has reasonable power against at least two particular

 3See Leroy (1989) and Merton (1987) for excellent surveys of this recent literature.
 4 See, for example, Fama and French (1988), Jegadeesh (1990a, 1990b), and Poterba and

 Summers (1988).
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 models of long-range dependence, suggesting that the time series behavior of
 stock returns may be adequately captured by more conventional models of
 short-range dependence.

 The particular notions of short-term and long-term memory are defined in
 Section 2 and some illustrative examples are given. The test statistic is pre-
 sented in Section 3 and its limiting distributions under the null and alternative
 hypotheses are derived via functional central limit theory. In Section 4 the

 empirical results are reported, and Monte Carlo simulations that illustrate the
 size and power of the test in finite samples are presented in Section 5. I
 conclude in Section 6.

 2. LONG-RANGE VERSUS SHORT-RANGE DEPENDENCE

 To develop a method for detecting long-term memory, the distinction be-

 tween long-range and short-range statistical dependence must be made precise.
 One of the most widely used concepts of short-range dependence is the notion
 of "strong-mixing" due to Rosenblatt (1956), a measure of the decline in
 statistical dependence between events separated by successively longer spans of
 time. Heuristically, a time serieg is strong-mixing if the maximal dependence

 between events at any two dates becomes trivially small as the time span
 between those two dates increases. By controlling the rate at which the depen-
 dence between past and future events declines, it is possible to extend the usual
 laws of large numbers and central limit theorems to dependent sequences of

 random variables. I adopt strong-mixing as an operational definition of short-
 range dependence in the null hypothesis of Section 2.1. In Section 2.2, I give
 examples of alternatives to short-range dependence such as the class of fraction-
 ally-differenced processes proposed by Granger and Joyeux (1980), Hosking
 (1981), and Mandelbrot and Van Ness (1968).

 2.1. The Null Hypothesis

 Let P, denote the price of an asset at time t and define X- log Ps - log Pt
 to be the continuously compounded single-period return of that asset from t - 1

 to t. With little loss in generality, let any dividend payments be reinvested in the

 asset so that X, is indeed the total return of the asset between t - 1 and t.5 It is
 assumed throughout that

 (2.1) Xt = A + Et

 where ,A is an arbitrary but fixed parameter and Et is a zero mean random
 variable. Let this stochastic process {Xt(w)} be defined on the probability space
 (Q, , P) and define

 (2.2) a( X, )- sup IP(A n B)-P(A)P(B)IX
 (A EW-Q, B e 9)

 TVCho s4, c

 5 This is in fact how the stock returns data of Section 4 are constructed.
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 The quantity a(V, 9) is a measure of the dependence between the two a-fields

 v and v in Y. Denote by 9, the Borel a--field generated by
 {Xs(w), ..., Xt(w)}, i.e., gst o-(Xs(w),..., Xt(w)) c F. Define the coefficients
 ak as

 (2.3) ak =sup a(L, J +k)
 j

 Then {Xt(co)} is said to be strong-mixing if limkO a k = o.6 Such mixing
 conditions have been used extensively in the recent literature to relax the
 assumptions that ensure the consistency and asymptotic normality of various
 econometric estimators (see, for example, Chan and Wei (1988), Phillips (1987),
 White (1980), and White and Domowitz (1984)). As Phillips (1987) observes,
 these conditions are satisfied by a great many stochastic processes, including all

 Gaussian finite-order stationary ARMA models. Moreover, the inclusion of a
 moment condition also allows for heterogeneously distributed sequences, an

 especially important extension in view of the apparent instabilities of financial
 time series.

 In addition to strong mixing, several other conditions are required as part of
 the null hypothesis in order to develop a sampling theory for the test statistic
 proposed in Section 3. In particular, the null hypothesis is composed of the

 following four conditions on Et:

 ( Al) E[Et ] = 0 for all t;

 (A2) sup E[EItipI< oo for some f > 2;

 2 0 ~1 n 2

 (A4) {et} is strong-mixing with mixing coefficients ak that satisfy
 00

 Ea1-2p < Xo

 k=1

 Condition (Al) is standard. Conditions (A2) through (A4) are restrictions on
 the maximal degree of dependence and heterogeneity allowable while still
 permitting some form of the law of large numbers and the (functional) central
 limit theorem to obtain. Although (A2) rules out infinite variance marginal
 distributions of Et such as those in the stable family with characteristic exponent
 less than 2, the disturbances may still exhibit unconditional leptokurtosis via
 time-varying conditional moments (e.g., conditional heteroscedasticity). More-
 over, since there is a trade-off between (A2) and (A4), the uniform bound on
 the moments can be relaxed if the mixing coefficients decline faster than (A4)

 6 There are several other ways of measuring the degree of statistical dependence, giving rise to
 other notions of "mixing." For further details, see Eberlein and Taqqu (1986), Rosenblatt (1956),
 and White (1984).
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 requires.7 For example, if E is required to have finite absolute moments of all
 orders (corresponding to J3 -- oo), then ak must decline faster than 1/k.

 However, if Et is restricted to have finite moments only up to order 4, then ak
 must decline faster than 1/k2. These conditions are discussed at greater length
 by Phillips (1987).

 Of course, it is too much to hope that all forms of short-memory processes

 are captured by (A1)-(A4). For example, if Et were the first difference of a
 stationary process, its spectral density at frequency zero vanishes, violating
 (A3). Yet such a process certainly need not be long-range dependent. A more
 subtle example is given by Ibragimov and Rozanov (1978)-a stationary Gauss-
 ian process with spectral density function

 X cos kco

 (2.4) f(w)= expEl klogk+l i

 which is strong-mixing but has unbounded spectral density at the origin. The
 stochastic process with 1/f(w) for its spectral density is also strong-mixing, but
 1/f(w) vanishes at the origin. Although neither process is long-range depen-
 dent, they both violate (A3). Unfortunately, a general characterization of the
 implications of such processes for the behavior of the test statistic proposed in
 Section 3 is currently unavailable. Therefore, a rejection of the null hypothesis
 does not necessarily imply that long-range dependence is present but merely

 that, if the rejection is not a type I error, the stochastic process does not satisfy
 all four conditions simultaneously. Whether or not the composite null (A1)-(A4)
 is a useful one must therefore depend on the particular application at hand.

 In particular, although mixing conditions have been widely used in the recent
 literature, several other sets of assumptions might have served equally well as

 our short-range dependent null hypothesis. For example, if {Et} is assumed to be
 stationary and ergodic, the moment condition (A2) can be relaxed and more
 temporal dependence than (A4) is allowable (see Hall and Heyde (1980)).
 Whether or not the assumption of stationarity is a restrictive one for financial

 time series is still an open question. There is ample evidence of changing
 variances in stock returns over periods longer than five years, but unstable
 volatilities can be a symptom of conditional heteroscedasticity which can mani-
 fest itself in stationary time series. Since the empirical evidence regarding

 changing conditional moments in asset returns is mixed, allowing for nonstation-
 arities in our null hypothesis may still have value. Moreover, (A1)-(A4) may be
 weakened further, allowing for still more temporal dependence and heterogene-
 ity, hence widening the class of processes contained in our null hypothesis.8

 7See Herrndorf (1985). One of Mandelbrot's (1972) arguments in favor of R/S analysis is that
 finite second moments are not required. This is indeed the case if we are interested only in the
 almost sure convergence of the statistic. But since for purposes of inference the limiting distribution
 is required, a stronger moment condition is needed here.

 8Specifically, that the sequence {etj is strong-mixing may be replaced by the weaker assumption
 that it is a near-epoch dependent function of a strong-mixing process. See McLeish (1977) and
 Wooldridge and White (1988) for further details.
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 Note, however, that conditions (A1)-(A4) are satisfied by many of the
 recently proposed stochastic models of persistence, such as those of Campbell
 and Mankiw (1987), Fama and French (1988), and Poterba and Summers (1988).
 Therefore, since such models of longer-term correlations are contained in our

 null, the kinds of long-range dependence that (A1)-(A4) were designed to
 exclude are quite different. Although the distinction between dependence in the
 short run and the long run may appear to be a matter of degree, strongly
 dependent processes behave so differently from weakly dependent time series
 that the dichotomy proposed in our null seems most natural. For example, the
 spectral densities at frequency zero of strongly dependent processes are either
 unbounded or zero whereas they are nonzero and finite for processes in our
 null. The partial sums of strongly dependent processes do not converge in
 distribution at the same rate as weakly dependent series. And graphically, their

 behavior is marked by cyclical patterns of all kinds, some that are virtually
 indistinguishable from trends.

 2.2. Long-Range Dependent Alternatives

 In contrast to the short-term memory of "weakly dependent" (i.e., mixing)
 processes, natural phenomena often display long-term memory in the form of
 nonperiodic cycles. This has lead several authors to develop stochastic models

 that exhibit dependence even over very long time spans, such as the

 fractionally-integrated time series models of Granger (1980), Granger and
 Joyeux (1980), Hosking (1981), and Mandelbrot and Van Ness (1968). These
 stochastic processes are not strong-mixing, and have autocorrelation functions
 that decay at much slower rates than those of weakly dependent processes. For

 example, let X, satisfy the following difference equation:

 (2.5) (1-L tEs E ?6)

 where L is the lag operator and Et is white noise. Granger and Joyeux (1980)
 and Hosking (1981) show that when the quantity (1 - L)d is extended to
 noninteger powers of d in the mathematically natural way, the result is a

 well-defined time series that is said to be "fractionally-differenced" of order d
 (or, equivalently, "fractionally-integrated" of order -d). Briefly, this involves
 expanding the expression (1 - L)d via the binomial theorem for noninteger
 powers:

 (2.6) (1-L)d= E (_1) (k d)L,

 {d d(d - 1)(d - 2) ... (d - k + 1)
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 TABLE I

 COMPARISON OF Au-rOCORRELArION FUNCrIONS OF FRACTIONALLY DIFFERENCED

 TIME SERIES (1 -L)dX, = Et FOR d = - WITH THAT OF AN AR(1) X, = pX1 + Et,
 p = .5. THE VARIANCE OF Et WAS CHOSEN TO YIELD A UNIT VARIANCE FOR Xt IN ALL

 THREE CASES.

 Lag p(k) p(k) pk
 Id=ag [d-3] p(k) [AR(1), p = .5]

 1 0.500 - 0.250 0.500
 2 0.400 - 0.071 0.250
 3 0.350 -0.036 0.125
 4 0.318 -0.022 0.063
 5 0.295 -0.015 0.031
 10 0.235 - 0.005 0.001
 25 0.173 -0.001 2.98 X 10 8
 50 0.137 -3.24 X 10-4 8.88 X 10_16
 100 0.109 - 1.02 X 10-4 7.89 X 10_31

 and then applying the expansion to Xt:

 d 00 kd kt=00 (2.7) (1 -L) Xt =El ( -1) ( L Xt=El AkXt-k Et
 k=O k=

 where the autoregressive coefficients Ak are often re-expressed in terms of the
 gamma function:

 (2.8) Ak = ( _1)k()= rk d

 Xt may also be viewed mechanically as an infinite-order MA process since

 (2.9) Xt = (1-L>) -dEt = B(L) Et, B F( k + d) Bk=F(d)F(k +1)

 It is not obvious that such a definition of fractional-differencing might yield a
 useful stochastic process, but Granger (1980), Granger and Joyeux (1980), and
 Hosking (1981) show that the characteristics of fractionally-differenced time

 series are interesting indeed. For example, it may be shown that Xt is stationary
 and invertible for d E (- 2' 2) (see Hosking (1981)), and exhibits a unique kind
 of dependence that is positive or negative depending on whether d is positive or

 negative, i.e., the autocorrelation coefficients of Xt are of the same sign as d. So
 slowly do the autocorrelations decay that when d is positive their sum diverges
 to infinity, and collapses to zero when d is negative.9 To develop a sense of this
 long-range dependence, compare the autocorrelations of a fractionally-dif-

 ferenced Xt with those of a stationary AR(1) in Table I. Although both the
 AR(1) and the fractionally-differenced (d = 1) series have first-order autocorre-

 9 Mandelbrot and others have called the d <O case "anti-persistence," reserving the term
 "long-range dependence" for the d > 0 case. However, since both cases involve autocorrelations
 that decay much more slowly than those of more conventional time series, I call both long-range
 dependent.
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 lations of 0.500, at lag 25 the AR(I) autocorrelation is 2.98 x 10-8 whereas the
 fractionally-differenced series has autocorrelation 0.173, declining only to 0.109
 at lag 100.

 In fact, the defining characteristic of long-range dependent processes has

 been taken by many to be this slow decay of the autocovariance function.
 Therefore, more generally, long-range dependent processes may be defined to

 be those processes with autocovariance functions Yk such that

 (2.10) Yk~ ~ ~() frv(10o as k -+oo ,
 \ -kVL(k) for v e (-2, -1),

 where L(k) is any slowly varying function at infinity.'0 This is the definition I
 shall adopt in the analysis to follow. As an example, the autocovariance function
 of the fractionally-difference process (2.5) is

 o,Fl- 2d)F(k + d) 2 d-1
 (2.11) Yk = F(d)F(l - d)F(k + 1 - d) ck2 as k 0,

 where d E (- 2, 2-) and c is some constant. Depending on whether d is negative

 or positive, the spectral density of (2.5) at frequency zero, given by

 (2.12) f(A) (1-e iA) d(1 eiA)do2 2A -2d as A 0,

 will either be zero or infinite; thus such processes violate condition (A3).1"
 Furthermore, the results of Helson and Sarason (1967) show that these pro-
 cesses are not strong-mixing; hence they also violate condition (A4) of our null
 hypothesis.'2

 3. THE RESCALED RANGE STATISTIC

 To detect long-range or "strong" dependence, Mandelbrot has suggested
 using the range over standard deviation or R/S statistic, also called the
 "rescaled range," which was developed by Hurst (1951) in his studies of river
 discharges. The R/S statistic is the range of partial sums of deviations of a time
 series- from its mean, rescaled by its standard deviation. Specifically, consider a

 sample of returns X1, X2,. . ., X,, and let X,, denote the sample mean (l/n)jXj.

 10A function f(x) is said to be regularly varying at infinity with index p if lim t e f(tx)/f(t) =xP
 for all x > 0; hence regularly varying functions are functions that behave like power functions
 asymptotically. When p = 0, the function is said to be slowly varying at infinity, since it behaves like
 a constant for large x. An example of a function that is slowly varying at infinity is log x. See
 Resnick (1987) for further properties of regularly varying functions.

 11This has also been advanced as a definition of long-range dependence-see, for example,
 Mandelbrot (1972).

 12 Note, Helson and Sarason (1967) only consider the case of linear dependence; hence their
 conditions are sufficient to rule out strong-mixing but not necessary. For example, white noise may
 be approximated by a nonlinear deterministic time series (e.g. the tent map) and will have constant
 spectral density, but will be strongly dependent. I am grateful to Lars Hansen for pointing this out.
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 Then the classical rescaled range statistic, denoted by Qn, is defined as

 1 ~~~k k
 (3.1) Qn- 5 |Mka<xn (Xj -,n) - Minn (Xj - Xn) (3.1) Qn =- Ma M

 Sn 1,<k,n j=11?k,nj=

 where sn is the usual (maximum likelihood) standard deviation estimator:

 (3.2) s -?Ex ~2 (32 n- = n E (Xi Xn)]

 The first term in brackets in (3.1) is the maximum (over k) of the partial sums of

 the first k deviations of Xj from the sample mean. Since the sum of all n
 deviations of the X1's from their mean is zero, this maximum is always nonnega-
 tive. The second term in (3.1) is the minimum (over k) of this same sequence of
 partial sums; hence it is always nonpositive. The difference of the two quanti-
 ties, called the "range" for obvious reasons, is therefore always nonnegative;

 hence Qn > 0.13
 In several seminal papers Mandelbrot, Taqqu, and Wallis demonstrate the

 superiority of R/S analysis to more conventional methods of determining
 long-range dependence, such as analyzing autocorrelations, variance ratios, and
 spectral decompositions. For example, Mandelbrot and Wallis (1969a) show by
 Monte Carlo simulation that the R/S statistic can detect long-range depen-
 dence in highly non-Gaussian time series with large skewness and kurtosis. In

 fact, Mandelbrot (1972, 1975) reports the almost-sure convergence of the R/S
 statistic for stochastic processes with infinite variances, a distinct advantage over
 autocorrelations and variance ratios which need not be well-defined for such
 processes. Further aspects of the R/S statistic's robustness are derived in

 Mandelbrot and Taqqu (1979). Mandelbrot (1972) also argues that, unlike
 spectral analysis which detects periodic cycles, R/S analysis can detect nonperi-
 odic cycles, cycles with periods equal to or greater than the sample period.

 '3The behavior of Qn may be better understood by considering its origins in hydrological studies
 of reservoir design. To accommodate seasonalities in riverflow, a reservoir's capacity must be chosen
 to allow for fluctuations in the supply of water above the dam while still maintaining a relatively
 constant flow of water below the dam. Since dam construction costs are immense, the importance of
 estimating the reservoir capacity necessary to meet long term storage needs is apparent. The range
 is an estimate of this quantity. If X, is the riverflow (per unit time) above the dam and Xn is the
 desired riverflow below the dam, the bracketed quantity in (3.1) is the capacity of the reservoir
 needed to ensure this smooth flow given the pattern of flows in periods 1 through n. For example,
 suppose annual riverflows are assumed to be 100, 50, 100, and 50 in years 1 through 4. If a constant
 annual flow of 75 below the dam is desired each year, a reservoir must have a minimum total
 capacity of 25 since it must store 25 units in years 1 and 3 to provide for the relatively dry years 2
 and 4. Now suppose instead that the natural pattern of riverflow is 100, 100, 50, 50 in years 1
 through 4. To ensure a flow of 75 below the dam in this case, the minimum capacity must increase to
 50 so as to accommodate the excess storage needed in years 1 and 2 to supply water during the "dry
 spell" in years 3 and 4. Seen in this context, it is clear that an increase in persistence will increase
 the required storage capacity as measured by the range. Indeed, it was the apparent persistence of
 "dry spells" in Egypt that sparked Hurst's life-long fascination with the Nile, leading eventually to
 his interest in the rescaled range.
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 TABLE II

 FRACTILES OF THE DISTRIBUTION FV(v)

 P(V< v) .005 .025 .050 .100 .200 .300 .400 .500

 v 0.721 0.809 0.861 0.927 1.018 1.090 1.157 1.223

 P(V < v) .543 .600 .700 .800 .900 .950 .975 .995

 U \/ 2 1.294 1.374 1.473 1.620 1.747 1.862 2.098

 Although these claims may all be contested to some degree, it is a well-estab-
 lished fact that long-range dependence can indeed be detected by the "classical"
 R/S statistic. However, perhaps the most important shortcoming of the rescaled

 range is its sensitivity to short-range dependence, implying that any incompati-
 bility between the data and the predicted behavior of the R/S statistic under
 the null hypothesis need not come from long-term memory, but may merely be a

 symptom of short-term memory.
 To see this, first observe that under a simple i.i.d. null hypothesis, it is

 well-known (and is a special case of Theorem 4.1 below) that as n increases
 without bound, the rescaled range converges in distribution to a well-defined
 random variable V when properly normalized, i.e.,

 1 ,
 (3.3) . QnV

 where "=* " denotes weak convergence and V is the range of a Brownian bridge
 on the unit interval.'4

 Now suppose, instead, that {Xj) were short-range dependent-for example,
 let X1 be a stationary AR(1):15 (34 t = Pet -1 + 77t, 77t " WN( oJ2 ilE 0 1
 Although {et) is short-range dependent, it yields a Qn that does not satisfy (3.3).

 In fact, it may readily be shown that for (3.4) the limiting distribution of Q/ nV;
 is (V where - (1 +p)/(1 -p) (see Proposition 3.1 below). For some
 portfolios of common stock, p is as large as 50 percent, implying that the mean

 of Qn/l may be biased upward by 73 percent! Since the mean of V is
 V7r/2 = 1.25, the mean of the classical rescaled range would be 2.16 for such an
 AR(1) process. Using the critical values of V reported in Table II, it is evident

 14 See Billingsley (1968) for the definition of weak convergence. I discuss the Brownian bridge
 and V more formally below.

 15 It is implicitly assumed throughout that white noise has a Lebesgue-integrable characteristic
 function to avoid the pathologies of Andrews (1984).
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 that a value of 2.16 would yield a rejection of the null hypothesis at any
 conventional significance level.

 This should come as no surprise since the values in Table II correspond to the

 distribution of V, not (V. Now by taking into account the "short-term"

 autocorrelations of the Xi's -by dividing Q, by 6 for example-convergence to
 V may be restored. But this requires knowledge of 6 which, in turn, requires
 knowledge of p. Moreover, if Xj follows a short-range dependent process other
 than an AR(1), the expression for 6 will change, as Proposition 3.1 below shows.
 Therefore, correcting for short-range dependence on a case-by-case basis is
 impractical. Ideally, we would like to correct for short-term memory without
 taking too strong a position on what form it takes. This is precisely what the
 modified rescaled range of Section 3.1 does-its limiting distribution is invari-

 ant to many forms of short-range dependence, and yet it is still sensitive to the
 presence of long-range dependence.

 Although aware of the effects of short-range dependence on the rescaled
 range, Mandelbrot (1972, 1975) did not correct for this bias since his focus was
 the relation of the R/S statistic's logarithm to the logarithm of the sample size
 as the sample size increases without bound. For short-range dependent time
 series such as strong-mixing processes, the ratio log Q/log n approaches - in
 the limit, but converges to quantities greater or less than 2 according to whether
 there is positive or negative long-range dependence. The limit of this ratio is
 often denoted by H and is called the "Hurst" coefficient. For example, the
 fractionally-differenced process (2.1) satisfies the simple relation: H = d + 2.

 Mandelbrot and Wallis (1969a) suggest estimating the Hurst coefficient by
 plotting the logarithm of Qn against the logarithm of the sample size n. Beyond
 some large n, the slope of such a plot should settle down to H. However,
 although H= 2 across general classes of short-range dependent processes, the
 finite-sample properties of the estimated Hurst coefficient are not invariant to

 the form of short-range dependence. In particular, Davies and Harte (1987)
 show that even though the Hurst coefficient of a stationary Gaussian AR(1) is
 precisely 2, the 5 percent Mandelbrot regression test rejects this null hypothesis
 47 percent of the time for an autoregressive parameter of 0.3. Additional Monte
 Carlo evidence is reported in Section 5.

 3.1. The Modified R/S Statistic

 To distinguish between long-range and short-range dependence, the R/S
 statistic must be modified so that its statistical behavior is invariant over a

 general class of short memory processes, but deviates for long memory pro-
 cesses. This is accomplished by the following statistic Qn:

 1 k k

 (3.5) Qn f{A Ma E (Xj -X), ZM>in E (Xj -n
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 where

 (3.6) an (q) - E (Xi Yn)
 n j-1

 2 q (n

 n - J (q)i X 1 (X ' ik )(Xij -kn)}

 qI
 (3.7) = U2+ 2 E coj(q)yj coj(q) = ,q <n,

 1=1

 and x and % are the usual sample variance and autocovariance estimators
 of X.

 Qn differs from Qn only in its denominator, which is the square root of a
 consistent estimator of the partial sum's variance. If {X,) is subject to short-range
 dependence, the variance of the partial sum is not simply the sum of the
 variances of the individual terms, but also includes the autocovariances. There-

 fore, the estimator an(q) involves not only sums of squared deviations of Xj, but
 also its weighted autocovariances up to lag q. The weights (oj(q) are those
 suggested by Newey and West (1987) and always yield a positive &n2(q), an
 estimator of 27r times the (unnormalized) spectral density function of X, at
 frequency zero using a Bartlett window. Theorem 4.2 of Phillips (1987) demon-
 strates the consistency of an(q) under the following conditions:16

 (A2') sup E[IEtI2Pi <0 a for some 8 > 2.
 t

 (AS) As n increases without bound, q also increases without
 ( ~) bound such that q o(n'14).

 By allowing q to increase with (but at a slower rate than) the number of

 observations n, the denominator of Qn adjusts appropriately for general forms
 of short-range dependence. Of course, although the conditions (A2') and (A5)
 ensure the consistency of a2(q), they provide little guidance in selecting a
 truncation lag q. Monte Carlo studies such as Andrews (1991) and Lo and
 MacKinlay (1989) have shown that when q becomes large relative to the sample
 size n, the finite-sample distribution of the estimator can be radically different
 from its asymptotic limit. However q cannot be chosen too small since the
 autocovariances beyond lag q may be substantial and should be included in the
 weighted sum. Therefore, the truncation lag must be chosen with some consid-
 eration of the data at hand. Andrews (1991) does provide a data-dependent rule
 for choosing q; however its minimax optimality is still based on an asymptotic

 mean-squared error criterion-little is known about how best to pick q in finite
 samples. Some Monte Carlo evidence is reported in Section 5.

 16 Andrews (1991) has improved the rate restriction in (A5) to o(n1/2), and it has been
 conjectured that o(n) is sufficient.
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 Since there are several other consistent estimators of the spectral density
 function at frequency zero, conditions (A2') and (A5) can be replaced with

 weaker assumptions if conditions (A1), (A3), and (A4) are suitably modified. If,

 for example, X, is m-dependent (so that observations spaced greater than m
 periods apart are independent), it is well-known that the spectral density at
 frequency zero may be estimated consistently with a finite number of un-

 weighted a-utocovariances (see, for example, Hansen (1982, Lemma 3.2)). Other
 weighting functions may be found in Hannan (1970, Chapter V.4) and may yield

 better finite-sample properties for Q, than the Bartlett window without altering
 the limiting null distribution derived in the next section.'7

 3.2. The Asymptotic Distribution of Q,

 To derive the limiting distribution of the modified rescaled range Qn under

 our null hypothesis, consider the behavior of the following standardized partial
 sum:

 (3.8) Wn(r) FS[nI E[0,1],

 where Sk denotes the partial sum E j=Ej and [nr] is the greatest integer less
 than or equal to nr. The sample paths of Wn(r) are elements of the function
 space .9[0, 1], the space of all real-valued functions on [0, 1] that are right-con-
 tinuous and possess finite left limits. Under certain conditions it may be shown

 that Wn(r) converges weakly to a Brownian motion W(r) on the unit interval,
 and that well-behaved functionals of Wn((r) converge weakly to the same
 functionals of Brownian motion (see Billingsley (1968) for further details).
 Armed with these results, the limiting distribution of the modified rescaled
 range may be derived in three easy steps, summarized in the following theorem.18

 THEOREM 3.1:1' If {E,} satisfies assumptions (Al), (A2'), (A3)-(A5), then as n
 increases without bound:

 1 k

 (a) 1 x A X-nxq) =( Max W?(r) )M0,
 k

 (b) Min A Xj-en) > Min W0(r) m',
 1<k,<n &n(q)V _n in, 0<<

 1
 (c) FQn=M?-m?-V.

 17 For example, Andrews (1991) and Gallant (1987) both advocate the use of Parzen weights,
 which also yields a positive semi-definite estimator of the spectral density at frequency zero but is
 optimal in an asymptotic mean-square error sense.

 18 Mandelbrot (1975) derives similar limit theorems for the statistic Q% under the more restrictive
 i.i.d. assumption, in which case the limiting distribution will coincide with that of Q,. Since our null
 hypothesis includes weakly dependent disturbances, I extend his results via the more general
 functional central limit theorem of Herrndorf (1984, 1985).

 19 Proofs of theorems are given in the Appendix.
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 Fv (v) and fv (v)

 0

 ?O. 1 /2 3
 v

 FIGURE l.-Distribution and density function of the range V of a Brownian bridge. Dashed
 curves are the normal distribution and density functions with mean and variance equal to those of V
 (V;/1_ and rr216 respectively).

 Parts (a) and (b) of Theorem 3.1 follow from Lemmas A. 1 and A.2 of the
 Appendix, and Theorem 4.2 of Phillips (1987), and show that the maximum and
 minimum of the partial sum of deviations of Xj from its mean converge
 respectively to the maximum and minimum of the celebrated Brownian bridge
 W?(,r) on the unit interval, also called "pinned" or "tied-down" Brownian
 motion because W?(0) = W?(1) =0. That the limit of the partial sums is a
 Brownian bridge is not surprising since the summands are deviations from the
 mean and must therefore sum to zero at k = n. Part (c) of the theorem follows
 immediately from Lemma A.2 and is the key result, allowing us to perform large
 sample statistical inference once the distribution function for the range of the
 Brownian bridge is obtained. This distribution function is implicitly contained in
 Feller (1951), and is given explicitly by Kennedy (1976) and Siddiqui (1976) aS20

 / -~~V 2( )

 (3.9) Fv(v) = 1 + 2 E(1 - 4ke123
 k=1

 Critical values for tests of any significance level are easily obtained from this
 simple expression (3.9) for Fva The values most commonly used are reported in
 Table rI. The moments of V may also be readily computed from (3.9); a simple
 calculation shows that E[V] = Ps/h9 and E[V2] = 7r2/6, thatus ehe mean and
 standard deviothe pt s of deviatiely 1.25 and 0.27 respectively. Plots of
 Fv and bv are given in Figure 1, along with Gaussian distribution and density

 20 I am grateful to David Aldous and Yin-Wong Cheung for these last two references.
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 functions (with the same mean and variance as V) for comparison. The
 distribution of V is positively skewed and most of its mass falls between 3-
 and 2.

 3.3. The Relation Between Qn and Qn

 Since Qn and Qn differ solely in how the range is normalized, the limiting
 behavior of our modified R/S statistic and Mandelbrot's original will only
 coincide when & (q) and sn are asymptotically equivalent. From the definitions
 of an(q) and Sn, it is apparent that the two will generally converge in probability
 to different limits in the presence of autocorrelation. Therefore, under the

 weakly dependent null hypothesis the statistic Qnl/ n will converge to the
 range V of a Brownian bridge multiplied by some constant. More formally, we
 have the almost trivial result:

 PROPOSITION 3.1: If limn, 3 E[E>= 18EJ/n] is finite and positive, then under
 assumptions (A1)-(A4), Qnl/ '= eV where

 lim n - Et _1
 (3.10) e2= 1

 lim,no E [- ? E

 Therefore, normalizing the range by sn in place of an(q) changes the limiting
 distribution of the rescaled range by the multiplicative constant 6. This result
 was used above to derive the limiting distribution of Qn in the AR(1) case, and

 closed-form expressions for 6 for general stationary ARMA(p, q) processes may
 readily be obtained using (3.10).

 Since it is robust to many forms of heterogeneity and weak dependence, tests

 based on the modified R/S statistic Qn cover a broader set of null hypotheses
 than those using Qn. More to the point, the modified rescaled range is able to
 distinguish between short-range and long-range dependence-the classical
 rescaled range cannot. Whereas an extreme value for Qn indicates the likeli-
 hood of long-range dependence, a rejection based on the Qn statistic is also
 consistent with short-range dependence in the data. Of course, it is always
 possible to tabulate the limiting distribution of the classical R/S statistic under
 a particular model of short-range dependence, but this obviously suffers from
 the drawback of specificity. The modified rescaled range converges weakly to
 the range of a Brownian bridge under general forms of weak dependence.

 Despite its sensitivity to short-range dependence, the classical R/S statistic
 may still be used to test for independently and identically distributed X,'s.
 Indeed, the AR(1) example of Section 3 and the results of Davies and Harte
 (1987) suggest that such a test may have considerable power against non-i.i.d.
 alternatives. However, since there is already a growing consensus among finan-
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 cial economists that stock market prices are not independently and identically
 distributed, this null hypothesis is of less immediate interest. For example, it is
 now well-known that aggregate stock market returns exhibit significant serial
 dependence for short-horizon holding periods and are therefore not indepen-
 dently distributed.

 3.4. The Behavior of Q, Under Long Memory Alternatives

 To complete the analysis of the modified rescaled range, its behavior under
 long-range dependent alternatives remains to be investigated. Although this

 depends of course on the specific alternative at hand, surprisingly general
 results are available based on the following result from Taqqu (1975).

 THEOREM 3.2 (Taqqu): Let {Et} be a zero-mean stationary Gaussian stochastic
 process such that

 (3.11) o2 Var I Sn I] ~ 2HL( n)

 where Sn is the partial sum n He(0,1), and L(n) is a slowly varying
 function at infinity. Define the following function on 9[0, 1]:

 1

 (3.12) WnT Sn] E- (O, 1)
 n

 Then Wn((r) = WH(-), where WH&) is a fractional Brownian motion of order H
 on [0,1].

 Theorem 3.2 is a functional central limit theorem for strongly dependent
 processes, and is only a special case of Taqqu's (1975) considerably more
 general results. In contrast to the usual functional central limit theorem in
 which properly normalized partial sums converge to a standard Brownian
 motion, Theorem 3.2 states that long-range dependent partial sums converge
 weakly to a fractional Brownian motion, first defined by Mandelbrot and Van
 Ness (1968) as the following stochastic integral:

 1 X H-2
 (3.13) WH( r() 1 (r X)H dW(x). WHO F(H + 1)

 Observe that when H= 2X WH(&) reduces to a standard Brownian motion. In
 that case, there is no long-range dependence, the variance of the partial sums
 grows at rate n, and the spectral density at frequency zero is finite and positive.
 If H e (1, 1) (H e (0, 1)), there is positive (negative) long-range dependence,
 the variance grows faster (slower) than n, hence the spectral density at fre-
 quency zero is infinite (zero).
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 In a fashion analogous to Theorem 3.1, the behavior of Q, under long-range
 dependent alternatives may now be derived in several steps using Lemmas A.2,
 A.3, and Theorem 3.2:

 THEOREM 3.3: Let {E} be a zero-mean stationary Gaussian stochastic process

 with autocovariance function Yk such that

 k 2H- 2L(k) forHe (',1) or
 (3.14) Y as k-*o

 Yk k2H- 2L(k) for HE-=(O,I),

 where L(k) is a slowly varying function at infinity. Then as n and q increase
 without bound such that (q/n) > 0, we have:

 l k

 (a) Max - k a (XjMa x WH ( r)-MH,
 1k n j=1 O <?T <

 1 k
 (b) Mlin M E (mj n) 0Min WH ( r) m= ,

 (c) n= ( q)v _ n H VH1,

 oin Pp |? forHE(41,1),
 (d) a a (q)T (0 forHe( ),2

 (e) 1/; n f n 00 forHe(1(0,)
 -r Q \ 0 for Hc-(0),

 where an(q) is defined in (3.6), an is defined in Theorem 3.2, and WH(r) WHG-)
 -WH (1). 2

 Theorem 3.3 shows that the modified rescaled range test is consistent against
 a class of long-range dependent stationary Gaussian alternatives. In the pres-
 ence of positive strong dependence, the R/S statistic diverges in probability to
 infinity; in the presence of negative strong dependence, it converges in probabil-
 ity to zero. In either case, the probability of rejecting the null hypothesis
 approaches unity for all stationary Gaussian stochastic processes satisfying
 (3.14), a broad set of alternatives that includes all fractionally-differenced
 Gaussian ARIMA(p, d, q) models with d E (- 2, 1).

 From (a) and (b) of Theorem 3.3 it is apparent that the normalized popula-

 tion rescaled, Rn/ i/n, converges to zero in probability. Therefore, whether or
 not Qnl/ n approaches zero or infinity in the limit depends entirely on the

 21Although it is tempting to call WH(T) a "fractional Brownian bridge," this is not the most
 natural definition despite the fact that it is "tied down." See Jonas (1983, Chapter 3.3) for a
 discussion.
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 limiting behavior of the ratio o7/&17(q). That is,

 (3.15) Qn = ^n Rn

 so that if the ratio o-/A (q) diverges fast enough to overcompensate for the

 convergence of Rn/IV to zero, then the test will reject in the upper tail,
 otherwise it will reject in the lower tail. This is determined by whether d lies in
 the interval (0, 2) or (- 2, 0). When d = 0, the ratio on/A(q) converges to unity
 in probability and, as expected, the normalized R/S statistic converges in
 distribution to the range of the standard Brownian bridge.

 Of course, if one is interested exclusively in fractionally-differenced alterna-
 tives, a more efficient means of detecting long-range dependence might be to

 estimate the fractional differencing parameter directly. In such cases, the
 approaches taken by Geweke and Porter-Hudak (1983), Sowell (1990b), and
 Yajima (1985, 1988) may be preferable. The modified R/S test is perhaps most
 useful for detecting departures into a broader class of alternative hypotheses, a

 kind of "portmanteau" test statistic that may complement a comprehensive
 analysis of long-range dependence.

 4. R/S ANALYSIS FOR STOCK MARKET RETURNS

 The importance of long-range dependence in asset markets was first consid-
 ered by Mandelbrot (1971). More recently, the evidence uncovered by Fama and
 French (1988), Lo and MacKinlay (1988), and Poterba and Summers (1988) may
 be symptomatic of a long-range dependent component in stock market prices.
 In particular, Lo and MacKinlay (1988) show that the ratios of k-week stock
 return variances to k times the variance of one-week returns generally exceed
 unity when k is small (2 to 32). In contrast, Poterba and Summers (1988) find
 that this same variance ratio falls below one when k is much larger (96 and
 greater).

 To see that such a phenomenon can easily be generated by long-range

 dependence, denote by X, the time-t return on a stock and let it be the sum of
 two components Xat and Xb, where

 (4.1) (1 -L )dXat= Et, (1 -pL)Xbt =7,t,
 and assignthevalues(-0.2,0.25,1,1.1)to the parameters(d,p, o, 0p). Let the
 ratio of the k-period return variance to k times the variance of Xt be denoted
 by VR(k). Then a simple calculation will show that for the parameter values
 chosen:

 VR(2) = 1.04, VR(10) = 10.4,

 VR(3) = 1.06, VR(50) = 0.97,

 VR(4) = 1.07, VR(100) = 0.95,

 VR(5) = 1.06, VR(250) = 0.92.

 The intuition for this pattern of variance ratios comes from observing that

 VR(k) is a weighted sum of the first k - 1 autocorrelation coefficients of Xt
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 with linearly declining weights (see Lo and MacKinlay (1988)). When k is small

 the autocorrelation of X, is dominated by the positively autocorrelated AR(1)
 component Xbt. But since the autocorrelations of Xbt decay rapidly relative to
 those of Xat, as k grows the influence of the long-memory component eventu-
 ally outweighs that of the AR(1), ultimately driving the variance ratio below
 unity.

 4.1. The Evidence for Weekly and Monthly Returns

 Greene and Fielitz (1977) were perhaps the first to apply R/S analysis to
 common stock returns. More recent applications include Booth and Kaen (1979)
 (gold prices), Booth, Kaen, and Koveos (1982) (foreign exchange rates), and
 Helms, Kaen, and Rosenman (1984) (futures contracts). These and earlier
 applications of R/S analysis by Mandelbrot and Wallis (1969a) have three
 features in common: (i) They provide no sampling theory with which to judge

 the statistical significance of their empirical results; (ii) they use the Qn which is
 not robust to short-range dependence; and (iii) they do not focus on the R/S
 statistic itself, but rather on the regression of its logarithm on (sub)sample sizes.
 The shortcomings of (i) and (ii) are apparent from the discussion in the
 preceding sections. As for (iii), Davies and Harte (1987) show such regression
 tests to be significantly biased toward rejection even for a stationary AR(1)
 process with an autoregressive parameter of 0.3.

 To test for long-term memory in stock returns, I use data from the Center for
 Research in Security Prices (CRSP) monthly and daily returns files. Tests are
 performed for the value- and equal-weighted CRSP indexes. Daily observations
 for the returns indexes are available from 3 July 1962 to 31 December 1987
 yielding a sample size of 6,409 observations. Monthly indexes are each com-
 posed of 744 observations from 30 January 1926 to 31 December 1987. The
 following statistic is computed for the various returns indexes:

 1 a
 (4.2) Vn(q)- Qn

 where the distribution Fv of V is given in (3.9). Using the values in Table II a
 test of the null hypothesis may be performed at the 95 percent level of

 confidence by accepting or rejecting according to whether Vn is or is not
 contained in the interval [0.809, 1.862] which assigns equal probability to each
 tail.

 Vn(q) is written as a function of q to emphasize the dependence of the
 modified rescaled range on the truncation lag. To check the sensitivity of the

 statistic to the lag length, Vn(q) is computed for several different values of q.
 The normalized classical Hurst-Mandelbrot rescaled range J/n is also computed
 for comparison, where

 Tbe rprseusf teV (4.3) V_ Q V

 Table III reports results for the daily equal- and value-weighted returns indexes.
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 TABLE III

 R/S ANALYSIS OF DAILY EQUAL- AND VALUE-WEIGHTED CRSP STOCK RETURNS INDEXES FROM 3 JULY 1962 TO 31 DECEMBER 1987 USING THE CLAsSICAL RESCALED RANGE VT' AND THE MODIFIED RESCALED RANGE VJ'(q). ENTRIES IN THE %-BIAs COLUMNS ARE COMPUTED AS [(V',/'Vn(q)) -1] - 100, AND ARE ESTIMATES OF THE BIAS OF THE CLASSICAL R/S STATISTIC IN THE PRESENCE OF SHORT-TERM DEPENDENCE.

 ASTERISKS INDICATE SIGNIFICANCE AT THE 5 PERCENT LEVEL.

 Time Period Sample Size Vn V"(90) %-Bias V,(1980) %-Bias Vn(270) %-Bias V"(360) %-Bias

 Equal-Weighted:

 620703-871231 6409 2.63* 1.46 79.9 1.45 81.1 1.50 75.2 1.50 75.4 620703-750428 3204 3.18* 1.61 97.0 1.57 102.0 1.63 95.2 1.62 96.8 750429-871231 3205 1.45 0.92 57.2 0.97 49.0 1.05 38.5 1.14 27.3 620703-681217 1602 2.40* 1.39 72.2 1.46 64.7 1.72 39.7 1.78 34.8 681219-750428 1602 2.03* 1.07 90.7 1.10 84.9 1.19 70.6 1.23 65.3 750428-810828 1602 1.35 0.89 51.6 1.23 9.5 1.49 -9.2 1.71 -21.0 810831-871231 1603 1.79 1.15 55.8 1.10 62.4 1.18 51.6 1.27 41.4

 Value-Weighted:

 620703-871231 6409 1.55 1.29 20.8 1.26 22.9 1.30 19.1 1.33 16.8 620703-750428 3204 1.97* 1.43 37.3 1.39 41.4 1.43 37.5 1.45 35.5 750429-871231 3205 1.29 1.22 5.8 1.24 4.1 1.32 -2.3 1.42 -9.4 620703-681217 1602 1.67 1.43 16.8 1.45 15.3 1.62 3.4 1.69 -1.3 681219-750428 1602 1.85 1.34 38.2 1.34 38.2 1.40 31.7 1.45 27.1 750428-810828 1602 1.08 1.12 -3.7 1.26 -14.7 1.34 -19.4 1.42 - 24.2 810831-871231 1603 1.50 1.38 8.8 1.37 9.2 1.50 -0.3 1.63 -8.0
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 The panel labelled "Equal-Weighted" contains the Vj(q) and VJ/ statistics for
 the equal-weighted index for the entire sample period (the first row), two

 equally-partitioned sub-samples (the next two rows), and four equally-parti-,
 tioned sub-samples (the next four rows). The modified rescaled range is com-
 puted with q-values of 90, 180, 270, and 360 days. The columns labelled
 "%-Bias" report the estimated bias of the original rescaled range VJ, and is

 100 - (e-1) where e= & (q)/s, = Vn/Vn
 Although Table III shows that the classical R/S statistic Vn is statistically

 significant at the 5 percent level for the daily equal-weighted CRSP returns

 index, the modified R/S statistic Vn is not. While Vn is 2.63 for the entire
 sample period the modified R/S statistic is 1.46 with a truncation lag of 90
 days, and 1.50 with a truncation lag of 360 days. The importance of normalizing
 by ^ (q) is clear-dividing by sn imparts a potential upward bias of 80 percent!

 The statistical insignificance of the modified R/S statistics indicates that the
 data are consistent with the short-memorv null hypothesis. The stability of the

 Vn(q) across truncation lags q also supports the hypothesis that there is little
 dependence in daily stock returns beyond one or two months. For example,

 using 90 lags yields a Vn of 1.46 whereas 270 and 360 lags both yield 1.50,
 virtually the same point estimate. The results are robust to the sample

 period-none of the sub-period Vj(q)'s are significant. The classical rescaled
 range is significant only in the first half of the sample for the value-weighted
 index, and is insignificant when the entire sample is used.

 Table IV reports similar results for monthly returns indexes with four values
 of q employed: 3, 6, 9, and 12 months. None of the modified R/S statistics are
 statistically significant at the 5 percent level in any sample period or sub-period
 for either index. The percentage bias is generally lower for monthly data,
 although it still ranges from -0.2 to 25.3 percent.

 To develop further intuition for these results, Figure 2 contains the autocor-
 relograms of the daily and monthly equal-weighted returns indexes, where the

 maximum lag is 360 for daily returns and 12 for monthly. For both indexes only
 the lowest order autocorrelation coefficients are statistically significant. For

 comparison, alongside each of the index's autocorrelogram is the autocorrelo-
 gram of the fractionally-differenced process (2.1) with d = .25 and the variance
 of the disturbance chosen to yield a first-order autocorrelation of 3. Although
 the general shapes of the fractionally-differenced autocorrelograms seem consis-
 tent with the data, closer inspection reveals that the index autocorrelations
 decay much more rapidly. Therefore, although short-term correlations are large

 enough to drive Qn and Qn apart, there is little evidence of long-range
 dependence in Qn itself.

 Additional results are available for weekly and annual stock returns data but
 since they are so similar to those reported here, I have omitted them to
 conserve space. Although the annual data spans 115 years (1872 to 1986),
 neither the classical nor the modified R/S statistics are statistically significant

 over this time span.
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 TABLE IV

 R/S ANALYSIS OF MONTHLY EQUAL- AND VALUE-WEIGHTED CRSP STOCK RETURNS INDEXES FROM 30 JANUARY 1926 TO 31 DECEMBER 1987 USING THE CLASSICAL RESCALED RANGE V1 AND THE MODIFIED RESCALED RANGE VJ'(q). ENTRIES IN THE %-BIAS COLUMNS ARE COMPUTED AS [(V..(q)) - 1]- 100, AND ARE ESTIMATES OF THE BIAS OF THE CLASSICAL R/S STATISTIC IN THE PRESENCE OF SHORT-TERM DEPENDENCE.

 ASTERISKS INDICATE SIGNIFICANCE AT THE 5 PERCENT LEVEL.

 Time Period Sample Size V tn(3) %-Bias V"(6) %-Bias V"(9) %-Bias V,(12) %-Bias

 Equal-Weighted:

 260130-871231 744 1.17 1.07 9.1 1.10 6.6 1.09 7.2 1.06 10.4 260130-561231 372 1.32 1.21 9.4 1.26 5.1 1.24 7.1 1.18 12.1 570131-871231 372 1.37 1.26 8.4 1.23 11.1 1.27 7.6 1.30 5.2 260130-410630 186 1.42 1.31 8.3 1.40 1.6 1.39 2.6 1.32 8.0 410731-561231 186 1.60 1.42 13.1 1.34 20.0 1.28 25.3 1.28 25.1 570131-720630 186 1.20 1.04 15.9 0.99 21.9 1.03 17.4 1.07 12.3 720731-871231 186 1.57 1.51 3.8 1.51 4.3 1.55 1.2 1.57 -0.2

 Value-Weighted:

 260130-871231 744 1.33 1.27 4.5 1.26 5.5 1.22 8.4 1.19 11.1 260130-561231 372 1.57 1.51 4.5 1.51 4.3 1.44 9.5 1.38 14.5 570131-871231 372 1.28 1.22 4.4 1.18 7.9 1.21 5.6 1.24 2.7 260130-410630 186 1.57 1.52 3.2 1.55 1.0 1.49 5.5 1.42 10.6 410731-561231 186 1.26 1.18 6.4 1.11 12.9 1.07 17.1 1.08 16.1 570131-720630 186 1.05 0.96 9.3 0.92 14.7 0.95 10.9 1.01 4.7 720731-871231 186 1.51 1.48 1.6 1.45 4.0 1.47 2.4 1.49 1.1
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 FIGURE 2.-Autocorrelograms of equally-weighted CRSP daily and monthly stock returns in-
 dexes and fractionally-differenced process with d = 1/4. The sample period for the daily index is
 July 1962 to December 1987, and is January 1926 to December 1987 for the monthly index.

 The evidence in Tables III and IV shows that the null hypothesis of short-range

 dependence cannot be rejected by the data-there is little support for long-term
 memory in U.S. stock returns. With adjustments for autocorrelation at lags up

 to one calendar year, estimates of the modified rescaled range are consistent

 with the null hypothesis of weak dependence. This reinforces Kandel and

 Stambaugh's (1989) contention that the long-run predictability of stock returns
 uncovered by Fama and French (1988) and Poterba and Summers (1988) may
 not be "long-run" in the time series sense, but may be the result of more

 conventional models of short-range dependence.22 Of course, since our infer-
 ences rely solely on asymptotic distribution theory, we must check our approxi-
 mations before dismissing the possibility of long-range dependence altogether.

 The finite-sample size and power of the modified rescaled range test are
 considered in the next sections.

 5. SIZE AND POWER

 To explore the possibility that the inability to reject the null hypothesis of

 short-range dependence is merely a symptom of low power, and to check the

 22 Moreover, several papers have suggested that these long-run results may be spurious. See, for
 example, Kim, Nelson, and Startz (1991), Richardson (1989), and Richardson and Stock (1990).
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 1302 ANDREW W. LO

 quality of Section 3's asymptotic approximations for various sizes, I perform
 several illustrative Monte Carlo experiments. Section 5.1 reports the empirical

 size of the test statistic under two Gaussian null hypotheses: i.i.d. and AR(1)
 disturbances. Section 5.2 presents power results against the fractionally-dif-
 ferenced process (2.1) for d = 3 and - 3

 5.1. The Size of the R/S Test

 Table Va contains simulation results for the modified R/S statistic with

 sample sizes of 100, 250, 500, 750, and 1,000 under the null hypothesis of
 independently and identically distributed Gaussian errors. All simulations were

 performed on an IBM 4381 in double precision using the random generator
 GO5DDF from the Numerical Algorithms Group Fortran Library Mark 12. For

 each sample size the statistic Vj(q) is computed with q = 0, 5, 10,25,50, and with
 q chosen by Andrews' (1991) data-dependent formula:

 (5.1) q = [kJ]' k -{2). ( _p)'

 where [kn] denotes the greatest integer less than or equal to kn, and A is the
 estimated first-order autocorrelation coefficient of the data.23 (Note that this is
 an optimal truncation lag only for an AR(1) data-generating process-a differ-
 ent expression obtains if, for example, the data-generating process were as-
 sumed to be an ARMA(1, 1). See Andrews (1991) for further details.) In this
 case, the entry reported in the column labelled "q" is the mean of the q's

 chosen, with the population standard deviation reported in parentheses below

 the mean. When q = 0, Vn(q) is identical to Mandelbrot's classical R/S statis-
 tic Vn.

 The entries in the last three columns of Table Va show that the classical R/S
 statistic tends to reject too frequently-even for sample sizes of 1,000 the

 empirical size of a 5 percent test based on Vn is 5.9 percent. The modified R/S
 statistic tends to be conservative for values of q that are not too large relative to
 the sample size. For example, with 100 observations and 5 lags the empirical

 size of the 5 percent test using Vn(q) is 2.1 percent. However, with 50 lags this
 test has a rejection rate of 31 percent! That the sampling properties worsen with
 the number of lags is not surprising-the imprecision with which the higher-
 order autocovariances are estimated can introduce considerable noise into the
 statistic (see, for example, Lo and MacKinlay (1989)). But for 1,000 observations

 and 5 lags, the size of a 5 percent test based on Vn(q) is 5.1 percent. Andrews'
 procedure yields intermediate results, with sizes in between those of the
 classical R/S statistic and the closest of the modified R/S statistics.

 23 For this procedure, the Newey-West autocorrelation weights (3.7) are replaced by those
 suggested by Andrews (1991):

 i
 c(oj= 1-k .
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 TABLE Va

 FINITE SAMPLE DISTRIBUTION OF THE MODIFIED R /S STATISTIC UNDER AN I.I.D. NULL

 HYPOTHESIS. EACH SET OF ROWS OF A GIVEN SAMPLE SIZE n CORRESPONDS TO A SEPARATE AND
 INDEPENDENT MONTE CARLO EXPERIMENT BASED ON 10,000 REPLICATIONS. A LAG q OF 0

 CORRESPONDS TO MANDELBROT S CLASSICAL R/S STATISTIC, AND A NONINTEGER LAG VALUE
 INDICATES THE MEAN LAG (STANDARD DEVIATION GIVEN IN PARENTHESES) CHOSEN VIA

 ANDREWS' (1991) DATA-DEPENDENT PROCEDURE ASSUMING AN AR(1) DATA-GENERATING PRO-

 CESS. STANDARD ERRORS FOR THE EMPIRICAL SIZE MAY BE COMPUTED USING THE USUAL NORMAL

 APPROXIMATION; THEY ARE 9.95 X 10 4, 2.18 X 10 3, AND 3.00 X 10 -3 FOR THE 1%, 5%, AND
 10% TESTS RESPECTIVELY.

 n q Min Max Mean S.D. Size 1%-Test Size 5%-Test Size 10%-Test

 100 0 0.534 2.284 1.144 0.263 0.029 0.095 0.153
 100 5 0.649 1.913 1.179 0.207 0.002 0.021 0.050
 100 10 0.710 1.877 1.223 0.175 0.000 0.003 0.012

 100 25 0.858 2.296 1.383 0.186 0.001 0.014 0,039
 100 50 0.918 3.119 1.694 0.360 0.137 0.313 0.414
 100 0.97 0.557 2.164 1.150 0.247 0.019 0.070 0.127

 (0.83)

 250 0 0.496 2.527 1.183 0.270 0.021 0.075 0.133
 250 5 0.580 2.283 1.196 0.243 0.008 0.041 0.089
 259 10 0.654 2.048 1.211 0.221 0.003 0.021 0.054
 250 25 0.757 1.905 1.264 0.176 0.000 0.001 0.006
 250 50 0.877 2.206 1.372 0.169 0.000 0.005 0.020
 250 0.97 0.497 2.442 1.185 0.263 0.017 0.064 0.120

 (0.83)

 500 0 0.518 2.510 1.201 0.267 0.015 0.061 0.117
 500 5 0.589 2.357 1.207 0.252 0.008 0.047 0.094
 500 10 0.630 2.227 1.215 0.240 0.004 0.032 0.073
 500 25 0.677 2.051 1.240 0.210 0.000 0.008 0.029
 500 50 0.709 1.922 1.285 0.176 0.000 0.001 0.005
 500 0.96 0.549 2.510 1.202 0.263 0.014 0.057 0.112

 (0.82)

 750 0 0.558 2.699 1.207 0.270 0.014 0.061 0.120
 750 5 0.597 2.711 1.212 0.260 0.009 0.049 0.101
 750 10 0.615 2.553 1.217 0.251 0.006 0.039 0.087
 750 25 0.677 2.279 1.235 0.228 0.001 0.017 0.052
 750 50 0.758 1.971 1.266 0.198 0.000 0.002 0.015
 750 0.96 0.558 2.670 1.208 0.268 0.013 0.058 0.117

 (0.83)

 1000 0 0.542 2.577 1.211 0.270 0.014 0.059 0.113
 1000 5 0.566 2.477 1.214 0.262 0.011 0.051 0.103
 1000 10 0.570 2.405 1.218 0.256 0.008 0.045 0.089
 1000 25 0.616 2.203 1.231 0.237 0.003 0.025 0.061
 1000 50 0.716 2.036 1.253 0.211 0.000 0.007 0.029
 1000 0.96 0.549 2.546 1.212 0.268 0.012 0.056 0.111

 (0.81)

 Table Vb reports the results of simulations under the null hypothesis of a

 Gaussian AR(1) with autoregressive coefficient 0.5 (recall that such a process is
 weakly dependent). The last three columns confirm the example of Section 3
 and accord well with the results of Davies and Harte (1987): tests based on the
 classical R/S statistic have considerable power against an AR(1) null. In
 samples of only 100 observations the empirical size of the 5 percent test based
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 TABLE Vb

 FINITE SAMPLE DISTRIBUTION OF THE MODIFIED R / S STATISTIC UNDER AN AR(1) NULL

 HYPOTHESIS WITH AUTOREGRESSIVE COEFFICIENT 0.5. EACH SET OF ROWS OF A GIVEN SAMPLE
 SIZE n CORRESPONDS TO A SEPARATE AND INDEPENDENT MONTE CARLO EXPERIMENT BASED ON
 10,000 REPLICATIONS. A LAG q OF 0 CORRESPONDS TO MANDELBROT'S CLASSICAL R/S STATISTIC,
 AND A NONINTEGER LAG VALUE INDICATES THE MEAN LAG (STANDARD DEVIATION GIVEN IN
 PARENTHESES) CHOSEN VIA ANDREWS' (1991) DATA-DEPENDENT PROCEDURE, ASSUMING AN AR(1)
 DATA-GENERATING PROCESS. STANDARD ERRORS FOR THE EMPIRICAL SIZE MAY BE COMPUTED
 USING THE USUAL NORMAL APPROXIMATION; THEY ARE 9.95 x 10 -, 2.18 x 10 -3, AND 3.00 x 10 -3

 FOR THE 1%, 5%, AND 10% TESTS RESPECTIVELY.

 n q Min Max Mean S.D. Size 1%-Test Size 5%-Test Size 10%-Test

 100 0 0.764 3.418 1.764 0.402 0.203 0.382 0.486
 100 5 0.634 1.862 1.201 0.220 0.003 0.027 0.059
 100 10 0.693 1.805 1.178 0.176 0.000 0.010 0.030
 100 25 0.779 2.111 1.290 0.175 0.000 0.005 0.015
 100 50 0.879 3.013 1.571 0.341 0.074 0.198 0.284
 100 5.61 0.636 1.974 1.195 0.219 0.004 0.028 0.063

 (1.25)

 250 0 0.865 3.720 1.913 0.432 0.309 0.505 0.614
 250 5 0.597 2.478 1.268 0.262 0.005 0.038 0.086
 250 10 0.615 2.137 1.212 0.228 0.003 0.023 0.063
 250 25 0.734 1.811 1.218 0.177 0.000 0.004 0.015
 250 50 0.809 2.119 1.304 0.166 0.000 0.003 0.010
 250 8.07 0.603 2.357 1.227 0.242 0.004 0.030 0.071

 (1.07)

 500 0 0.836 4.392 1.980 0.456 0.363 0.559 0.665
 500 5 0.622 2.557 1.302 0.285 0.012 0.055 0.109
 500 10 0.579 2.297 1.236 0.256 0.007 0.039 0.085
 500 25 0.627 1.980 1.214 0.215 0.001 0.015 0.041
 500 50 0.734 1.894 1.243 0.178 0.000 0.002 0.009
 500 10.40 0.577 2.353 1.236 0.256 0.007 0.039 0.085

 (0.99)

 750 0 0.839 4.211 2.017 0.459 0.389 0.592 0.696
 750 5 0.567 2.637 1.323 0.291 0.011 0.062 0.118
 750 10 0.557 2.429 1.253 0.265 0.007 0.043 0.091
 750 25 0.614 2.114 1.222 0.232 0.003 0.022 0.058
 750 50 0.702 1.891 1.235 0.200 0.000 0.005 0.022
 750 12.03 0.556 2.324 1.244 0.260 0.007 0.041 0.088

 (0.93)

 1000 0 0.926 4.327 2.045 0.465 0.414 0.617 0.716
 1000 5 0.625 2.768 1.340 0.296 0.014 0.065 0.125
 1000 10 0.592 2.622 1.268 0.272 0.009 0.047 0.096
 1000 25 0.608 2.350 1.231 0.244 0.004 0.030 0.072
 1000 50 0.636 1.997 1.236 0.217 0.001 0.011 0.038
 1000 13.30 0.590 2.548 1.252 0.265 0.008 0.043 0.090

 (0.89)

 on Vn is 38 percent and increases to 62 percent for sample sizes of 1,000. In
 contrast, the empirical sizes of tests based on Vn(q) are much closer to their
 nominal values since the geometrically declining autocorrelations are taken into

 account by the denominator an(q) of Vn(q). When q is chosen via Andrews'
 procedure, this yields conservative test sizes, ranging from 2.8 percent for a
 sample of 100, to 4.3 percent for a sample of 1,000.
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 TABLE VIa

 POWER OF THE MODIFIED R / S STATISTIC UNDER A GAUSSIAN FRACTIONALLY DIFFERENCED
 ALTERNATIVE WITH DIFFERENCING PARAMETER d = 1/3. THE VARIANCE OF THE PROCESS HAS
 BEEN NORMALIZED TO UNITY. EACH SET OF ROWS OF A GIVEN SAMPLE SIZE n CORRESPONDS TO A

 SEPARATE AND INDEPENDENT MONTE CARLO EXPERIMENT BASED ON 10,000 REPLICATIONS. A LAG
 q OF 0 CORRESPONDS TO MANDELBROT'S CLASSICAL R/S STATISTIC, AND A NONINTEGER LAG
 VALUE INDICATES THE MEAN LAG (STANDARD DEVIATION GIVEN IN PARENTHESES) CHOSEN VIA

 ANDREWS' (1991) DATA-DEPENDENT PROCEDURE ASSUMING AN AR(1) DATA-GENERATING PROCESS.

 n q Min Max Mean S.D. Power 1%-Test Power 5%-Test Power 10%-Test

 100 0 0.729 4.047 2.025 0.513 0.429 0.600 0.680
 100 5 0.635 2.089 1.361 0.242 0.001 0.014 0.065
 100 10 0.686 1.746 1.237 0.171 0.000 0.005 0.015
 100 25 0.723 2.148 1.208 0.156 0.000 0.002 0.008
 100 50 0.823 2.803 1.399 0.328 0.035 0.096 0.154
 100 4.27 0.650 2.330 1.411 0.257 0.003 0.040 0.104

 (1.43)

 250 0 0.938 5.563 2.678 0.709 0.774 0.878 0.918
 250 5 0.713 2.924 1.699 0.364 0.153 0.335 0.442
 250 10 0.705 2.304 1.475 0.277 0.006 0.091 0.186
 250 25 0.681 1.852 1.264 0.175 0.000 0.003 0.012
 250 50 0.756 1.971 1.208 0.140 0.000 0.002 0.007
 250 6.63 0.711 2.596 1.619 0.317 0.067 0.240 0.360

 (1.36)

 500 0 1.061 7.243 3.336 0.929 0.924 0.967 0.980
 500 5 0.731 3.726 2.055 0.491 0.450 0.628 0.709
 500 10 0.692 2.944 1.750 0.384 0.197 0.385 0.494
 500 25 0.623 2.164 1.429 0.258 0.001 0.045 0.123
 500 50 0.687 1.763 1.271 0.178 0.000 0.003 0.009
 500 8.96 0.709 3.201 1.809 0.384 0.242 0.447 0.557

 (1.37)

 750 0 1.228 8.059 3.799 1.052 0.972 0.990 0.995
 750 5 0.838 4.280 2.313 0.565 0.620 0.766 0.830
 750 10 0.769 3.421 1.955 0.447 0.370 0.557 0.655
 750 25 0.734 2.478 1.569 0.310 0.042 0.195 0.304
 750 50 0.722 1.925 1.359 0.223 0.000 0.005 0.036
 750 10.58 0.798 3.324 1.942 0.421 0.363 0.559 0.657

 (1.33)

 1000 0 1.398 8.615 4.174 1.174 0.985 0.996 0.998
 1000 5 0.898 4.672 2.521 0.635 0.720 0.846 0.892
 1000 10 0.779 3.766 2.121 0.504 0.494 0.669 0.747
 1000 25 0.641 2.734 1.686 0.354 0.135 0.322 0.431
 1000 50 0.628 2.118 1.441 0.259 0.001 0.052 0.138
 1000 11.87 0.766 3.613 2.044 0.454 0.446 0.630 0.718

 (1.31)

 5.2. Power Against Fractionally-Differenced Alternatives

 Tables VIa and b report the power of the R/S tests against the Gaussian
 fractionally-differenced alternative:

 (5w.2) (d 1 -aL) d t ant X /s i.i .d . N(O, 2 ),

 with d =3and - ,and (72= F2(1 - d)1F( - 2 d) so as to yield a unit
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 1306 ANDREW W. LO

 variance for E. For sample sizes of 100, tests based on VJ"(q) have very little
 power, but when the sample size reaches 250 the power increases dramatically.

 According to Table 6a, the power of the 5 percent test with q = 5 against the

 d = 3 alternative is 33.5 percent with 250 observations, 62.8 percent with 500

 observations, and 84.6 percent with 1,000 observations. Although Andrews'

 automatic truncation lag procedure is generally less powerful, its power is still
 63.0 percent for a sample size of 1,000. Also, the rejections are generally in the

 TABLE VIb

 POWER OF THE MODIFIED R / S STATISTIC UNDER A GAUSSIAN FRACTIONALLY DIFFERENCED
 ALTERNATIVE WITH DIFFERENCING PARAMETER d = - 1/3. THE VARIANCE OF THE PROCESS HAS

 BEEN NORMALIZED TO UNITY. EACH SET OF ROWS OF A GIVEN SAMPLE SIZE n CORRESPONDS TO A
 SEPARATE AND INDEPENDENT MONTE CARLO EXPERIMENT BASED ON 10,000 REPLICATIONS. A LAG

 q OF 0 CORRESPONDS TO MANDELBROT'S CLASSICAL R / S STATISTIC, AND A NONINTEGER LAG
 VALUE INDICATES THE MEAN LAG (STANDARD DEVIATION GIVEN IN PARENTHESES) CHOSEN VIA

 ANDREWS' (1991) DATA-DEPENDENT PROCEDURE ASSUMING AN AR(1) DATA-GENERATING PROCESS.

 n q Min Max Mean S.D. Power 1%-Test Power 5%-Test Power 10%-Test

 100 0 0.367 1.239 0.678 0.120 0.670 0.858 0.923
 100 5 0.637 1.710 1.027 0.153 0.006 0.054 0.134
 100 10 0.762 2.030 1.217 0.161 0.000 0.001 0.005
 100 25 0.953 2.638 1.587 0.207 0.014 0.095 0.211
 100 50 1.052 3.478 2.033 0.354 0.425 0.679 0.785
 100 2.94 0.478 1.621 0.889 0.155 0.131 0.331 0.466

 (0.99)

 250 0 0.303 1.014 0.561 0.089 0.951 0.991 0.997
 250 5 0.549 1.479 0.851 0.128 0.146 0.409 0.571
 250 10 0.632 1.752 1.005 0.143 0.007 0.065 0.152
 250 25 0.833 1.936 1.292 0.157 0.000 0.001 0.004
 250 50 0.977 2.357 1.594 0.186 0.007 0.078 0.198
 250 4.20 0.448 1.437 0.796 0.129 0.301 0.578 0.716

 (0.86)

 500 0 0.292 0.819 0.479 0.071 0.997 1.000 1.000
 500 5 0.458 1.244 0.728 0.105 0.517 0.794 0.888
 500 10 0.555 1.489 0.861 0.121 0.111 0.366 0.543
 500 25 0.706 1.735 1.105 0.143 0.000 0.004 0.022
 500 50 0.881 2.089 1.356 0.157 0.000 0.002 0.011
 500 5.45 0.443 1.318 0.725 0.108 0.529 0.793 0.887

 (0.77)

 750 0 0.276 0.700 0.433 0.063 1.000 1.000 1.000
 750 5 0.422 1.070 0.659 0.094 0.764 0.932 0.973
 750 10 0.499 1.262 0.779 0.109 0.325 0.641 0.789
 750 25 0.689 1.570 1.001 0.132 0.003 0.049 0.138
 750 50 0.837 1.802 1.227 0.148 0.000 0.000 0.002
 750 6.34 0.424 1.133 0.682 0.099 0.679 0.892 0.951

 (0.73)

 1000 0 0.257 0.775 0.403 0.057 1.000 1.000 1.000
 1000 5 0.401 1.149 0.613 0.085 0.895 0.978 0.993
 1000 10 0.487 1.376 0.725 0.099 0.525 0.809 0.907
 1000 25 0.633 1.596 0.930 0.121 0.020 0.154 0.306
 1000 50 0.778 1.820 1.139 0.139 0.000 0.000 0.006
 1000 7.01 0.412 1.235 0.651 0.092 0.789 0.945 0.978

 (0.70)
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 LONG-TERM MEMORY 1307

 right tail of the distribution, as the entries in the "Max" column indicate. This is
 not surprising in light of Theorem 3.3, which shows that under this alternative

 the modified R/S statistic diverges in probability to infinity.

 For a fixed sample size, the power of the VJ(q)-based test declines as the
 number of lags is increased. This is due to the denominator (J(q), which
 generally increases with q since there is positive dependence when d = 3. The
 increase in the denominator decreases the mean and variance of the statistic,

 shifting the distribution towards the left and pulling probability mass from both
 tails, thereby reducing the frequency of draws in the right tail's critical region,
 where virtually all the power is coming from.

 Against the d = - 4 alternative, Table VIb shows that the test seems to have
 somewhat higher power. However, in contrast to Table VIa the rejections are
 now coming from the left tail of the distribution, as Theorem 3.3 predicts.

 Although less powerful, tests based on Andrews' procedure still exhibit reason-
 able power, ranging from 33.1 percent in samples of 100 observations to 94.5
 percent in samples of 1,000.

 For the larger sample sizes the power again declines as the number of lags
 increases, due to the denominator & (q), which declines as q increases because
 the population autocorrelations are all negative when d= - 4. The resulting

 increase in the mean of Vn(q)'s sampling distribution overwhelms the increase
 in its variability, leading to a lower rejection rate from the left tail.

 Table VIa and b show that the modified R/S statistic has reasonable power

 against at least two specific models of long-term memory. However, these

 simulations are merely illustrative-a more conclusive study would include
 further simulations with several other values for d, and perhaps with short-range
 dependence as well.24 Moreover, since our empirical work has employed data
 sampled at different frequencies (implying different values of d for different
 sample sizes), the trade-off between the time span of the data and the frequency
 of observation for the test's power may be an important issue. Nevertheless, the

 24 The very fact that the modified R/S statistic yields few rejections under the null simulations of
 Section 5.1 shows that the test may have low power against some long-range dependent alternatives,
 since the pseudo-random number generator used in those simulations is, after all, a long-range
 dependent process. A more striking example is the "tent" map, a particularly simple nonlinear
 deterministic map (it has a correlation dimension of 1) which yields sequences that are virtually
 uncorrelated but long-range dependent. In particular, the tent map is given by the following
 recursion:

 X (2Xt_1 if X, <1
 xt =(21~ 2(1 -Xt-1) if Xt -1 > 1, 1 T (,)

 As an illustration, I performed two Monte Carlo experiments using the tent map to generate
 samples of 500 and 1,000 observations (each with 10,000 replications) with an independent uniform
 (0, 1) starting value for each replication. Neither the Mandelbrot rescaled range, nor its modification
 with fixed or automatic truncation lags have any power against the tent map. In fact, the finite
 sample distributions are quite close to the null distribution. Of course, one could argue that if the
 dynamics and the initial condition were unknown, then even if a deterministic system were
 generating the data, the resulting time series would be short-range dependent "for all practical
 purposes" and should be part of our null. I am grateful to Lars Hansen for suggesting this analysis.
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 1308 ANDREW W. LO

 simulation results suggest that short-range dependence may be the more signif-
 icant feature of recent stock market returns.

 6. CONCLUSION

 Using a simple modification of the Hurst-Mandelbrot rescaled range that
 accounts for short-term dependence, and contrary to previous studies, I find
 little evidence of long-term memory in historical U.S. stock market returns. If
 the source of serial correlation is lagged adjustment to new information, the
 absence of strong dependence in stock returns should not be surprising irom an
 economic standpoint, given the frequency with which financial asset markets
 clear. Surely financial security prices must be immune to persistent informa-
 tional asymmetries, especially over longer time spans. Perhaps the fluctuations
 of aggregate economic output are more likely to display such long-run tenden-

 cies, as Kondratiev and Kuznets have suggested, and this long-memory in output
 may eventually manifest itself in the return to equity. But if some form of
 long-range dependence is indeed present in stock returns, it will not be easily
 detected by any of our current statistical tools, especially in view of the
 optimality of the R/S statistic in the Mandelbrot and Wallis (1969) sense.
 Direct estimation of particular parametric models may provide more positive

 evidence of long-term memory and is currently being pursued by several
 investigators.25

 Sloan School of Management, MIT, Cambridge, MA 02139, U.S.A.

 Manuscript received August, 1989; final revision received January 1991.

 APPENDIX

 Proofs of the theorems rely on the following three lemmas:

 LEMMA A.1. (Herrndorf (1984)): If {?,} satisfies assumptions (A1)-(A4) then as n increases
 without bound, WJ4,?) = W&r).

 LEMMA A.2. (Extended Continuous Mapping Theorem):26 Let hn and h be measurable mappings
 from .9[0, 1] to itself and denote by E the set of x E .9[0, 1] such that hn(xn) -- h(x) fails to hold for
 some sequence xn converging to x. If Jn(4) =t W(r) and E is of Wiener-measure zero, i.e., P(W E E)
 = 0, then hn(Wn) = h(W).

 LEMMA A.3: Let Rn = R where both Rn and R have nonnegative support, and let P(R = 0) =
 P(R = oo) = O. If an oo, then anRn oo. If an P 0, then anRn Ao.

 25 See, for example, Boes et al. (1989), Diebold and Rudebusch (1989), Fox and Taqqu (1986),
 Geweke and Porter-Hudak (1983), Porter-Hudak (1990), Sowell (1990a, b), and Yajima (1985, 1988).

 26 See Billingsley (1968) for a proof.
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 LONG-TERM MEMORY 1309

 PROOF OF THEOREM 3.1: Let S,n = n= j8j and define the following function Yn(r) on 9[0, 1]:

 1

 (A.1) Yn(T) = S[n] 'T r[0,1],

 where [nr] denotes the greatest integer less than or equal to ni-, and a- is defined in condition (A3)
 of the null hypothesis. By convention, set Yn(O) 0. Under conditions (Al), (A2'), (A3), and (A4)
 Herrndorf (1984) has shown that Yn(r) W(r). But consider:

 1 k 1 k
 (A.2a) Max A E (XM Xn)= Max A ) k (Sk- -sn)

 1?<k?n a-n(q)V j=_ 1?<k?n O'n(q)V n

 (A.2b) = Max Zn(T)

 where

 [nT]
 nr (A.2c) JO( Yn(T)- n Yn(l)-

 Since the sequence of functions hn that map Yn(r) to Zn(O) satisfies the conditions of Lemma A.2,
 where the limiting mapping h takes Yn(r) to Yn(r) - rYn(1), it may be concluded that

 (A.3) hn(Yn(T)) = Zn(T) h(W(r)) = W(r) -rW(1) = W0(r).

 If the estimator o- (q) is substituted in place of a- in the construction of Zn(G), then under
 conditions (A2') and (A5), Theorem 4.2 of Phillips (1987) shows that (A.3) still obtains. The rest of
 the theorem follows directly from repeated application of Lemma A.2. Q.ED.

 PROOF OF THEOREM 3.2: See Davydov (1970) and Taqqu (1975).

 PROOF OF THEOREM 3.3: Parts (a)-(c) follow directly from Theorem 3.2 and Lemma A.2, and
 part (e) follows immediately from Lemma A.3. Therefore, we need only prove (d). Let H E (l, 1) so
 that y(k) k2H2L(k). This implies that

 (A.4) Var[Sn] -n2HL(n).

 Therefore, to show that an -P oo, it suffices to show that

 (A.5) n2H- lL(n) -?0.

 Consider the population counterpart to (A.5):

 (A.6) a2H- 2( H- L) I (a-:+2 Eo y))

 where toj = 1 -j/(q + 1). Since by assumption -yJ .j2H-2L(I), there exists some integer qa and
 M> O such that for j > qa, yJ < M2H-2L(i). Now it is well known that a slowly-varying function
 satisfies the inequality j - < L(j) < j] for any E > 0 and j > qb, for some qb(?). Choose E < 2 - 2H,
 and observe that

 (A.7) y < Mj j, j > qo max (qa qb),
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 which implies

 q qo q

 (A.8) 2 E ojyj < 2 E co yj + 2M E toj2H-2+E
 j=1 j =1 j=qo+

 where, without loss of generality, we have assumed that q > q0. As q increases without bound, the
 first sum of the right-side of (A.8) remains finite, and the second sum may be bounded by observing
 that its summands are positive and decreasing, hence (see, for example, Buck (1978, Chapter 5.5)):

 q /~~~~~I x
 (A.9a) 2M E )j2H-2+? < 2M| (1- 1 X2H-2+E dX

 j=qo+ ~ ~ qo~ q+ 1J

 (A.9b) (q2H-1+?)

 where the asymptotic equivalence follows by direct integration. If q -O(n5) where 8 E (0, 1), a
 weaker condition than required by our null hypothesis, then the ratio 02(q)/(n2H- L(n)) is at most
 of order 0(n(2H- 1 +EX6 - 1)), which converges to zero. If we can now show that (A.6) and its sample
 counterpart are equal in proability, then we are done. This is accomplished by the following
 sequence of inequalities:

 o- (q) o2 (q) 1 q.2
 (A.lOa) E 2H-1 - ~2H-1 | 2H_ E (&r -o- 2) +2 E &o(A -

 (A.lOb) E 2H _ 2 E E|I - Y1I
 n n n ~~~~~~j=1

 (A.lOc) E z& -o + n2H-I E Zji E(^yJ _ yj)k q

 2H- 1 +2H 1 EwvE%y)
 n n

 But since Hosking (1984, Theorem 2) provides rates of convergence for sample auto-covariances of
 stationary Gaussian processes satisfying (3.14), an integral evaluation similar to that in (A.9) shows
 that the sum in (A.10c) vanishes asymptotically when q - o(n). This completes the proof. Since the
 proof for H E (0, 2) is similar, it is left to the reader. Q.E.D.
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