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Abstract

A fractal (power-law) distribution is the only statistical distribution applicable to a scale-invariant process. One of the major

problems in petrology is the distribution of trace elements in the Earth’s crust. Extreme values of this distribution result in ore

deposits. There is accumulating observational evidence that tonnage–grade statistics of ore deposits are often fractal (power-

law). Rayleigh distillation and chromatographic models can explain power-law (fractal) distributions for the extreme values of

trace element concentrations. An alternative fractal approach to problems in petrology is to use self-affine fractals. The standard

approach is to take a Fourier transform of a continuous signal (an example would be the concentration of a mineral along a

linear track). If the Fourier coefficients scale as a power-law of the wavelength, the distribution is a self-affine fractal. Many

well logs give this result. Multifractal analyses can also be applied to problems in petrology.

D 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The concept of fractals was introduced by Man-

delbrot (1967) in terms of the length of the coast of

Britain. The length of the coast is obtained using a

measuring rod of a specified length. The length of a

rocky coastline is well-approximated by a power-law

dependence on the length of the measuring rod; the

power determines the fractal dimension of the coast-

line. It is not possible to obtain a specific value for the

length of a coastline due to the many small inden-

tations as small as millimeters or less. To a good

approximation a rocky coastline is a statistical, self-

similar fractal. An example of a deterministic self-

similar fractal is the Koch triadic island illustrated in

Fig. 1. The construction starts with an equilateral

triangle at zero order (Fig. 1a). At second order

smaller equilateral triangles are placed at the center

of each side (Fig. 1b). As the construction is extended

to infinite order, the length of the perimeter goes to

infinity. For this construction, the length of the perim-

eter of the figure, at any order, scales exactly as a

power-law of the inverse of the length of a side

(Turcotte, 1997, p. 11).

A power-law (fractal) distribution is the only

statistical distribution that is scale-invariant. Other

distributions such as the Gaussian (normal) and log-

normal require a characteristic length or time in their

definition. There are many examples of scale-invari-

ant (power-law) distributions in geology. Examples
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include the frequency size distribution of earthquakes

and drainage networks, among many others (Korvin,

1992; Turcotte, 1997).

2. Mineral deposits

One of the fundamental problems in geology is the

statistical distribution of chemical elements in the

Earth’s crust. Extreme concentrations of elements lead

to ore deposits. The statistical distribution of minerals

in ore deposits plays a fundamental role in economic

geology. This is generally expressed in terms of

tonnage–grade statistics. But ore deposits are only

one aspect of the broader questions regarding the

statistical distributions of trace elements as a whole.

As in other applications of geostatistics the major

alternative distributions are log-normal and power-law

(fractal). Turcotte (1986), following the work of

Cargill et al. (1980, 1981) and Cargill (1981), has

argued that ore deposits satisfy fractal statistics.

Ahrens (1954a,b, 1963a,b) and Vistelius (1960) have

argued that trace elements universally satisfy log-

normal statistics. Allègre and Lewin (1995) argue that

the applicability of the two distributions depends upon

the fundamental geochemical processes responsible

for the concentrations of the trace elements. If the

dominant process is mixing, normal distributions

result; if the dominant process is differentiation,

power-law (fractal) or log-normal distributions may

result.

In general, power-law distributions cannot be

applicable at all scales. Pure power-law distributions

diverge either at the largest or smallest scales. How-

ever, in many applications we are concerned about the

extreme value statistics. Do the extreme values satisfy

exponential (thin tail) statistics or power-law (fat tail)

statistics? The extreme value statistics for log-normal

distributions are intermediate but tend towards a thin

tail limit.

An example of extreme values in element distri-

butions is ore deposits. Whether ore deposits satisfy

thin tail or fat tail extreme value statistics has very

large implications regarding potential ore reserves.

The classic definition of a self-similar fractal is

Ni ¼ cr�D
i ð1Þ

where Ni is the number of objects with a size ri, D is

the fractal dimension, and c is a constant. An example

of a self-similar fractal construction in three dimen-

sions is the Menger sponge illustrated in Fig. 2. A

zero-order solid cube (N0 = 1) with unit dimensions

(r0 = 1) is considered as illustrated in Fig. 2a. This unit

cube is then divided into 27 cubes each with r1 = 1/3.

At first order, the six cubes at the center of each side

are removed as well as the center cube. Twenty solid

cubes remain with r1 = 1/3 so that N1 = 20 as illus-

trated in Fig. 2b. At second order each of the 20

remaining cubes are divided into 27 cubes each with

r2 = 1/9. At second order the six cubes at the center of

each side are removed as well as the center cube. Four

Fig. 1. The triadic Koch island. (a) An equilateral triangle with sides r0 = 1. (b) Three triangles with sides r1 = 1/3 are added. (c) Twelve triangles

with r2 = 1/9 are added. The perimeters P0 = 3, P1 = 4, P2 = 16/3 satisfy the relation Pi= 3ri
� 0.262.
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hundred solid cubes remain with r2 = 1/9 so that

N2 = 400 as illustrated in Fig. 2c. From Eq. (1), we

find that the fractal dimension of the construction is

given by

D ¼ logðNiþ1=NiÞ
logðri=riþ1Þ

¼ logðN1=N0Þ
logðr0=r1Þ

¼ logðN2=N1Þ
logðr1=r2Þ

¼ log20

log3
¼ 2:7268 ð2Þ

The construction given in Fig. 2 can be extended to

higher and higher orders.

The Menger sponge can be used to illustrate how a

fractal tonnage–grade distribution can be obtained as

illustrated in Fig. 3. The remaining blocks in the

Menger sponge construction are assumed to be the

pure mineral, C = 1. The holes in the construction are

assumed to be barren country rock, C = 0. A zero-order

solid cube is taken to be the pure mineral thus C0 = 1

and its mass M0 (volume V0) is taken to be unity

(M0 =V0 = 1) as illustrated in Fig. 3a. At first order we

consider the first-order Menger sponge illustrated in

Fig. 2b. This construction is made up of N1 = 20 unit

cubes of the pure mineral and 7 unit cubes of barren

country rock. Thus the mean concentration in this mass

(volume) is C1 = 20/27 = 0.741 and its mass M1 (vol-

ume V1) is M1 = V1 = 33 = 27. For simplicity, we

assume the density of the mineral and barren country

rock is equal. At second order, we consider the second-

order Menger sponge illustrated in Fig. 2c. This

construction is made up of N2 = 400 unit cubes of the

pure mineral and 20� 7 + 7� 27 = 329 unit cubes of

barren country rock. Thus the mean concentration in

this mass (volume) is C2 = 400/729 = 20
2/272 = 0.549

and its mass M2 (volume V2) is M2 =V2 = 9
3 = 729.

We hypothesize that for a fractal tonnage–grade

distribution the relation

Ci ¼ lM�a
i ð3Þ

is satisfied where l is a constant. We now show that

this relation agrees with the results given above. From

Eq. (3), we have

a ¼ logðC0=C1Þ
logðM1=M0Þ

¼ logðC1=C2Þ
logðM2=M1Þ

¼ logð27=20Þ
log27

¼ 1� log20

3log3
ð4Þ

Comparing Eqs. (2) and (4), we conclude that

a ¼ 1� 1

3
D ð5Þ

and substitution into Eq. (3) gives

Ci ¼ lM�ð1�D=3Þ
i ð6Þ

This is our basic fractal tonnage (Mi)–grade (Ci)

relation. For the example given in Fig. 2, from Eqs.

(4) and (5) we have a = 0.091 and D = log20/

log3 = 2.7268 as in Eq. (2). Note that this definition

of the fractal dimension differs from the one used by

Turcotte (1986, 1997).

Fig. 2. The Menger sponge. (a) The unit cube N0 = 1 with r0 = 1. (b) The unit cube is divided in 27 cubes with r1 = 1/3, 7 are removed so that

N1 = 20. (c) Each of the 20 remaining cubes in (b) is divided into 27 cubes with r2 = 1/9, 7 are removed from each of these cubes so that

N2 = 20� 20 = 400.
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The Menger sponge construction illustrated in

Figs. 1 and 2 can be modified to illustrate a range

of fractal tonnage–grade distributions. Instead of

remaining 20 solid cubes (Ni = 20), we retain 2

(N1 = 2), 4 (N1 = 4), and 8 (N1 = 8) cubes. When these

values are used in the construction illustrated in Fig. 2,

a range of a values and fractal dimensions D are

obtained. These are tabulated in Table 1. The fractal

dimensions are the fractal dimensions of the corre-

sponding Menger sponge construction and range from

0.63 for N1 = 2 to 2.73 for N1 = 20 (the true Menger

sponge). The power-law exponents a for the fractal

tonnage–grade distributions range from 0.790 for

N1 = 2 to 0.091 for N1 = 20.

The Menger sponge used in Figs. 2 and 3 is a

deterministic fractal whereas we consider mineral

deposits to be statistical fractals. The relation is the

same as that between the deterministic triadic Koch

Fig. 3. Menger sponge model for a fractal tonnage grade distribution. (a) A unit cube of the pure mineral, M0 = 1, C0 = 1. (b) Twenty unit cubes

of the pure mineral and 7 unit cubes of barren country rock, M1 = 27, C1 = 20/27. (c) Four hundred unit cubes of the pure mineral and 329 unit

cubes of barren country rock M2 = 729, C2 = 400/729.
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Island given in Fig. 1 and rocky coastlines. For

mineral deposits, we modify the deterministic tonnage

grade relation given in Eq. (3) to the form

C ¼ lM�a ð7Þ

where C is the mean grade and M is the ore mass

considered.

The subject of tonnage–grade relations for ore

deposits has been reviewed by Harris (1984). There

is clearly a controversy in the literature between log-

normal statistics (Lasky, 1950; Musgrove, 1965) and

power-law (fractal) statistics (Cargill et al., 1980,

1981; Cargill, 1981). Results obtained by Cargill

(1981) for the tonnage–grade of lode gold in the

United States are given in Fig. 4. This correlation was

based on records of annual production and mean

grade. The cumulative mass of gold mined prior to a

specified date was divided by the cumulative mass of

ore from which the gold was extracted to give the

cumulative mean grade. The data points in Fig. 4

represent the 5-year cumulative mean grade versus the

cumulative mass of ore mined. The data correlate with

the power-law fractal relation (7) taking a = 0.517.
From Eq. (5) the corresponding fractal dimension is

D = 1.45.

The working hypothesis is that the ores mined in

the earliest time period had the highest grades. As

time passed and ore tonnage increased, the ore grade

decreased systematically in agreement with Eq. (7).

In terms of the deterministic Menger sponge model

given in Fig. 3, Fig. 3a is the small tonnage high

grade ores, Fig. 3b is the intermediate tonnage

intermediate grade ore, and Fig. 3c is the large

tonnage low grade ores. Turcotte (1986) also found

good fractal correlations with production records for

Fig. 4. Dependence of the cumulative ore massM on mean grade C for lode gold production in the United States (Cargill, 1981). The data points

are production records of the 5-year cumulative average grade C versus the cumulative tonnage of ore M for the period 1906–1976. The

straight-line correlation is with the power-law relation (7) taking a= 0.517.

Table 1

Five examples of the Menger sponge model for fractal tonnage–

grade distributions

N0 M0 C0 N1 M1 C1 N2 M2 C2 a D

1 1 1 2 27 2/27 4 729 4/729 0.790 0.63

1 1 1 4 27 4/27 16 729 16/729 0.579 1.26

1 1 1 8 27 8/27 64 729 64/729 0.369 1.89

1 1 1 16 27 16/27 256 729 256/729 0.159 2.52

1 1 1 20 27 20/27 400 729 400/729 0.091 2.73

D.L. Turcotte / Lithos 65 (2002) 261–271 265



copper, uranium, and mercury. These results are

summarized in Table 2. The values of a range from

0.387 for copper to 0.660 for mercury. A large value

of a implies a strong fractionation of the mineral in

the ore.

Spatial distributions of ore deposits have also been

shown to satisfy fractal statistics. Carlson (1991)

examined the spatial distribution of 4775 hydrother-

mal precious metal deposits in the western United

States and found that the probability–density distri-

bution for these deposits is fractal. Blenkinsop (1994)

found similar results for gold deposits in the Zim-

babwe Archean craton.

3. Ore enrichment models

Rayleigh distillation is a classic model used in

geochemistry to explain the enrichment of trace ele-

ments in crystalline rocks. The basic model considers

the solidification of a magma to form the crystallizing

solid. If an incremental mass of magma yM crystal-

lizes, the incremental mass of mineral yMm transferred

from the magma to the solid is given by

yMm

Mm

¼ K
yM

M
ð8Þ

where M is the mass of magma, Mm is the mass of the

mineral in the magma, and K is the solid– liquid

partition coefficient. If the mineral is incompatible

with the crystalline solid, we have K < 1 and the

remaining magma is systematically enriched. The

smaller the value of K, the greater the enrichment is.

We can write Eq. (8) as a differential equation in

the form

dMm

Mm

¼ K
dM

M
ð9Þ

Integrating with the condition that Mm =Mm0 when

M =M0 gives

Mm

Mm0

¼ M

M0

� �K

ð10Þ

The mean concentration of the mineral in the enriched

residual magma C
–

and the concentration of the

mineral in the original magma C0 are given by

C ¼ Mm

M
ð11Þ

and

C0 ¼
Mm0

M0

ð12Þ

Substitution of Eqs. (11) and (12) into Eq. (10) gives

C

C0

¼ M0

M

� �1�K

ð13Þ

Comparing this result with Eqs. (5) and (7), we see

that we have a fractal relation with a fractal dimension

D ¼ 3K ð14Þ

The fractal dimension D is simply three times the

solid–liquid partition coefficient K. This is consistent

with the Menger sponge model illustrated in Fig. 2. If

D = 3, the concentration is constant independent of

scale which is consistent with K = 1. Allègre and

Lewin (1995) and Turcotte (1997) have shown that

the above analysis is also applicable to the chromato-

graphic model.

4. Self-affine fractals

A second fractal approach to the analysis of data is

the use of self-affine fractals (Malamud and Turcotte,

1999). Applications of self-affine fractals are to time

series or to spatial distributions of data in one or more

dimensions. An example would be the concentration

of a mineral as a function of depth in a drill core. Self-

affine fractal data analyses can also be applied to two-

dimensional and three-dimensional data. Either the

surface concentrations of a mineral or the full three-

dimensional concentration distributions can be con-

sidered.

Table 2

Fractal correlations of tonnage–grade data given by Cargill et al.

(1980, 1981) and Cargill (1981)

Mineral a D K

Copper 0.387 1.84 0.61

Uranium 0.490 1.52 0.51

Gold 0.517 1.45 0.48

Mercury 0.660 0.99 0.33
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A standard approach to the analysis of a one-

dimensional spatial data set ci(xi) is to carry out a

Fourier transform of the data set. The spectral coef-

ficients Cj(kj,L), kj wave number and L track length,

are generally complex numbers indicating the ampli-

tude and the phase of the signal. The standard measure

of the spectral content of a signal is the spectral power

density defined by

SjðkjÞ ¼
1

L

����Cjðkj; LÞ
����
2

ð15Þ

in the limit L!l. A time series is self-affine if

SjðkjÞ ¼ vk
�b
j ð16Þ

where v is a constant and the power b generally takes

values in the range � 1V b < 3.

One classic data set is a Gaussian white noise.

Each value in the data set is randomly picked from a

Gaussian distribution of values. Adjacent values in the

data set are uncorrelated and the spectral content is

flat, b = 0 in Eq. (16). A second classic data set is a

Brownian walk. A Brownian walk is obtained by

taking the running sum of a Gaussian white noise.

A Brownian walk is not stationary because its stand-

ard deviation d increases with increasing track length

L according to df L1/2. A Brownian walk is scale-

invariant and satisfies Eq. (16) with b = 2.

The concepts of fractional Gaussian noises and

fractional Brownian walks were introduced by Man-

delbrot and Wallis (1968, 1969a,b). Fractional Gaus-

sian noises are self-similar data sets that satisfy Eq.

(16) with � 1V bV1. These data sets are stationary

in that the standard deviation d is not a function of the

period T. In the range 0 < bV 1, the fractional noise

data sets are weakly persistent, adjacent values are

positively correlated. In the range � 1 < b < 0, the

fractional noise data sets are weakly antipersistent,

adjacent values are negatively correlated. Fractional

Brownian walks are self-similar data sets that satisfy

Eq. (16) with 1 < b < 3. The running sum of a frac-

tional Gaussian noise with b = bg is a fractional

Brownian walk with bw = bg + 2. Fractional Brownian
walks are nonstationary with the standard deviation

d(T) given by

dðTÞfTHa ð17Þ

where Ha, the Hausdorff measure, is related to h by

Ha ¼ b � 1

2
ð18Þ

This relation is valid in the range 1 < b < 3. An

alternative approach to the analysis of self-similar

fractional Gaussian noises was developed by Hurst

et al. (1965). Their rescaled-range (R/S) analysis was

based on taking the variance of a running sum of the

data set. The Hurst exponent Hu is related to b by

Hu ¼ b þ 1

2
ð19Þ

and is valid in the range � 1 < b < 1.

There are many geological and geophysical obser-

vations that are self-affine fractals to a good approx-

imation (Pelletier and Turcotte, 1999). Topography on

the Earth, moon, Venus, and Mars is well approxi-

mated by a Brownian walk (b = 2). Hurst et al. (1965)

showed that time series of river discharges, lakes

levels, thicknesses of tree rings and varves, and

atmospheric temperature and pressure give Hurst

exponents Huc 0.75 (bc 0.5). Well logs are often

self-similar data sets with bc 1 (Todoeschuck et al.,

1990; Pelletier and Turcotte, 1996).

A number of authors have shown that mineral

textures and distributions are fractal. Fowler (1990,

1995) quantified the mineral textures of igneous rocks

using fractal techniques. Fowler et al. (1989) consid-

ered fractal and non-fractal features of disequilibrium

silicate mineral textures. Bolviken et al. (1992) con-

sidered the fractal nature of geochemical landscapes.

Cheng et al. (1994) used fractal techniques to separate

geochemical anomalies from background noise. Zheru

et al. (2001) quantified the fractal distribution of

element distributions on mineral surfaces.

As an example of self-affine fractal composition

distributions, we will consider the global distributions

of lunar compositions as given by Feldman et al.

(2002). Five global distributions are considered and

each is expanded in spherical harmonics out to degree

and order 30. The distributions considered are: (1) the

abundance of thorium (Th), (2) the abundance of FeO

(FeO), (3) the ratio of epithermal to fast neutrons (E/

T), (4) the flux of fast neutrons (FN), and (5) the visible

albedo from the 750 nm wavelenth band (albedo). The
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harmonic amplitude Ai corresponding to degree S i is
given as a function of degree S i in Fig. 5. The

harmonic amplitude Ai is equivalent to the spectral

coefficient Ci. From Eq. (15) we conclude that the

power spectral densities Si are proportional to the

square of the harmonic amplitude Ai. Since the degree

S i is proportional to the wave number Ki, we can

rewrite Eq. (16) as

Ai ¼ CS �b=2
i ð20Þ

The five straight-line correlations given in Fig. 5

correspond to Eq. (20) with b = 1.48 (fast neutrons),

Fig. 5. Dependences of the harmonic amplitude Ai on the degree S i for global compositional distributions on the moon (Feldman et al., 2002).

Distributions considered are the thorium abundance (Th), FeO abundance (FeO), ratio of epithermal to fast neutrons (E/T), flux of fast neutrons

(FN), and the lunar albedo (albedo). Each distribution has been expanded in spherical harmonics to degree and order 30. The straight lines are

from Eq. (20) taking b= 1.48 (FN), 1.54 (Th), 1.72 (E/T), 1.52 (FeO), and 2.04 (albedo).
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b = 1.54 (thorium), b = 1.72 (epithermal/thermal),

b = 1.52 (FeO), and b = 2.04 (albedo). We see that all

five measures of composition correlate quite well with

the self-affine fractal relation (20).

5. Models for self-affine fractal behavior

Self-affine fractal behavior is found in a variety

of geological and geophysical applications. The best

known is planetary topography and bathymetry.

Global topography satisfies Eq. (20) to a good

approximation with bc 2 (Turcotte, 1997, pp.

168–170), i.e., it is a Brownian walk as described

above. Porosity variations in sedimentary basins are

self-affine fractals to a good approximation both

horizontally with bc 2 and vertically with bc 1.5

(Pelletier and Turcotte, 1996). Family (1986) pro-

vided an explanation for this behavior by using a

stochastic diffusion model. Diffusion equations with

Gaussian white-noise drivers give this type of

behavior (Pelletier and Turcotte, 1999). Since the

movement of minerals in petrology is often gov-

erned by the diffusion equation, random deposition

plus diffusion can explain self-affine mineral distri-

butions.

6. Multifractals

A third fractal approach to the analysis of data is to

use multifractals (Turcotte, 1997). The simplest

approach to illustrating the multifractal approach is

to consider N points distributed along a line of length

R. The line is divided into n segments of length r

(n = 1:r =R, n = 2:r =R/2, n = 4:r =R/4, and so forth).

The probability pin is the probability that a point is

found in the ith line segment, i = 1, 2, . . ., n

pin ¼
Nin

N
ð21Þ

with

The generalized moment of this distribution is defined

by

MqðrÞ ¼
Xn
i¼1

p
q
in ð23Þ

which is valid for all values of q except q= 1.

A distribution is multifractal if the generalized

moments satisfy the scaling relation

Mq ¼ Crðq�1ÞDq ð24Þ

where the fractal dimensions Dq form the multifractal

spectrum. For the self-similar fractal distributions

considered above, all values of Dq are equal. The

multifractal approach can be applied to continuous as

well as discrete distributions in one, two, or three

dimensions. The approach can also be applied to the

analysis of time series. The applications of multi-

fractal concepts have advantages but also disadvan-

tages. The applicability of multifractal statistics to a

natural process may provide important information on

the underlying physical processes, multifractals are

often associated with multiplicative cascades. How-

ever, multifractal statistics are much less useful than

monofractal statistics from a practical point of view. A

monofractal distribution (1) requires only two con-

stants, D and c. But a full multifractal spectrum

requires an infinite number of constants. Monofrac-

tality implies scale invariance, multifractality does

not. A log-normal distribution can be multifractal.

Agterberg (1995) applied multifractal modeling to

the sizes and grades of giant and supergiant ore de-

posits. Goncalves (2001) applied multifractal modeling

to geochemical distributions. Muller (1992) carried out

multifractal characterizations of petrophysical data.

7. Conclusions

Fractal distributions are the only distributions appli-

cable to scale-invariant processes. Many phenomena in

petrology have one or more well-defined scales: intera-

tomic spacings, crystal structure, grain size, defects,

etc. Fractal concepts are not applicable in these cases.

However, there are a variety of problems in petrology

that do exhibit scale-invariance, at least over a range

of scales. An important example is the distributions of

concentrations of trace elements. The extreme values of

Xn
i¼1

pin ¼ 1 ð22Þ
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these concentrations lead to ore deposits. There is

observational evidence that tonnage–grade data for at

least some minerals are well approximated by fractal

(power-law) distributions.

A major question in many branches of the earth

sciences is whether extreme values have thin tails

(exponential, log-normal) or fat tails (power-law, frac-

tal). The choice of an applicable distribution can make

orders of magnitude difference in extrapolating pre-

dictions to extreme values. Estimates of ore reserves

are an example.

Spatial distributions of composition can be ana-

lyzed using the concept of self-affine fractals. The

standard approach is to take a Fourier transform of the

composition along a linear track. If the Fourier coef-

ficients scale as a power-law of the wavelength, the

distribution is a self-affine fractal. Stochastic differ-

ential equations can generate such distributions. An

example is the Langevin equation, the diffusion equa-

tion with a random (Gaussian white noise) input.

Multifractal analyses can also be applied to prob-

lems in petrology. But multifractality does not neces-

sarily imply scale invariance. However, evidence of

multifractality is often taken to imply the applicability

of a multiplicative cascade. Multiplicative cascades

associated with log-normal distributions have been

proposed as models for the concentrations associated

with ore deposits (Ahrens, 1954a,b, 1963a,b).

Fractal concepts are widely used in many branches

of geology and geophysics. But applications in pet-

rology are relatively few. It is expected that many

petrological measurements are and will be scale

invariant for the same reasons that this is true in

structural geology and sedimentology. Fundamental

explanations of scale invariant behavior are also

available as described in this paper.
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