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Abstract. Using the CRSP (Center for Research in Security Prices) daily stock
return data, we revisit the question of whether or not actual stock market prices
exhibit long-range dependence. Our study is based on an empirical investiga-
tion reported in Teverovsky, Taqqu and Willinger [33] of the modifiedrescaled
adjusted rangeor R/S statistic that was proposed by Lo [17] as a test for long-
range dependence with good robustness properties under “extra” short-range de-
pendence. Our main conclusion is that because the modifiedR/S statistic shows
a strong preference for accepting the null hypothesis of no long-range depen-
dence, irrespective of whether long-range dependence is present in the data or
not, Lo’s acceptance of the hypothesis for the CRSP data (i.e., no long-range
dependence in stock market prices) is less conclusive than is usually regarded
in the econometrics literature. In fact, upon further analysis of the data, we find
empirical evidence of long-range dependence in stock price returns, but because
the corresponding degree of long-range dependence (measured via the Hurst pa-
rameterH ) is typically very low (i.e.,H -values around 0.60), the evidence is
not absolutely conclusive.
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1 Introduction

Long-range dependence is widespread in nature (e.g., see Mandelbrot [22] for
details) and has been extensively documented in hydrology, meteorology and
geophysics (see for example Mandelbrot and Wallis [24, 25, 27]). More recently,
long-range dependence has also started to play an important role in the analy-
sis and performance modeling of traffic measurements from modern high-speed
communications networks (for a recent bibliographical survey of this area, see
Willinger, Taqqu and Erramilli [34]).

In economics and finance, long-range dependence has a long history and has
remained a topic of active research is the study of economic and financial time
series (e.g., see Lo [17], and Cutland, Kopp and Willinger [6], and references
therein). Historical records of economic and financial data typically exhibit dis-
tinct nonperiodic cyclical patterns that are indicative of the presence of significant
power at low frequencies (i.e., long-range dependence). This led Granger [12],
for example, to talk about the “typical spectral shape of an economic variable”.
However, the statistical investigations that have been performed to test for the
presence or absence of long-range dependence in economic data have offered
a much less coherent picture. In the case of economic time series representing
returns on common stocks, these investigations have often become a source of
major controversies, mainly because of the important implications that the pres-
ence of the long-range dependence phenomenon in asset returns has on many
of the paradigms used in modern financial economics: it is inconsistent with the
efficient market hypothesis, and plays havoc with stochastic analysis techniques
that have formed the basis of a big part of modern finance theory and its applica-
tions (for more details, see the discussions in Mandelbrot [21], Lo [17], Rogers
[30] and Cutland, Kopp and Willinger [6]).

Historically, the importance of long-range dependent processes as stochastic
models lies in the fact that they provide an elegant explanation and interpretation
of an empirical law that is commonly referred to asHurst’s law or the Hurst
effect. In short, for a given set of observations (Xi , i ≥ 1), with partial sumY(n) =∑n

i =1 Xi , n ≥ 1, and sample varianceS2(n) = n−1 ∑n
i =1(Xi − n−1Y(n))2, n ≥ 1,

the rescaled adjusted range statisticor R/S -statisticis defined by

R
S
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(1)
Hurst [16] found that many naturally occurring empirical records appear to be
well represented by the relationE

[
R/S(n)

] ∼ c1nH , asn → ∞, with typical
values of theHurst parameter Hin the interval (0.5, 1.0), andc1 a finite positive
constant that does not depend onn. On the other hand, if the observations
Xi come from a short-range dependent model, then it is known [11, 2] that
E

[
R/S(n)

] ∼ c2n0.5, asn → ∞, wherec2 is independent ofn, and finite
and positive. The discrepancy between these two relations is generally referred
to as theHurst effector theHurst phenomenon.
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ClassicalR/S-analysis (originally due to Mandelbrot and Wallis [25]; see
also Mandelbrot and Taqqu [23]) aims at inferring from an empirical record
the value of the Hurst parameterH for the long-range dependent process that
presumably generated the record at hand. While classicalR/S-analysis is not a
very reliable method in the presence of small samples, it can be highly effective
and useful as a graphical or “eyeballing” method for reasonably large samples,
where it often provides a rather accurate picture of the presence or absence of
long-range dependence in a given empirical record and, in the former case, about
the intensity of long-range dependence as measured by the Hurst parameter. For
practical purposes, the most useful feature of the classicalR/S-analysis is its
relative robustness under changes in the marginal distribution of the data, even
if the marginals exhibit heavy tails with infinite variance (see for example Man-
delbrot and Wallis [26] and also Mandelbrot and Taqqu [23]). In the context of
asset return, Mandelbrot [20] was one of the first who considered the possibility
of long-range dependence in common stock returns. His empirical studies were
largely based on the classicalR/S analysis and led him to suggest that represen-
tative values of the Hurst parameter for asset returns might be aroundH = 0.55.
Mandelbrot’s empirical findings were essentially confirmed by a later large-scale
study by Greene and Fielitz [13], who used the classicalR/S-method on 200
daily stock return series of securities listed on the New York Stock Exchange
and reported that many of the series are characterized by long-range dependence.

The less attractive features of the classicalR/S-analysis are its sensitivity to
the presence of explicit short-range dependence structures, its bias, and a lack of
a distribution theory for the underlying statistic (1). These characteristics stand
in the way of using classicalR/S as a rigorous statistical inference method.
To overcome some of these shortcomings, Lo [17] proposed amodified R/S -
statistic that is obtained by replacing the denominatorS in (1), i.e., the sample
standard deviation, by a consistent estimator of the square root of the variance of
the partial sumY(n). The motivation for this modification is that in the case of
dependent random variables, the variance of the partial sum is not simply the sum
of the variances of the individualXi ’s but also includes their autocovariances up
to some lag, for a judicious choice of the truncation lag. Lo derives the limiting
distribution of his modifiedR/S-statistic under both short-range and long-range
dependence, claims that it is robust with respect to short-range dependence, and
illustrates through Monte Carlo simulations that it has reasonable power against
certain long-range dependence alternatives. When applied to the data sets of daily
stock return indices from the Center for Research in Security Prices (CRSP), Lo
finds no evidence of long-range dependence in the data and concludes that the
dynamic behavior of asset returns may be adequately described by traditional,
short-range dependent models.

In contrast to the prevailing view in the econometrics literature (Hauser,
Kunst, Reschenhofer [14], Huang and Yang [15], Campbell, Lo and MacKinlay
[5]), Lo’s modifiedR/S method does not appear to provide the “ultimate” test for
long-range dependence. Indeed, Teverovsky, Taqqu and Willinger [33] identify a
number of problems associated with Lo’s method and it’s use in practice. Among
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the most relevant findings, they show that Lo’s method has a strong preference
for accepting the null hypothesis of no long-range dependence, irrespective of
whether long-range dependence is present in the data or not. In practical terms,
this result implies that when Lo’s method indicates that there is no evidence
of long-range dependence in a given data set, it is necessary to re-examine the
data to confirm or refute this finding. We illustrate this point with the CRSP
data sets that Lo used in his empirical study and where his use of the modified
R/S-statistic led him to conclude that there is no evidence of long-memory in
the data. By performing an in-depth analysis of these same data sets (and certain
transformations thereof), we identify the causes that led to the acceptance of the
null hypothesis (no long-range dependence) by Lo [17] and arrive at a much less
conclusive picture. Based on this experience as well as on additional evidence,
we do not recommend to use Lo’s method in isolation, i.e., as the sole technique
to test for long-range dependence, but to always rely on a diverse portfolio
of graphical and statistical methods for checking for long-range dependence, as
described for example in Beran [3], Taqqu, Teverovsky and Willinger [32], Taqqu
and Teverovsky [31] and Abry and Veitch [1].

The remaining part of the paper is organized as follows. In Sect. 2, we con-
trast the classicalR/S-method with Lo’s modifiedR/S-statistic and summarize
the main findings of and new insights gained from the Monte Carlo simulations
performed in Teverovsky, Taqqu and Willinger [33]. In view of this new evi-
dence, we (i) revisit in Sect. 3 the CRSP data sets of daily stock returns that
Lo used in his empirical study of long-memory in stock returns, (ii) illustrate
the results of our in-depth analysis of the CRSP data sets, and (iii) discuss their
practical implications. In Sect. 4, we provide some constructive suggestions for
dealing with the long-range dependence issue in financial data.

2 Lo’s modified R/S statistic and its properties

In practice, classicalR/S-analysis is based on a heuristic graphical approach,
originally developed by Mandelbrot and Wallis [25], that attempts to exploit as
fully as possible the information in a given historical record. In short, a given
sample ofN observations is subdivided intoK blocks, each of sizeN/K . Then,
for eachlag n, n ≤ N , estimatesR(km, n)/S(km, n) of the R/S statistic given in
(1) are computed by starting at the points,km = (m−1)N/K +1, m = 1, 2, . . . , K ,
and such thatkm + n ≤ N . Thus, for any givenm, all the data points before
km = mN/K + 1 are ignored. For values ofn smaller thanN/K , there areK
different estimates ofR(n)/S(n); for values ofn approachingN , there are fewer
values, as few as 1 whenn ≥ N − N/K . Also note that theR(km, n)/S(km, n)
values corresponding to neighboring values ofkm and n are strongly interde-
pendent; for a givenn > N/K , the various estimates ofR(n)/S(n) involve
overlapping observations, and so do the estimates when evaluated at different
lags but for a fixed starting pointkm. The graphicalR/S approach consists then
of calculating the estimatesR(km, n)/S(km, n) for logarithmically spaced values
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of n, and plotting log(R(km, n)/S(km, n)) vs. log(n), for all starting pointskm.
This results in therescaled adjusted range plot, also known as thepox plot of
R/S. This type of plot is displayed in Fig. 1.

In contrast, Lo [17], instead of considering multiple lags, focuses only on lag
n = N , the length of the series. Furthermore, instead of simply using the sample
standard deviation,S, to normalizeR, he uses a weighted sum of autocovariances,
namely,

Sq(N ) :=


 1

N

N∑
j =1

(Xj − X̄N )2 +
2
N

q∑
j =1

ωj (q)


 N∑

i =j +1

(Xi − X̄N )(Xi −j − X̄N )







1/2

,

(2)
whereX̄N denotes the sample mean of the time series, and the weightsωj (q) are
given by

ωj (q) = 1− j
q + 1

, q < N .

Lo then defines the modifiedR/S-statistic,Vq(N ), by setting

Vq(N ) = N−1/2R(N )/Sq(N ), (3)

with R given in (1). Since

lim
N→∞

P{Vq(N ) ∈ [.809, 1.862]} = 0.95, (4)

(see Lo [17] and Teverovsky, Taqqu and Willinger [33]), Lo uses the interval
[0.809, 1.862] as the 95% (asymptotic) acceptance region for testing the null
hypothesis

H0 = {no long-range dependence, i.e.,H = 0.5}
against the composite alternative

H1 = {there is long-range dependence, i.e. 1/2 < H < 1}.

The main innovation here is, of course, usingSq(N ) in the denominator instead
of S0(N ) = S as in the classicalR/S-statistic. Lo’s motivation for usingSq(N )
is to normalizeR by a quantity that compensates for the “extra” short-range
dependencies that may be present in a given data set. If a time series has both
short- and long-range dependence, Lo’s statisticVq should typically fall outside
the confidence interval (4), implying correctly that long-range dependence is
present. Notice that unlike the graphicalR/S-method, which usually provides a
rough estimate of the Hurst parameterH , Lo’s method only indicates whether
long-range dependence is present or not.

Lo’s results are asymptotic, in that they assumeN → ∞ andq = q(N ) → ∞.
In practice, the sample sizeN is finite, and the question naturally arises as to
whether there is a “right” choice ofq(N ). As discussed in detail in Teverovsky,
Taqqu and Willinger [33], the right choice ofq in Lo’s method is essential,
because it influences both the actual size of the test,P(rejectH0 | H0), and its
power,P(acceptH0 | H1). In particular, we show in [33] that for largeq-values,
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Vq(N ) ' q1/2−H . (5)

That is, asq increases, the test statisticVq decreases (forH > 1/2) and, for
large enoughq, it will be well within the confidence interval for the null hy-
pothesis, i.e.,Vq ∈ [.809, 1.862] (see Eq. (4)). This finding points to a serious
problem when relying onVq as the sole indicator for whether or not a given data
set is consistent with long-range dependence and led us to perform a detailed
Monte Carlo simulation study, the results of which are described in [33]. Using
synthetically generated “purely” long-range dependent time series, i.e., fractional
Gaussian noise (FGN) with Hurst parameter.5 < H < 1, “purely” short-range
dependent sequences, i.e., ARMA(p, q) processes, as well as hybrid short-range
and long-range dependent processes, i.e., fractional autoregressive-moving aver-
age stationary time series FARIMA(p, d, q) with d = H − 1/2, 0 < d < .5, we
conclude in [33], that while Lo’s modifiedR/S-statistic represents a theoreti-
cal improvement over the classical rescaled adjusted range statistic, its practical
application requires care and has a number of problematic features. Most impor-
tantly, we found a strong dependence between the outcome of the test (based on
the test-statisticVq) and the choice of the truncation lagq, with a pronounced
bias toward accepting the null hypothesis of no long-range dependence for large
q’s. This happens even in ideal scenarios of “purely” long-range dependent data
with high values of the Hurst parameter. Moreover, when interpreting a region of
“stability”, where the test statisticVq remains fairly constant asq changes, as a
sign that the statistic can be trusted, then the conclusion will almost always be to
accept the null hypothesis of no long-range dependence – the only time thatVq

enters a stable region is when it is already well within the acceptance region of
the null hypothesis. Based on these findings, our recommendations are to always
rely on a wide range of differentq-values and associatedVq-values. Moreover,
one ought never to use Lo’s method in isolation, but always in conjunction with
other graphical and statistical techniques for checking for long memory, espe-
cially when Lo’s method results in accepting the null hypothesis of no long-range
dependence.

3 Common stock returns and long-range dependence

We start with a brief overview of past and more recent studies of the long-range
dependence phenomenon in common stock returns. Then we revisit the data from
the Center for Research in Security Prices (CRSP)daily stock returnsfiles that
were used by Lo [17] and present our own in-depth analysis that was motivated
by the new evidence reported in [33] and summarized in Sect. 2.

3.1 Empirical evidence

The Black-Scholes model introduced by Black and Scholes [4] and Merton [28]
has become synonymous with modern finance theory. It assumes that the dy-
namics of stock prices is well described by exponential Brownian motions; that
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is, stock price returns behave like a sequence of i.i.d. Gaussian random vari-
ables. While it is commonly accepted that the Gaussian nature of the marginal
distribution of asset returns is a mathematical convenience that is not consistent
with empirical stock price returns (e.g., [19, 8, 29]), the dependence structure of
stock price returns has been at the center of intense scrutiny for the last 30 or
more years. Early investigations into the dependence structure of asset returns
(e.g., by Fama [9, 10], who used simple significant tests for checking whether
or not the first few autocorrelation coefficients are close to zero) concluded that
successive returns can be assumed to be independent; i.e., stock price returns
follow a random walk. Later on, Lo and MacKinlay [18] revisited this random
walk hypothesis; after a careful analysis of market returns from a 25-year period
(1962-1987), Lo and MacKinlay found substantial short-range dependence in the
data and strongly rejected the hypothesis that asset returns are i.i.d. .

More recently, motivated by the empirical findings of of long-term memory
in common stock returns by Mandelbrot [20] and Greene and Fielitz [13] (see
Sect. 1), Lo [17] re-examined the question of long-run memory in asset returns
– using his modifiedR/S-statistic Vq(N ) considered in Sect. 2 and the CRSP
daily stock returns from 1962 to 1987, a time series of length approximately
N = 6400. While there is overwhelming evidence that the series ofabsolute
valuesof the CRSP daily stock returns exhibit long-range dependence (R/S gives
H = 0.85), Lo was mainly interested in the question whether the series itself is
consistent with long-range dependence. Analyzing the entire series, as well as
fractions of it (1/2 and 1/4 of the original series), and choosing truncation lags
q = 90, 180, 270, 360 (note that these are relatively large values ofq for such a
short series; see [33]), Lo’s main finding is that the daily stock returns do not
exhibit long-range dependence because the values ofVq(N ) are within the 95%
confidence interval (4). Moreover, Lo observed that the values of the test-statistic
Vq do not change much forq = 90, 180, 270, 360 and are relatively “stable”,
which he takes as strong supporting evidence that the test statistic can be trusted,
and that – contrary to the findings in [13] – the data are not consistent with long-
range dependence. In fact, Lo attributes the findings in [13] to the fact that the
classicalR/S-method is sensitive to the presence of short-range dependence and
concludes that traditional short-range dependent models are adequate to describe
actual stock returns.

3.2 The CRSP data revisited

Based on our experience with the modifiedR/S-statistic Vq reported in [33]
and summarized in Sect. 2, the claim made by Lo [17] that the CRSP stock
return indices show no evidence of long-range dependence must be reexamined.
On the one hand, Lo relies in his analysis of the CRSP data exclusively on the
modifiedR/S-statistic, and we have seen earlier that in isolation,Vq has a strong
preference for accepting the null hypothesis of no long-run memory, even if the
data at hand are “truly” long-range dependent. On the other hand, we have also
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mentioned in Sect. 2 that Lo’s argument in support of the “correctness” of the null
hypothesis, i.e., the existence of a region of “stability” where the test-statisticVq

does not change much as the truncation lagq varies, has its definite downside:
The only timeVq is relatively stable asq changes is whenq is large enough for
the cross-over from the alternative to the null hypothesis to occur and whenVq

is well within the acceptance region of the null. Following the recommendations
given in [33], further investigations of the CRSP data are required in order to
minimize the possibility of a Type II error, i.e., of wrongly accepting the null
hypothesis of no long-range dependence.

In the following, we re-examine some of CRSP data used by Lo in his
study, identify the causes that led to a “clear” acceptance of the null by Lo,
and provide empirical evidence which suggests that some of the CRSP data are,
in fact, consistent with long-range dependence; i.e., Lo’s claim of no evidence
of long-run memory in the data may well be due to the fact that the modified
R/S-statistic cannot, in general, guarantee a low Type II error probability. In
particular, we focus here on the daily CRSP data for the equal-weighted (EW)
returns indices (1962-1987), a time series of lengthN = 6409. (We also analyzed
the daily CRSP data for the value-weighted (VW) returns indices; performing a
similar analysis as illustrated below for the EW indices, we found no evidence of
long-run memory in the VW data, in full agreement with Lo’s findings in [17].)
A plot of the EW time series is shown in Fig. 1 a, and a preliminary analysis
of the data set (not shown here) indicates that, for all practical purposes, the
time series can be considered stationary, with a marginal distribution that has
heavier than Gaussian tails, but still with finite variance – a quick check (based
on qq-plots) of the aggregated series reveals that the marginals appear to be in
the domain of attraction of a Gaussian. Fig. 1 b depicts the pox plot ofR/S
corresponding to the EW series and results in an estimate of the Hurst parameter
H of about 0.62 (using the shaded region).

Returning to the modifiedR/S-statisticVq, Fig. 2 a shows a plot ofVq vs.
q, for a range ofq-values (solid line), with the approximate 95% confidence
intervals for the hypothesis of no long-range dependence (dashed lines). As can be
seen, for smallq’s, the values of the test-statistics fall outside the 95% confidence
region (e.g.,V0 = 2.63), which can be taken as evidence for long-run memory in
the data. However, forq-values around 10,Vq crosses over into the acceptance
region of the null hypothesis and remains fairly stable and well within this region
for q-values larger than about 50. This very observation was used by Lo (he
choseq-values of 90, 180, 270, 360) as convincing evidence that the data are
not consistent with long-range dependence and that the test-statisticVq can be
trusted. To question this conclusion of Lo, Fig. 2 (a) also depicts theVq-vs-q-plots
for two random realizations of FGN withH = 0.6 (dotted lines). Clearly, the
EW index is fully consistent with the simulated curves which, at the very least,
gives rise to a much less conclusive picture concerning the presence or absence
of long-range dependence in the EW index than is portrayed in [17]. Indeed,
from the plot on the right side of Fig. 2 which shows the log− log version of the
Vq-vs-q- plot for the EW index, we observe a linear behavior over a significant
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Fig. 1. Time series of the daily CRSP data for the equal-weighted returns indices, from 1962–1987,
N = 6409a, and corresponding pox plot ofR/S b. The straight lines serve as reference: their slopes
are 0.5 and 1.0 respectively

portion of the range, resulting, using (5), in anH -estimate of about 0.60. Similar
results (not shown here) hold for subsets of the EW series.

On the log-log plot ofVq, we can see that at approximately q=50, the plot
flattens out. This phenomenon can also be seen in some of the sample FARIMA
series in Teverovsky, Taqqu and Willinger [33]. In an ideal long-range depen-
dent series of infinite length, this would not occur. However, in real life, the
correlations at very large lags are so small that they are very sensitive to slight
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Fig. 2. a.Vq for the EW series (solid line) and 2 realizations of FGN(H = 0.6) (dotted lines).b. Vq

for the EW series on log− log scale

deviations. Thus, there will always be a q such that the log-log plot will have
negligible fluctuations beyond it.

Next we used several other graphical and statistical methods for estimating
H (for a detailed account of the different methods, see Taqqu, Teverovsky and
Willinger [32]) and obtained values ranging consistently from 0.55 to 0.65. Es-
pecially noteworthy are the results obtained from using Whittle’s approximate
MLE method [3, Chapter 5]. When assuming an underlying FARIMA(1, d, 1)
model, the resultingH -estimate is about 0.63, with AR and MA coefficients
[(−0.16,−0.40)] that are significantly different from zero. When aggregating
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the EW series over blocks of size 10 and 20, respectively, and assuming now
an underlying FGN model, we obtain approximately the sameH -estimate: for
blocks of size 10, the estimatedH -value is about 0.63, with approximate 95%
confidence intervals of (0.58, 0.68); for blocks of 20,H ≈ 0.58, with approx-
imate 95% confidence intervals of (0.51, 0.65). Note that by aggregating the
data, the resulting marginals become more Gaussian (see above) and any “extra”
short-range dependence tends to become insignificant.

Another way of removing “extra” short-range dependence and isolating hid-
den “pure” long-range dependence effects that may be present in a given data
set is to partition the time series into non-overlapping blocks of sizem, e.g.
m = 10, 20, 50, and “shuffle” the observationswithin each block; that is, pick a
random permutation of the time indices (shuffling in the context of long-range
dependent data was used, for example, in Erramilli, Narayan and Willinger [7]).
Intuitively, the effect of such a shuffling experiment is to destroy any particu-
lar structure of the autocorrelation function below lagm but to leave the high
lags (i.e., low frequencies) essentially unchanged. Analyzing these shuffled data
(using the above-mentioned methods, including the graphicalR/S-method, the
Whittle’s estimate and the modifiedR/S-statistic), we obtain results that are very
similar to those found for the original, un-shuffled series. This observation pro-
vides, by itself, strong empirical evidence that our findings for the EW series are
not likely due to the presence of any particular short-range dependence structure
but are the result of some “genuine” long-range dependence effect in the data.
To emphasize this point even more, we then performed a shuffling experiment,
where we shuffled the blocks but left the observations within each block intact.
Such a shuffle has the effect of maintaining the short-range dependence but de-
stroying any potential long-run memory in the data. For block sizes of 40 and
above, the results consistently indicate the absence of any long-run memory, with
H -estimates that are consistently lower than those obtained for the original series
and are typically close toH = 0.5, regardless of the method that was used.

To summarize the results of our analysis of the CRSP EW data, we have
obtained strong empirical evidence that Lo’s acceptance of the null hypothesis
of no long-range dependence in this time series is due to the strong preference
of the modifiedR/S-method for accepting the null, even if there is “genuine”
long-range dependence present in the data. Moreover, when applying a variety
of different time domain-based as well as frequency domain-based graphical and
statistical methods for checking for long-run memory to the EW series and certain
transformations thereof, the results consistently indicate the presence of some –
though rather weak (i.e.,H -values of around 0.60) – long-range dependence.
We agree with Lo, however, that it is typically difficult to distinguish between
long-range dependence with lowH and some types of short-range dependence.

4 Conclusion

Based on our findings described in Teverovsky, Taqqu and Willinger [33] about
the properties of Lo’s modifiedR/S-statistic, we strongly advise against its use
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as the sole technique for testing for long-memory in a given data set and advo-
cate instead the use of a diverse portfolio of time domain-based and frequency
domain-based graphical and statistical methods described in Taqqu, Teverovsky
and Willinger [32] and Taqqu and Teverovsky [31]. These include the graphi-
cal R/S-method, the modifiedR/S-statistic with correspondingVq-vs-q-plots,
and Whittle’s approach. Although Lo’ modifiedR/S-statistic is a conceptual im-
provement over the classicalR/S-statistic, it should not be used blindly nor in
isolation. In particular, an acceptance of the null hypothesis of no long-range
dependence based on the modifiedR/S-statistic should never be viewed as the
“final word”, mainly because of the serious difficulties that the test-statisticVq

has in identifying “genuine” long-range dependence (e.g., FGN with highH -
values). Instead, an acceptance of the null based on the test-statisticVq should
always be accompanied and supported by further analysis of the data. To il-
lustrate this, we revisited the CRSP daily equal-weighted (EW) returns indices
that motivated Lo [17] to develop and use the modifiedR/S-statistic and led
him to believe that there is no evidence of long-range dependence in the data.
Upon further analysis of this data set, we noted that the EW time series seem to
display long-range dependence, but because the correspondingH -values are typ-
ically very low, around 0.60, the evidence is not absolutely conclusive. We also
found that Lo’s conclusion is basically a result of the overly conservative nature
of his proposed test-statistic in rejecting the null hypothesis of no long-range
dependence.

Finally, while statistical analyses cannot be expected to provide a definitive
answer concerning the presence or absence of long-range dependence in asset
price returns, a more revealing but also much more challenging approach to tackle
this problem consists of providing a mathematically rigorous physical “explana-
tion” for the presence or absence of the long-range dependence phenomenon
in stock returns. However, such a phenomenological approach will require a
deeper understanding of the nature of the micro/macro-economic market forces
that determine the price movements.
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