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INTRODUCTION. 

The following work is founded on that conception of evolution, the most recent and 
precise formulation of which is due to Dr. J. C. WILLIS,* and represents an attempt to 
develop the quantitative consequences of the conception. 

By his statistical studies of distribution Dr. WILLIS was led to two conclusions: 
(1) Species occupying large areas are, on the whole, older than those occupying small 

areas, provided that allied forms are compared. 
It is to be noted that by the " area occupied " by a species is meant, not the total 

acreage actually covered by individuals of the species in question, but the area of the 
contour drawn round its outermost stations-the " areal range " of the species as it 
might be termed. 

(2) The larger genera, i.e., the genera with most species, are, on the whole, those 
occupying the larger areas. 

The first is the conclusion which Dr. WILLIS briefly summarises as the principle of 
"Age and Area," the second as the principle of" Size and Spa,ce." From these statist'ical 
inductions the deduction follows, time being the ruling factor in both cases: 

(3) The larger genera are, on the whole, the older. 
* ' Age and Area,' Cambridge University Press, 1922, and numerous papers therein cited puiblished 

during the past fifteen years. 
VOL. CCXIII.-B. 403. [Published May 14, 1924.] 
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22 MR. G. UDNY YULE ON A MATHEMATICAL, THEORY OF EVOLUTION, 

The size of the genus, that is to say, is not an absolute mileasure of its age but is an 
index to it, very much as the total number of children born to a marriage is an index to 
the duration of that marriagfe. 

On the Darwini-an view that species are continually dying out-that a species rises, 
flourishes and dies, superseded by the more advantageous form-a species occupying 
a very smal] area may be young, but it is equally likely or rmore likely to be old (a dying 
species). On Darwin's own view that the whole body of individuals in a species becomes 
altered together,* the young, species must be found occupying a large area at once, and 
the species occupying a small area could only be a " dying " species. On the Darwinian 
view therefore either there need be no relation between Age and Area, or there would 
be a negative relation, species occupying sinall areas being on the whole the oldest. 
Similarly, on the Darwinian view a genus of a few, or of only one, species may be either 
young or old-a dying genus-and there need be no necessary relation between Age and 
Size. That species occupying very small areas, and the species of monotypic genera 
are mainly " relic " forms, is, I gather, the predominant Darwinian vie'w. Dr. WILLIS'S 
conclusions are inconsistent with that view. 

We are accordingly led directly to the mutational view of evolution that has been 
held by more than one writer both before Darwiin and after : the view that specific differ- 
ences arise, not cumulatively by the natural selection of slight favourable variations, but 
at once per saltum as " miutations." On this view a new form must necessarily oeeupy 
a small area, and the required correlation between age and area follows at once. The 
new form may possibly differ so largely from the parent stock as to be classed not merely 
in a new species, but even in a new genus or a new family. If the new form- is badly 
unsuited to its immediate surroundings, it will be killed out at once; natural selection 
will strangle the species at birth. But if the species hold out long enough to spread over 
any considerable range it is highly unlikely to be extinguiished by natural selection, for 
it has a chance to find the niches that suit it best. The operation of natural selec-tion, 
on Dr. WILLIS'S view, is not denied: what is denied is the ortgi of spectes by natural 
selection, and what is affirmed is that natural selection operates mainly on the very young 
species 'before it has time to spread. The species that is killed out at birth we may 
regard as a non-viable mutation, and nion-viable mutations may be to all intents and 
purposes disregarded: they are not likely to be seen in life or to be found in the geological 
record. When we speak in future therefore of a " specific mutation " or of a " generic 
mutation" it may be understood that a viab]e mutation is implied. If attention is 
confined to viable mutations, we have on the present view little or no further concern 
with the extinction of species by natural selection, or indeed with any extinction of 
species, so long as conditions are constant. It seenms doubtful, at the least, whether 
we have any reason to predicate death as normal for a species in the same sense that 
it may be normal for one of the higher plants or the.higher animals. 

* Letter to G. Bentham, November 25, 1869: " More Letters of Charles Darwin," vol. 1, 379' 
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BASED ON THE CONCLUSIONS OF DR. J. C. WILLIS, F.R.S. 23 

How then, it is naturally asked, do you account for the number of extinct species in 
the geological record ? The answer is by their having been killed out; in the main, 
as it seems to me, by agencies which act less continuously than spasmodically and may 
fairly be described as cataclysmic, e.g., the sinking of land under the sea, the onset of 
a glacial epoch, or other great change of climate, such as desiccation. I am not for a 
moment denying uniformitarianism or demanding catastrophism, but the term 
"cataclysm " seems to me quite applicable. In the case of land sinking below sea-level 
it applies in the literal, derivative, sense. But " cataclysm" has now come to carry the 
meaning of any overwhelming disaster, not a deluge alone, with some implication, I 
think, of the disaster being sudden and extensive. Such " disasters " as I have in mind 
are certainly extensive in their range. They are not " sudden " on a scale of time on 
which a year is regarded as a long period, but on the geological time-scale they may well 
be regarded as sudden. So far as I can judge from the evidence, the age of the flowering 
plants is of the order of 100 million years (cf. Section VI). Suppose this length of time 
to be shown on a scale 100 inches long. On suchl a scale one-hundredtlh of an inch 
represents 10,000 years, and if changes of climate are shown by a curve to such a scale, 
a change say from temperate to glacial or fronm glacial to temnperate accomplished in 
10 or 20,000 years will appear to be absolutely sudden. This is the order of time 
estimated to have elapsed since the culmnination of the last glacial epoch. 

Now a " cataclysm" in the sense explained would kill out the whole or a great part 
of the organic life existing in the region over which it swept. It would necessarily act 
differentially, for sonme only of all the species in the world would lie within its range, but 
it would not act selectively if the cataclysm was overwhelming and the extermination. 
complete: the species exterminated would be killed out not because of any inherent 
defects but sinmply because they had the ill-luck to stand in the path of the cataclysm. 
Only in so far as extermnination was not complete -there would be selective action, the 
species surviving being on the whole the fitter to survive in the new circumstances. 
But even so, the selection would be only interspecific, and selective of already existing 
species. 

If we then put aside for the moment " cataclysmic " destruction of species, we may 
consider " free " or undisturbed evolution as proceeding without any species being 
killed out or " dying " out, the number of species continually increasing without a break 
as mutations occur. 

With this brief introduction, the assumptions mzade for the mathematical work may 
be stated as follows 

(1) Within any species, in any interval of time, an " accident" inay happen that 
brings about a (viable) " specific mutation," i.e., the throwing of a new form which is 
regarded as a new species, but a species within the same genus as the parent. 

The chan-ce of this occurrence in any assigned interval of time (an hour, or a year or a 
century) is taken as the same for all species within the group considered and as constant 
for all time. 

E 2 
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24 MR. G. UDNY YULE ON A MATHEMIATICAL THEORY OF EVOLUTION, 

(2) Within any genus, in any interval of time, an " accident " miiay happen that brings 
about the throwing of a (viable) " generic mutation," i.e., a new form so different from 
the parent that it will be placed in a new genus. 

The chance of this occurrence in any assigned interval of time is similarly takenl as 
the same for all genera within the group considered and as constant for all time. 

These statements call for some comment. 
(a) The assumptions that the chances of specific (or generic) mutation are identical 

for all forms within the group considered and constant for all time are unlikely to be 
in accordance with the facts, but have to be made to simplify the work. 

(b) The chance of a generic mutation or a specific mutation occurring is not taken as 
dependent on the number of individuals in the genus or species. It cannot be said with 
certainty whether it is so dependent or no till we know the nature of a mutation, though 
there very probably is such dependence, and there must be dependence if the " accident" 
that brings about a mutation is of the nature of a breakdown in the mechanism which 
forms the germ-cells. But in any case, and apart from the great additional complexity 
it would introduce, I was comiipelled to ignore the numnber of individuals as I could feel 
no confidence in any assumption as to the function which number- of individuals, that 
is the " size of the species," would be of the age of the species. At first, as the species 
spreads, the number of individuals must tend to increase. But over the very long 
periods wlhich have to be considered there must be a countervailing tendency to ultimate 
decrease in the number of individuals, owing to the increase in the num'ber of species. 
The area available being limited, the tendency, as it seems to me, must be towards greater 
and greater numbers of species and fewer individuals in each.* Possibly the fact that 
ignoration of the number of individuals leads to results in close accordance with the data 
may only indicate this tendency first to increase and then to decrease in the size of the 
species. 

(c) The possi'ble effect of size of genus (numnber of species in the genus) on the chance 
of a generic mutation is also ignored. This assumption may or may not be correct, but 
was deliberate. The generic characters are regarded as 'representing a main position 
of stability, and the chance of occurrence of a transfer from one main position of stability 
to another is regarded as independent of the number of minor positions of stability 
(species) which may have been taken up within the main position (genus). 

(d) If A, B, C, D are the existing genera and one of them throws a generic mutation, 
it is assumed that this will represent a new genus E. The possibility is ignored that A, 
for example, may throw a gen-eric mutation which will be classed under the already 
existing genus B. Again this is an assumption based on complete ignorance: it seems 
the simplest assumption that one can make, and that is all that can be said. 

We are completely ignorant as to the nature of specific mnutati.ons, andt if my conclusions 

* During the discussion on Darwinisrn at the liuill rmeeting of the British Associationt, 1922, the point 
was made that indefinite increase in the nunmber of species was impossible owing to the limited space 

available, I see no practical limit to the nuLmber of species, but ornly to the total number of individuals. 
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as to their extreme rarity are correct I do not think we are at all likely in any near future 
to obtain direct information as to their nature. The wvhole scheme has therefore, I 
think justifiably, been simplified to the greatest possible extent to enable us to get a 
first notion, in quantitative terms, of the possible consequences of the conceptions, and 
to compare them as far as possible with the facts. 

I will now endeavour to sumLmarise the conclusions reached in general terms which 
I hope may be comprehensible to the nonmathematical biologist. The conclusions 
result, of course, from the assumptions, and simply exhibit their consequences. In 
so far as the deductions do not agree with the known facts, the assumptions are probably 
incorrect or incomplete. In so far as we find agreement, or the more nearly we find 
agreement, the assumptions are probably correct. It is only by a full development of 
the consequences that an effective test of the assumptions can be made. 

In Section 1 the question is considered, what is the average law of increase of the 
number of species within the genus. Within any single genus, starting at zero time 
from one primordial species, the increase in the number of species will, of course, proceed 
with complete irregularity, the occurrence of specific mutations being assumed a matter 
of chance. But if we suppose some large number N of primordial species, each belonging 
to a different genus but similar in so far that we can take the chance of a specific mutation 
occurring as the same for all (cf. above, p. 2M3), to start together at zero time, we can 
then ask what is the average law of increase. The answer obtained is that, on an average, 
the number of species (that is the size of the genus) increases in geometric progression: 
if at zero time there is I species and at time I there are 2 species, at time 2 there will 
be 4 species, at time 3 there will be 8 species, at time 4 there will be 16 species and so 
on, the number of species, on an average, doubling in successive equal intervals of time. 
This law is important: for it suggests the " doubling-period for species within the genus ' 
as a natural unit of time in investigations of the present kind. Specific mutations may 
occur much maore frequently within one group than another, and the doubling period 
will then be much shorter in the first group than in the second; but if in each case we 
take the doubling-period as the unit of time matters are reduced to the same relative 
scale and will proceed pan passu, in the two groups. In most of the following work, 
consequently, the doubling-period for species within the genus is taken as the unit of 
time and it must be remembered that in terms of years it varies from group to group. 

But the above law is only an average. The further question therefore arises, what 
is the " frequency distribution," as the statistician terms it, of the sizes of these N genera, 
which all started as monotypic genera from primnordial species at zero time, after any 
given time has elapsed ? It is not enough to say that after one doubling-period the average 
size of a genuLs wil-l be 2 speciess: we want to known how many of the genera have 
remained monotypic, how many of them have become ditypic, how many have become 
genera of 3, 4, 5 species, and so on. The a,nswer obtained to this question is that the 
proportionl- frequencies of genera of 1, 2, 3 species may be expected to form a descending 
geometric series (i.e., a series with a commlon ratio less than1 unity). After one doulbling 
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interval the frequenicies slhould be proportional to . 1 1 1, and so on, the common 
ratio being 2-: after two doubling-periods the series should be - , and so on, the 
common ratio being 3i; if a is the first term of the series the common ratio miust be 
(1-a) to make the sum of the series unity. Clearly we are not in a position to comipare 
this deduction with the facts, for we cannot pick out any group of genera, let alone a 
group of similar genera, which are all precisely of the same age. 

We have, therefore, to proceed to the much more general problem. In the above, 
generic mutations are ignored, attention being fixed on the primordial genera alone. 
But during the long lapse of time generic mutations as well as specific mutations wvill 
be thrown, anid any observed distribution will include both the derived and the pri- 
mordial genera : wihat will be the form of the distribution of size of genus in the resulting 
aggregate ? This question is considered in two successive sections of the paper. In 
Section II the limiting form is found when the time elapsed from the beginning of evolu- 
tion is taken as infinite, and then in Section III the practical problem is solved for finite 
time. The mathematical results here are complicated: I would refer the non-mathe- 
matical reader in the first place to Table II, p. 43, where a series of calculated distri- 
butions is given. Evolution is assumed to start as before at zero time, and the form 
of the frequency distribution for size of genus is shown at times (expressed in terms of 
doubling-periods for species within the genus) 1, 2, 3, 4, 5, and 6 -28 (the time found 
for a certain case below), the table concluding with the limiting form of distribution 
when an infinite time has elapsed. 

To render the distributions comparable, the number of genera at each stage has been 
taken as 1,000; as the figures are rounded off to the nearest unit they are necessarily 
subject to abrupt variation in the tail of the distribution. Besides the time, it is 
necessary to fix one other quantity in order to determine the distribution, namely the 
ratio p of the chance of a specific mutation occurring in a given small interval of time 
to the chance of a generic mutation occurring in the same small interval of time: this 
has been taken at its value in an actual case (the Chrysomelid beetles, Tables IV, V, 
pp. 54, 56, and Appendix, Table A, p. 85), namely 1 *925. Those who are familiar with 
the forms of distribution found in practice, or will refer to the typical tables given in 
the Appendix, will see that the distributions of Table II are at least of the right form 
so far as the eye can judge : monotypic genera are the most frequent, ditypic genera less 
frequent, tritypic genera less frequent still, and so on, the numbers gradually tailing away 
as the size of genus is increased. The length of this " tail " grows very rapidly with time, 
and the fully characteristic form (at least for such tables as those given in the Appendix) 
is not reached until two, three or more doubling-periods have elapsed. T'hus after one 
doubling-period the percentage of monotypes is as high as 57, and only some 3 per 1,000 
of all genera have 9 species or more. After two doubling-periods the percentage of 
monotypes has fallent to 42 anid some 5 per 1,000 of all geniera lhave 17 species or more. 
After three doubling-periods tIme percentage of monotypes has fallen further to 37, and 
there is a considerable proportion of the larg,er genlera such as we seem more usually 
to find. 
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The nmathematical form of the distribution may be better illustrated graphically. 
If we form a chart in which the inumber of genera of a given size is plotted vertically and 
the size of the genus horizontally, not to ordinary scales but to logarithmic or ratio 
scales, that is scales on which numbers that bear equal ratios to each other (like 1, 2, 4, 
8, 16) stand at equal distances apart, the resulting points in any actual case run rather 
irregularly but fairly closely round a straight line, usually up to genera of 30 species 
or so, sometimes even up to genera of 100 species or more, after which the points fall 
rather abruptly away from the line. Three specimen charts so drawn are given in figs. 1, 
2 and 3 (pp. 45, 46), to which the reader should refer, as well as to the adjacent explanatory 
text-; two others will be found on pp. 241-2 of ' Age and Area.' If, now, similar charts 
are drawn for the calculated distributions of Table II they will be found to run as in 
figs. 4 to 9, pp. 47-49). It will be seen that at first, when time is very short-no more 
than one or two doubling periods-the graph drops away rapidly; but as time is increased 
the, graph soon takes on the formn noted for actual data, at first nearly straight and 
then falling away rather abruptly. For the longest time considered, 6 28 doubling- 
periods, the point at which the abrupt fall begins lies outside the chart on the right. 
So far as the graphic test goes, accordingly, the theory gives very well indeed precisely 
the form of distribution required. 

In Section IV the test of agreement between thieory and fact on this point is completed 
by fitting a calculated distribution to the actual distribution in four cases. To fit a 
given distribution, we require to determine from it the two constants that determine 
its form, the time C (in doubling-periods) elapsed since the comimencement, and the 
ratio p of the chance of a specific mutatioon to the chance of a generic mutation : we also 
require the initial nunmber No of primordial genera, which determines the total number 
of genera existing. T he first two constants are found from the proportion of monotypes 
and the mean size of genus in the data: No is then given by the number of species (or 
genera) in the data.* T'he reader will find the results in Tables V to VIII (pp. 56-58) and 
the values of r, p, and No in T'able IV (p. 54). Tllhe numbers of monotypic genera 
observed and calculated must agree within a decimal point or so owing to the method 
of fitting : but I think the reader who studies Tables V to VIII will admit that the agree- 
ment between observation and calculation is throughout extraordinarily close. It 
is in fact better than one has any right to expect. I admit very considerable difficulties 
of interpretation and would refer to the discussion on pp. 58-62. Here I would only 
direct attention to the rather large number of primordial genera found in each case 
(Table IV, line 7, p. 54) : to the comparatively limited range of values of 4r k426 to 
6 28, ibid. line 5): and to the comparatively limited range also of the values of p 
(1188 to 1I925, ibid. line 6).. Subject to the admitted difficulties of interpretation, 
the results of this test, on the one point on which direct comparison can be made with 
the facts, could hardly be better. 

* If there are N genera in the data, and one primordial genus woIld only yield n genera after the given 
lapse of time, we must have No = N/n. 
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28 MR. G. UDNY YULE ON A MATHEMATICALJ THEORY OF EVOLUTION, 

The next point considered (Section V) is the frequency distribution of ages for genera 
of a given size: given, that is to say, N existing genera all of the same size, we require 
to know how many of them are likely to be of each successive age. The non-mathe- 
matical reader will do best to turn first to fig. 10, p. 66, showing the limiting forms of these 
distributions for genera of 1 to 10 species after an infinite time has elapsed from the begin- 
ning of evolution: p is taken as 1P5, and the unit of the scale of time is the doubling- 
period for species within the genus as usual. For monotypic genera the curve is a simple 
logarithmic curve, falling way steadily from age zero: the most probable age of a 
monotypic genus is zero, though the average age is, of course, something greater. For 
the ditypic genera the form of the distribution is quite different. The curve rises abruptly 
from zero to a maximum at a certain "modal " (most frequent) age, in this case 0-68 
units as shown in Table IX, p. 67, and then falls away to a long tail. For the tritypic 
genera or genera of three species the form changes slightly again, the curve not rising 
from zero abruptly but starting tangentially to the base. The maximum frequency 
is reached at a mode of 1-14 units and then falls away again. For larger genera the 
form of the distribution remains the same, but the mode and mean are thrown further 
and further towards the right, increasing with the size of the genus. It will be noticed, 
however, that the increase in the mean, which is at first fairly rapid, gets slower and 
slower: the distribution for genera of 4 species is evidently pushed more to the right 
as compared with the distribution for genera of 3 species than is the distribution for 
genera of 10 species as compared with the distribution for genera of 9 species. The means 
are tabulated in column 2 of Table IX for genera of 1 to 10 species, and thence by intervals 
of 10 to genera of 100 species, and these bring out the point very clearly. 

The mean age of monotypic genera, in the given case, is 0 87 of a unit, of genera of 
10 species 3-22 units, giving an increase of 2-35 units of age for an increase of 9 units 
in the size of the genus. But a further increase of 10 units in the size of the 
genus only gives a mean age of 4 14 units, or an increment of 0 92 unit of 
age, and the next increment of 10 units in size of genus only gives an increment 
of 0-56 unit of age, and so on. For the larger genera of, say, 10 species and 
over, the mean age varies nearly as the logarithm of the size : i.e., if we increase 
the number of species in the genus from s to s" we must multiply the mean age 
by a (or a value very near it). Thus the mean age of genera of 100 species 
(6 40) is not 10 times but barely twice the mean age of genera of 10 species (3 22), 
since 100 is 102. The reader should note this approximate result and also how very 
largely the successive distributions of fig. 10 overlap each other. Apart from a further 
complication introduced when time is limited and not infinite, they suggest that, if 
we want to compare say areas occupied by genera of different sizes, (1) we should group 
the genera, not in groups of 1-10, 11-20, 21-30, etc., species, but in groups round 
2, 4, 8, 16, 32, 64, 128, etc., species or some other series in geometric progression; (2) we 
must have as many genera as possible in each group in order to average out their varying 
ages; and even s0 (3) we must expect considerable fluctuations of sampling as the ages 

This content downloaded from 129.74.250.206 on Tue, 26 Jan 2016 18:07:10 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp
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of genera even of one and the same size differ largely inter se. The chart, fig. 10, is 
drawn, as stated, for p 1- 5. A larger value of p would give rather more scattered 
distributions with higher means and modes, but the general forms would remain the 
same. Conversely, a lower value of p would give more contracted distributions with 
lower means and modes. 

When only a limited time has elapsed since the commencement of evolution, matters 
are not quite so simple. After an infinite lapse of time the number of derived genera- 
genera, which have arisen by generic mutations-becomes indefinitely gTeat as compared 
with the number of the primordial genera, which are, so to speak, lost in the mass. The 
age distributions are, therefore, simply the limiting forms of the age distributions of 
derived genera. When time is limited, and as we have seen the four illugstrations taken 
show times varying only from 4- 26 to 6 *28 doubling-periods, the genera really form two 
distinct groups: (a) the derived genera, for which the frequency distributions of ages 
are of the forms shown by fig. 10, but truncated at the assigned time, say -r, since the 
age of a derived genus obviously cannot exceed T; (b) the primordial genera, all of 
age T. The larger a genus, the greater is its probable age, and the greater therefore is 
the probability that it may be a primordial genus. 

Table X and fig. 11 illustrate the case, using the constants found for the Chrysomelid 
beetles (Table V, p. 56). Turning first to Table X (p. 70), columns 4 to 7 give the essential 
figures: first, the mean age of the derived genera (column 4), then in columns 5 and 6 
the proportions of derived and primordial genera respectively (or if we prefer to read 
it so, the chance that a genus is derived or primordial, terms which apply even if there 
is only one primordial genus), and finally in column 7 the mean age of the derived and 
primordial genera together, found from the figures of the three preceding columns. 
Thus for the monotypic genera, the most probable distribution is a proportion 0-9961 
of derived genera of mean age 0 94, and a proportion 0-0039 of primordial genera all 
of age 6W28, giving a mean age for the entire aggregate 

(0* 9961 X 0*94) + (0*0039 X 6 28) = 0*96. 

The proportion of primordial genera, or the chance that a genus may be primordial, 
increases rapidly with the size of the genus. For the monotypic genera it is only 0 * 0039, 
for genera of 10 species 0*0842, for genera of 60 species 0* 5045, for genera of 100 species 
0 * 6549. It is roughly an even chance accordingly that a genus of 60 species is primordial; 
and the odds are nearly 2 to 1 (65 to 35) that a genus of 100 species is primordial. 

Fig. i, p. 71, shows the frequency distribuLtions of age for genera of 1, 2, 3, 10, 60 and 
100 species. The distributions for the derived genera are of the general forms shown 
in fig. 10, but rather more scattered, since p is larger, and truncated at the limiting age 
6 28: the area is also reduced from unity to the value given by the figure in column 5 
of Table X. The proportion of primordial genera is shown by a square to the right of 
each distribution, the area on the same scale being given by. the figure of column 6, 
Table X, so that the area of the curve and the square taken together is ecqual to unity 

VOL. COXTIL-B. F 
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Tables XI, XII and XIII, pp. 72, 74, give similar information for the three other 
examples and are illustrated similarly by figs. 12, 13 and 14, pp. 73, 75. The reader 
should refer to the adjacent text. 

In the concluding section, VI, an attempt is made to estimate the order of magnitude 
of the doubling-period in the case of the flowering plants, and the present rate of occur- 
rence of specific mutations. It will be remembered that in Section I it was found that 
the law of increase for species within the genus was geometric, the numbers tending to 
double in successive equal intervals of time, so that this " doubling-period " could be 
taken as the usual unit of our scale. In the entire aggregate of genera and species evolving 
from one or more primordial genera this law does not, on the given assumptions, hold 
good, but the divergence is only marked during the earlier stages of the evolution. The 
total number of species in the aggregate more than doubles during each successive 
doubling-period for species within the genus, but the ratio rapidly falls and tends to 
approach 2 more and more closely. If the reader will refer to the figures in the last 
column of Table XIV, p. 78, giving to the nearest unit the total number of species 
in such an aggregate at successive units of time when = 1 .5, he will see that after 
some 5 or 6 doubling-periods the law approximates fairly closely to the geometric law 
of increase with a common ratio of 2. It was judged sufficient therefore to assume, for 
the rough estimation required in this section, that within the aggregate as within the 
genius the law might be taken as of this simple form. 

On this assumption an estimate of the doubling-period is niot difficult if we canl fix: 
(1) the approximate age of the flowering plants, (2) the number of existing species. 
The latter Dr. WILLIs has placed at roundly 160,000; the former I have taken as 
roundly 100 million years. On this basis, if evolution has proceeded freely and without 
any destruction of species, the doubling-period works out at roundly some 6 million 
years, and the present rate of production of (viable) specific mutations at 1 in some 50 or 
60 years, amongst all species of flowering plants on the wlhole surface of the globe (Table 
XV, section 1, p. 81). 

Destruction of species will clearly tend to lower our estimate of the free doubling- 
period and raise our estimate of the present rate of production of specific mutations, 
for if species are destroyed from time to time by cataclysms or otherwise the rate of 
production during the undisturbed intervals must be increased in order to give the 
required final number of 160,000. The important question, therefore, arises how far 
variations in the time-incidence of destruction, a subject on which we have little know- 
ledge, may also affect our estimate. On this point the interesting conclusion is reached 
that variations in the time-incidence have no effect, so long as the chance of a species 
survivingfrom zero time to the time of observation is kept constant, on the estimate of either 
the doubling-period or the present rate of production of specific mutations, but only 
on the estimated number of species killed-out. If we fix the number of extinct species 
but alter the time-incidence of destruction, assuming first, for example, that the 
killing-out has been effected almost continuously throughout the lapse of time and then 
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that it has been effected by a series of highly destructive cataclysms occurring at intervals, 
we will arrive at different alternative estimates for the doubling-period and the rate of 
production of specific mutations at the present time. If, on the other hand, we fix the 
chance of a species surviving from zero time to the time- of observation, an alteration 
in the time-incidence of destruction will vary the estimated number of extinct species 
alone. 

In sections 2 to 5, Table XV, a series of comparisons is given on the first method. 
In each section of the table two cases are taken, in the first of which the destruction 
of species is cataclysmic, in the second continuous and of such severity as to give the 
same total of species killed-ouit; the severity of the destruction is raised from each 
section of the table to the next. I need hardly say that no importance is to be attached 
to the precise number of cataclysms taken and the (very large) proportion of the then- 
existing species killed-out by each: the scheme is simply so arranged as to illustrate 
the effect of very different time-incidences of destruction. 

Of the four columns on the right of Table XV, the first gives the number of species 
killed-out. The second shows a chance that I have termed for brevity in the heading 
the chance of a species surviving for 10 million years : it is, in fact, the tenth-root of the 
chance of a species surviving for the whole period of 100 million years,,which we have 
assumed is the time elapsed since the genesis of the flowering plants. If p is the chance 
of surviving 10 million years, p2 is the chance of surviving 20 million years under the same 
conditions, P3 the chance of surviving 30 million years, and so on: since p'O in several 
of the examples is vanishingly small, it is more convenient to give p. The third column 
gives the doubling-period, and the fourth the present rate of production of specific 
mutations. By increasing the destruction of species (section 5) to such an extent that 
over 700,000 must have been killed-out, which would require if there had been 100 
equally destructive cataclysms that each should have killed-out no less than one-third 
of the then-existing species, the estimated length of the doubling-period has been lowered 
to a little over one million years, and the estimated rate of production of specific mutations 
raised to 1 in some 10 or 12 years: it makes no practical difference whether the killing- 
out has been continuous or cataclysmic. But there is little to guide us as to the where- 
abouts of the truth on the scale of results from section 2 to section 5 of the table, except 
one broad consideration. We know that the chance of a species surviving over the whole 
100 million years must be practically zero-a vanishingly small quantity. We also 
know, from such cases as Ginkgo, that a species may survive for enormously long periods 
of geological time. It therefore seems probable that sections 2 and 3 underestimate 
the amount of extinction, for they give too high a value for the chances of survival; 
while section 5, it seems probable, overestimates the amount of extinction, giving too 
low a value. 

The tentative conclusion is confirmed by sections 6 and 7 of the table, based on a 
table of Mrs. TLEMENT REID'S (reproduced on p. 83 below) showing the approximate 
percentages of species which have become extinct in certain deposits of various ages 

F2 
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32 MR. G. UDNY YULE ON A MATHEMATICAL THEORY OF EVOLUTION, 

in the Pliocene: they suggest a figure somewhere between 1*7 and 3-2 million years 
for the doubling-period, and between 1 in 15 years and 1 in 29 years for the present rate 
of production of (viable) specific mutations. The reader should refer to the more detailed 
discussion at the end of Section VI of the paper. 

Considering the roughness of the basis the final conclusion is extraordinarily definite, 
and leaves no doubt as to the order of magnitude of the required figures. To quote 
from p. 84, " If the age of the flowering plants is 100 million years, or thereabouts, the 
doubling-period for species is probably of the order of some 2 or 3 million years: it is, 
say, almost certainly over 1 million and less than 6 millions. The present rate of pro- 
duction of (viable) specific mutations, amongst all flowering plants on the whole surface 
of the globe, is almost certainly less than 1 in 10 years and more than one in 60 years: 
it probaby lies between 1 in 15 and 1 in 30 years." The results are, of course, of the 
nature of averages, since the flowering plants are a very heterogeneous group. 

It is clear that specific mutations must be events of the very greatest rarity; and no 
argument, as it seems to me, can be based on the fac'c that we have no knowledge or 
experience of such phenomena. My work on the point entirely confirms the conclusion 
of Dr. WILLIS.* 

If any conclusions stated in this Introduction or in the body of the paper seem to be 
too confident, or at all dogmatic, I hope the reader will attribute the appearance to 
inadvertence of wording, or a simple desire to avoid the wearisome reiteration of qualifying 
phrases. I have no desire at all to be dogmatic: but Dr. WILLIS'S conclusions do 
appear to me to explain a great range of facts, to be natural and reasonable in themselves, 
and to present for the first time a conception of evolution at once so simple and so 
definite that it can be expressed-even if only roughly owing to the gaps in our knowledge 
--in quantitative terms, and quantitative deductions drawn. Admitting all the difli- 
culties of interpreting some results (Section IV)-and as I have said, they are considerable 
-these may yield to further work, to the co-operation of biologists with more competent 
mathematicians, or more likely still to the mathematically trained biologist. I may 
be optimistic, but it seems to me that the future holds the possibility of great develop- 
ments. 

To Dr. WILLIS himself my acknowledgments are difficult adequately to express. 
The paper is founded on his work, but would hardly have been carried through without 
the encouragement and stimulus of personal intercourse. I have, in particular, to 
thank him for placing at my disposal the data given in Tables A to E of the Appendix 
and utilised as illustrations. 

* ' Age and Area,' p. 212. 
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1. THE INCREASE IN THE NUMBER OF SPECIES WITHIN THE GENUS WITH TIME, AND 

THE FREQUENCY DISTRIBUTION OF SIZES OF GENERA ALL OF THE SAME AGE. 

Let the chance of a species " throwing-" a specific mutation, i.e., a new species of the 
same genus, in some small assigned interval of time be p, and suppose the interval so 
small that p2 may be ignored compared with p. Then, putting aside generic mutations 
altogether for the present, if we start with N prime species of differenit genera, at the 
end of the interval we will have Nq genera (q 1 -p) which remain monotypic and 
Np genera of two species. 

The new species as well as the old can now throw specific mutations and the matter 
becomes more complex. Of the Nq monotypics a proportion q will again fail to throw 
in the second interval and we will have, at the end of the interval, Nq2 monotypics. 

Of the same Nq a proportion p will throw, contributing Npq to the genera of 2 species. 
Of the Np genera already possessing 2 species at the end of the first interval, a proportion 
q2 will fail to throw from either of the species they already possess, giving Npq2 genera 
of 2 species at the end of the second interval, or a total of Npq (1 +q) ditypic genera 
(cf. the scheme below). 

Of the same Np genera that already possessed 2 species at the end of the first interval, 
the proportion in which one or other will throw a new species in the second interval is 
2pq, the second term in the expansion of (q+p)2, giving N. 2p2q genera of 3 species. 

The proportion in which both of the two will throw a new species is p2 giving Np3 
genera of 4 species. 

Proportional frequencies of numbers of genera with 1, 2, 3 species after 0, 1, 2, 3 intervals 
of time, the genera being initially monotypic. 

Intervals of Time. 
Number of species 

in the genus. 
0 1 2 3 

].... .... ... ... q i q2 .. ... 

2 ... ... ... ... p pq (1 + q).. pq2( + q + q2) 

tl ... ... ... ... 2p2q ... 2p2q2 (I + q + q2) 4 ... ... ... ... p3 ... ... p3q (I + q + 6q2 q3) 5 ... ... ... ... 92p4q2(3 + 2q) 
6 ... ... ... 2p5q(I+ 3q) 
7 ... ... ... ... - -- 4p6q 
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34 M[R. G. UDNY YULE ON A MATHEMATICAL THEORY OF EVOLUTION, 

The work may be continued on the same simple lines. Thus at the end of the third 
initerval, omitting the common factor N, we will have genera- 

With 1 species: q2Xq . . . . q3 

With 2 species : 
From the l's: q2Xp }1 
From the 2's: pq (I-+q)Xq2 P 

With 3 species 
From the 2's pq (I+qq) x2pq 

. 
2 2 2 

. . . . . . 2p2q2 (1+q+q2) From the 3's : 2p2qxq3 ..q ~ q 

With 4 species : 
From the 2's :pq (1+q)X p2 

From the 3's : 2p2qx3pq2 ....(..... . 1 q (l+q-kF6q2+q3) 

From the 4's :p3 x qJ 
With 5 species : 
From the 3's :p2p2q3 x 2q . . . . . . . . .2p4q2(3+2q) From the 4's : p3X4pq3.242(+q 

With 6 species 
From the 3's :2p2qXp3 

. 
From the 4's: p3 X 6p2q2 

With 7 species : 
From the 4's : p3q . . . . . . . . . . . . . . . 4pq 

With 8 species : 
From the 4's : p3 X p4 . . . . . . . . . . . . . . p7 

The formulke, summarised in the scheme above, may be verified by checking that they 
total to unity in each column. 

We must now proceed to the limit, taking the time-interval At as indefinitely small 
but the number of such intervals n as large, so that the time n . At - t is finite. We 
may write 

p s.at pn-st 

and we have the usual approximation 

qn (1 p)n _ (1 St,/n)it' ,_ e-st. 

Omitting the common factor N, the first term is qn or in the limit e-ts: that is, if f, is 
the proportional frequency of monotypic genera at time t, 

f-est ...... (1) 

As regards the second term, after n intervals we have 

p1(1 + q +1 q2+ * * . + qftl-) _qfl-l (1-q't) 
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or in the limit, f2 being the proportional frequency of genera with 2 species at time t, 

f2 e-st (1 e-st) . . . . . . . . . . . (2) 
But this expression may be derived by a process which is more convenient for the 

higher terms. If Jf2, ,. j1f2 are the proportional frequencies of ditypic genera after 
n and n + 1 intervals respectively, and so on, 

n -lf2 rP*fJ + q 2f2. 

That is 
-1+lf2 f2 p-f1 - (q f2 

or in the limit, putting p s . dt, If1 e't, 1-q2-2p 2s.dt 
4f2 A 2s.f2-s . e-stn 
dt 

d (e2stf2) _ s . est 

f2 -CSt + Ce-2st 

But when t is zero f2 must be zero, and therefore C must be -1, so that finally 

f2 e-St (I-e-st) 
as before. 

Consideringf3 in the same way, we hiave 

)1lf3- 2pq,,.f2 1+- ?x,f1s 

Or proceeding to the limit, when 1 -q3 = 3p and pq - p 

df, + 3sf3 2s (e-St -e2st) 
dt 

d (e3sff) 2s (e2st -es) 

L- e-St -- 2e-2st + C e-3st. 
Since f3 must be zero when t is zero, C must be + 1, and therefore finially 

A e-st (I e-st)2 . . . . . . . . . . . . . . (3) 

Evaluatingf4 in the same way we find 

f e-St (I - est)3 . . . . . . . . (. . . . . . 4) 

The general form of the law is now obvious. We have 

fA e-st I 
f2 ~ 

e-8t (I- e-st) 

f3 - e-st (I e-sl)! 1 . . . . . . . . .. . . .. . . 

fn e-st (1 e-st)1-l 9 
That is to say, if N prime genera start together at zero time when they are all mono- 

typic, after time t we will find the numbers that have 1, 2, 3, . . .species given by a 
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geometric series of which the common ratio is 1 -e-st s being a constant proportional 
to the chance of a specific mutation occurring in a given time. 

The sum of the series (5) to infinity is unity as it must be. As regards the mean, 
consider the general geometric series 

S - 1 -2r +-r2 -+-r3 + 
where S is the sum to infinity. We have 

dS/dr (I - r)-2 1L + 2r -A--- 3r2 -4- 

whiclh is the first moment about zero, so that, the mlean is 1/(1 - r). Therefore the 
mean of (5), say tM, is given by 

tVs - e . . . . * . . . . . . . . . . . . . (6) 
That is to say, while the number of species within any single genus increases, of course, 
quite irregularly as chance mutations occur, the mean number within a group of genera 
all starting at the samne time increases as an exponential function of the time. 

As regards the increase in the number of genera, the whole process will proceed on 
precisely the same lines. If N genera, belonging to distinct families, start simultaneously 
at zero time, at time t the numbers. of families with 1, 2, 3, . . genera will be given by 
N multiplied by the successive terms of the series 

ei 
_ 

-.t (I _e-l J2 e-g(1 egt) I 

f -e-gt (1'-e -t))2 J 

where g is a constant proportional to the chance of a generic mutation (or mutation 
from genus to genus) occurring in a given time. The mean nlumber of genera in a family 
at time t in these circumstances will be given by 

tMg -eg . . . . . . . . . . . (8) 
the mean increasing as an exponential function of the time. 

The series (5) gives the frequency distribution of sizes of genera for genera all of the 
same age t. We have next to proceed to the question, what is the form of the frequency 
distribution for genera of all ages? If we start at zero time with a group of monotypic 
genera, both generic and specific mutations will be thrown as time goes on. At time t 
therefore we will actually observe, not merely the frequency distribution of the sizes 
of the primordial genera as given by (5), but.the frequency distribution of the primordial 
and the derived genera together, and it is this frequency distribution which is now 
required. We will first consider the limiting form of the distribution when the time 
t is infinite, and the primordial genera become practically negligible in numbers as 
comupared with the derived genera. 
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II. T1mE LIMITING FORM OF THE FREQUENCY DISTRIBUTION FOR THE SIZES 
OF DERIVED GENERA WHEN TIME IS INFINITE. 

We first require to klnow how mnaniy out of the totality of genera existing at any given 
time, say T, are of any assigned age x. Fromn (8) the total number of genera at time 
tis Neg'. The number com-ing into existence during the interval ?-Idt round time t is 
therefore Nge!" dt, and the number of age x at time T is 

NY 9(T-x) dx. 
The proportion aged x at time T is therefore g6Ye dx. Note that these are the derived 
genera only, ignoring the prime genera with which we started; but, as stated at the 
end of Section I, since we are going to take time as infinite the numnber of derived genera 
will be infinitely great as compared with the number of primordial genera, and the latter 
nay legitimately be ignored during the present stage of the work. 
We have now got to take the series (5), writing x for t throughout, term by term, 

multiply each term by geYx dx and integrate from zero to infinity. The first term will 
give 

| e--(Y+s)x dx - g (g + . . . . . . . . (9) go 
where 

p = s/g. . . . . . . . . . . . . . . .(10) 
As we can only suppose that specific mnutations are more frequent than generic mutations 
p must be greater than unity. 

The second term will give 
g e-(Y+S)X - e-(y+2s)x}dx 

- g [(g 8)1 -(g -1- 2s)-1] 

(I 9 1 - p)-l (1 - 2p)-l . . . . . . . . . (1 

Proceeding siinilarly for the further ternms we find for the limniting formn of the frequency 
distribuation of sizes of genera of all ages after infinite timne the series 

I 

2p 

____ P IP (..(12) f_ 1. p Ip (i- l) t~1- + p 1 +p I 3 

I 1 P 2p (zb1) p 
ft 

I1+pl 
l -k 2p 1 + 3p 1 l 

A-np The series has been written in the form most convenient for calculation: the fractions 
1/(1 + p), p/(1 - 2p), etc. are first run out on the calculating machin,e an.d f1, f9f A. 

are then obtained by successive multiplicationl. 
VOL. CCXI[II.-J3. G 

This content downloaded from 129.74.250.206 on Tue, 26 Jan 2016 18:07:10 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp
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The series can be summed to n terms. We have 

- (n - ) p 
ft- 1 np 

or 
(1 -Lp)f. = (n-1) p (fl-l -fn) 

(1 + p)fn_1 - (n 2) P (fn 2 -.fnl) 

(lt-4P) f2 P (fl-f2) 

(1+ p)fi f 1 

Hence if Sn is the sunm of the first n terms 

(1 ? p) S=-n 1 -p (fl - f2- . f_f ) -(n--I) pf 
- 1 -t- p S - pnf,1, 

or 
5n 1-pnf,> ........... . . . (13) 

This result (which with much of the following I owe to the kindness of Mr. F. P. White, 
Fellow of St. John's College) is exceedingly useful for checking calculations: it also 
follows from it at once that S ,c is unity, as it slhould be. 

The series may be written in the form 

11 {1 P ( I . 2p2 _ 
1+ p 1- 2p (I +- 2p) (I + p) *** 

y-2 )1 -)2 y Y (Y X 

where yv= 2+p-1. Apart from the common factor, the series is therefore a hyper- 
geometrical series in which 

y 2 + P. 
Consider the series 

1 J 2 1 + 3 1 . 2 + + n 1*2 *(n-1) (14) 
y y (y 1)y+ ) ( +n 2 

giving the first moment of (12) about zero. In this series 

Uln-l= , y - 2 
MI, n 

As y > 2 the ratio exceeds unity, only approaching it as n increases. But 

wvhich is less than unity, so the series (14) is divergent. The frequency distribution 
given by the terms of (12) is therefore one of those paradoxical distributions in which, 
thoulgh the median, etc., are finite, the mean is infinite. This is, of course, as it should 
be, for on our assumptions the mean size of a genus after infinite time must itself be 
infinite. 
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Since the limiting distribution (12) is the foundation of all subsequent work, even 
when time is limited and not infinite, it may be as well to examine its form in some 
detail. It evidently gives, as required by all the data for size of genus that have yet 
been tabulated, a distribution with a maximum frequency for monotypic genera, the 
frequency tailing off at first rapidly and then more slowly as the successive multipliers 
(n - 1) p1/( + np) approach unity. The greater p, the smaller is the frequency of mono- 
types and the more slowly do the frequencies fall away. Table I shows the values 
of the successive terms (giving only every tenth term after f2o) for p 1 1 925, the value 
suggested by the Chrysomelid beetles (cf. below, p. 54). 

TABLE I.-Values of IO70f in the p-series (12) and of - A logf./A log n, 
for p = 925. 

r. ) 107f,,1 -- A logfn f -A logfiz 
_1. A log . A log n 

11 341 8803 1*3331 15 7 3329 1*4951 
2 135 6948 1.3939 16 6 6584 1*4965 
3 77 1107 1.4244 17 6 0810 1*4978 
4 51 1856 1.4430 18 5 5820 1]4989 
5 37 0945 1*4554 19 5 1475 1.4999 
6 28 4489 o 14644 20 4 7663 1.5008 
7 22 7002 1*4712 30 2 5906 1-5068 
8 18 6515 1*4764 40 1 6786 1 5099 
9 15 6744 1*4807 50 1 1982 1 5118 

10 13 4103 1*4841 60 9095 1-5131 
11 11 6414 1.4870 70 7202 1.5139 
12 10 2285 1i4895 80 5883 1.5146 
13 9 0789 1*4916 90 4922 1 5152 
14L 8 1]288 1l4935 1]00 4196 1 5156 

Consider the approximate form of the tail of the distribution. We have 

A = (n -1) ! pn-I 
n +1 p) (I + 2p) ...(1 -1- np) 

(n-1)! 
p (n + p-1) (n- -tI p-1)... (2 -t p-1) (I + p-1 

_ P(1+p-") P(n) 

P rP (n+1-+1) 
If n be large, we may write by Stirling's theorem 

log r (n) (n - .1) log n - n + I log 2n 
log Ir (n + a) (n + a - -2) log n (1 + a/n) - n (1 + a/n) + 2 log 27t 

(n + a - ) log n - n + 2 log 2s 
where a is assumed snmall compared with n: whence in the limit 

X PI ?I+ ') . .. . (15) 

(1 2 
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40 PbMi. G. UD)NY YULE ON A MATHEMATICAL THEORY OF EVOLUTION, 

This formula holds fairly even for moderate values of n, the approximation rapidly 
becoming exceedingly close, as shown by the following conmparison with the true 
values of fn as given by (12) in Table I: 

Value of fn as given by 
n (12) (15) 

10 0'013 410 0-013 932 
20 0 004 766 0'004 860 
50 0o001 198 0 001 208 

100 0*000 4196 0 000 4212 

It follows that, if we plot logf. to log n, the resulting points lie nearly oni a straight line: 
how nearly is shown by the dotted line in figs. 4-9, in which logf. is plotted to log n for 
the data of Table I. The dotted line is actually concave towards the base, but the 
curvature is so small that it is hardly appreciable to the eye, and for no statistical data 
which followed the law would such a divergence from linearity appear significant. 
The values of - Alogf/l A log n given in Table I bring out better than the charts the 
gradual increase in the slope of the curve, and the approach of the slope to the limiting 
value 1 -+ p-1 or 1-5195. 

When work on the frequency distribuitions of sizes of genera was first begun, 
considerations of a very rough kind suggested that the limiting form of the distribution 
for infinite time should approach this logarithmic-linear law. The generation of species 
from species, or genera from genera, seemed closely parallel to the generation of offspring 
in a given stock in which mortality might be ignored: hence it seemed reasonable to 
assume that the proportion y of genera of age t at any given epoch (apart from the 
primordial genera which might be ignored if time were infinite) would follow the law 

y a e.'lt dt. 

Similarly it seemed reasonable to assume that the number of species x in a genus of 
age t would be given by 

x (x es. 

Now suppose that chance can be ignored, that the number of species in a genus can be 
taken as a continuous variable, and that the above can be taken as absolute functional 
relations. The size of a genus is tllen absolutely determined by its age, and we can 
find the number of genera of each size by eliminating t from the fiTst relation. We have 

t =log x1/8, dt= sx-1dx 
whence 

y (c X-(g+ )/" dx 

a xIi-'0P-1) dx. 

The method of approach was obviously exceedingly crude, but it suggested 
logarithmic plotting of the data. Further trial showed that the law did in fact hold 

This content downloaded from 129.74.250.206 on Tue, 26 Jan 2016 18:07:10 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


BASED ON THE CONCLUSIONS OF DR. J. C. WILLIS, F.R.S. 41 

very approximately, both for animals and plants, up to genera of 30 species or so, after 
which the points began to drop away more or less rapidly from the line, i.e., the 
observed frequencies of the larger genera were smaller than those suggested by the 
law: figs. 2 and 3 (below, pp. 45, 46) bring out the point very well. The approximation 
was, however, sufficiently close to encourage further work. As will be seen from the 
following, the fundamental mistake was the notion that time might be regarded for 
practical purposes as infinite: it must in fact be regarded as quite slhort. 

III. THE FREQUENCY DISTRIBUTION FOR SIZES OF GENERA (DERIVED AND 
PRIMORDIAL) WHEN TIME IS FINITE. 

If time is finite we can no longer, as at the beginning of Section II, ignore the number 
of prime genera as compared with the number of derived genera. At time T, out of 
unit total, we will have ge-gx dx derived genera of age x, together with e _T of age T-the 
term which vanishes if T is infinite. 

Tro obtain the required frequency distribution there will, therefore, be two corrections 
to make to the limiting distribution (12). (a) We must add to each term of (12) the 
corresponding term of (5) (writing T for t) multiplied by e (b) We must subtract 
from each term of (12) the value given by making the upper limit of the integral T 
instead of infinity. The additive corrections to f,, f f3, . . . are therefore 

e(gy+B)T 

e- (y+s)T(- e-sT) 

e (g+) (1-e)ST)2 

and the subtractive corrections 
g (g + s)1- e- (g+s)T 

g (g --_- s)'- e- (g+8) - g (g + 2T1 e (g+28)T 

g (g -I-- s)1 e (g+s)T - 2g (g -I- 28)-1 e- (g+23)T 4+ g (g + 3s)1 e- (g+Se) 

Bringing the two together, the entire corrections are 

C= SgWLs)1e 
- e- (g+a)T 

C2 = (g + )-1 e. (+8) T2 816 + 2s)-k1 e- (. l (16) 

C3= s (g + 8)-1 e- (9+8)T 4s (g + 2s)-1 e (fq+2s)T + 3s (g + 3s) 1 e-(U+s)T f 
* . e~~~~~~~~~~~~~~~~~ 
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42 MR. G. IUDNY YULE ON A MATHEMATICAL THEORY OF EVOLUTION, 

It will be noticed that these may be wvritten in the form 

C2 C-t- C/2) 

C 6 -- 
CI - 26c 2+ 3{ (17) 

Cl -- C1 2Ca+ 3c, 3-C c4 - 

and so on, where one new term c' is introduced at each stage, and the nunmerical 
coefficients are the coefficients of (1 -l) 

For numerical purposes the terms c'l, C'2 C'3, etc., must be put in a different form. 
As before, we write p = s/g. As the unit of time we will take the average time X iii 
which the number of species within the genus doubles, wrviting 

r e=ar/kA = ex- 

where 
O =loge 2 = 0 * 6931472. . . . . . . . . . . . . (18) 

Then 
g x/ P 

g -l-- ns o= (]. + np)/p, 

and c',, c'2, C'3, . . . may be written, ' being the time in the new units 

c P (I d_ p)-j e-a[p-I (1p)TA 

c'2 2p (1-+2p)-1 e-aP1(1+2P)T l 

c.3 =- 3p (1 + 3p) 1 e ap (I+ 3p)T 

Given p and r, the values of C'/, C/2, C/3, . . . are calculated from (19), thence the 
values of Cl, C2, C3, . . . from (17) : the values of the limiting frequencies Xf1, Of f3, . . 

are found from (12), and finally the frequencies at time ' are given by 

-J,i -- f + C'1 
- 

42 J2 + C2 . . . . . . .20 
J3 J3 + 63(2 

Since sufficiently extensive tables of the binomial coefficients were not, so far as I 
could find, available, tables were calculated giving all the coefficients of (1 + 1)" up to 
n - 31, and the coefficients up to the twelfth for values of n from 32 to 101. The 
correcting series on the right of (17) converge with fair rapidity in the illustrative examples 
that have been tried (cf. Section IV), and twelve terms usually give more than sufficient 
precision. The corrections Cl, 62, C3, . . . are at first positive, but decrease steadily 
in value and sooner or later become negative: such a change of sign must, of course, 
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BASED ON THE CONCLUSIONS OF DR. J. C. WILLIS, F.R.S. 43 

occur since Z:(c,) must be zero. After reaching a negative maximum the corrections 
again diminish until c, approximates to-Jr 

To illustrate the change in the form of the distribution with time, Table II has been 
calculated, showing the successive distributions when = 1, 2, 3, 4, 5, and 6x28 units 
(doubling-periods for species within the genus) and p is 1'925 (p = 1925, -= 628, 
being the values found for the Chrysomelide, below, p. 54); the limiting distribution 
for x = X is also given. The table shows in a very interesting way the rapid growth 
in the tail of the distribution towards large genera, and the quick approximation of the 
first part of the distribution towards the limiting form for infinite time. These features 
speak for themselves. It may be added that the correcting terms, which are necessarily 
positive at the beginning of the series, w%vhen = 1 become negative with co, C7 reaching 
the negative maximum. When x= 2, Ci is the first correction to become negative 
and the negative maximum is reached with C15. When = 3, c18 is the first to become 
negative and the negative maximum lies (not far) beyond c31. When ' = 4, C37 is the 
first to become negative, and when x = 5 the first correction to become negative lies 
somewhere between C60 and C80. When T-6 = 28, as for the Chrysomnelidcw, the correcting 
terms are still positive at the limit to which calcuLlation was carried, viz., fl02. 

TABLE II.-Showing, at successive epochs, the calculated numbers of genera with 
1, 2, 3,. . . species out of 1,000 genera in all at each stage when p = 1 925, the 
value found for the Chrysomelid beetles (Table V, p. 56, and Appendix, Trable A). 
The table shows the distribution after 1, 2, 3, 4 and 5 doubling-periods for species 
within the genus ; then for 6'28 doubling-periods, the time found for the Chrysome- 
lidw; and finally the limiting form of the distribution after an infinite lapse of 
time. 

Number of TTimn T 
in doublinlg-periods. 

speciesin _ ____ i- n______ 

the genus. 1 2 3 4 5 6 28 | I 

1 ... ... 571 422 370 352 345 343 342 1] 
2 ... ... 227 192 159 1.45 139 137 136 2 
3 ... ... 104 115 97 85 80 78 77 3 
4 ... I 50 77 68 59 54 52 51 4 
5 ... ... 24 53 51 44 40 38 37 5 
6 ... ... 12 38 40 35 31 29 28 6 
7 ... ... 6 27 33 29 26 24 23 7 
8 ... ... 3 20 27 24 21 19 19 8 
9 ... ... 1 ! 15 22 21 18 16 16 9 

10 ... ... 11 19 18 16 14 13 10 
11 ... --- 8 16 16 141 12 12 11 
12 ... --- 6 13 14 13 11 10 12 
13 ... ... !4 12 13 11 10 9 13 
14 ... ... 3 10 1 1 10 9 8 14 

(Table contitnuedv overleaf.) 
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44 MR. G. 'UDNY YULE ON A MATHEMATICAL THEORY OF EVOLUTION, 

TABLE iJ-(continued). 

Numnber of Timie Tin doubling- periods. 
species in 
the genus. 12345 62 

15 ... ... ~2 8 1.0 9 8 7 1.5 
16 ... ... ~2 7 9 9 7 7 16 

16 .. . 1. 6 9 8 7 6 17 
18 ... ... 1 5 8 7 6 6 18 
19 ... .. .. . .. I 7 7 6 5 19 
20 ... ... I ---4 1 7 6 5 5 20 
21. .. .1 - 6 6 5 4 21. 
22 ... ...~ 3 6 6 5 4 22 
23 *... I 3 1 5 5 4: 4 23 
24 .. .I . 2' 5 5 4 4 24 
25 ... . .. .... 2 4 5 4 3 25 

26 ... ... -2 4 4 4 3 26 
27 ... ... ** 2 4 4' 4 31 27 
28 ... ..I1.' 3 4 3 3 28 
29 I. . 3 4- 3 3 29 
30 ... ... 1 3 I- 3 3 30 
31 ... .t .. I 1. 3 3 3 2 31 
32 ... .. . 3.. .. 3 3 2 32 
.33 *... . .** ... ...- 2 3 3 2 33 
31 ... 1 

*.... 2 3 3 2 34 
35 ... ... ..--2 3 3 2 35 
36 ... 2 3 2 2 36 

37 ... ... I2 3 2 2 37 
38 . I 2 29 2 2 38 
39 ... ...2 2 2 2 39 
40 ... ..2 2 2 2 40 
41 .. .. I 2 2 2 41 
42 ... ...1 1 2 2 2 42 
43 ... .. 1. 2 2 2 43 
44 .-* 1. 2 2 1 44 
45 .... .... 1. 2 2 1 4 5 
46 .. ...I - 1 2 21 1 46 
47 ... .. 1 2 2 1 47 
48 ... ... *-*1 2 2 1 48 

50 ... *... - - - 1 2 1. 50 
Over the last 

frequ7ency 
given above ... 2 3 6 11 43 85 116 

Total ... 1,000 1,000 1,000 1,000 I1,000 1,000 1,000 - 

The gradual approximation of the double logarithmic graph of the frequency dis- 
tribution towards its limiting, nearly linear, form is very interesting. Before the p-resent 
theory had been developed the form of the graphs observed seemed rather puzzling. 
The initial part of the graph, say up to genera of 30 species or miore, appeared extra- 
ord .Inrl nerl liner;bt aftr cerai pin thr wa awas mr o lssrai 
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BASED ON THE CONCLUSIONS OF DR. J. C. WILLIS, F.R.S. 45 

number of species 
1___ ____10 100 

Ls ;_ 100 

6 *2 * 0 12 14 16 18 2 

%- Or- (U~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~( 

E~~~~~~~~~~~~~~~~~ 0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~. 

0 rFig.l 
0 *2 .4 *6 I* 0 1-2 14 1'6 1b8 2-0 

lo (number of species) 
Fig. 1.-Double logarithmic chart for the frequency distribution of sizes of genera in t.he Chrysomeldw 

logarithm of the number of genera plotted on the vertical to logarithm of the number of species on the 
horizontal. Data in Appendix, Table A. 

number of species 
iO 100 

L4 

0' 

II _ _ I_ _ _0 

0 Fiq.2. 

0 4 -8 1-0 1-2 1-4 1-6 I- 2-0 
log (number of species) 

Fig. 2.-Double logarithmic chart for the frequency distributionl of sizes of genera in the Oeramnbycinw. 
Data in Appendix, Table B. 
VOL. COXIIL.-B. H 
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46 M1R. G. UDNY YULE ON A MATHEMATICAL THEORY OF EVOLIJTION, 

Fig. 1 is for the Chrysomelid beetles (data in Table A of the Appendix). Here the data 
are suggestive of nothing but a straight linle right up to the limit of the chart, i.e., up 
to genera of 100 species; calculation shows, however, that beyond this point there is 
a heavy deficiency of the larger genera as compar.ed with the niumbers that would be 
given by the logarithmic-linear law. Fig. 2 for the Cerambyoince (beetles) (data in Table 
B of the Appendix) is suggestive of liniearity only up to genera. of some 20 or 30 species: 
the points given by the frequencies of the larger genera lie well below the line. In fig. 3, 

number of species 
~10 __100 

2 *2 * 6 0 1 4 16 1 0 

I T ~~~~~~~~~~~~I 

2n Apcnix --bl :o 

~~~~~~~~~~0~~~~~~~~ 

I) c 

0 10g-3 

0 C2 9 6 ' 
. 12 4 16 18 2 

for the Legumiznosce, the falling away occurs at much the same point and is very abrupt.* 
The forms of sulch graphs seemed so odd, it appeared so unlikely that the natural form 
of the graph could be nearly linear over the first part of the range and t-hen rapidly 
curved, that they gave rise in one's mind to all kinds of speculations-e.g., the possibility 
of the natural distributions being truncated by the last glacial epoch ! But when the 
logarithmic graphs are dratn for the distributions of Table II it nraill be seen that such 
forms are precisely those fl a y occurs graphs, drawn from a larger number of 
significant figures than are given in Table II, are shown in figs. 4 tho 9 the graph for each 
value of t being given by the full linee and the lifiting graph forf = by the broken line. 

* It is of course always necessary to group or gradllate the data for such charts, at least in the tail of the 
distribution. The following were the actual aroupings, etc., hsed in the three charts shown. Chrysomelidce 
ungrouped to 8e; thence in groups 9-11n 12-15, ]6-19, 2023, 24-27, 28-33, 34-43, 44-53, 54r3, 74-f103. 
O'evranbyei?UB: the same way up to 53, but terminating with 5S4--83. Lwqumiznosaw: 1, 2, 3 unlgrouped; 
graducated from 4= to 23 by the two groulps 4--i13, 14-23; thenec grouped 24--33, 34--43, 44-53. 
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BASED ON THE CONCLUSIONS OF DR. J. C. WILLIS, F.R.S. 47 

i I__ 

C 

0 2.0r\ - 
o l lN ! 

log ( num6er 'of species) 
Fig. 4.--Double logarithmic graph of the frequency distribiit-ion of size of genuls for T- 1, p -1 -92S5, 

full fine; the broken line showing the limiting form at -r = co for comparison. Figs. 5 to 9 show the 
gradual. approximation of the forml of the graph towards the limiting, nearly linear, form as the time is 
increased (cf. Table II). 

E0 0) - F N 925 
H 2 

o NNo2- 

log (number of species) 2 

increased (cf. Table II'II).-I I 1- 9- f 
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1 t 
co 
L 

%4) 

0 

E 

0' 

0 ~ ~ ~ ~ ~~~~~~~~~~~~~0 

o Fic 260 
0 log (number of species) 20 

Fig. 6.-Double logarithmic graph (full line) of the frequency distribution of size of genis for Tr = 3, 
p = 1* 925. 

U' 
4- 
0 

E 

0 _ F _ _ 
0 1.0 20 

log (number of species) 
Fig. 7.--Double logarithmic graph (full line) of the frequeney distribution of size of genus for 

Tr - 4. p -- I. 925. 
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BASED ON THE CONCLUSIONS OF DR. J. C. WILLIS, F.R.S. 49 

0 Fi 0 20 

0 1. 

log (number of species) 
Fig. 8.-Doulble logarithmic graph (full line) of the frequlency distriboution of size of genus for r 6, 

p =1-*925. 

cii 

0 
L- 

-G 
El 

0 2 

o Fjgq.89 

o i*o 2.0 
log (number of species) 

Fig. 9.--Double logarithmic graph (full line) of the frequency distribution of size of genus for -r 628, 
p = 1925. 
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50 MR. G. UDNY YULE ON A MATHEMATICAL THEORY OF EVOLUTION, 

It will be seen that at first, for very short values of the tinme, the graph is more or less 
suggestive of an arc of a parabola, but the curve lies rather close to its tangent for some 
distance from the start. As time iinereases the last feature becomes more and mnore 
conspicuous, the graph being almost straight for souin portion of its length and then 
falling away very rapidly: fig. 7 ('c 4) is very suggestive of the sort of graph given 
by the Cerarnbycince (fig. 2) or the Leguminosw (fig. 3). When ' increases to 6 28, 
as for the Chrysoneltidce (figs. 1 and 9), the " straiglht " portion of t.he graph covers the 
whole chart and the point at which falling away becomes conspicuous lies outside the 
pictire on the right. Witlhin the limits shown (genera of 1 to 100 species) no actual 
data following the law of fig. 9 could well suggest anything but a linear law; the diver- 
gence from linearity with 1000 or 2000 genera available in all would never appear 
significant. It should be noted, however, that the line fitted to the data within the 
given range would have a smaller slope thani the limiting " line," and hence if p were 
estimated therefrom on the assumption that tiine could be regarded as infinite too high 
a value would be assigned bo that constant. Tlhe values of p estimated in this way and 
given at the meeting of the Linnean Society on February 2nd, 1922, when papers were 
read by Dr. WILLIS and mlyself, were in error from this cause. 

Since we have not obtained the expression (20) for the frequenicy distribution in any 
simple form, the deductionr of the mean size of genlus from the distribution would be 
complex, but it may be directly deduced from quite simple considerations. 

The total number of genera at time T is Noest wrhere No is the number of primordial 
genera. 

The total number of species at time T is the number in genera of all ages, the number 
in a genus aged x being &S . Hence, ,NT being the required number (cf. the first paragraph 
of Section II), 

.NT =-N0eT" .+ Nog ej (TL'-x) e'x d$ 
- No{s (s - g)- e" -- g (s - g)e.T.} . . . (21) 

which checks by putting T = 0, when XNT N,. 
The mean number of species per genus, dividing by the number of genera N(ep is 

sMT - (s --g) '{ Js e,(x-9) T _.__g(22) T -. (s g)-lJsex? - . . . . . . . . . . . . . t2 
In terms of the notation when the doubling-period for species within the genus is 

taken as unit the equations may be written: 

g7NT Noe'T . . . . . . . . . (23) 
.sN =No(p - ' {peaT -.(24) 

MT (p 1 pe P )- 1_. I . . . . (25) 

These expressions increase continuously with the time and are infinite for X : but 
it is to be noted that the total number of species SNT increases not at a steady (percentage) 
rate but with dlecreasing rapidity. The second terms, dependling on the number of gene:ra, 
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BASED ON THE CONCLUSIONS OF DR. J. C. WILLIS, F.R.S. 51 

becomes of less and less importance as the proportion of genera to species decreases; 
while the total number of species more than doubles in the first unit of time, the per- 
cenitage increase falls in every folloving interval and rapidly asymptotes towards 100. 

It will of course be noted that we have not considered any group of higher order than 
the genus. If the assumption that generic mrutations give fresh starting points for specific 
mutations is correct, the effect shown by equation (24) or (25) m-ust follow, and it would 
seem, therefore, that mutations of a hligher order still, such as would give rise to new 
families, mnust emphasise the result. But I have not developed the matter further. 

IV. THE FITTING TO DATA OF THE EXPRESSION OBTAINED IN SECTION III. 

Given an actual frequency distribution for size of genus, the problem is to determine 
from it the values of p and x. The method of moinents would not, wvith distributions of 
the present fornm, be a good method to use even if it led to a simple solution, for the very 
long " tail " of the distribution implies high probable errors in tlhe moments.* But I 
have not seen my way to any simple and direct solution. 'I'he method finally adopted 
was-(1) to fix on the proportion of monotypes and the mnean number of species to the 
genus as the characteristics to be used for determinino p and x ; (2) to draw up a table 
giving the proportion of monotypes (fi) and the mean number of species to the genus (M) 
for all values of p and I that seemed likely to occur, and (3) in any given case to 
determine p and from this table by inverse interpolation. 

Table III is the fundamental table, giving fi and M for all values of p from 1 0 to 
3 0 by tenths of a unit, and for all values of t fromn 1 to 10 by units. As examples of 
fitting I have taken four tables kindly given me by Dr. WILLIS and shown in full, by his 
permission, in the Appendix to this paper. They refer to the Chrysomelidce (beetles), 
the Cerambycince (beetles), the Snakes and the Lizards respectively. Table IV shows 
the numbers of genera and species in each group, the values of M and fA given by the 
data, the approximate values of p and 'r determined from Table III by interpolation as 
shown below, and No the number of primordial genera. Lines 8 and 9 are simply a 
check on the work and the precision of interpolation in Table III : such interpolation is 
not accurate, and the calculation of -M and fi from the values of p and 'r determined by 
interpolation is a desirable check. Lines 10 to 12 give the results of applying the 
x2 test of " goodness of fit " for the respective groupings of the data shown in Tables V 
to VIII: the P-tables (Tables for Statisticians and Biometricians) are entered with n' 
taken as 2 less than the number of groups, since two constants have been fitted to the 
data.t 

As an example of the detailed work the Ceranbycinw may be taken. M is 5 * 584 and 

* Cf. R. A. FISH131i, " On the mathematical foundation of theoretical statistics," ' Phil. Trans.,'A4 vol. 222, 
pp. 309-368. 

t R. A. FISH:ER, " On the interpretation of x2 fromi contingeilcy tables anld the calculation of P," ' Jour. 
Roy. Stat. Soc.,' vol. 85, p. 87 (1922). 
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52 MR. G. 'UDNY YULE ON A MATHEMATICAL THEORY OF EVOLUTION, 

fi is 0 *45801. Looking over Table III to find a. pair of values niear these, we find that 
they must be taken between p =~ 1 *1 and. p = I1*2, for a value of very near 5. Using 
simple interpolation only, we find that the observed value of f, is given by ('r = 6, 
p =~ 1* 185165) and by (, = 5, p 1* -188224), or approximately by any values of p anid 
,rsubject to the equation 

p +OOO 03059.,t==-1 203519() 
Similarly M = 5.584 is given by (p = I 1, 5,520408) and by (p ==1 2, T=4-908312), 

or approximnately by any values of p and su'bject to the equation 

p + 00163373,'r 2O001886. .........(b) 
Solving (a) and (b) we find --= 4 -980, p =-- 1-188. 

TABLE 111.-Values of the proportion of monotypes (fr) and of the mean size of genus (M) 
for values of the time -r from 1 to 10 (the unlit being the doubling period for species 
within the genus) and of the ratio p (of the chance of a specific mutation to the 
chance of a generic mutation) fromn I.0 to 3 *0 (decimal. point omitted before f) 

1 2 3 4 5 6 7 8 9 10 

i. ' 62,500 53,125 50,781 50,195 50,049 50,012 50,003 50,001 50,000 50,000 
-a M 1*693 2*386 3-079 3.773 4*466 5.159 5*852 6.545 7*238 7*931. 

f' 61,566 51,333 48,608 4:7,882 47,689 47,638 47,624 47,620 47,619 47,619 
M 1*715 2*477 3*289 4.153 5'074 6*054 7*098 8*211 9.395 10*656 

~~ P2 fi 60,761 49,750 46,660 45,793 45,549 45,481 45,462 45,457 45,455 45,455 
M 1*735 2*560 3'485 4*524 5*691 7*000 8*470 10*119 11*971 14*049 

fi 50,060 48,343 44,905 43,897 43,601 43,51 43,489 43,481 43,479 43,479 
M 1.752 2*634 3*669 4.883 6*309 7*981 9.944 1.2*247 14*949 18*121 

14 4k 59,444 47,084 43,318 42,170 41,820 41,713 41,681 41,671 41,668 41,667 
1*767 2.701 3*840 5I22 6*921 8*985 11-500 14*566 18*304 22-860 

fS 58,899 45,953 41,875 40,591 40,186 40,059 40,018 40,006 40,002 40,001. 1 1*780 2*762 4*000 5*560 7*524 10*000 13-119 17-049 22*000 28-238 

~~ P6 f~ 58,413 44,930 40,559 39,141 38,682 38,533 38,485 38,469 38,464 038, 46 2 
M 1.792 2.818 4*149 5.876 8-115 11*018 14*784 19*667 25*999 34*212 

7f 57,977 44,001 39.353 37,807 37,293 37,122 37,065 37,046 37,040 37,038 
M 1--802 2-869 4.289 6~.178 8*690 12*032. 16-479 22-393 30*262 40*730 

~ 1*8 fi 57,584 43,154 38,245 36,575 36,007 35,814 35,748 35,726 35,718 35,716 
M 1*812 2*916 4*420 6.465 9*249 13*037 18-191 25-205 34-750 47*738 

...0 

'4 1* f- S07 Q228 
A 
42,79i 3r7,2 35,434A 

Q 
3481 34,59-F7 3-,S23 34,49IRA AQ7 34,48 34,484kAk 
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BASED ON THE CONCLUSIONS OF DR. J. C. WILLIS, F.R.S. 53 

TABLE III-(continued). 

Timne. 

1 2 3 4 5 6 7 8 9 10 

f - _ _ _ _ _ _ __ 3 3 
2-0 fl 156,904 41,667 36,280 34,375 33,702 33,464 33,379 33;350 33,339 33,335 

2X 
0 M 1'828 3-000 4* 657 7-000 10*314 15'000 21-627 31'000 44*255 63-000 

0 

as 2*1. fi 156,607 41,010 35,404 33,389 32,664 32,404 32,all 32,277 32,265 32,261 
M 1 *836 3*037 4'765 7 248 10*819 1.5 953 23335 33948 49206 71 144 

*9 2*2 fi 156,335 40,403 34,590 32,468 31,695 31,412 31,309 31,272 31,258 31,253 
M 1 842 3*072 4*866 7*485 11*307 16*885 25:027 36*909 54-251 795 61 

o 2.3Ai ; 56,084 39,840 33,831 31,608 30,786 30,482 30,369 30,327 30,312 30,306 
M 1849 3'104 4*962 7'710 11*777 I 17795 26'698 39 872 59*364 88 204 

ft 55,852 39,316 33,122 30,801 29,932 29,607 29,485 29;439 29,422 29,416 
o M 1*854 3*134 5*052 7925 12'230 18-681 28*345 42-826 641522 97-030 

25 fi 55,638 38,828 32,458 300,44 29,129 28,783 28,652 28,602 28,583 28,576 
M 1 860 3*162 5*137 | 81 30 12*667 19-543 29*965 45-763 69-707 106-000 

2*6~{i ft 55,438 38,372 31,835 29,332 28,373 28,006 27,865 27,811 27,791 27,783 
M 1 864 3*189 5*218 8*326 13-087 20-381 31*556 48-675 74*901 115*078 

2*9.7 ft 55,252 37,944 31,250 28,660 27,659 27,271 27,122 27,064 27,041 27,032 
M 1F869 3*214 5-294 8-512 13-492 21*196 33-115 51-557 80-089 124-233 

as 2a8fi | 55,079 37,544 | 30,699 28,027 26,984 26,576 26,418 26,356 26,331 26,322 
M 1 873 3*237 5-366 8-691 13-882 212987 34-643 54.404 85-259 133 436 

t 2.9f1 1 54,916 37,167 30,179 27,428 26,344 25,918 25,750 25,68.4 25,658 25,648 
.2? M 1*877 3*259 5*435 8*861 14*257 22*755 36-137 57*211 90*399 142@663 

f1 54,764 36,812 29,687 26,860 25,738 25,293 25,116 25,046 25,018 25,007 
-M 1 1881 3-280 5 500 9*024 14-619 23 500 37X598 59-976 95 500 151-890 

These values, it will be seen from Table IV, reproducef1 almost with precision (0 - 457979 
against 0 -45801) but give by equation (25) a mean 5 593 instead of 5 584, a small and 
hardly material difference. The value not being quite precise, however, we have two 
alternative values fot the initial number of genera. Putting No = 1, the numbers 
of genera and of species at time .1 are found by equations (23) and (24) to be 18-2765 and 
102 2133 respectively: hence the initial number of genera is either 

1024/18 2765 = 56 03 
or 

5718/102-2133 = 55-94 

or roundly 56 0. The interpolation is less precise in the case of the Chrysomelidce, 
where the two alternativres are B6535 and 66-05, the number corresponding to the 
estimate based on the genera being given in Table IVT. 

von.^ CC)Xf2]l-. 1 I 
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5a-4 MR. G. UJDNY YUTLE ON A MATHEMATICAL THEORY OF EVOLUJTION, 

TrA BE L,F V.-Giving particulars respecting four frequency distributions for size of genus. 
The distributions are given in a conidensed form in the following Tables V to Viii 
arid in full in the Appendix. 

Chrysomel idao. Cerambycinoo. vSnakes. Lizards. 

1. Number of genera ... ... ... 627 1,024 293 259 
2. Number of species ... ... ... 9,1997 5,718 1,475 .1,580 

3. Mean species per genus, M ... ... 15* 94 5 581{ 5'034 64100 
4. Proportion of monotypes, f~.. ... 0-3429 0-4580 0-4471 0-4054 

6. p ... ... ... .. ... 1P925 1-188 1 -253 1-496 
7. No . ... ... ... ... 65-4 56-0 27-8 36-0 

8. Mean from p,T .r... .. .i 15-77 I -59 5'038 6-130 
9. Proportion of inonotypes fromi p, r.. .I 0- 3428 0-4580 0-4466 0-4049 

12. P ... ... ... ... .9 0-74 0-39 O.1.8 0.96 

From the given value of p, the values of the successive terms of the p-series (12) are 
calculated as there described, and checked from equation (13) by summation at int-ervals. 
The first few values in the present case are:- 

1 .. ... ... ... ... ... 0.457 038 

2 ... ... 0. . . .. 0160 830 

3 ... ... ... 0. . .. 0083 727 

4 ... ... ... ... .. ... 0.051 878 

5 ... ... .. ... ... ... 0.035 522 

The series for the Cerambycin&o was calculated up to fs 
Next, the values of c,', 62', 63 . are calculated from equations (19). As already 

mentioned, the tables of binomial coefficients were only calculated up to the twelifth 
in the final part of my table, so it was no use going beyond c,2': as many correcting 
terms as this may not always be wanted, but it saves time to calculate all the twelve at 
once in case they may be needed. 

I 11 ... ... ... ... ... ... ... 10 -- x 0 -941 3398 
21, ... ... ... ... ... ... 10-4 x 0.386 6267 

C3' . .. .. .. . ... ... ... ... 10-5 x 04135 9285 

64 ... .. . .. .. ... ... ... ... 10,- x 0.4550 6658 

C6' .. . .. . ... ... ... ... ... 10-, x 04149 58144 

C6 ... ... ... ... .. ... ... 10-10 x 0.485 6397 
67 .. .. . ... ... ... ... ... ... 10-1 x 0-156 2737 

CZ,,, . ... ... ... . ... ... ... ... 1.0-1 x 0 503 03085 

C9 , ... ... ... ... ... ... ... ... ... 10-1 x 0.1521 7306 
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BASED ON THE CONCLUSIONS OF DR. J. C. WILLIS, F.R.S. 55 

Retaining seven decimal places in the work,* so as to be fairly confident of correctness 
in the sixth place of the result, terms were required up to cl' in the corrections to f 7 
onwards. I have found it convenient to arrange the work of equations (17) in the 
following form: the decimal places have been reduced to six for the illustration, and 
the decimal point and zeros thereafter are omitted for brevity as they were in working. 

1 2 3 4 Total Multiplied 
f correction. p-series. Total. by 

+ - + -1024. 

1 941 - - -- +941 457,)38 457,979 469*0 
2 941 39 _ +902 160,830 161,733 165.6 
3 941 77 1 - +865 83,727 84,592 86.6 
4 941 116 4 - +829 51,878 52,707 54.0 
5 941 155 8 - +794 35,522 36,317 37.2 
6 941 193 14 -1-762 25,960 26,721 27-4 
7 941 232 20 1 -1-728 19,863 20,592 21.1 

Each component correcting term c' is taken in turn and multiplied by the corresponding 
successive binomial coefficients, the products being entered in the vertical columns 
headed 1, 2, 3, 4, etc. For cl' the binomial coefficients are unity throughout; for C2' 

they run 1, 2, 3, . . . beginning withf2; for c3' they are 1, 3, 6, 10, 15, ... beginning 
with f3 ; for c4 1, 4, 10,20, 35, . . . beginning withf4 and so on. The signs of the products 
are given at the heads of the columns. The summation of these terms then gives the 
total correction, in the next column, the sign of which is always positive at the com- 
mencement, and added therefore to the corresponding term of the p-series gives the 
required value of TfJ. Finally, multiplying this by the observed number of genera 
we have the calculated number of genera of each size. In the case of grouped 
distributions like Tables V to VIII the grouped frequency has been calculated by 
adding the values of Jff so as to obtain an answer correct in the decimal place. 
'I'be distribution for the Chrysomelidw was the most laborious to calculate as the 
series is very extensive: terms were calculated direct up to flo2, but an estimate was 
also made by extrapolation of the portion of the remaining frequency lying between fioi 
and f15o inclusive. As two different methods of extrapolation gave nearly the same 
answer it is hoped the result is fairly close to the truth. 

With this digression on the method of fitting we may now revert to Table IV and 
consider first the particulars respecting goodness of fit in lines 10-12. It will be seen 
that the values of P are highest for the Lizards and the Chrysomelidc, the formulae giving 
in bothi these cases a most excellent fit to the data. For the Cerambycince and the 
Snakes the fits are not quite so good, but still well within the limits of fluctuations of 

* In most of the work at this stage six decimal places only were retained, not seven. In calculating the 
p-series it is desirable to retain seven significant figures so as to avoid accumulating errors. 
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56 MR. G. UDNY YULE ON A MATHEMATICAL THEORY OF EVOLUTION, 

sampling; even in the case of the Snakes one would expect to get a worse fit, merely 
owing to the chances of sampling, once in some five or six trials. Reference to Tables V 
to VIII fully confirms the impression given by the values of P. For the Chrysomeide 

TABLE V.-Chrysomelidwe: observed and calculated nuLmbers of genera of each size. 

Numbe of Number of .genera. Nunilber of 
species in . _ _ __ .__ 

genus. Observed. Calculated. 

1 ... ... ... 215 214*9 
2 ... ... ... 90 85-6 
3 ... ... ... 38 48-9 
4 ... ... ... 35 32-6 
5 ... ... ... 21 23-8 
6 ... ... ... 16 18-3 
7 ... ... ... 14 1427 
8 ... ... ..14 12-2 
9 to 11 ... ... 28 27-0 
12 to 14 ... ... 20 18-6 
15 to 20 ... ... 30 2419 
21 to 30 ... ... 32 25-0 
31 to 40 ... ... 13 15.9 
41 to 50 ... ... 14 11*4 
51 to 75 ... ... 17 18.5 
76 to 100 ... ... 13 11*1 
101 to 150 ... 7 12.3* 
151 upwards ... 9 11 .3* 

Total ... 627 627-0 

* The frequency of genera of 101 species and upwards was subdivided by extrapolation. 

the fit is wvorst for genera of 3 species, of which there are only 38 against an expectation 
of 49, and genera of 101-150 species, of which there are only 7 against an expectation 
of over 12: of all genera with more than 100 species there are only 16 against an 
expectation of 23-6. The signs of the divergences from expectation are fairly well 
scattered except over the range 7 to 30 Nvhere (for the given grouping) all the observed 
frequencies are slightly in excess of expectation. 

If we re-group the frequencies of Table V according to the runs of sign of the differences 
from expectation, using groups 1-2, 3, 4, 5-6, 7-30, 31-40, 41-50, 51-75, 76-100, 101 
upwards, there are 10 groups; n' is 8, X2 is 9 59, and P 0 21, so that the distribution 
stands the severe test very well. 

For the Cerambycinw the most marked divergence is in the group of genera with 
15-20 species, of which there are 40 against an expectatioin of only 27x4: reference to 
the detailed data in the Appendix will show that there is here a marked " hump " in 
the data which could not be covered by any smooth curve. Re-grouping Table VI 
by the r Ains of sign of the diferences between observa.tion and expectation only reduces 
P fom 0*39 to 0 32. 
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TA-BLE VI.---Cerambycinwe: observed and calcuilated numibers of genera of each size. 

Number of Number of genera. 
species in 
genus. Observed. Calculated. 

3 ... ..... 82 86-6 
4 ... ... ... 61 54-0 

5 ... ... ... 33 37-2 
6 ... ... .. ~ 36 27-4: 

8 ... ... ... 17 16-8 
9 to li ... ... 36 3541 
1.2to 14 ... ... 23 22-4 
15 to 20 ... ... 40 27-4 
21 to 30 ... .. 21 2441 
31 to 40 ... ... 15 i.3-0 
41 to 50 ... .. 8 8-0 

66 upwards 9 9.5 

Total .. 1,024 1,024- 2 

TA-BLE, YJ'J.-Snakes: observed and calculated numbers of genera of each size. 

Number of Number of genera. 
species in - ~ _ _ _ _ _ 

genus. Observed. Calculated. 

2 ... ... .35 
130-9 

4 ... ... ..17 16-0 

6 ... ... ...2 8-3 
7 ... ... ..'8 6-5 

8 ~ ~ ~~~8 5'2 

1.2to 14 ... ... 3 7-2 
15 to 20 I 7 8-8 
21 to34 .... 14 9-2 
35 upwards ...~ 4 6-2 

Total .. 2 93 293-0 

For the Snakes the fit is clearly less satisfactory, andl the dat-a (Appendix, Table C) 
are iregl r. I is_ true_ that weL have passed from a famlyan a 1 subfail amongst 
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58 MR. G. UDNY YULE ON A MATHEMATICAL THEORY OF EVOLUTION, 

TABLE VIII.---Lizards, observed and calculated numbers of genera of each size. 

Number of | Number of genera. 

species in _ 
genus . Observed. Calculatcd. 

l ... ... ... 105 104.9 
2 ... ... ... 44 39.9 
3 ... ... ... 23 22-2 
4 ... ... ... 14 14*5 
5 ... ... ... 12 10.5 
6 ... ... 7 8*0 
7 ... ... ... 6 6.4 
8 ... ... ... 4 5.2 
9 to 11 ... ... 13 11.4 
12 to 14 ... ... 4 7.7 
15 to 20 ... ... 10 9-8 
21.to34 ... ... 11 10.8 
35 upwards ... 6 7*7 

Total ... 259 259 0 

hardly be due to this cause, for the Lizards give the best fit of the four tables, the cal- 
ciilated figures being extraordinarily close to those observed. It may be noticed that 
in each table the niumbers of the largest genera, those in the terminal group, are in defect 
as compared with expectation, but the deficiency is very small in one case at least 
(Table VI), and the experience too limited to suggest a general rule. In the case of 
the Chrysomelidae, moreover, the lack of precision in interpolation has partly contributed 
to the result, for it will be seen that the mean of the fitted distribution (Table IV, lines 3 
and 8) is slightly too low. Desire of the systematist to break up a genus which he regarded 
as unwieldy might well tend to cause a deficiency of very large genera, but such a deficiency 
can hardly be held to be proved by the present tables. 

So far as the tests go I think it must be admitted that the formula given is capable 
of representing the facts with considerable precision, more closely indeed than we have 
any right to expect. One might well have expected the personal factor in classification, 
the practically cataclysmic destruction of species at numerous epochs in geological 
time, and all the varied changes that have diversified the organic history of our planet, 
to have left so many irregularities in the distribution that any formula could at most 
have given a very rough analogy with the general runi of the data. But apparently 
the forimla arrived at can do far more than this. Why this is so seems to me to be a 
point which requires some discussion. I return to it briefly below. 

Having shown, however, that the formula is capable of closely describing the facts, 
we can revert to Table IV, and the actual values of p and ' T. It will be seen in the 
first place that the vralues found for s range only from 4 s 26 to 6 *28, the unit of time being 
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the doubling-period for species within the genus in each several case. Time must, there- 
fore, be regarded as not merely finiite, but short: it is indeed obvious, once the point 
is considered, that when the mean size of genus is only some 5 to 15 species time cannot 
well be anything but short. It may be as well to emphasise that our unit of time being 
a relative unit, its equivalent in years or in geological timne will vary from group to group 
and can only be determined if the results can effectively and without fallacy be collated 
with the geological record. 

But line 7 of Table IV suggests that great caution will have to be used in interpreting 
doubling-periods in terms of geological time. In every case the number of genera at 
zero time required to fit the data is very substantial: roundly, some 10 per cent. of 
the existing number for the Chrysomelidae and the Snakes, 5 per cent. of the existing 
number for the Cerambycince, and nearly 15 per cent. for the Lizards. What does this 
mean ? Such a result would presumably be shown in any case where the origin of the 
group was polyphyletic, but I think it mnay have another significance and one which 
will render the interpretation of the figures a matter of difficulty. 

Consider the effect on a distribution of the advent of a "' cataclysn," e.g., of a glacial 
epoch, killing off a large number of species. Every genus will be reduced in size; a 
genus of 20 species may be reduced to a genus of 5 species, a genus of 10 species to a 
genus of 2, and so on. Some--possibly many-genera will be killed off outright. In 
the limit, if the cataclysm be very severe, m11ost genera vill be killed out entirely and no 
genera will be left with more than a single species. On the passing of suclh a cataclysm 
of the utmost possible severity and the restoration of conditions favourable to life, evolu- 
tion will start again de novo, but from an initial number of No monotypic genera instead 
of a single one. When, long ages after, the biological statistician examnines the frequency 
distribution for sizes of genius in the group evolved from the survivors of the cataclysm, 
he will therefore find, as we have found, a niumber of priinordial genera No in excess 
of unity: and further he will have to remember that the tirne w will be measured, 
not from the origin of the group, but from the passing of the cataclysm. 

In fact, of course, we must expect matters to be far more complex even than this. 
Trhe action of a " cataclysm " of less than limiting severity might be represented, in 
highly simplified terms, somewhat as follows. For any species the chance of survival 
is p, of destruction q (p+q = 1). The chance of 0, 1, 2, . . . i species surviving out 
of a genus of n species will then be given by the successive termns of (q +- p)'". Given the 
pre-cataclysmic distribution and the value of p, it will then be possible, though a lengthy 
piece of work, to calculate the post-cataclysmic distribution. It is desirable to carry 
out such a test on assumed data to see whether, if the pre-cataclysmiic distribution be 
of the form above derived, the post-cataclysmic distribution will or will not also be 
closely fitted by the same formula, and, if it is closely fitted, what is the effect on the 
constants. It is evident that the distribution will remain of the same general form to 
the eye, with a maximum fIequency for the monotypics, and I am inclined to suspect 
that it may be fairly closely of the same mathematical form, but have not yet carried 
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610 MR. G. 'UDNY YULE ON A MATHEMATICAL THEORY OF EVOLUTION, 

out the test. It wouild be further desirable to find the form of the po-st-cataclysmic 
distribution after a, subsequent period of evolution. These are problemis still unsolved.. 

I have, however, carried out two brief empirical tests to find the effect, of compouinding 
the distribution. A cataclysm might-or probabl.y wouild in general--cover part only 
of the area occupied by a given organic group. The post-cataclysmnic distribution would 
then be compound as regards time, one portion -starting de novo, if the cataclys9m were 
of limiting severity, one portion remaining untouched. 

Suppose that at the tim.e of observation the constaints for the two portions are 

2 8~~~2 

and that there is the same number of genera in each of the two groups. We will then 
have 

M 
p = 2 2 ~~~0.41667 3-000 

p = 2 8 ~~~~0-33350 31-000 
Compound 0-37508 17*000 

the values of f1 anid M for the compound distribution being the mevians of t-he values for 
the components. Using the method of interpolation described above, we wouild find for 
the compoundl distribution the constants 

p ~~ 1-668 t7 *203 

'r tends accordingrly to be nearer the higher value of the time and p is red'uced below its 
true valuLe. The first 10 terms of the respective series work ou.-t as follows, taking the 
total as 10,000:-- 

p 2 1 ~ ~2 1 .668 

----*-..........------------------- --*Comnpound.I 

-- ~~~~2 8 7.203 

1.. ... ... 4,167 3,335 3,751 3,750 
2 ... ... ... 1,917 1,335 1,626 1.444 

3.. ... ... 1,162 i 764 963 803 
4 ... ... ..., 775 510 642 525 
3 ... ... ... ~540 j 371 455a 375 
6... ... ..j ~~385 286 335 285"a 

7 ... ... ...~ 278 229 253 225 
8.. ... ...J 203 189 196 184 
9.. ... ... 1.49 159 1 154 153 

1 0... ... ... 11.0 137 12 1.31. 

This content downloaded from 129.74.250.206 on Tue, 26 Jan 2016 18:07:10 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


BASED ON THE CONCLUSIONS OF DR. J. C. WILLIS, F.R.S. 61 

observation would give a total frequency 4,470, while the fitted distribution would give 
only 3,841-a deficiency of 14 per cent. 

But the question also arises, what is the effect of a distribution being compound as 
regards p ? In all the preceding work we have assumed p to be the same for all genera 
in the grouLp, an assumption which is on 'the face of it very unlikely to be in acco-rdanice 
with the facts. To carry out a test on this point I took the two distributions 

p==1-3 p=2-0~ 
-r=8 '7=8 f 

anld assumed them to be compounded in equal proportions, giving: 
M 

p==l1'3 8 0-43481 12-247 
p =2'0 r 8 0-33350 31-000 

Com)pound 0-384155 21-6235 

Fitting the comipound as before, I flind approximiately 
p = 1'603 ~8-293 

H-ere p takes a value between those of the componenlts, while t is thrown up above its 
true value. The first ten. termis of the respective series run as shown in the table below. 

p ~~~1'3 2 1-603 

Compound. - 

8 8 8.293 

I... ... ...I 4,348 3,335 3,842 3,842 
2 ... ... ...1 1,570 1,335 1,453 1,465 
3 ... ... . . . 833 764 798 809 
4 ... ... .. 524 510 517 525 
5 ... ... . ..~ 364 371 367 373 
6 ... ... ... 269 286 277 282 
7 ... ... ... 208 229 218 222 
8 ... ... ...1 166 189 177 180 
9 ... ... .. 136 159 148 150 

10o ... ... ... 114 137 125 127 

The miisfit over the first part of the range is now reversed, the fit-ted frequencies being 
in excess, but the excess is relatively small. 

For the four Tables V to VIII, I find : 
Sumn of f2 to f8 inclusive. 
Observed. Calculated. 

Chrysomelidae. ............ 229 236' 1 
Cerambycina . ............. 399 408-7 
SQ Ynakes121 '119n. 
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62 MR. G. UDNY YULE ON A MATHEMKATICAL THEORY OF EVOLUTION, 

The differences are all small, the fitted frequencies being in excess for the first two tables 
and in defect for the last two. There is no clear evidence of either type of compounding, 
and the goodness of fit remains rather puzzling. 

Trhe four tables given as illustrations in this section were the first, and at the tinme 
of writing the only, tables wrhich I had completely fitted: they are in no way tables 
selected to show exceptionally good fit. A good deal of the preliminary work with 
purely graphic charts was done with data for the flowering plants, but these are not 
satisfactory for a precise test of theory. The flowering plants have not been comnpletely 
catalogued and the numbers of species in the larger genera are estimates rounded off 
to the nearest 5 or 10 (or even for the very large genera the nearest 50 or 100). In these 
circumstances all that can be expected, at the best, is a fair fit of the formulsa to data 
wvhich have been submitted to a preliminary graduation. Dr. WSTILLIs had compiled an 
estimated distribution for the aggregate of all the flowering plants, 12,571 genera and 
160,171 species, giving 38] 605 per cent. of monotypes and mean species per genus 12- 741. 
These data give p = -594, - 6 484, No = 750 approximately (750 to 756). But 
these constants do not give a good fit, expectation exceeding observation for genera 
of 2 and 3 species and being continuously in defect of the graduated data from genera of 
4 to genera of 34 species, wrhich was as far as I carried the work. The group is so 
heterogeneous that I do not think a good fit was to be expected: but the type of misfit 
is not very clearly analogous with either type of misfit shown in the two illustrations 
above for x6 compound and p compound respectively. AVe might reasonably, of course, 
expect compoundedness as regards both elements. 

Brief and inadequate as it is, this discussion is at least sufficient to indicate, I hope, 
that the interpretation of the values of p and @ arrived at in any given case or series 
of cases is not a simple matter nor likely to be quite straightforward. 

To all the other difficulties of interpretation is to be added the fact that errors of 
sampling in x and p are very high. This became evident at an early stage of the work, 
since mere inspection of Table III showed that alterations of f, and M well within the 
limits of fluctuations of sampling would produce relatively large changes in T- and p. 
The conclusion is fully confirmed by the following investigation. 

We determine -6 and p virtually by solving the equations 
fi ---c(p, 6) M -= (p,). 

Hence 

dfi=--+ dp+j--dw+ tt 

cop 
. . . . . . . . . . . (26) 

d dp (vs v 
W^Vriting for brevity 

f1ch /A, h- = b b ab-h 
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BASED ON THE CONCLUSIONS OF DR. J. C. WILLIS, F.R.S. 63 

and solving (26) for dp and dr we have 
d= k- (a2 df, - a., dM) 
dp k-1 (b, dM-b2dfl). 

Whence, squaring and summing, 
a; 2 = k-2 (al2as,,42 -+ a22af2 - 2ala2 Tmf amat). f (27) 
p2 = ,-2 (b12 am2 -b b222- 2b1 b2 rmf amaf) . 

Where am, af are the standard errors of M and f, and rn1f is the correlation between errors 
of sampling in these two constants, I find 

a= - P-i (1 + P)- (1 -+ otp-') +f1p-L {(i + p) ? + ocp'} 1 
a2 = + p'1 (p - 1)-i (1 + outp 1) -- Mp-1 { (p - 1)-i- op} . *.* (28) 
b= -{ff-(' p ')-}X(1+p)p-J 
b2= +(M + (p.L)l}oc (p-1)P-1. 

and the only undetermined quantity in (27) is r,.f. Iff, f2, f", . . . fn are the propor- 
tional frequencies, so that 

fl +2? +f3 + * +fn 

we have 
fA + 2f2 + 3f3 + * * + nfn M. 

If, now, there is an error 8 inf1 the compensating errors in the remaining frequencies 
will most probably be distributed over those frequiencies in proportion to their respective 
magnitudes, so that the new distribution will be 

fl + ;/ f -f,/(l -f f3 -f3a/(1 -fi) ** f1 -fI(' f.) 

the mean of which reduces to 
m I 8 (M 1) (I1-Ai 1' 

HIence the regression of errors in M on errors in is - (M-1) (1--f 
or 

rmf m/5 = mf sfi (1 fi - (-- 1) (1. -Af) 

wvhere a is the standard deviation of size of genus: that is 

r. (M (I (29) 
raf a),aj a - N'1 (M -- 1)fi 1 

I have failed to get any effective simplification by inserting the values of a., a2, bl, b2, 

and r,.f in (27), and it seems best to conduct the calculation by working out the values 
of the partial differential coefficients from (28), checking from Table III to see that they 
are approximately correct, and inserting the numerical values in (27). 

The following statement shows the results of the calculation for the four illustrations 
used above. It will be seen that in each case the standard error of x is of the order of 
half a unit, and the standard error of p of the order of 0 - 1 to 0 * 2. For the time especially 
the determination is wholly lacking in precision: the high standard error renders a 
better method of fitting, which would reduce the standard error, very desirable. 

K 2 
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Chrysomelidse f= 0 342903 M = 15-9442 a = 46*2341 
N= 627 a !-0*01896 am= 1*8464 rnf =-0 2335 
p-1 925 a1 -0d11550 a2 =+ 11 6068 
x-6 628J b1- 0o0010771 b2 =+ 5s6706 

a-=0.418 ap 0-167 

Cerambycinae f1 = 458008 M - 5-5840 a-11 5871 
N 1024 a=f 001557 aM 0 3621 =-- 0 3637 
p -1188 a,1- 0-20614 a2 =+ 61426 
s = 4-98 J b1 - 0*0012378 b2 =+ 11960 

a T0 408 ap 0077 

Snakes f= 0 '447099 M 5-0341 a=9 2945 
N 293 a=f 0- 02905 ai,,s0 5430 r,,f.= 0 -3903 
p =1253 a, 0=-0 18975 (2= +4d1762 
-=4x260 J b=- 0'0052924 b2=-+1*25775 

6 =0 576 ap 0 164 
Lizards f 0 0.40541 M-6-1004 a 13-9294 

N 259 af 6=0'03051 am =0-8655 r,,f- - 0 3023 
p =1 496 a, al-0 15291 a.) + 3'8879 
t =4*281 b1=- 00055153 b2 + 18652 

aT-0*563 _ - 0*211 

V. THE FREQUENCY DISTRIBUTION OF AGES, AND THE MEAN AGE, ETC., FOR GENERA 
OF A GIVEN SIZE. 

On the assumptions we have made the size of a genus is not an absolute measure of 
its age, for chance enters largely into the mnatter, buLt it is an index to age. On an 
average, wvithin a homogeneous group, gen.era of 2 species are older than monotypes, 
genera of 3 species older than genera of 2 species, and so on. It is therefore of importance 
to determine the frequency distribution of ages for genera of a given size., i.e., to determine 
what proportion of genera of n species, with assigned values of p and x, are likely to possess 
any assigned age. 

We will first take the limiting case when time is infinite, since the main effect of limiting 
time is simply to truncate the frequency distribution of the ages of the derived genera 
at age T. The required expressions for genera of 1 and 2 species have, in fact, already 
been given under the integrals of equations (9) and (11) at the begi.nning of Section II, 
p. 37. Thus for monotypic genera the distribution of ages is given by 

y - _ Yo(Ye~Iy)x, 

wvhere Vo must be assigned the value that will make the total unity, so that 

y-- (g +s ) e~+) 
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BASED ON THE CONCLIJSIONS OF D1. J. C. WILLIS, F.R.S. 65 

Similarly for genera of 2 species 
y = (g + s) (g + 2s) s-l e-(g+s)x (1 -e1)% 

and so on. Generally, for genera of n species, the proportion y of genera of each age x, 
time being infinite, is given by 

y gfi- e-(Y+s) (1 ---. (30 

=ocp1fj e,-a(i+Pr')e (1 - ecalt J.-l.*. . . ) 

wheref is the nth term of the p-series (12), ea as before is 2, and X is the age measured 
in terms of the doubling-period for species within the genus. 

Trhe mean age of genera of n species, in terms of the same relative unit of time, is 
(time infinite) 

,oCn 0 1+ P | + 2p1+ (3.1 
eCfot{J+p-I +.-2p n.. 

'}(1 

As regards the most frequent or modal age, when n 1, (30) reduces to a simple 
exponential, and consequently the most probable age of monotypes is zero. When n 
is 2 or more, the modal age is (common logarithms) 

>?_(log 2)-1 log (I -1 np) -log (I + p)j . . . . . . (32) 
the mod.al frequency being 

M' '1 p '1+Pp' '(n -1) p 
PfX 0 n np/ \1-t no 

For the standard deviation of ages of genera of n species, I find 
2 p2f 1 1 1 1 (3 

00 2 02 
4- . p) t- ...T 2 12 ) aq * 1-(--1 z (33) ot 1( . ) (1-4- 2~) W 

j ~ ~ \J 

From (31) and (33) it will be seen that for a given size of genus the mean age and the 
standard deviation of ages (measured in terms of our relative unit of time) are both the 
larger, the greater p; and the modal age naturally increases with the nmean age. 

As an illustration of the general character of the limiting frequency distributions of 
age and. of the variation in the limit values of means, modes and standard deviations 
witlh size of genus, fig. 10 has been drawn and the data of Table IX calculated with 
p = 1 5 (nearly the mean of the four values 1 * 925, 1 * 188, 1 * 253, 1 * 496 found for Tables V 
to VIII). 

Fig. 10 shows the age distributions for genera of 1, 2, 3, . . . 10 species. For mono- 
typic genera the curve is, as already pointed out, a simple exponlential, the most probable 
age being zero. The mean age is 0 87 of a doubling-period (Table IX), and the standard 
deviation is 0 87 also; the relative frequencies of ages 0, 1, 2 and 3 units are 1 155, 
0*364, 0-115, and 0-036. 

Genera of 2 species show quite a different form of distribution. It rises abruptly, 
with finite slope, from a frequency zero at age 0, rises to a maximum at age 0 * 68 (Table IX), 
and then tails awvay slowvly. The mean age is 1 *41, considerably in excess of the mode. 
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Age of derived genera 
0 1 2 3 4 5 6 7 8 

Sp?ies 
Genus 

2 

3 

41 

6L 

8L 

9 L 

Fig. 10.-Limiting forms of the frequency distributions of age for genera of 1, 2, 3, . . . 10 species when 
time is infinite; p =-15 (of. Table IX). 
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BASED ON THE CONCLUSIONS OF DR. J. C. WILLIS, F.R.S. 67 

TABLE IX.--Limit values (time infinite) of mean and modal ages and standard deviations 
for genera of 1 to 100 species: p -1 5. Unit of time, the doubling-period for 
species within the genus. 

1 2 3 4 

Number of MsprbleStandard 
species in Mean age. most probable deviation 
the genus. (mdl g.of ages. 

1 ... ... ... 0-87 0 0-87 
2 ... ... ... 1*41 0-68 1*02 
3 ... ... ... 1P80 1-14 1*09 
4. ... ... ... 2411 1i49 1.14 
5 ... ... ... 2.36 1-77 1.16 
6 ... ... ... 2-58 2-00 1-18 
7 ... ... ... 2-77 2-20 1*20 
8 ... ... ... 2-93 2-38 1-21 
9 ... ... ... 3-08 2-54 1 *22 

10 ... ... ... 3-22 2*68 1*23 
'20 ... ... ... 4-14 3-63 1-26 
30 ... ... ... 4-70 4-20 1*28 
40 ... ... ... 5.10 4*61 1*28 
5() ... ... ... 5.42 4-93 1-29 
60 ... ... ... 5-67 5-19 1 29 
70 ... .. .. 5-89 5-41 1 *29 
80 ... ... ... 6.08 5.60 1*29 
90 ... ... ... 6-25 5.77 1*29 

100 ... ... ... 640 5-92 1-29 

For genera of 3 species the distribution is tangential to the base at the start, the fre- 
quency is a maxinmum for the modal age 114, and the mean is 180. From genera of 
3 species onwvards the general form of the distribution remains the samne, but mean and 
mnode increase with the size of the genus, at first fairly rapidly and them more slowly. 
The nature of the variation is well shown by Table IX, which is carried up to genera of 
100 species. 

When the number of species in the genus n is moderately large, say over 20, we have 
to a high degree of approximation- 

p oc- X (1+ np)l pl (_pz)-ld 

(log 2)-1 {log [1 + ( 12 ? A) p]-log [1 + (n -.) p] } * * (34) 
ani expression which was used for calculating the means for genera of 40 species and 
over in Table IX. Using the true mean by (31) at 10 species, and thence calculating 
the mean age for genera of 20 species by (34), the error is only 3 in the fourth decimal 
place. It follows then as n becomes large the mean age varies nearly as log n,; the 
mean age of genera of 100 species (6*40), for example, is very nearly double the age of 
genera of 10 species (3.22), but slightly less. 
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68 MR. G. UDNY YULE ON A MATHEMATICAL THEORY OF EVOLUTION, 

The rate of increase of the standard deviation also falls off rapidly as n increases. 
To carry the figures to another place of decimals beyond those given in the table, it is 
1*286 for genera of 50 species and no more than 1b294 for genera of 100 species. Here 
again the similar approximation, obtained by substituting integration for summation, 
is useful: 

i13 
2 (1 + np)2 po-2 {[1 + (n -)D]~P -- [1 - (n2 + 2) } (3) 

nj 

It can be safely used, with an error in the sixth place of decimals only, for genera of 30 
species onwards. 

All the above are limiting results, true only when the time elapsed from the genesis 
of the primordial species is infinite, and proceediings have continued ever since without 
break or disturbance. All that can be said by way of comment at the present stage 
is that they do not look unreasonable. It may be particularly emphasised that the 
size of the genus is by no means a precise miieasure of its age. 

When time is no0t infinite but limited, the genera of any given size fall into two distinct 
groups: (1) the primordial genera, all of age -; (2) the derived genera, the frequelncy 
distribution of which is of the form (30) but trruncated at age i 

As we saw at the beginning of Section III, the proportion of priinordial genera of n 
species to all genera of every size is 

e("+.q)'T (I _ e-sT)n-l 

or in terms of the relative notation 

e-(l+p)T (1 - T) 

If, then, q be the proportion of primlordial genera of n species to all genera of n sp)ecies 

J1-Tf e' ) . . . . . . . . .?-- (36) 
where f,, is the proportional frequency of genera of it species at time 'r (equatioln 20). 
The proportion of derived genera is thenl givenl by 

p I- q . . . . . . . . . . . . . . . . . . . (37) 

and if 7Md,, is the mean age of the derived genera of n species, 7M. the mean. age of all 
genera of n species 

7TM, = P7Md,,l -- qT . . . . . . . . . . . . . . . (38) 

Equation (30) leads to very colmiplex expressions for 7Md, by integration, and as in 
any case it is desirable to have the frequency distributions, it seemed to me simpler 
to calculate the average directly ti.e., arithmetically) from the distribution, which is 
very rapidly done on the machine and sufficiently precise except for the monotypic 
genera (see below). 

The procedure adopted to calculate the mean ages of genera of each size for the four 
illustrations of the last section was accordingly as follows. 
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(1) The proportion of primordial genera q was found by (36) for genera of 1, 2, 3, 4, 5, 
6, 7, 8, 9, 10, 20, . . . species, and thence p by (37). 

(2) The age distributions 
ea (1+p I) (1- ealy-l 

were calculated for the same genera, using values of X 0'125, 0 375, 0-625, 0 875, 
1 * 25, 1 * 75, 2 * 25, 2 * 75, aind so on, and the value for the centre of the final grotip in the 
tail. E.g., for the Chrysoneelidwe, Nvhere - 6 28, the final valuie of Z is 6 14, the centre 
of the interval 6 00 to 6 * 28. 

(3) The mean age of the derived genera TMXI was then calculated from these distri- 
butions on the machine. 

(4) The mean age of all genera of n species was obtained by (38). 
(5) In order to plot diagrams of the frequency distributions, the ordinates caleculated 

under (2) were multiplied by the factor necessary to give a total area p. 
For the monotypic genera the mnean age of the derived genera found by the above process 

is not very accurate and integration gives a simple result. The area from 0 to e of 
the curve 

is 
ot' (21 + p1)i [1-e (1 P7) 

which gives the factor necessary for the reduction under (5), and the mean is 

+(1 4 pR) - Tea(1+P')T [1 -- 

Table X summarises the results for the Chrysomelidce, the averages, etc., being carried 
up to genera of 100 species-a limit of size exceeded by 16 only out of the 627 genera. 
Turning first to columns 5 and 6, it will be seen that as the size of genus is increased the 
proportion of primordial genera also increases, at first with increasing and then with 
decreasing rapidity. The larger a genus, the older is it likely to be, and as the primordial 
genera are the oldest of all they will be nwst likely to be caught in the net by picking out 
the larger genera. Of the monotypic genera only 0 * 4 per cent. (roundly) are primordial, 
i.e., the odds are about 250 to 1 against a monotypic genuLs being primordial. Of the 
genera of 10 species only 8*4 per cent. are primordial, or the odds are about 11 to I 
against a genus of 10 species being primordial. For a genus of 60 species it is abouit an 
even chance whether the genus is derived or primordial, and for a genus of 100 species 
the odds are nearly 2 to 1 that it is primordial. 

The mean ages of the derived genera are given in column 4, and are necessarily less 
than the limiting values of the means, for infinite time, given for the sake of comparison 
in column 2. The modal ages of the derived genera are given in column 3: it will be 
seen that even for genera of 100 species the mode falls below the limit 6'28, so that 
all the frequency distributions of age, up to genera of 100 species, show a true modal 
age for the derived genera. 

VOL. COXIII.-:B. L 
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70 MR. G. UDNY YULE ON A MATHEMATICAL THEORY OF EVOLUTION, 

From columns 4, 5 and 6 the mean age of derived and primordial genera together was 
then calculated by (38), the values obtained being given in column 7. It will be seen 
that, for the small genera, the effect of limiting the, time is slightly to increase the average 
age as compared with the limiting value in column. 2: the difference increases up to 
genera of 20 species or thereabouts and then falls rather abruptly. For a genus of 

TABLE X.-Chrysomelidxe. Table showing mean ages, etc., for genera of each size: 
unit of time, the doubling-period for species within the genu.s in the Chrysomelidee. 
X-6*28, p =1I925. 

2 3 4 .5 7 

Proportion of 
Number of Limit Modal or Mean age of de 
species in smean age. mostfre- of derived and pri- 
genus. quent age. genera. Derived Primordial mordial. 

I ~~~~genera. genera. 

1 ... ... ...' 0.95 0 0*94 0.9961. 0 0039 0'96 
2 ... ... ... 1b52 0(73 1.50 (09903 0 0097 1.55 
3 ... ... 1... P93 1.21 1i90 0.9832 0.0168 1P98 
4 ... ... ... 2.25 l'57 2*21 ( 0.9752 0.0248 2*31 
5 ... ... ... 2.51 1*86 2.45 0*9664 0'0336 2158 
6 ... ... 2.73 2.10 2'66 0.9570 0.0430 2'82 
7 ... ... ... 2*93 2.31 2'84 0.9472 0*0528 3 02 
8 ... ... 3410 2.49 2'99 0'9370 0.0630 3.20 
9 ... ... .. 3-25 2.65 3.13 0.9265 0.0735 3.36 

10 ... ... .. 3-38 2 79 3*26 0.9158 0.0842 3.51 
20 ... ... ...1 4.32 3-76 4'05 0'8064 081936 4148 
3() 1... 4.88 4.33 4.47 07071 0.2929 1 5.00 
40 .... ...' 5 28 4.74 4.75 0 6231 0 3769 5.33 
50 ... ... ... 5.59 5.06 4.95 0.5534 0(4466 5.54 
60 ... ... 1 585 5-32 5.10 0.4955 0.5045 5.69 
70 ... . .. 6.07 5*54 5.22 0-4474 1 0.5526 5.80 
80 ... . 6.26 5.73 5.31 0*4070 0.5930 5.89 
90 ... ... 6.43* 5a990 5.39 0.3735 0.6265 5.95 
100 ... ... ... 6.58* 6|05 5 46 0|3451. 0 6549 6-00 

* Beyond the limiting value of the age, 6@ 28. 

somewhere near 45 species the two averages are equal, and for larger genera the mliealn 
age at time r steadily falls mnore and more below its limiting value, asymptoting, of 
course, to r, that is 6 28 in the present case. 

Fig. 11 shows as illustrations the age distributions of genera of 1, 2, 3, 10, 60 and 1.00 
species. The distribuitions of the derived genera are of the same general form as the 
distributions of fig. 10, but slightly altered owing to the different value of p, and truncated 
at ' =6*28; the area of the truncated curve is also made equal to p and not unity. 
The proportion of the primordial genera is showrn by a square just to the right of the 
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limit, the area of this square being q, so that the square and the curve make up unit 
area when taken together. For genera of 1, 2 and 3 species the truncation is scarcely 
perceptible and the square is very small. For genera of 10 species the truncation 
becomes appreciable and the squaxe is larger. For genera of 60 species the area of the 
squtare is little more than that of the curve, and finally for genera of 100 species most of 

Age of derived genera 
0 1 2 3 4 5 6 

Species Primordial 
in genera 

Genus 9ge 6 28 

2 

10 

60 I- _ 

100 I 
o 2 3 4 5 6 

Fig. 1.1--Chtrysomeridw. Frequency distributions of age for genera of 1, 2, 3, 10, 60 anld 100 species. The 
curves give the age distributions of the derived genera, the squares on the right showing the proportional 
frequency of primriordial genera (of. Table X). 

the derived distribution is cut off, the modal age lies just to the left of the limit and 
the square has nearly twice the area of the small portion of the curve that is left. The 
odds are nearly 2 to 1 that a genus of 100 species or more is one of the primordial genera 

L 2 
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(or genera reckoned as such, cf. the discussion at the end of Section IV). As a matter 
of fact the number of genera with 100 species or more in the Chrysonmelidw is only 16 
(Table V) and we have to class some 65 genera as priimordial (Tlable IV). 

Tables XI, XII and XIII show data alranged in the same form for the Cerarnbyeinwe, 
the Snakes and the Lizards, figs. 12, 13 and 14 showing the age distributions for a few 

TABLE XI.-Cerambyoinw. Table showing mean ages, etc., for genera of each size; 
uniit of time, the doubling-period for species within the genus in the Cernambyoinw. 
X-4*98, p=1188. 

1 2 324 6 6 7 

species of -~~~~~~~~Poprtono ofa d gerie Number of Limit Modal or Mean age of derived 
species of mean age. most fre- of derived 
genus. q meanage. quent age. genera. i Derived Primordial nordirali 

l genera. genera. 

1 ... ... . () 78 0 0*77 |09962 |00038 0-79 
2 ... ... ... 1-29 0-63 1-27 0-9896 0-0104 1-30 
3 ... ... .. 1-67 1-06 1-63 0-9808 0-0192 1-70 
4. ... ... ... 1-96 1- 39 1.91 0-9701 0-0299 2-00 
5 ... ... ... 2-21 1-67 1 2-14 0-9580 0-0420 1 2-26 
6 ... ... ... 2-42 113 9 2-32 0-9448 0-0552 2-47 
7 ... ... ... 2-61. 2-09 2 49 0-9306 j 00694 2-66 
8 .. ... ... 2-77 2-26 2 63 0-9157 0-08-13 2-83 
9 ... ... ... 292 242 2 75 0 9004: I 00996 2-97 
10 ... 1 -05 2-56 2 2 86 0-8846 ! 0-1104 3-11 
20 ... .... 3-96 | 50 i 055 0-7290 0-2710 3*94 
30 ... ... ... 1-52 4.107 1 385 0-6012 0-3988 1 3O 
40 ... ... ... 4-91 4.47 4*04: 0-5046 0-4954 4-51 
50 ... ... ... 5 -23* 4717 4-17 0-4310 1 0-5690 I 4-63 
60 ... ... 5 -48* 5 * 4-25 0-3764 J 0-6236 4-71. 

Beyond tlle limiting value of the age, 4 -98. 

selected sizes of genus in the same way. The tables and charts will repay some study 
buit do not seenm to call for special comment. It nmay once more be enmphasised that 
the unit of time is different in each case if mneasured. in years: it is the doubling-period 
for species within the genus in the given group. 

Charts such as those in figs. 11 to 14 suggest the q uestion wThether an examination of 
the larger genera in some group might not be of interest : the age distribution of such 
genera ought to be markedly compound, the genera, being in part primordial and in 
pa-r derived. Is it be,yondl the bounds of possibility t,hat one familiar wth the group 
might be able to effect at least a tentative separationl of the two?2 
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74 MR. G. 'UDNY YULE ON A MATHEMATICAL THEORY OF EVOLUTION, 

TABLE XII.~--Snakes. Table showing meani ages, etc., for genera, of eachl size: -unit 
of time, the doubling-period for species withini the genus in the Snakes. 4 42 6, 
p = 1-253. 

1 ~ ~ ~~~2 3 41 6 7 

Number of Modal or Mean age ~~~~~P roportion of Mean age 
in'ero Limit niodal fre ofea d gervd---*--.--__ _ of deriv%7ed species in mean Primordial of eriedand pri- 

genus. age. nt age.. genera. Derived. Prmril mnordial. genera. jgenera. 

1. ... ... 0-8O 0 0.78 O (9889) 0'1. 
2 ... ... ...j 1.32 0.64 1*26 0.9709 0*0291 1'35 
3 ... ... ... 1P70 i*08 i.62 0-9483 0*0517 1.75 
4 ... ... .. 2*00 1-42 l*88 0-9227 0-0773 2-06 
5 ... ... .J 2.25 I - 69 2-09 0*8953 0'1047 2*31. 
6 ... ... 1 2-46) .1 92 2* 26 0-8670 041330 2*52 
7 ... .. .. 2-64 2*12 2*40 0*8384 0*1616 2'70 
8 ... ... .1 2*81 2*29 2 953 0.8100 0'i-900 2'86 

9 ... ... ~2.96 2-45 1 2-64 0-7823 0-2177 2-99 
10 3-09 ~~~~~~~2*59 2 73 0-7552 0-2418 3'11 

20 ... ... .J 4() 3-53 3-29 0-5403 I0*4597 3.73 
30 .. ... ... 4-56* 4'10 3 54 0-4086 0*5914 3.97 
410 *. .. .. 4.96* 4-.50* 3'69 0*3253 0*6747 4*07 

*Beyondc the J in iting value, of thle age, 4 * 26. 

TrABLEK XLII.-Ljizards. Table shiowinig mlean ages, etc., for genera of each size: uinit 
of time, the doubling-period for species wkithiin the genus in the Lizards. r 4= 4281I., 
P = 1 -496. 

1. 2 3 4. 5 67 

Mea~ ~~'rprtolo Ma g Number of Modal or :Prpotianf Manag 
species in Limit most fre- Iof derived .---.*--*Piod of derived 
genuis. maag. quent age. Igenera. Drvd Pioda 

genera. genera. 

I .. ... ... 0-86 0 0*83 0-9825 0*0175 0-89 
2 ... .. ...~ 1*41 0*68 1*33 0.O9564 0*0436 I 1.46 

3 ... ... 1.80 1*14 1*69 0 O9256 0 '0744 18 
... ... ...~ 2P1148198082 017 1 282 4. 

2.36 176 2416 0.8580 0 O1420 2.46 

6 ... .. .~ 2*58 2*00 2*33 0-8238 0*1762 2*67 
7 ... ... ..I 2*77 2*20 j 2-47 0*7904 1 0*2096 2'85 
8 ... ... ...I 2*93 2*38 2'59 0*7581 1 0*2419 3O00 
9 ... ... ..1 3-08 2*53 2*70 0*7270 0*2730 I 3.13 

10 ... .. ...j 3-22 2*68 1 2*79 t0-6976 j0*3024 3-24 
20 .. .. .' 4144 3*63 1 3-33 0*4796 0-5204 3*82 
.30 ... ... 4 -53- 4-20 3-5 0-3566 0-6434 4-03 
40 ... ... ... 5.10 i* 4.1 

3 i7 0-2814 0-7186 4-12 
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Age of derived penera o 2 4 
Species Primordial 

In genera 
Genus i ege 4*28 

2 

10 

20 

40 

0 1 2 3 A 

Fig. 14.-Lizards. Frequency distributions of age for genera of 1, 2, 3, 10, 20 and 40 species 
(cf. Table XIII). 

VI. AN ATTEMPT TO ESTIMATE THE ORDER OF MAGNITUDE OF THE DOUBLING-PERIOD 
FOR SPECIES IN THE CASE OF THE FLOWERING PLANTS, AND THE PRESENT RATE 
OF OCCURRENCE OF SPECIFIC MUTATIONS. 

Objection lhas been raised to the assumption of " specific mutations " on the ground 
that no such phenomena have been observed.. " Though undeniable as possibilities "- 

])r. BATESON wrote in a review of 'Age and Area ' ('Nature,' January 13th, 1923)- 
" we have to consider what warrant for such guesses " (as Coleus elongatus being the 
immediate parent of C. barbatus, and so forth) " can be drawn from the observed facts 
of variation. The answer is quite clear that up to the present scarcely anything com- 
parable has been" observed." To such an argument the reply seems to me to be that 
we are not likely t.o observe the actual occurrence of a viable specific mutation -it is 
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76 MR. G. UDNY YULE ON A MATHEMATICAL THEORY OF EVOLUTION, 

far too rare an event-unless or until we discover how to stimulate such mutations 
artificially. This is in fact the answer already given by Dr. WILLIS ('Age and Area,' 
p. 212): "Lord RAYLEIGH has estimated the period since the Eocene alone, which 
covers but a portionl of that occupied in the evolution of the higher plants, at 30,000,000 
years. But if we suppose one mutation in 50 years to survive, we should get the whole 
of the existing 160,000 species of flowering plants in 8,000,000 years, which is only 
26 per cent. of that time." 

Let uts look at the matter more closely. In the above illustration Dr. WILLIs has 
taken the mutations as occurring uniformly throughout the period of evolution, so that 
the total number of species would increase in arithmetic progression. But wve concluded 
that the total number of species increases, not in arithmetic progression, but according 
to a law wxrhich gradually approximates to geometric progression (equations 21 and 24, 
p. a0). 

Let us suppose that for the present very rough calculations it will suffice to take the 
number of species y as given by 

y . A (39) 

where t is the time in years. Let Y be the known number of species at the present 
time T. Then 

a (T log e)-1 (log Y - log A) .(40) 

Fiurther, if X be the doubling period e' --=- 2 or 
X= (log 2) (a log e)-' = T log 2 (log Y -log A)-'. (41) 

For the present rate of occurrence of specific mutations (viable specific mutations) we 
have 

(ddfl)T = aY = (Tr log e) Y (log Y -- log A). . . . . . . . (42) 

Ignoring for the moment the killing out of species, let us see what values (41) and 
(42) give us for X and for cly/dt at the presenit time: the value so obtained for X will be 
an utpper limiit, and for dy/dt a lower limit. For the time that has elapsed since the origin 
of the flowering plants I propose to use the round figure of 100,000,000 years. Lord 
RAYLEIGH'S figure of 30 million years since the Eocene, used by Dr. WILLIS, is based 
on the helium ratio and must be regarded as a lower limit for the time that has elapsed 
since that epoch. Where the helium ratio gives 146 million yeaxs for the age of the 
Carboniferous, the lead ratio gives 340 millions.* In the absence of a definite figure 
for the Lower Cretaceous, 100 million years may probably be taken as sufficiently near 
the truith for a calculation in which we are really only concerned with the order of magni- 
tude of the result: the very roundness of the figure will remind us that no precision is 
implied. The constant A (of. equation 24) is p/(p-1): as p is apparently about 1*5 
(p. 62) we may place its value at 3. Y, as mentioned above, is taken by Dr. WVILLIS 

as roundly 160,000. 
$ ARTHUR HOLMES, 'The Age of the Earth' (Harpers, 1913). 
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With these data, we have for the doubling-period 

1 x 0x301_= 6.4 X 10_ 

5'204 - 0'477 -64x1~ 
and for the present rate of occurrence of specific mutations 

? 

= 
8-(d0-- 4-3-4-\ (#!) -0 0174 = 1/57 5. dt T ~ 1081 X 0.4343 

The doubling-period (either for species within the genus or for all species at the present 
time) is then, on these assumptions, no less than 6'4 million years, and the present 
occurrence of viable specific mutations at the rate of 1 in some 57 or 58 years-amongst 
all species of flowvering plants on the whole surface of the globe. Any alteration in 
p, it may be noted, makes a relatively small change in these results. If p = 2 instead 
of 1 * 5, the doubling-period is lowered to 6- 1 million years and the rate of occurrence of 
viable specific mutations raised to 1 in some 55 years. Raising p to infinity only lowers 
X to 5X8 millions and raises dy/dt to 1 in some 52 years. If, on the other hand, p is 
lowered to 1 2, the doubling-period is raised to 6 * 8 million years and the rate of occurrence 
of mutations lowered to 1 in some 61 years. The order of magnitude of the result is 
not affected at all. 

A doubling-period of 6 * 4 million years would give between 15 and 16 doubling-periods 
in the 100 million years taken as having elapsed since the genesis of the flowering plants. 
A rough estimate of the length of the doubling-period might have been given off-hand 
by anyone wvho kept in front of him a table of the powers of 2 (as in columlin 2 of Table 
XIV)-a useful thing to do when considering questions of this kind. On this table 
160,000 lies between the 17th and 18th powers of 2: so that if there had been simple 
geometric increase in the niumnber of species (corresponding in strictness to p = oo) the 
doubling-period would have beeni between 100/17 and 100/18 or 5 9 and 5*5 million 
years andl nearer to the former than the latter (5.8 millions, as stated above). 'T'he 
only effect of the more complex law of equation (24), with p taken as 1 * 5 is, as shown 
by column 3 of Table XIV, to reduce the number of doubling-periods nlecessary to give 
160,000 species from 17 or 18 to 1.5 or 16 and proportioniately increase the length of 
the doubling-period. 

If the flowering planlts had a polyplhyletic origin, starting from 2, 4, or 8 viable mutations 
which occurred (geologically speaking) at about the same time, the only consequence 
would be further to reduce the number of doubling-periods necessary to give the required 
total of 160,000 species from 15 or 16 to 12, 13 or 14, and further to increase the estimated 
length of the doubling-period to possibly as much as 8 or 9 million years. 

In all this argument, however, the killing-out of species is ignored. When species 
are being killed-out, either more or less continuously during the whole lapse of time 
or more or less cataclysmically at intervals, it at once becomes doubtful how far equation 
(24) applies. I propose, therefore, to take it that, for present purposes, it suffices to 

VOL. CCXIII.-B. M 
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78 MR. G. UDNY YULE ON A MATHEMATICAL THEORY OF EVOLUTION, 

TABLE XIV. 

Timn dobig Powers N,N by equation 
peinodoulig of 2. (24): p = i. -5. 

1 2 3 

1 23 
2 4 7 
3 8 I16 
4 16 35 
5 32 76 
6 64 160 
7 128 333 
8 256 687 
9 I512 I1,408 

10 1,024 2,869 
11 2,048 5,821 
1I2 4,096 .11,776 
13 8,192 23,763 
14 16,384 I47,862 
15 32,768 I96,256 
16 65,536 1193,357 
17 131,072 388,055 
1 8 262,144 778,240 
1 9 524,288 I 1,559,860 
20 1,048,576 3,1.25,085 

assume the law of free increase as simply logarithmic from the beginning, and write A 
in (39) as unity. As we have ju-st seen, the only effect of such an assumption in the 
above case is to reduce the estimated doubling-period from 6 *4 to 5 '8 million years. 

I will first suppose the killing-out to be practically continuous, though as stated in the 
Introduction I do not think this at all closely represents the facts. Let the numbers at 
successive small intervals of time be 

where p is the proportion of survivors and r gives the free rate of increase. If 

r = 1I-- aO 

in the limit when the time-interval 0 is made very small we may write 

y = a-.)I. . . . . . . . . . . . . . . (43) 
The total number of deaths fromn the beginning to the time of observation is 

1)D qr +1 qpr2 4-qeer + ...+ qpn- r" 
-- q('rn 1 (p)r 
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That is approximately, Y being large compared with unity and a and 8 very small, 

D -8 (a -8)-1 Y. 
Let 

a/8= k. . . . . . . . . . . . . . . (44) 
Then finally 

D =(k-1)-1Y. . . . . . . . . . . . . (45) 

If, for example, k 2, that is, if the number of species killed-out in a small interval 
of time is half the number of new species coming into existence in that time, the total 
number of species that has been killed-out is equal to the number at present existing. 
We have now 

a= k log Y [(k- 1) T loge]-1 . . . . . . . . . . (46) 
and the free doubling-period, the period in which the number of species would double 
apart from the killing-out, is given by 

X log 2 (a log e)-1= (k -1) T log 2 (k log Y)-'. (47) 
Finally 

(d\ =a (k-1)k Y= Y log Y (T log e)-'. 

But this consists of two parts 

Rate of occurrence of new species 

-= aY = k (k-1) Y log Y (T log e)' (a) I 
Rate of killing-out of species 

(d) -a =- (k - I)-' Y log Y (T log e)8 (b)) 

Were we in a position to make even a rough estimate of the number of species of 
flowering plants that has been killed-out, (45) would give us an approximate value for k. 
But unfortunately we are not at present in a position to give even a lower limit for this 
figure, wrhich would give an upper limit for k. If, merely as a numerical illustration, 
we take k as 2, X takes half the previous limiting value (p = c0) or 2 9 million years, 
new species come into existence at about the rate of 1 in 26 years, and species are killed 
out at about the rate of 1 in 52 years. 

So much for the scheme of continuous killing-out. Let us now turn to a scheme of 
cataclysmic killing: supposing that a series of practically instantaneous cataclysmls 
occurs, each sweeping off a certain proportion of the then existing species. However 
crude, it seenms to me that such a scheme is a slightly closer representation of the facts; 
at all events, a comparison betwreen the consequences of such a scheme anad the scheme 
of continuous killing will show whether extreme differences in the time-incidence of 
destruction on species have or have not any important effect on the estiMated doubling- 
period. 

M 2 
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80 MR. G. UUDNY YULE ON A MATHEMATICATL THEORY OF EVOLUTION, 

Suppose then that each cataclysm kills off the same proportion q of the existing species, 
a proportion p surviving: that the cataclysms recur at regular intervals ck: that there 
are n such intervals in the time T : and that observation is made just after the nth cata- 
clysm, e.g., the last glacial epoch. During the intervals between cataclysms it will be 
assumed as before that increase in the number of species may be taken as approximately 
logarithmic. Then the ch-anges in the number of species will take place as follows :--- 

Time in intervals. Number of species. 
0 1 
1 eaf a pea 
2 pe2a4 

3 psesaq pfesao 

During the first interval the nunmber of species wvill increase to eao, of which only peao 
survive after the first cataclysm. During the second interval these will increase to 
pe2a+, only p2e2a4 surviving after the second cataclysm, and so on. eience 

y= pnenaa = pneaT.(49) 

Whence 
a - (log Y-n log p) (T log e)- . . . . . . . . . . . (50) 

where log p is, of course, essentially negative. The free doubling-period is 

X-T log 2 (log Y - nlog p)-'. . . . . . . . (51) 

and 
(dyNj = Y (log Y-n log p) (T log e)1. . . . . . . . (52) 

~Tt 

The number of species killed-out is 
I) = qea (pnena 1) (pa_ l)-1 

_ qp- l Yl/n (Y_ - ) (y11"_ 1) 

or as Y is large, very nearly 

D = qp- Y(n+1)In (YlI-- 1). . . . . . . . . . . (53) 

Compare equations (47) and (51). In (47) T log 2 is divided by log ykl(k1), that is, 
by log (Y/e-8T). In (51) the divisor of T log 2 is log (Y/p"). But e-IT in the first case and 
pn in the second is the chance, say PT, of a species surviving from the origin of the flowering 
plants to the time of observation. Hence, so long as p, is the same it is of no consequence 
wlhether the killing-out is continuous or discontinuous; X is unaltered by the changed 
incidence of destruction. 

A comparison of equations (48a) and (52) shows that a similar statement holds good 
for the present rate of production of specific mutations. The rate is the same so long 
as .r is the same, whether the killing-out is continuous or cataclysmic. But the number 
of species killed-out, it must be noted, is not the same in the two cases: (45) and (53) do 
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not lead to the same result for the same value of p,, (45) being the limiting value of 
(53) when n is made indefinitely great. 

Table XV gives a conspectus of the results for various assumed values of the killing- 
out. In the first section of the table are given, for the sake of comparison with the 
remainder of the table, the values arrived at for the doubling-period and for the present 
rate of produiction of species if there is no killing-out at all. In the first line of section 2, 
discontinutouis killing is cassume(l to the extent of 1]0 equidistant cataclysm.s each of 

rABLE XV.--Estimates of the doubling-period for species in the flowering plants, 
and of the present rate of production of specific muvLtations on various assurnptions. 

Cliaiige of ~ Present rate 
Case assumed: ITotl nuber| Cla species Doubling- of production 

Time elapsed since the origin of the flowering D of species surviving period of specific 
plants, 100 million years: present existing killed-out. 10 million in million mutations, 

species, 160,000. years. years I in years 
years._stated below. 

1. (a) No killing-out p = 1.2 ... ... ... Nil Unity 6|8 61 
(b) ,, ,, -=1i5 ... ... ... Nil Unity 6.4 57.5 
(c) ,, ,, p 20 ... ... ... Nil 'Unity 6-1 55) 
(d) ,, ,, p= O ... ... ... Nil Unity 5*8 52 

In all the following incerease is taken as 
sinmply logarithmic (p = oo ) 

2. (a) Discontinuous killing: 10 cataclysms eachl 
killing-out I of existing species ... ... 1]14,600 0 6667 4 3 39 

(b) Continuous killing with same total killed- 
out: k- 2 396 ... ... ... .... 114,600 0 4238 3.4 30 

3. (a) Discontinuous killing: 20 cataclysms each 
killing-out i of existing species ... ... 177,500 044444 3.4 33 

(b) Continuous killing witlh sane total killed- 
out: k == 1901 ... ... ... ... 177,500 0 2645 2 7 25 

4. (a) Discontinuous killing: 50 cataclysms each 
killing-out - of existing species ... ... 375,400 0.1317 2 ]. 19 

(b) Continuous killing with same total killed- 
out: k=-1426 ... ... ... 375,400 0-0600 1 7 16 

5. (a) Discontinuous killing,: 100 cataclysms each 
killing-out - of existing species ... ... 708,400 0*0173 1*3 1]2 

(b) Continuous killing with same total killed- 
out: k=]1226 ... . ... ... 708,400 1 0o0050 Fl I - ! 10 

6. (a) Discontinuous killinig: 1.00 cataclysms each 
killing-out i of existing species ... ... 472,300 0 0562 17 1]5 

(b) Continluous killing with same value of pr: 
k _= 1 *416 .... ... ... ... ... 384,600 0 *0562 1 s7 ] 5 

7. (a) Discontinuois killing: 100 cataclysms each 
killing-out 0:092 of existing species ... 143,500 0.3805 3.2 1 29 

(b) Continuous killing with same value of pr: 
k-2 P241 ... ... ... ... ... 129,000 0 *3805 3 2 29 
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which sweeps out of existence one-third of the then existent species. This would give 
the total number of species extinct as 114,600: the free doubling-period would be reduced 
to 4-3 million years, and the present rate of production of specific mutations would be 
raised to 1 in some 39 years. The chance PT of a species surviving for the whole 100 
million years would in several of the cases taken be vanishingly small, hence in the second 
column of the table I have given for the sake of readier comparison pr? ' or the chance 
of a species surviving 10 million years. Since 10 million years, in the present case, only 
cover a single cataclysm, this is 2/3 or 0 * 6667. In the second line of section 2 are given 
the corresponding figures when the killing-out is continuous, and of such severity as 
to make, not PT the same, but the total number of species killed-out the same. Equation 
(45) then gives k, and (47) and (48a) give the doubling-period and the present rate of 
production of specific mutations. It will be seen that on these assumptions X is further 
reduced to 3-4 million years, the present rate of production of specific mutations is 
raised to 1 in some 30 years, and the chance of a species surviving for 10 million years 
is reduced to 0 4238. It must be remembered that under 2a we assume observation 
just after the last cataclysm: our 160,000 species would then be the survivors of 240,000 
which existed immediately prior to the cataclysm, no less than 80,000 of the 114,600 
species extinct having been killed-out in the final cataclysm. When the killing-out is 
continuous, the deaths are spread over the wrhole curve of increase, and PT must naturally 
be smaller to give the sanme total of species extinct. 

In sections 3, 4, and 5 of the table similar comparisons are made for successively 
increased severity of the destruction of species. In section 5, with 100 cataclysms each 
killing-out one-third of the then existing species, the total number of species killed-out 
would be over 700,000, the free doubling-period would be lowered to 1 * 3 million years, 
and the present rate of production of specific mutations would be raised to 1 in some 12 
years. 

But unfortunately, as already stated, there seems no basis at present for estimating 
even roughly the total number of extinct species, so as to estimate whereabouts on the 
table the trutlh in fact lies. That line of approach, at present at all events, is not possible. 
But another and more hopeful line is afforded by the second colunmn-the chance of a 
species surviving. We know that the chance of a species surviving from the origin of 
the flowering plants to the present time must be infinitesimally small, for no species 
has so survived. On the other hand, we know that a species may survive through very 
long periods of geological time. 'Hence we might reasonably con-jecture that pT. is too 
large in sections 2 and 3 of the table, and possibly too small in section 5. The con- 
jecture seems to be confirmied by utilising sonle valuable data given by Mrs. CLEMENT 
REID in Chapter XIV of 'Age and Area' (p. 144) and reproduced below. 

Traking, e.g., the lowest figure showing 10 per cent. of survivals from the base of the 
Pliocene to the present time-it is founded on a single local deposit only and obviously 
too much weight must not be attached to it-can we use it to suggest a value for Pr? 
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Percentages of Extinct Species belonging to the Chinese-North American Association of 
P-lants in the West European Pliocene at Successive Periods. 

Percentage of 
Deposit. A.ge of Deposit. extinct species 

(approximate). 
Cromerian ... ... ... Top of Pliocene ... 0 
Teglian ... ... ... Upper Pliocene ... 35 
Castle Eden ... ... ... Middle Pliocene ... 44 
Reuverian ... ... ... Lower Pliocene ... 70 
Pont-de-Gail ... ... ... Base of Pliocene ... 90 

If we can fix the approximate time to which it relates, we can readily do so. Lord 
RAYLEIGH'S figure for the age of the Pliocene is 2 * 5 million years as determined by the 
helium ratio, 6 3 millions for the Miocene, figures which would correspond to about 
6 and 15 nmillions respectively on the lead-ratio scale. Taking these as approximately 
central figures for the Pliocene and the Miocene respectively, the age of the base of 
the Pliocene must be somewhere between 6 and 15 million years. Suppose we call it 
8 millions-probably rather a low figure. Then we have:- 

Pr 008 0*1 

whence 
log PT = 12-5 -- 13-5 

while 
0*1 log PT= 2* 75 Pio- 0*0562 

*01 lJog PT= 1*875 pL= 075 

If then we assume killing-out to have been effected by 100 cataclysms, the chance of a 
species surviving the cataclysm must be taken as 3/4, instead of 2/3 as in section 5, 
and this gives the values of the doubling-period and the present rate of production of 
species shown in section 6 of the table. T'he only figure altered if we keep PT the same 
but assume killing-out to have been practically continuous is the number of extinct 
species, wlhich is lowered from 472,000 odd to 384,000 odd. 

But the data in Mrs. REID'S table, though they run consistently from the top to the 
bottom of her table, suggest that the more recent figures for the percentages of extinct 
species are too low (cf. the zero with which the table begins) or possibly the percentages for 
the older deposits too high. If 0 1 is the chance of survival from. the base of the Pliocene, 
the chance of survival from an epoch only half as distant in time should under uniform 
conditions be in the neighbourhood of /0 * 1 or 0 32. But the percentage of survivals 
from the Middle Pliocene is as high as 56, and this is much more than half as distanit in 
time. If we call the age of the Middle Pliocene 6 million years, this percentage of survivals 
gives the results shown in section 7 of the table--roundly nearly double the figures shown 
by section 6. I have purposely taken the age rather low in the first case and possibly 
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rather high in the second, so as to give limiting results. On the general reasoning used 
above the value of PT for this second case (section 7), approximately 7 X 1o-5, seems rather 
too high, as it gives a probability of about 1 in 14,000 for a species surviving right through 
from the origin of the flowering plants to the present time. On the other hand, the value 
Of PT for the first case (section 6 of Table XV), roundly 3 X 10-13, is perhaps rather too 
low, since we know from such inistances as Ginkgo that species may survive through very 
long periods of geological time. 

In any case the fi.gures are qiute definite as to order of magnitude. If the ag,e of the 
flowering plants is 100 milli-on years, or thereabouts, the doubling-perio(d for species 
is probably of the order of some 2 or 3 ]lillioni years: it is, say, almost certainly over 
1 million and less than 6 miillions. 'I'he present rate of production of viable specific 
muitations, amongst all flowering plants on the whole surface of the globe, is almost 
certainly less than I in 10 years and more than 1 in 60 years; it probably lies between 
1 in 15 and 1 in 30 years. The assumption of a polyphyletic origin for the flowering 
plants would not very greatly affect these figures. Specific mutations must, therefore, 
be such exceedingly rare events that no valid argument, as it seems to me, can be based 
on the fact that we have no experience of such occurrences. My calculations fully 
confirm Dr. WILLIS'S conclusion in this respect. 

It should perhaps be added that of course the figures obtained, for a group so hetero- 
geneous as the aggregate of the flowering plants, are of the nature of averages and may 
well differ considerably for different families and genera. But it does not seeni probable 
that the order of magnitude is wholly different. 
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APPENDIX. 

TABLE A.-Chrysomelidc: Numbers of genera with 1, 2, 3, . . . species. (Comnpiled 
by Dr. J. C. WILLIS from Cat. Coleopt., Gemminger and H-arold, t. XI, 1874, and 
t. XII. 1876.) 

Species. Genera. Species. Genera. Species. Genera. 

-. ,, -. - , - - _1_, .,__.._ ____I__._ . -.. ,- . . - -_,-_________ 

1 215 32 1 74 1 
2 I 90 33 I 1 76 1 
3 1 38 1 34 1 77 1 
4- 1 35 35 1 1 79 I 
5 2 'S1 1 36 3 83 1 
6 I 16 I 37 1 i 84 3 
7 115 38 1 H 87 2 
8 14 i 39 2 I 89 1. 
9 5 1 40 2 92 2 

1( 15 41 1 93 1 
1l. , ,9.8 43 4 110 1 
12 1 9 44. 1 114 1 
13 5 45 1 I 115 1 
14 6 4 46 1 128 1 
15 8 49 2 132 1 
16 6 50 4- 133 1 
1.7 1 6 52 1 146 1 
18 1 3 53 1 163 1 
19 4 | 56 1 196 1 
20 3 1 58 1 1 217 1 
21 4 59 1 227 1 
22 4 62 1 264 1 
23 5 63 3 327 1 
24 4 65 1 399 1 
25 2 66 1 417 1 
26 3 67 1 681 1 
27 1 69 1 
28 3 71 1 
29 3 72 1 
30 3 73 1 Total 627 

VOL. CCXIII.--B. N 
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TABLE B.-Cerambycincw: Numbers of genera with 1, 2, 3, . . . species. (Compiled 
by Dr. J. C. WILLIS, from Coleopt. Cat.. Junk and Schenkling, Part 39, 1912.) 

Species. Genera. I Species. Genera. Species. i Genera. 

1 469 ! 21 2 46 I 1 
2 152 22 5 47 1 
3 82 1 23 1 1 49 1 
4 61 24 3 1 50 1 
5 33 i 25 1 3 j 52 1 
6 1 36 26 3 53 1 
7 18 i 27 1 57 1 
8 17 I1 28 1 59 1 
9 14 1 30 2 66 1 1 

! I 1 31 3 I 67 i 1 

I 11 32 1 69 1 
12 4 ! 34 3 j 89 1 
13 10 I 35 2 95 ; ] 
14- 9 36 1 1 104 1 
15 8 37 1 107 1 
16 7 II 39 2 1 120 1 
17 11. 40 2 I 125 1 
18 6 I' 42 1I 
19 5) 43 j 2 
20 3 44 1 Total 1,024 

TABLE C.-Snakes: Numbers of genera with 1, 2, 3, . . . species. (Compiled by Dr. 
WILLIS from Boulenger, Cat. of the Snakes in the Brit. Mus., 1893.) 

.~~~~~~~~~~~~~~~~~~~~~~~~~~~ .I 
Species. G-enera. Species. Genera. Species. Genera. 

1 131 10 4 27 1 
2 35 13 3 31 1 
3 28 15 2 33 1 
4 17 17 1 2 40 1 
5 16 18 3 45 1 
6 9 21 4 74 1 
7 8 1 22 5 97 1 
8 8 1 23 1 
9 9 I 26 1 Total 293 

l l~~~~~~~~~~I 
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TrABLE lD.--Lizards: Numbers of genera with 1, 2, 3, . . . species. (Compiled by 
Dr. WILLIS from Boulenger, Cat. of the Lizards in the Brit. Mus., 1885.) 

Species. Genera. Species. Genera. Species. Genera. 

1 105 13 2 1 31 1 
2 44 14 1 32 1] 
3 23 15 1. 37 1 
4 14 1 16 3 41 1 
5 12 17 1 44 1 
6 7 1 18 2 66 1 
7 6 19 3 106 1 
8 I 4 21 2 159 1 1 
9 I 5 22 I I . 

10 5 24 1 II 
11 3 25 3 ii 
12 1 27 2 Total 259 

TABLEE.-Leguminosce: Numbers of genera with (approximately) 1, 2, 3, . . . species, 
with graduated or averaged' figures. (Compiled by J)r. WILLIS from Dictionary 
of the Flowering Plants.) 

Graduated Graduated 
Species. I Genera. or averaged Species. Genera. or averaged 

figures. figures. 

1 245 245 34 
2 66 66 35 5 111 
3 36 36 11 40 6 F 
4 24 34-5 43 - 

5 28 25*4 44 - 

6 I 30 19*8 45 1 05 
7 7 16 504 
8 13 13-3 53 
9 _ 11-3 55 1 - 

10 1 27 9 8 60 3 - 

11 I 3 8*6 65 2 
12 20 7-6 70 6 - 

13 1 6 11 75 1 - 

14 2 6 80 2 
15 18 51 4 90 2 1 - 
16 4 4.9 100 4 -- 
17 - 4*6 110 1 - 

18 2 4 1 120 3 - 

19 3- 38 I 150 3 3 - 

20 15 3*6 1 160 1 2 - 

21 - 3.4 170 1 1 - 

22 1 3*2 175 1 - 

23 - 3 220 1 - 

24 3 I 290 1 
25 8 300 1 - 

27 1 1.9 350 1 
30 6 400 j 2 
33 1 1 IJ 11 500 11 - 

11,600 1 - 

l l || ~~~~Total 
6 17 
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